28
MEMPHYS MEMPHYS non-oscillation physics non-oscillation physics Alessandra Tonazzo Alessandra Tonazzo APC et Université Paris 7 APC et Université Paris 7 NOW 2006 - Conca Specchiulla 9-16/09/06 NOW 2006 - Conca Specchiulla 9-16/09/06

MEMPHYS non-oscillation physics

  • Upload
    lynley

  • View
    43

  • Download
    0

Embed Size (px)

DESCRIPTION

NOW 2006 - Conca Specchiulla 9-16/09/06. MEMPHYS non-oscillation physics. Alessandra Tonazzo APC et Université Paris 7. 65m. 60m. The MEMPHYS detector. [see talk by S.Katsanevas]. Modane, France. Megaton Mass PHYSics @Fréjus Water Cherenkov (“cheap and stable”) - PowerPoint PPT Presentation

Citation preview

Page 1: MEMPHYS non-oscillation physics

MEMPHYSMEMPHYSnon-oscillation physicsnon-oscillation physics

MEMPHYSMEMPHYSnon-oscillation physicsnon-oscillation physics

Alessandra TonazzoAlessandra Tonazzo

APC et Université Paris 7APC et Université Paris 7

Alessandra TonazzoAlessandra Tonazzo

APC et Université Paris 7APC et Université Paris 7

NOW 2006 - Conca Specchiulla 9-16/09/06NOW 2006 - Conca Specchiulla 9-16/09/06NOW 2006 - Conca Specchiulla 9-16/09/06NOW 2006 - Conca Specchiulla 9-16/09/06

Page 2: MEMPHYS non-oscillation physics

NOW06 15/09/06NOW06 15/09/06NOW06 15/09/06NOW06 15/09/06 A.Tonazzo - MEMPHYS: non-oscillation physicsA.Tonazzo - MEMPHYS: non-oscillation physicsA.Tonazzo - MEMPHYS: non-oscillation physicsA.Tonazzo - MEMPHYS: non-oscillation physics 2222

The MEMPHYS detectorThe MEMPHYS detectorThe MEMPHYS detectorThe MEMPHYS detector

Megaton Mass PHYSics @FréjusMegaton Mass PHYSics @Fréjus Water Cherenkov Water Cherenkov (“cheap and stable”)(“cheap and stable”) Total fiducial mass: 440 ktTotal fiducial mass: 440 kt Baseline: Baseline:

3 Cylindrical modules 65X65 m3 Cylindrical modules 65X65 m Size limited by light attenuation Size limited by light attenuation

length (λ~80m) and pressure on length (λ~80m) and pressure on PMTsPMTs

Readout: 12” PMTs, 30% geom. Readout: 12” PMTs, 30% geom. cover cover (#PEs =40%cov. with 20” PMTs)(#PEs =40%cov. with 20” PMTs)

PMT R&D + detailed study on PMT R&D + detailed study on excavation existing & ongoingexcavation existing & ongoing

Megaton Mass PHYSics @FréjusMegaton Mass PHYSics @Fréjus Water Cherenkov Water Cherenkov (“cheap and stable”)(“cheap and stable”) Total fiducial mass: 440 ktTotal fiducial mass: 440 kt Baseline: Baseline:

3 Cylindrical modules 65X65 m3 Cylindrical modules 65X65 m Size limited by light attenuation Size limited by light attenuation

length (λ~80m) and pressure on length (λ~80m) and pressure on PMTsPMTs

Readout: 12” PMTs, 30% geom. Readout: 12” PMTs, 30% geom. cover cover (#PEs =40%cov. with 20” PMTs)(#PEs =40%cov. with 20” PMTs)

PMT R&D + detailed study on PMT R&D + detailed study on excavation existing & ongoingexcavation existing & ongoing

65m

60m

QuickTime™ and aTIFF (LZW) decompressor

are needed to see this picture.

Modane, France

Bardonecchia, Italy

Freju

s Tu

nn

el

Laboratoire Souterrain de Modane

4800 m.w.e.

http://www.apc.univ-paris7.fr/APC_CS/Experiences/MEMPHYS/http://www.apc.univ-paris7.fr/APC_CS/Experiences/MEMPHYS/

arXiv: hep-ex/0607026arXiv: hep-ex/0607026

Contacts: J.E.Campagne and M.MezzettoContacts: J.E.Campagne and M.Mezzetto

[see talk by [see talk by S.Katsanevas]S.Katsanevas]

Page 3: MEMPHYS non-oscillation physics

NOW06 15/09/06NOW06 15/09/06NOW06 15/09/06NOW06 15/09/06 A.Tonazzo - MEMPHYS: non-oscillation physicsA.Tonazzo - MEMPHYS: non-oscillation physicsA.Tonazzo - MEMPHYS: non-oscillation physicsA.Tonazzo - MEMPHYS: non-oscillation physics 3333

Physics goals (=outline of my talk)Physics goals (=outline of my talk)Physics goals (=outline of my talk)Physics goals (=outline of my talk)

SuperNovae core-collapseSuperNovae core-collapse

Early SN triggerEarly SN trigger

Diffuse SuperNovae NeutrinosDiffuse SuperNovae Neutrinos

Astrophysical sources of neutrinos Astrophysical sources of neutrinos

Proton decayProton decay

Oscillation measurements with Oscillation measurements with beams beams

[see talk by T.Schwetz][see talk by T.Schwetz]

SuperNovae core-collapseSuperNovae core-collapse

Early SN triggerEarly SN trigger

Diffuse SuperNovae NeutrinosDiffuse SuperNovae Neutrinos

Astrophysical sources of neutrinos Astrophysical sources of neutrinos

Proton decayProton decay

Oscillation measurements with Oscillation measurements with beams beams

[see talk by T.Schwetz][see talk by T.Schwetz]

Page 4: MEMPHYS non-oscillation physics

NOW06 15/09/06NOW06 15/09/06NOW06 15/09/06NOW06 15/09/06 A.Tonazzo - MEMPHYS: non-oscillation physicsA.Tonazzo - MEMPHYS: non-oscillation physicsA.Tonazzo - MEMPHYS: non-oscillation physicsA.Tonazzo - MEMPHYS: non-oscillation physics 4444

SN neutrinos @ detectorSN neutrinos @ detectorSN neutrinos @ detectorSN neutrinos @ detector

emission

Flavor conversionShock w

ave

EARTH

Core Collapse

[slide “stolen” from A.Mirizzi]

Event rate spectra

: from simulations of SN explosions

P : from oscillations + simulations (density profile)

: (well) known

: under control

( ) ( )( )Pα α β β βφ ν ν ν σ ν ε→∫[see talk by Cardall][see talk by Cardall]

Page 5: MEMPHYS non-oscillation physics

NOW06 15/09/06NOW06 15/09/06NOW06 15/09/06NOW06 15/09/06 A.Tonazzo - MEMPHYS: non-oscillation physicsA.Tonazzo - MEMPHYS: non-oscillation physicsA.Tonazzo - MEMPHYS: non-oscillation physicsA.Tonazzo - MEMPHYS: non-oscillation physics 5555

SN neutrinos SN neutrinos SN neutrinos SN neutrinos Neutronization burst

E~1051 erg t~25 ms Accretion + K-H cooling

E~1053 erg t~10 s 99% of total explosion energy

Neutronization burst E~1051 erg t~25 ms

Accretion + K-H cooling E~1053 erg t~10 s 99% of total explosion energy

⇒ e,μ ,τ ,ν e,μ ,τ

⇒ e

Fogli et al., hep-ph/0412046Raffelt et al., astro-ph/0303226

QuickTime™ and aTIFF (LZW) decompressor

are needed to see this picture.

QuickTime™ and aTIFF (LZW) decompressor

are needed to see this picture.

Propagation to Earth: Matter effects Pee(12) Level-crossing probability

PH(E, V(x,t), m2,13) Survival prob. p= Pee*PH

Propagation to Earth: Matter effects Pee(12) Level-crossing probability

PH(E, V(x,t), m2,13) Survival prob. p= Pee*PH

“Sensitivity to θ13 one order of magnitude better than planned terrrestrial experiments” [see for ex. Lunardini-Smirnov hep-ph/0302033]

e

e

[see talk by Cardall][see talk by Cardall]

Hierarchy of interaction strength

Page 6: MEMPHYS non-oscillation physics

NOW06 15/09/06NOW06 15/09/06NOW06 15/09/06NOW06 15/09/06 A.Tonazzo - MEMPHYS: non-oscillation physicsA.Tonazzo - MEMPHYS: non-oscillation physicsA.Tonazzo - MEMPHYS: non-oscillation physicsA.Tonazzo - MEMPHYS: non-oscillation physics 6666

Detection of SN neutrinosDetection of SN neutrinosDetection of SN neutrinosDetection of SN neutrinos Inverse-beta (89%) Inverse-beta (89%)

Large statistics in detectors with lots of free pLarge statistics in detectors with lots of free p Good determination of Good determination of time and energy time and energy Option: add Gd to tag neutron from delayed-γ Option: add Gd to tag neutron from delayed-γ

Elastic scattering (~3%)Elastic scattering (~3%)

PointingPointing

NC on Oxygen (8%)NC on Oxygen (8%)

Inverse-beta (89%) Inverse-beta (89%)

Large statistics in detectors with lots of free pLarge statistics in detectors with lots of free p Good determination of Good determination of time and energy time and energy Option: add Gd to tag neutron from delayed-γ Option: add Gd to tag neutron from delayed-γ

Elastic scattering (~3%)Elastic scattering (~3%)

PointingPointing

NC on Oxygen (8%)NC on Oxygen (8%)

e + p→ e+ + n

e +O→ X + e−€

(−)

e,μ ,τ + e− → ν(−)

e,μ ,τ + e−

[see talk by Vagins][see talk by Vagins]

Fogli et al., hep-ph/0412046

e,x

e-

ne+

e

~ 250 N

Page 7: MEMPHYS non-oscillation physics

NOW06 15/09/06NOW06 15/09/06NOW06 15/09/06NOW06 15/09/06 A.Tonazzo - MEMPHYS: non-oscillation physicsA.Tonazzo - MEMPHYS: non-oscillation physicsA.Tonazzo - MEMPHYS: non-oscillation physicsA.Tonazzo - MEMPHYS: non-oscillation physics 7777

SN @ MEMPHYSSN @ MEMPHYSSN @ MEMPHYSSN @ MEMPHYS

Evidence up to ~1MpcEvidence up to ~1Mpc

Galactic SN: Huge statistics Galactic SN: Huge statistics we can do we can do spectral analysesspectral analyses in timein time in energyin energy in flavour compositionin flavour composition

Access toAccess to SN explosion mechanism:SN explosion mechanism:

shock waves, neutronization burstshock waves, neutronization burst Neutrino production parameters:Neutrino production parameters:

rate, spectrarate, spectra Neutrino propertiesNeutrino properties

(a partial overview in the following)(a partial overview in the following)

Evidence up to ~1MpcEvidence up to ~1Mpc

Galactic SN: Huge statistics Galactic SN: Huge statistics we can do we can do spectral analysesspectral analyses in timein time in energyin energy in flavour compositionin flavour composition

Access toAccess to SN explosion mechanism:SN explosion mechanism:

shock waves, neutronization burstshock waves, neutronization burst Neutrino production parameters:Neutrino production parameters:

rate, spectrarate, spectra Neutrino propertiesNeutrino properties

(a partial overview in the following)(a partial overview in the following)

QuickTime™ and aTIFF (LZW) decompressor

are needed to see this picture.

Fogli et al., hep-ph/0412046

Page 8: MEMPHYS non-oscillation physics

NOW06 15/09/06NOW06 15/09/06NOW06 15/09/06NOW06 15/09/06 A.Tonazzo - MEMPHYS: non-oscillation physicsA.Tonazzo - MEMPHYS: non-oscillation physicsA.Tonazzo - MEMPHYS: non-oscillation physicsA.Tonazzo - MEMPHYS: non-oscillation physics 8888

Extracting the astrophysical parametersExtracting the astrophysical parameters

Learning about black-hole formationLearning about black-hole formation Abrupt cut-off of neutrino Abrupt cut-off of neutrino

flux visible if a black-hole flux visible if a black-hole forms in the middle of a forms in the middle of a SN explosion SN explosion

Extracting the astrophysical parametersExtracting the astrophysical parameters

Learning about black-hole formationLearning about black-hole formation Abrupt cut-off of neutrino Abrupt cut-off of neutrino

flux visible if a black-hole flux visible if a black-hole forms in the middle of a forms in the middle of a SN explosion SN explosion

Minakata et al.,hep-ph/0112160

Just an example (“old” paper) to get a feeling of the sensitivity w.r.t. smaller detectors

SN spectral analyses (1)SN spectral analyses (1)SN spectral analyses (1)SN spectral analyses (1)

QuickTime™ and aTIFF (LZW) decompressor

are needed to see this picture. from UNO whitepaper

Page 9: MEMPHYS non-oscillation physics

NOW06 15/09/06NOW06 15/09/06NOW06 15/09/06NOW06 15/09/06 A.Tonazzo - MEMPHYS: non-oscillation physicsA.Tonazzo - MEMPHYS: non-oscillation physicsA.Tonazzo - MEMPHYS: non-oscillation physicsA.Tonazzo - MEMPHYS: non-oscillation physics 9999

Learning about the shock waveLearning about the shock wave Learning about the shock waveLearning about the shock wave

Crossing of resonances can induce time-dependent matter effects in neutrino oscillations

Shock-wave effects on survival probabilities (PH) depend on 13.

ve ↔ NHν e ↔ IH

Schirato and Fuller, astro-ph/0205390Fogli et al., hep-ph/0304056

m2atm,13

m2sol,sol

self-interactions ?Duan et al., 0606616Raffelt et al., 0608050

SN spectral analyses (2)SN spectral analyses (2)SN spectral analyses (2)SN spectral analyses (2)

Page 10: MEMPHYS non-oscillation physics

NOW06 15/09/06NOW06 15/09/06NOW06 15/09/06NOW06 15/09/06 A.Tonazzo - MEMPHYS: non-oscillation physicsA.Tonazzo - MEMPHYS: non-oscillation physicsA.Tonazzo - MEMPHYS: non-oscillation physicsA.Tonazzo - MEMPHYS: non-oscillation physics 10101010

SN spectral analyses (2)SN spectral analyses (2)SN spectral analyses (2)SN spectral analyses (2) Learning about the shock waveLearning about the shock wave Learning about the shock waveLearning about the shock wave

Time-dips are Energy-dependent:Compare bins of “low” and “high” E

Fogli et al., hep-ph/0412046

Tomas et al., astro-ph/0407132

“Double-dip” in <Ee>“Double-peak” in <E2

e>/<Ee>2

vs time

For NH, some information can be gathered from time-spectrum of e+O events

Forward shock Forward+Reverse shock

QuickTime™ and aTIFF (LZW) decompressor

are needed to see this picture.

QuickTime™ and aTIFF (LZW) decompressor

are needed to see this picture.

QuickTime™ and aTIFF (LZW) decompressor

are needed to see this picture.

QuickTime™ and aTIFF (LZW) decompressor

are needed to see this picture.

IH shockIH static

NH

Page 11: MEMPHYS non-oscillation physics

NOW06 15/09/06NOW06 15/09/06NOW06 15/09/06NOW06 15/09/06 A.Tonazzo - MEMPHYS: non-oscillation physicsA.Tonazzo - MEMPHYS: non-oscillation physicsA.Tonazzo - MEMPHYS: non-oscillation physicsA.Tonazzo - MEMPHYS: non-oscillation physics 11111111

SN spectral analyses (2’)SN spectral analyses (2’)SN spectral analyses (2’)SN spectral analyses (2’) Stochastic density fluctuations behind the shock frontStochastic density fluctuations behind the shock front

can have significant damping effects on the transition pattern can have significant damping effects on the transition pattern and modify the observed spectrum and modify the observed spectrum

Stochastic density fluctuations behind the shock frontStochastic density fluctuations behind the shock frontcan have significant damping effects on the transition pattern can have significant damping effects on the transition pattern and modify the observed spectrum and modify the observed spectrum Fogli et al., hep-ph/0603033

QuickTime™ and aTIFF (LZW) decompressor

are needed to see this picture.QuickTime™ and aTIFF (LZW) decompressorare needed to see this picture.

QuickTime™ and aTIFF (LZW) decompressor

are needed to see this picture.

QuickTime™ and aTIFF (LZW) decompressor

are needed to see this picture.

QuickTime™ and aTIFF (LZW) decompressorare needed to see this picture.

= fractional (random) variations of average potential

Page 12: MEMPHYS non-oscillation physics

NOW06 15/09/06NOW06 15/09/06NOW06 15/09/06NOW06 15/09/06 A.Tonazzo - MEMPHYS: non-oscillation physicsA.Tonazzo - MEMPHYS: non-oscillation physicsA.Tonazzo - MEMPHYS: non-oscillation physicsA.Tonazzo - MEMPHYS: non-oscillation physics 12121212

Earth matter effectsEarth matter effects Earth matter effectsEarth matter effects

SN spectral analyses (3)SN spectral analyses (3)SN spectral analyses (3)SN spectral analyses (3)

Modulations of energy spectrum of and/or

Observable with a single detector in Fourier-transform of y~1/E

In water-Cherenkov, due to poor energy resolution, need >60k events: OK @Mton

Dighe et al., hep-ph/0311172

For Earth effect not seen Inverted Hierarchy + large θ13

Earth effect seen Degeneracy: NH or IH+small θ13

e + p→ e+ + n

e

e

eQuickTime™ and a

TIFF (LZW) decompressorare needed to see this picture.

Page 13: MEMPHYS non-oscillation physics

NOW06 15/09/06NOW06 15/09/06NOW06 15/09/06NOW06 15/09/06 A.Tonazzo - MEMPHYS: non-oscillation physicsA.Tonazzo - MEMPHYS: non-oscillation physicsA.Tonazzo - MEMPHYS: non-oscillation physicsA.Tonazzo - MEMPHYS: non-oscillation physics 13131313

Neutronization burst Neutronization burst Neutronization burst Neutronization burst

SN spectral analyses (4)SN spectral analyses (4)SN spectral analyses (4)SN spectral analyses (4)

Kachelrieβ et al., astro-ph/0412082Signal:

Bkg: •mainlyrejected by angle and E cuts + Gd n-tag•ES of other flavours €

e + e− →ν e + e−

e + p→ e+ + n

Observation of time peak depends on oscillation scenario

• Burst / no-burst break degeneracy A/C if θ13 unknown

• Measurement of SN distance D~1/N1/2 @10kpc within 5%

Page 14: MEMPHYS non-oscillation physics

NOW06 15/09/06NOW06 15/09/06NOW06 15/09/06NOW06 15/09/06 A.Tonazzo - MEMPHYS: non-oscillation physicsA.Tonazzo - MEMPHYS: non-oscillation physicsA.Tonazzo - MEMPHYS: non-oscillation physicsA.Tonazzo - MEMPHYS: non-oscillation physics 14141414

SN triggerSN triggerSN triggerSN trigger

Coincidence of Coincidence of two neutrinostwo neutrinos in in the same detector within ~10secthe same detector within ~10sec Bkg <0.7 ev/yrBkg <0.7 ev/yr Rate > 0.15/yrRate > 0.15/yr

Identify SN without optical Identify SN without optical confirmation confirmation (= anticipate by few hrs)(= anticipate by few hrs)

Detect SN heavily obscured by Detect SN heavily obscured by dust or optically darkdust or optically dark

Neutrino-OpticalNeutrino-Optical coincidence coincidence

improve knowledge of start time improve knowledge of start time of core collapse from ~1day of core collapse from ~1day (optical) to ~10s(optical) to ~10s

Coincidence of Coincidence of two neutrinostwo neutrinos in in the same detector within ~10secthe same detector within ~10sec Bkg <0.7 ev/yrBkg <0.7 ev/yr Rate > 0.15/yrRate > 0.15/yr

Identify SN without optical Identify SN without optical confirmation confirmation (= anticipate by few hrs)(= anticipate by few hrs)

Detect SN heavily obscured by Detect SN heavily obscured by dust or optically darkdust or optically dark

Neutrino-OpticalNeutrino-Optical coincidence coincidence

improve knowledge of start time improve knowledge of start time of core collapse from ~1day of core collapse from ~1day (optical) to ~10s(optical) to ~10s Ando et al.,

astro-ph/0503321

@SK

@Mton

RSN

Detection of SN from galaxies up to ~10Mpc

Page 15: MEMPHYS non-oscillation physics

NOW06 15/09/06NOW06 15/09/06NOW06 15/09/06NOW06 15/09/06 A.Tonazzo - MEMPHYS: non-oscillation physicsA.Tonazzo - MEMPHYS: non-oscillation physicsA.Tonazzo - MEMPHYS: non-oscillation physicsA.Tonazzo - MEMPHYS: non-oscillation physics 15151515

We don’t need to wait and hope to be lucky…We don’t need to wait and hope to be lucky…We don’t need to wait and hope to be lucky…We don’t need to wait and hope to be lucky…

Diffuse SN neutrinosDiffuse SN neutrinosDiffuse SN neutrinosDiffuse SN neutrinos

Lunardini, astro-ph/0509233

[see talk by C.Lunardini][see talk by C.Lunardini](thanks for these slides!)(thanks for these slides!)

Page 16: MEMPHYS non-oscillation physics

NOW06 15/09/06NOW06 15/09/06NOW06 15/09/06NOW06 15/09/06 A.Tonazzo - MEMPHYS: non-oscillation physicsA.Tonazzo - MEMPHYS: non-oscillation physicsA.Tonazzo - MEMPHYS: non-oscillation physicsA.Tonazzo - MEMPHYS: non-oscillation physics 16161616

Small signalsignal over very large bkg:

• Decay e from “invisible ” generated by CC interaction of -atm and with E<Cherenkov threshold

• atmospheric e

• Reactor (E<~10 MeV)

Small signalsignal over very large bkg:

• Decay e from “invisible ” generated by CC interaction of -atm and with E<Cherenkov threshold

• atmospheric e

• Reactor (E<~10 MeV)

Diffuse SN Diffuse SN ’s @H’s @H22O detectorsO detectorsDiffuse SN Diffuse SN ’s @H’s @H22O detectorsO detectors

Malek et al. [SK Coll.],hep-ex/0209028

Can be reduced with Gd(reject non- anti-e )

Φ(Eν >19.3MeV ) <1.2cm−2s−1

@90%C.L.

Page 17: MEMPHYS non-oscillation physics

NOW06 15/09/06NOW06 15/09/06NOW06 15/09/06NOW06 15/09/06 A.Tonazzo - MEMPHYS: non-oscillation physicsA.Tonazzo - MEMPHYS: non-oscillation physicsA.Tonazzo - MEMPHYS: non-oscillation physicsA.Tonazzo - MEMPHYS: non-oscillation physics 17171717

Diffuse SN Diffuse SN ’s @ MEMPHYS’s @ MEMPHYSDiffuse SN Diffuse SN ’s @ MEMPHYS’s @ MEMPHYS

We WILL see them We WILL see them

in few yearsin few years

We WILL see them We WILL see them

in few yearsin few years

Direct measurement of Direct measurement of emission parametersemission parameters

Direct measurement of Direct measurement of emission parametersemission parameters

Fogli et al., hep-ph/0412046

7-60 events in 4 yrs: “most conservative” estimate

by C.Lunardini

What can we learn ? Yuksel et al., astro-ph/0509297

5y SK+Gd=1y MEMPHYS+Gd

astro-ph/0509233

Page 18: MEMPHYS non-oscillation physics

NOW06 15/09/06NOW06 15/09/06NOW06 15/09/06NOW06 15/09/06 A.Tonazzo - MEMPHYS: non-oscillation physicsA.Tonazzo - MEMPHYS: non-oscillation physicsA.Tonazzo - MEMPHYS: non-oscillation physicsA.Tonazzo - MEMPHYS: non-oscillation physics 18181818

Diffuse SN Diffuse SN ’s @ MEMPHYS’s @ MEMPHYSDiffuse SN Diffuse SN ’s @ MEMPHYS’s @ MEMPHYS Decays of DSNDecays of DSN

modifications of spectrummodifications of spectrum

Decays of DSNDecays of DSNmodifications of spectrummodifications of spectrum

Constraints on Dark Constraints on Dark Energy parametersEnergy parameters

Constraints on Dark Constraints on Dark Energy parametersEnergy parameters

Mirizzi et al., hep-ph/0405136

QuickTime™ and aTIFF (LZW) decompressor

are needed to see this picture.

Hall et al., hep-ph/0607109

dE= f (Ωm,ΩΛ)

ω = −1↔ Ωm = 0.3,ΩΛ = 0.7ω = 0 ↔ Ωm =1,ΩΛ = 0

+estimate of SN rate from future SN surveys

10 ywith Gd

Page 19: MEMPHYS non-oscillation physics

NOW06 15/09/06NOW06 15/09/06NOW06 15/09/06NOW06 15/09/06 A.Tonazzo - MEMPHYS: non-oscillation physicsA.Tonazzo - MEMPHYS: non-oscillation physicsA.Tonazzo - MEMPHYS: non-oscillation physicsA.Tonazzo - MEMPHYS: non-oscillation physics 19191919

Neutrino astrophysicsNeutrino astrophysicsNeutrino astrophysicsNeutrino astrophysics Low-E Low-E ’s from GRB’s from GRB

accompanying UHE-accompanying UHE-’s and ’s and optical emission seen in otheroptical emission seen in otherexperimentsexperiments

““GRB GRB background” detectable background” detectable in few yearsin few years

’’s from Black-Hole formations from Black-Hole formationdeath of stars with M>40Mdeath of stars with M>40Msunsun

’’s from interaction of s from interaction of ’s “from below”’s “from below” Point-sources, such as AGNsPoint-sources, such as AGNs WIMPs annihilating in Earth, Sun or Galaxy WIMPs annihilating in Earth, Sun or Galaxy

[cfr SK analysis: hep-ex/0404025][cfr SK analysis: hep-ex/0404025] High-E High-E ’s from GRBs’s from GRBs

Low-E Low-E ’s from GRB’s from GRB accompanying UHE-accompanying UHE-’s and ’s and

optical emission seen in otheroptical emission seen in otherexperimentsexperiments

““GRB GRB background” detectable background” detectable in few yearsin few years

’’s from Black-Hole formations from Black-Hole formationdeath of stars with M>40Mdeath of stars with M>40Msunsun

’’s from interaction of s from interaction of ’s “from below”’s “from below” Point-sources, such as AGNsPoint-sources, such as AGNs WIMPs annihilating in Earth, Sun or Galaxy WIMPs annihilating in Earth, Sun or Galaxy

[cfr SK analysis: hep-ex/0404025][cfr SK analysis: hep-ex/0404025] High-E High-E ’s from GRBs’s from GRBs

QuickTime™ and aTIFF (LZW) decompressor

are needed to see this picture.

Nagataki et al., astro-ph/0203481

Sumiyoshi et al., astro-ph/0608509

QuickTime™ and aTIFF (LZW) decompressor

are needed to see this picture.

Page 20: MEMPHYS non-oscillation physics

NOW06 15/09/06NOW06 15/09/06NOW06 15/09/06NOW06 15/09/06 A.Tonazzo - MEMPHYS: non-oscillation physicsA.Tonazzo - MEMPHYS: non-oscillation physicsA.Tonazzo - MEMPHYS: non-oscillation physicsA.Tonazzo - MEMPHYS: non-oscillation physics 20202020

Proton decayProton decayProton decayProton decay Forbidden in SM Forbidden in SM Non-SUSY GUTs Non-SUSY GUTs (dim-6 operators)(dim-6 operators)

Favours p Favours p e e++ 00

Predictions: Predictions: pp~10~103434-10-103636 yrs yrs Predictions depend only on fermion mixingPredictions depend only on fermion mixing

SUSY GUTs SUSY GUTs (dim-4 and dim-5 operators)(dim-4 and dim-5 operators) Favours p Favours p K K++ nu-bar nu-bar Predictions: Predictions: pp~3x10~3x103333-3x10-3x103434 yrs yrs Predictions depend on SUSY particle spectrum, Higgs sector and Predictions depend on SUSY particle spectrum, Higgs sector and

fermion masses (note interplay with direct searches @LHC)fermion masses (note interplay with direct searches @LHC)

Current limits by SuperKamiokande:Current limits by SuperKamiokande: p p K K++ nu-bar nu-bar pp>2.3x10>2.3x103333yy p p e e++ 00 pp>1.6x10>1.6x103333yy

Complementarity of the two main decay channelsComplementarity of the two main decay channels No dedicated study done for MEMPHYS: rely on UNO simulation results No dedicated study done for MEMPHYS: rely on UNO simulation results

(see UNO whitepaper)(see UNO whitepaper)

Forbidden in SM Forbidden in SM Non-SUSY GUTs Non-SUSY GUTs (dim-6 operators)(dim-6 operators)

Favours p Favours p e e++ 00

Predictions: Predictions: pp~10~103434-10-103636 yrs yrs Predictions depend only on fermion mixingPredictions depend only on fermion mixing

SUSY GUTs SUSY GUTs (dim-4 and dim-5 operators)(dim-4 and dim-5 operators) Favours p Favours p K K++ nu-bar nu-bar Predictions: Predictions: pp~3x10~3x103333-3x10-3x103434 yrs yrs Predictions depend on SUSY particle spectrum, Higgs sector and Predictions depend on SUSY particle spectrum, Higgs sector and

fermion masses (note interplay with direct searches @LHC)fermion masses (note interplay with direct searches @LHC)

Current limits by SuperKamiokande:Current limits by SuperKamiokande: p p K K++ nu-bar nu-bar pp>2.3x10>2.3x103333yy p p e e++ 00 pp>1.6x10>1.6x103333yy

Complementarity of the two main decay channelsComplementarity of the two main decay channels No dedicated study done for MEMPHYS: rely on UNO simulation results No dedicated study done for MEMPHYS: rely on UNO simulation results

(see UNO whitepaper)(see UNO whitepaper)

Complete review:Nath and Perez, hep-ph/0601023

Page 21: MEMPHYS non-oscillation physics

NOW06 15/09/06NOW06 15/09/06NOW06 15/09/06NOW06 15/09/06 A.Tonazzo - MEMPHYS: non-oscillation physicsA.Tonazzo - MEMPHYS: non-oscillation physicsA.Tonazzo - MEMPHYS: non-oscillation physicsA.Tonazzo - MEMPHYS: non-oscillation physics 21212121

Proton decayProton decayProton decayProton decay Search for p Search for p e e++ π π00

Main bkg: Main bkg: Ask: 2 or 3 “e-like” rings, Ask: 2 or 3 “e-like” rings,

PPtottot<P<PFermiFermi, M, Minvinv~M~Mpp

=> Eff. ~44% => Eff. ~44% MEMPHYS coverage 30% with MEMPHYS coverage 30% with

12”PMTs is equivalent to SK 12”PMTs is equivalent to SK coverage 40% with 20”PMTs in coverage 40% with 20”PMTs in terms of #PEterms of #PE

Search for p Search for p e e++ π π00

Main bkg: Main bkg: Ask: 2 or 3 “e-like” rings, Ask: 2 or 3 “e-like” rings,

PPtottot<P<PFermiFermi, M, Minvinv~M~Mpp

=> Eff. ~44% => Eff. ~44% MEMPHYS coverage 30% with MEMPHYS coverage 30% with

12”PMTs is equivalent to SK 12”PMTs is equivalent to SK coverage 40% with 20”PMTs in coverage 40% with 20”PMTs in terms of #PEterms of #PE

atm -ν e + N → e+ + N '+π 0

From UNO whitepaper

MEMPHYSXXX

XXXMEMPHYS

QuickTime™ and aTIFF (LZW) decompressor

are needed to see this picture.

H2O is best for this channel

Page 22: MEMPHYS non-oscillation physics

NOW06 15/09/06NOW06 15/09/06NOW06 15/09/06NOW06 15/09/06 A.Tonazzo - MEMPHYS: non-oscillation physicsA.Tonazzo - MEMPHYS: non-oscillation physicsA.Tonazzo - MEMPHYS: non-oscillation physicsA.Tonazzo - MEMPHYS: non-oscillation physics 22222222

Proton decayProton decayProton decayProton decay Search for p Search for p K K++ + anti- + anti-

K below Ch. Threshold :K below Ch. Threshold :

infer from decays infer from decays 90% of K 90% of K decay at restdecay at rest

K decay channels:K decay channels: K K monoenergetic monoenergetic + 6.3 MeV prompt-+ 6.3 MeV prompt- from capture from capture

K K ++00 with with

Search for p Search for p K K++ + anti- + anti- K below Ch. Threshold :K below Ch. Threshold :

infer from decays infer from decays 90% of K 90% of K decay at restdecay at rest

K decay channels:K decay channels: K K monoenergetic monoenergetic + 6.3 MeV prompt-+ 6.3 MeV prompt- from capture from capture

K K ++00 with with

QuickTime™ and aTIFF (LZW) decompressor

are needed to see this picture.

H2O is not as good as LAr, LScint for this channel

Page 23: MEMPHYS non-oscillation physics

NOW06 15/09/06NOW06 15/09/06NOW06 15/09/06NOW06 15/09/06 A.Tonazzo - MEMPHYS: non-oscillation physicsA.Tonazzo - MEMPHYS: non-oscillation physicsA.Tonazzo - MEMPHYS: non-oscillation physicsA.Tonazzo - MEMPHYS: non-oscillation physics 23232323

Summary and outlookSummary and outlookSummary and outlookSummary and outlook

MEMPHYS - Megaton Mass PHYSics @ FréjusMEMPHYS - Megaton Mass PHYSics @ Fréjus Supernova ExplosionSupernova Explosion

Evidence up to 1 MpcEvidence up to 1 Mpc Spectral analyses Spectral analyses information on explosion mechanism, information on explosion mechanism,

emission and propagationemission and propagation

Diffuse Supernova NeutrinosDiffuse Supernova Neutrinos Evidence within few yearsEvidence within few years Information on Information on emission parameters and more emission parameters and more

Early SN triggerEarly SN trigger Neutrino astrophysicsNeutrino astrophysics Proton decay:Proton decay:

Optimal detector for p Optimal detector for p e e++ π π00

Important synergies with LAr, LiqScint Important synergies with LAr, LiqScint LAGUNA LAGUNA

MEMPHYS - Megaton Mass PHYSics @ FréjusMEMPHYS - Megaton Mass PHYSics @ Fréjus Supernova ExplosionSupernova Explosion

Evidence up to 1 MpcEvidence up to 1 Mpc Spectral analyses Spectral analyses information on explosion mechanism, information on explosion mechanism,

emission and propagationemission and propagation

Diffuse Supernova NeutrinosDiffuse Supernova Neutrinos Evidence within few yearsEvidence within few years Information on Information on emission parameters and more emission parameters and more

Early SN triggerEarly SN trigger Neutrino astrophysicsNeutrino astrophysics Proton decay:Proton decay:

Optimal detector for p Optimal detector for p e e++ π π00

Important synergies with LAr, LiqScint Important synergies with LAr, LiqScint LAGUNA LAGUNA

Page 24: MEMPHYS non-oscillation physics

BACKUPBACKUPBACKUPBACKUP

Page 25: MEMPHYS non-oscillation physics

NOW06 15/09/06NOW06 15/09/06NOW06 15/09/06NOW06 15/09/06 A.Tonazzo - MEMPHYS: non-oscillation physicsA.Tonazzo - MEMPHYS: non-oscillation physicsA.Tonazzo - MEMPHYS: non-oscillation physicsA.Tonazzo - MEMPHYS: non-oscillation physics 25252525

SN spectral analyses (2)SN spectral analyses (2)SN spectral analyses (2)SN spectral analyses (2) Learning about the shock wave: Normal HierarchyLearning about the shock wave: Normal Hierarchy Learning about the shock wave: Normal HierarchyLearning about the shock wave: Normal Hierarchy

QuickTime™ and aTIFF (LZW) decompressor

are needed to see this picture.

Page 26: MEMPHYS non-oscillation physics

NOW06 15/09/06NOW06 15/09/06NOW06 15/09/06NOW06 15/09/06 A.Tonazzo - MEMPHYS: non-oscillation physicsA.Tonazzo - MEMPHYS: non-oscillation physicsA.Tonazzo - MEMPHYS: non-oscillation physicsA.Tonazzo - MEMPHYS: non-oscillation physics 26262626

SN187A by LunardiniSN187A by Lunardini SN187A by LunardiniSN187A by Lunardini

QuickTime™ and aTIFF (LZW) decompressor

are needed to see this picture.

Page 27: MEMPHYS non-oscillation physics

NOW06 15/09/06NOW06 15/09/06NOW06 15/09/06NOW06 15/09/06 A.Tonazzo - MEMPHYS: non-oscillation physicsA.Tonazzo - MEMPHYS: non-oscillation physicsA.Tonazzo - MEMPHYS: non-oscillation physicsA.Tonazzo - MEMPHYS: non-oscillation physics 27272727

SN1987ASN1987ASN1987ASN1987A

Other analyses:Jegerlehner et al., PRD 54 (1996) 1194Lunardini, astro-ph/0509233 (5-par fit)

Yukserl et al., astro-ph 0509297

Page 28: MEMPHYS non-oscillation physics

NOW06 15/09/06NOW06 15/09/06NOW06 15/09/06NOW06 15/09/06 A.Tonazzo - MEMPHYS: non-oscillation physicsA.Tonazzo - MEMPHYS: non-oscillation physicsA.Tonazzo - MEMPHYS: non-oscillation physicsA.Tonazzo - MEMPHYS: non-oscillation physics 28282828

SN spectral analyses (2)SN spectral analyses (2)SN spectral analyses (2)SN spectral analyses (2) Learning about the shock waveLearning about the shock wave Learning about the shock waveLearning about the shock wave

Time-dips are Energy-dependent:Compare bins of “low” and “high” E

Fogli et al., hep-ph/0412046

Tomas et al., astro-ph/0407132

“Double-dip” in <Ee>“Double-peak” in <E2

e>/<Ee>2

vs time