32
Metabolic Calculations - Purpose Estimate energy expenditure Estimate energy expenditure during steady state exercise during steady state exercise

Metabolic Calculations - Purpose

  • Upload
    mrinal

  • View
    30

  • Download
    0

Embed Size (px)

DESCRIPTION

Metabolic Calculations - Purpose. Estimate energy expenditure during steady state exercise. Importance of Metabolic Calculations. It is imperative that the exercise physiologist is able to interpret test results and estimate energy expenditure. Optimizing exercise protocols. - PowerPoint PPT Presentation

Citation preview

Page 1: Metabolic Calculations - Purpose

Metabolic Calculations - Purpose

Estimate energy expenditure during steady Estimate energy expenditure during steady state exercisestate exercise

Page 2: Metabolic Calculations - Purpose

Importance of Metabolic Calculations

• It is imperative that the exercise physiologist is able to interpret test results and estimate energy expenditure.

• Optimizing exercise protocols.

• Exercise prescription.

• Weight loss.

Page 3: Metabolic Calculations - Purpose

• 1L= 1000 mL• 1kg= 2.2 lbs• 1mph= 26.8 mmin-1

• 1 lb of fat= 3500kcal• 1 MET = 3.5 mLkg-1min-1

• 1 W= 6 kgmmin-1

• 1L O2min-1 = 5 kcalmin-1

• 1 in = 0.0254m=2.54 cm• Pace: min/mile to mph = 60/time• 7.5 min/mile / 60 min/hr = 8mph

• Kcal/min =

METS * 3.5 * BW

200• 1L O2min-1

= 5 kcalmin-1

Page 4: Metabolic Calculations - Purpose

Metabolic Calculations (S=Speed; G=Grade)

• Walking (most accurate from 1.9-3.7 mph)– VO2 = (0.1• S) + (1.8 • S • G) + 3.5

• Treadmill and Outdoor Running (for speeds > 5 mph)– VO2 = (0.2• S) + (0.9 • S • G) + 3.5

• Leg Ergometry – VO2 = 1.8 (work rate)/(BM) + 3.5 + 3.5

• Arm Ergometry– VO2 = 3 (Work Rate)/(BM) + 3.5

• Stepping– VO2 = (0.2• F) + (1.33 • 1.8 • H • f) + 3.5

CARRY OUT EACH STEP TO 2 DECIMAL PLACES

Page 5: Metabolic Calculations - Purpose

Assumptions and Limitations• Measured VO2 is highly reproducible at a given

steady state workload. Failure to achieve steady state is an overestimation of VO2.

• Accuracy of equations is unaffected by most environmental conditions such as heat and cold.

• However, variables that change mechanical efficiency (gait abnormalities, wind, snow or sand) result in a loss of accuracy.

• Assumption that ergometers are calibrated and no holding on to hand rails occur during on tm.

Page 6: Metabolic Calculations - Purpose

Met Calc - Key Points

• Estimates oxygen requirement (VO2) for various workloads– Linear relationship– Some variability

(S.E.E. 7%)

assumptions

500

1000

1500

2000

2500

0 50 100 150 200

Watts

VO

2 (

ml/m

in)

S.E.E. 7%

Page 7: Metabolic Calculations - Purpose

Met Calc - Key Points (con’t)

• “Steady State” or submax exercise:O2 cost = O2

uptake

• “Maximal” ExerciseO2 cost > O2

uptake

O2 R

eq

uir

em

en

t

Workload

AnaerobicComponent

Max Exer

=

VO2max

Predicted

VO2max

you cannot predict maximal

Page 8: Metabolic Calculations - Purpose

Met Calc - General Principle

MechanicalWorkload

MetabolicEquivalent

• Meters.min-1

• kgm.min-1

• VOVO22

• METs• kcals.min-1

We estimate one value based onWe estimate one value based onknowledge of the otherknowledge of the other

Page 9: Metabolic Calculations - Purpose

Metabolic Units

• Absolute vs. Relative VO2 units

• Absolute

– independent of body weight

– non-weight bearing activities• leg and arm ‘cycling’

• liters of O2 per minute (l.min-1)

• milliliters of O2 per minute (ml.min-1)

Page 10: Metabolic Calculations - Purpose

Metabolic Units (cont.)

• Absolute vs. Relative VO2 units

• Relative

– dependent on body weight

– weight bearing activities• walking, jogging, stepping equations

– milliliters of O2 per kg per minute

• (ml.kg-1.min-1)

– METs: 1 MET = 3.5 ml.kg-1.min-1

Page 11: Metabolic Calculations - Purpose

Metabolic Units - Energy

• 1 calorie = the heat energy required to raise 1 gm H20, 1o C (@ 15o C)

• 1000 “small” calories = 1 “large” calorie or kilocalorie (kcal)

• Kilocalories per min (kcals . min-1)

• Application to Weight Control

Page 12: Metabolic Calculations - Purpose

Energy Conversions

• 1 liter O2 , VO2 ~ 5.0 kcals

• 1 lb of fat ~ 3500 kcals

• 1 MET 1.0 kcals . kg . hr-1

• Kcal.min-1 = METs x 3.5 x ( BW(kg) / 200)

– “caloric thresholds” for adaptation during training (200-300 kcals per session; 1000+ for week)

Page 13: Metabolic Calculations - Purpose

Mechanical Units - Force

• Force = mass x acceleration

• “Weight” ~ mass undergoing gravitation acceleration

• examples: lbs. and kgs

• Kilopond (kp) 1 kg mass under normal gravitational acceleration

• 1 kp 1 kg (cycle work - resistance)

Page 14: Metabolic Calculations - Purpose

Mechanical Units - Work

• Work = force x distance

• Units:

– kilogram meters (kg.m or kgm)

– kilopond meters (kp.m or kpm)

– foot pounds (ft.lbs)

• Walking/Running: we carry our mass (kg) a given distance (meters) and therefore we can estimate the “work” performed

Page 15: Metabolic Calculations - Purpose

Mechanical Units - Power

• Power = Work / Time• Units:

– kilogram meters per min (kg. m. min-1) – kilopond meters per min (kp. m.min-1)– watts (1 watt 6 kg. m. min-1)

• Cycle workloads or work rates• Metabolic (Aerobic) Power = Oxygen

Consumption; VO2

Page 16: Metabolic Calculations - Purpose

ACSM Metabolic Equations: Equation set-up

• Regression equations: estimate Y based upon X– Y = a + bx

• a = intercept

– “y” value when x = 0

• b = slope of line

– unit change in “y”, for every one unit change in “x”

Y

X

ba

Y Unit Y Unit = oxygen cost= oxygen costXX Unit Unit = power output= power output

YY = = aa + + b b xx

Page 17: Metabolic Calculations - Purpose

ACSM recommendations

Conversion to units: lb to kg, mph to m.min-1; etc. (metric)

Transform VO2 units to needed units: ml.min-

1 to l.min- 1 to ml.kg-1.min-

Write down the equation in appropriate form

Page 18: Metabolic Calculations - Purpose

ACSM Walking Equation

• Speeds 50-100 m/min; 1.9-3.7 mph

– (1 mph = 26.8 m/min)

• “Relative” VO2 unit (ml/kg/min; ml.kg-1.min -1)

• VO2 = Horizontal Walking (HW) + Vertical Climb (VC) + Resting

• HW (ml.kg-1.min-1) = m/min x 0.1

• VC (ml.kg-1.min-1) = % grade (decimal) x m/min x 1.8

• Resting (ml.kg-1.min-1) = 3.5

Page 19: Metabolic Calculations - Purpose

ACSM Walking Equation

• Example: VO2 for walking @ 3.0 mph

• Convert 3.0 mph to m/min– 3.0 x 26.8 = 80.4 m/min

• Calculate HW – 80.4 m/min x 0.1 – 8.04 ml.kg-1.min-1

• Total VO2 = 8.04 + 3.5 = 11.54 ml.kg-1.min-1

Page 20: Metabolic Calculations - Purpose

VO2 for walking 3.0 mph / 5% grade

• HW + Resting = 11.5 ml.kg-1.min-1 • Calculate VC

– 0.05 % grade x 80.4 m/min x 1.8– 0.05 x 80.4 x 1.8– 4.02 x 1.8

– 7.2 ml.kg-1.min-1

• Total VO2 = 8.04 + 7.2 + 3.5 = 18.7 ml.kg-1.min-1

• To convert to METs: 18.7 / 3.5 = 5.3 METs

Page 21: Metabolic Calculations - Purpose

ACSM Running Equation

• Speeds > 134 m/min; > 5.0 mph

– (1 mph = 26.8 m/min)

• “Relative” VO2 unit (ml.kg-1.min-1)

• VO2 = Horizontal Run + Vertical Climb+ Resting

• HR (ml.kg-1.min-1) = m/min x 0.2• VC (ml.kg-1.min-1) = % grade (decimal) x m/min x 0.9

• Resting (ml.kg-1.min-1) = 3.5

Page 22: Metabolic Calculations - Purpose

ACSM Running Equation

• Example: VO2 for running @ 6.0 mph• Convert 6.0 mph to m/min

– 6.0 x 26.8 = 160.8 m/min• Calculate HR

– 160.8 m/min x 0.2– 32.2 ml.kg-1.min-1

• Total VO2 = 32.2 + 3.5 = 35.7 ml.kg-1.min-1

Page 23: Metabolic Calculations - Purpose

VO2 for running 6.0 mph/5% grade

• HR + Resting = 35.7 ml.kg-1.min-1

• Calculate VC– 0.05 % grade x 160.8 m/min x 0.9– 0.05 x 160.8 x 0.9– 8.04 x 0.9– 7.2 ml.kg-1.min-1

• Total VO2 = 32.2 + 7.2 + 3.5 = 42.9 ml.kg-1.min-1

• To convert to METs: 42.9 / 3.5 = 12.3 METs

Page 24: Metabolic Calculations - Purpose

ACSM Leg Cycling Equation

• Loads 300-1200 kgm/min; 50-200 watts

• VO2 ml.kg-1.min-1 = 1.8 x kgm/min / BW + 3.5 ml.kg-1.min-1 + 3.5 ml.kg-1.min-1 – kgm/min = kg x meters/rev x RPM– Add resting twice : 1 for resting and 1 for

unloaded

• Monark™ bike: 6.0 meter/rev

Page 25: Metabolic Calculations - Purpose

ACSM Leg Cycling Equation

• Example: VO2 for an 80 kg person cycling on a Monark™ cycle at 50 RPM, 2.0 kg load.

• Calculate kgm/min load – kgm/min = 2 x 6 x 50– kgm/min = 600

• Calculate VO2

– ml.kg-1.min-1 = 1.8 x 600 / 80 + 3.5 + 3.5– ml.kg-1.min-1 = 1.8 x 7.5 + 3.5 + 3.5– ml.kg-1.min-1 = 20.5 (5.86 METS)

Page 26: Metabolic Calculations - Purpose

Different Body Weights?

• Compare “relative” VO2 during leg cycling at 600 kpm/min for 80 kg vs. 60 kg persons

• 80 kg ~ 5.86 METs• 60 kg:

– ml.kg-1.min-1 = 1.8 x 600 / 60 + 3.5 + 3.5– ml.kg-1.min-1 = 18 + 7– ml.kg-1.min-1 = 25– 25 / 3.5 = 7.14 METs

1.72 > 1.72 > METs forMETs forlighter lighter personperson

Page 27: Metabolic Calculations - Purpose

Kcal conversion example

• What is the kcal expenditure (kcal.min-1) for an 85 kg person exercising at an oxygen uptake of 5.86 METs?

• kcal.min-1 = METs x 3.5 x (BW (kg)/200)

• kcal.min-1 = 5.86 x 3.5 x (85/200)

• kcal.min-1 = 8.72

Page 28: Metabolic Calculations - Purpose

ACSM Weekly kcal threshold: Exercise Prescription

• Minimum caloric threshold 1000 kcals

• Minutes of exercise: 1000/8.72 = 114.7 min week

• 3 Workouts: 115/3 = 38.3 minutes

• 4 Workouts: 115/4 = 28.75 minutes

This is for an 85 kg individual @ 5.86 METsAchieving the “minimal” kcal threshold

Page 29: Metabolic Calculations - Purpose

ACSM Arm Cycling Equation

• Loads 150 to 750 kgm/min; 25-125 watts

• VO2 ml.kg-1.min-1 = 3 x kgm/min / BW + 3.5 ml.kg-1.min-1

– 3.0 = ml.min-1 per kpm/min ( from leg cycling)– Only 1 resting component (3.5)

• kgm/min = kg x meters/rev x RPM

• Monark™ Rehab Trainer: 2.4 meter/rev

Page 30: Metabolic Calculations - Purpose

ACSM Stepping Equation

• VO2 varies with Step height & rate• “Relative” VO2 unit (ml.kg-1.min-1)• VO2 (ml.kg-1.min- 1 ) = Horizontal + Vertical

+ Resting• Horizontal = steps/min x 0.2• Vertical = step ht x steps/min x 1.33 x 1.8

– Down cycle 0.33 VO2 of the up cycle (add this in by multiplying by “1.33”)

– 1.8 is the constant for vertical work• Step height is entered in meters

Page 31: Metabolic Calculations - Purpose

ACSM Stepping Equation

• Example: VO2 for stepping on a 12” bench at 30 steps per minute

• Calculate step height in meters– 12” x 2.54 = 30.5 cm / 100 = 0.305 meters

• Calculate Horiz VO2

– ml.kg-1.min-1= 30 steps/min x 0.2– ml.kg-1.min-1 = 6

Page 32: Metabolic Calculations - Purpose

ACSM Stepping Equation (cont.)

• Horiz VO2 ml.kg-1.min-1 = 6

• Calculate Vert VO2 ml.kg-1.min-1

– 0.305 meters x 30 steps/min x 1.33 x 1.8– 0.305 x 30 x 1.33 x 1.8– 21.9 ml.kg-1.min-1

• Total VO2 = 6 + 21.9 + 3.5

• Total VO2 = 31.4 ml.kg-1.min-1

• METs = 31.4/3.5 = 8.9