14
MEKANIKA GETARAN JATI SUNARYATI

MEKANIKA GETARAN

Embed Size (px)

Citation preview

Page 1: MEKANIKA GETARAN

MEKANIKA GETARAN

JATI SUNARYATI

Page 2: MEKANIKA GETARAN

OBJECTS

1. SINGLE DEGREE OF FREEDOM (SDOF) 1.1 Free Vibration 1.2 Force Vibration 2. MULTY DEGREE OF FREEDOM (MDOF) 1.1 Modal Superpotition 1.2 Numerical Solutions

Page 3: MEKANIKA GETARAN

Single Degree of Freedom

)(tPkuucum

Page 4: MEKANIKA GETARAN

Free Vibration

P(t) = 0

Undamped , c = 0

mü + ku = 0

Damped

mü + cú + ku = 0

0c

Page 5: MEKANIKA GETARAN

Undamped , c = 0

mü + ku = 0 ……………………………….. (1)

The solution (linier, homogeneous, second order differential equation) is :

steu ……………………………….. (2)

Substitution into Eq. (1) gives

0)( 2 stekms ………………….. (3)

The characteristic equation is

niskms 2,1

2 0)( ………….. (4)

The general solution of Eq (1) is :

……………….. (5) tsts

eAeAtu21

21)(

Page 6: MEKANIKA GETARAN

Undamped , c = 0

mü + ku = 0

Remember : de Moivre’s theorem

i

eex

eex

ixixixix

2sin

2cos

Substitution Eq (4) to Eq (5) gives :

titi nn eAeAtu

21)( ……………….. (6)

Eq (6) can be written as

and

tBtAtu nn sincos)( ………………… (7)

tBtAtu nnnn cossin)( ………………… (8)

Page 7: MEKANIKA GETARAN

At the time zero,

u(0) = A and ú(0) = ωn B ………………… (9)

The solution is

tnn

utnutu

sin

)0(cos)0()(

……………… (10)

-2

0

2

0 5 10 15

t

u

Amplitude,uo

Tn = 2/n

u(0)

ú(0)

a

b

c

d

e

Undamped , c = 0

mü + ku = 0

Page 8: MEKANIKA GETARAN

Damped , c 0

mü + cú + ku = 0

………………. (11 a)

By dividing by m

022

uuu nn ………………. (11 b)

where

mkkmnmcrc

crcc

nmc

222

2

………………. (12)

………………. (13)

Critical damping coefficient

Damping ratio

Type of motion

1. c = ccr ξ = 1 critical damped system

2. c > ccr ξ > 1 overdamped system

3. c < ccr ξ < 1 underdamped system

Page 9: MEKANIKA GETARAN

The solution of Eq (11 b) is Eq (2), and substitution into Eq (11 b) gives

0)2(22 st

nn ess ………………. (14)

Which is satisfied for all values of t if

0222 nnss

………………. (15)

That has two roots :

2

2,1 1 is n………………. (16)

titi nn eAeAtu

21)(

Hence the general solution is

………………. (17)

Undamped , c ≠ 0

mü + ku = 0

Page 10: MEKANIKA GETARAN

Substitution Eq (16) into Eq (17) gives

)()( 21

titit DDn eAeAetu

………………. (18)

If the initials condition at the time zero u(0) and ú(0)

The equation becomes

where

21 nD………………. (18)

Eq (16) can be written as trigonometric function as

)sincos()( tBtAetu DD

tn

………………. (20)

Undamped , c ≠ 0

mü + ku = 0

Page 11: MEKANIKA GETARAN

t

uutuetu D

D

nD

tn

sin)0()0(

cos)0()(

…. (21)

-1.5

-1

-0.5

0

0.5

1

1.5

0 2 4 6 8

TD = 2/D

u

t

Undamped , c ≠ 0

mü + ku = 0

Page 12: MEKANIKA GETARAN

Eq(21) indicates that the displacement amplitude decays exponentially with time. The envelope curves en

t, where

and

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

(D/n)2+2=1

Range of damping for structure

D

n

n

D

T

T

2

2 )0()0()0(

D

nuuu

………………. (22)

21

TnTD

………………. (23)

Page 13: MEKANIKA GETARAN

Decay of motion

A relation between the ratio of two successive peaks of damped free vibration given by

Called logarithmic decrement

21 1

2ln

i

i

u

u………………. (24)

If is small, 11 2 and this gives an approximate equation

2 …………………. (25)

-1.5

-1

-0.5

0

0.5

1

1.5

0 2 4 6 8

TD = 2/D

u

t

u1 u2 u3

Page 14: MEKANIKA GETARAN

Over j cycles the motion decreases from u1 to uj+1, the ratio is given by

j

j

j

j

eu

u

u

u

u

u

u

u

u

u

14

3

3

2

2

1

1

1 ... ……………….. (26)

therefore

2)/ln()/1 11 juuj ……………….. (27)

Damping ratio

0

2

4 6 8

10

0.2 0.4 0.6 0.8 1

=2

21

2

Loga

rith

mic

dec

rem

ent

Decay of motion