Meditating differences in children's interaction with digital libraries through modeling their tasks

  • Published on
    15-Jun-2016

  • View
    214

  • Download
    0

Transcript

  • Meditating differences in childrens interaction with digital libraries through modeling their tasks

    Authors

    Dania Bilal

    School of Information Sciences, University of Tennessee

    1345 Circle Park COM 451, Knoxville, TN 37919

    Email: dania@utk.edu

    Sonia Sarangthem

    School of Information Sciences, University of Tennessee

    1345 Circle Park COM 451, Knoxville, TN 37919

    Email: sonia@utk.edu

    Describes four graphical preliminary task-based models of ten Arabic-speaking children, ages 6-

    10, based on their interaction with the International Childrens Digital Library (ICDL). Data

    generated from a previous study (Bilal & Bachir, 2007b) were coded and analyzed to generate the

    models. Seven modes of behavior characterized childrens interaction: Start, Recognize, Browse,

    Differentiate, Read, Explore, and Finish. Each mode is associated with moves based on task

    characteristics. The models were constructed using the general model developed by Bilal,

    Sarangthem, & Bachir (2008), which was partially informed by the works of Ellis (1989), Ellis &

    Haugan (1997), Choo, Detlor, & Turnball (2000), and Marchionini (1995). New patterns of

    behavior that are missed in these works were identified (Explore and Read). The models lack a

    Search mode that characterized childrens keyword searching. The ICDL allowed entry of Arabic

    script in the search box, but failed to retrieve Arabic books by keyword. Childrens behavior that

    combined linear and non-linear progression and the core iterative processes that occurred

    between certain modes of behavior and varied by task provide additional perspectives for

    understanding information seeking behavior within the specific context of a small and well

    structured Web space such as the ICDL.

    INTRODUCTION

    Many studies have investigated the relationships between a user task and information seeking

  • behavior (Xie, 2007; Jarvelin & Ingwersen, 2004; Jarvelin & Wilson, 2003; Ingwersen & Jarvelin,

    2005; Vakkari, 2003; Bystrom & Jarvelin, 1995; Belkin, Chang, Downs, Saracevic, & Zhao, 1990;

    Saracevic & Kantor, 1988; Belkin, 1980). Researchers have investigated various types of tasks

    including collaborative vs. individual (Hyldegrd, 2009), open vs. closed (Bilal, Sarangthem, &

    Bachir, 2008); transactional vs. informational (Terai, et al. 2008); complex/goal-oriented (Bartlett

    & Neugebauer, 2008); directed vs. general purpose (Thatcher, 2008); factual vs. interpretive vs.

    exploratory (Kim, 2007); known-item vs. subject-oriented (Kim & Allen, 2002); imposed vs. self-

    selected (Gross, 2004); assigned vs. semi-assigned vs. fully self-generated (Bilal, 2002; Bilal,

    2001; Bilal, 2000). Studies have also examined task specificity, monitoring, and interruption

    (Bailey, Adamczyk, Chang, & Chilson, 2006); task manipulation (Vakkari, 2003); and task

    complexity (Bystrom & Jarvelin, 1995; Vakkari, 1999). Recently, Wildemuth & Hughes (2006)

    have raised the issue of the embedded tasks. Despite these prolific works about task influence

    on information behavior, there are insufficient empirical studies that resulted in task-based

    graphical models of childrens information seeking behavior in digital environments. This paper

    describes four preliminary task-based models of Arabic speaking childrens interaction with the

    international Childrens Digital Library (ICDL) and identifies the core iterative processes and linear

    progression children performed on each task. The models provide additional understanding of

    childrens information behavior in digital environments that a general model of such a behavior

    may not provide.

    RESEARCH QUESTION

    The overarching research question addressed in this paper was: What task-based empirical

    models can be generated based on Arabic-speaking childrens interaction with the ICDL?

    RELATED LITERATURE

    Due to space limitation, only two bodies of relevant literature are briefly reviewed: 1. Models of

    childrens information seeking behavior, and 2. Childrens use of the ICDL.

    1. Models and childrens information seeking

    There is scarcity of empirical work that modeled childrens information seeking

    behavior, in general, and in using Web-based interfaces (e.g., digital libraries), in

    particular. This section reviews studies that concluded with models of childrens

    information seeking behavior in different Web environments.

  • Using data sets collected of a previous study that investigated Arabic-speaking

    childrens use of the ICDL (Bilal & Bachir, 2007b), Bilal, Sarangthem, & Bachir (2008)

    developed a preliminary, general model of the childrens behavior that consists of 7

    modes of information behavior: Start, Recognize, Browse, Differentiate, Read,

    Explore, and Finish. The model is . partially informed by the work of Ellis (1989), Ellis

    & Haugan (1997), Choo, Detlor, & Turnball (2000), and Marchionini (1995). One

    limitation of this model resides in its lack of a Search mode. Children used Arabic

    script in the ICDL keyword search box, but the ICDL failed to retrieve books due to its

    lack keyword indexing of Arabic books. This deficient design feature of the ICDL

    provided an incomplete representation of the childrens interaction.

    Shenton (2007) developed a graphical model of information seeking failure of young

    users, ages 3-18. The model consists of five dimensions: Source Dimension,

    Knowledge Dimension, Skills Dimension, Social Dimension, and Psychological

    Dimension. Each dimension lists the issues that contributed to information seeking

    failure. Relationships among the dimensions are clearly described. However, the

    model does not show the task as a factor in any of the dimensions.

    The imposed query framework developed by Gross (1997) pointed out the issues in

    queries assigned by teachers in elementary schools. Use of the framework was

    investigated in varied information environments including adult reference desk in

    public libraries where Gross & Saxton (2002) examined the effect of task type on user

    assessment and satisfaction. The framework has demonstrated utility in informing

    practice and guiding professional training in reference services. However, it focuses

    on the imposed query rather than on all types of queries.

    2. Children and the ICDL

    A handful of studies exist about childrens use of the ICDL. In a two-part study, Bilal &

    Bachir (2007a-b) examined the information seeking behavior of ten Arabic-speaking

    children, ages 6-10, in using the ICDL to find Arabic books on four different tasks. The

    study took place at Bibliotheca Alexandrina in late December 2004. In part one, Bilal

    & Bachir (2007a), assessed the cross-cultural usability of the ICDL as an international

    Web interface. In part two, Bilal & Bachir (2007b) investigated the childrens

    information seeking behavior, success, and affective reactions in using the ICDL.

    Children were given four different tasks to perform in the ICDL: one assigned and fact-

    based, one assigned known-title and fact-based, one semi-assigned and research-

  • based, and another fully self-generated. Childrens interaction was captured online

    and their affective reactions were elicited during exit interviews. Childrens

    information seeking behavior was characterized by browsing using a single function;

    that is, looking under Arabic language from the drop-down menu to view the Arabic

    book collection. Although children were able to type Arabic keywords using an Arabic

    keyboard, the ICDL returned zero hits due to lack of indexing of the books metadata.

    The data sets generated from this study were used to develop the task-based models

    described in this paper.

    Massey, Druin, & Weeks (2007) examined the affective reactions of twelve children

    from four different countries to reading and reviewing books in the ICDL. Children

    were selected from the United States, Honduras, New Zealand, and Germany.

    Children were given a book review form to use for answering five questions about

    each book they read. Findings revealed that children preferred books with happy

    endings. Language capabilities were a stronger factor in choosing books than culture

    or nationality as children did not choose books in languages they did not speak. When

    children were unable to read books in different languages, they relied on images and

    colors to understand the story and to express how it made them feel. Therefore, their

    interpretations of book images influenced their emotional classifications of the

    books. The findings provided insights into the role of emotions in childrens book

    selection and reading. They also informed us that visual representations of textual

    information could help overcome language barriers in book selection and reading.

    In an earlier study, Reuter & Druin (2004) investigated the searching and book

    selection behavior of ninety-six first- through fifth-grade children from the suburbs of

    Maryland. Age and gender influenced searching and book selection. Younger children

    preferred simple and more interactive interfaces; whereas older children favored

    more sophisticated interfaces. Issues in system designed were identified and

    recommendations were made for making the ICDL more supportive of younger

    children.

    The literature review showed a scarcity in studies that modeled the information

    seeking behavior of children in digital environments. The four task-based models

    described in this paper are a first step towards filling this research gap.

    METHOD

  • The task-based modelswere developed based on data sets generated from the previous study

    (Bilal & Bachir, 2007b) where both quantitative and qualitative methods were employed to

    generate the data.

    Participants

    Ten Arabic-speaking children ages 6-10 participated in data collection. Children were

    recruited by staff at Bibliotheca Alexandrinas Childrens Library (Bib. Alex.). Four

    children were male and six were female. Based on the data generated from the open

    individual interviews, one child was six-years old, three were seven-years old, two were

    eight, two were nine, one child was nine and a half years-old, and one was ten-years

    old. Children possessed adequate level of computer and Internet experience. They

    were from different social background who attended private and public schools. Only

    one child was familiar with the ICDL. All children had limited English language skills.

    Children read books on a regular basis and were regular users of Bib. Alex.

    Tasks

    Children were asked to perform these four tasks: 1. How many books does the ICDL

    have in the Arabic language, 2. Find a book in the Arabic language named Dima and

    open the first page of the book, 3. Find a book about animals in the Arabic language

    and write the name of the book on your sheet, and 4. Find any book in the Arabic

    language and read as many pages as you can.

    Data Sets

    The four task-based models were generated using the data sets generated from the

    previous study by (Bilal & Bachir (2007b). Childrens interaction with the ICDL was

    captured online using HyperCam software package. Their affective states were

    gathered during an exit interview. Each childs ICDL interaction activity on each of the

    four tasks was saved, replayed, coded, and analyzed. Each childs ID number and

    interaction activity was input into an excel sheet along with the sequence of the

    activity, a description of the activity (e.g., scan, browse, select book, open page, move

    to next page), and comments and/or observations about the activity. This process

    resulted in a total of forty excel sheets on the four tasks (10 children x 4 tasks). These

    sheets formed the basis of the data sets that were utilized to build the models.

    Models used as frameworks

  • The four task-based models were informed by the general model that represented the

    childrens interaction with the ICDL (Bilal, Sarangthem, & Bachir, 2008). This general

    model was partially based on the work by Ellis (1989), Ellis & Haugan (1997), Choo,

    Detlor, & Turnball (2000), and Marchionini (1995). Certain modes and moves of

    behavior shown in the models were adapted from each of these authors work. New

    modes of behavior and associated moves that are missed in these frameworks were

    generated.

    TASK-BASED MODELS

    The models consist of 7 modes of information seeking behavior and moves associated with each

    of them. Each mode and move is labelled for ease of understanding of the models.

    Start (M1): This mode characterizes the beginning of a task after a child recognizes the

    information need. It generally begins in the ICDL default interface by scanning the Simple search,

    Advanced search, and Keyword search features. The scan move (M1V1) results in making a

    selection that takes the child to the interface containing the book language options. The select

    move (M1V2) is confined to the Simple search interface. A child returns to the ICDL homepage to

    restart a task or to explore the other features.

    Recognize (M2): This mode embraces two moves, scan and select. The scan move (M2V1) at this

    step consists of activating the book language drop-down menu from the ICDL Simple Search

    interface. The select move (M2V2) pertains to choosing the Arabic language option. This activity

    results in a display of Arabic books thumbnails.

    Browse (M3): This mode comprises browsing and is of two types: Directed and Semi-directed.

    Directed browsing includes two specific moves, view (M3V1) and verify (M3V2). These moves

    typically characterize a behavior on a target-oriented task (e.g., finding an answer for a fact-based

    task). It also extends to browsing to find a known-title item (e.g., finding a book with a specific

    title in the Arabic book collection). Semi-directed browsing includes one specific move, examine

    (M3V3), that reflects a behavior on a less definite or less focused task (e.g., finding a book of

    interest for a semi assigned task or for a fully self-generated task). The examine move may be

    followed by filtering sources and making a selection decision.

    Differentiate (M4): This mode consists of filtering books based on differences or criteria such as

    book cover, images, book length, subject matter, affect (happy/sad), or other factors.

    Differentiation is both Directed and Undirected. Directed Differentiation is similar to Directed

  • browsing in that it is focused and target-oriented. It consists of the more specific view move

    (M4V1). Undirected Differentiation has very little focus and is described by the sweep move

    (M4V2), which reflects a behavior such as paging through book thumbnails, book titles, book

    pages, and/or jumping from one thumbnail to another. Typically, sweeping includes little reading

    or engagement in a task.

    Read (M5): This mode involves different levels of reading and consists of two types: Directed and

    Undirected. Directed Reading is characterized by the view move (M5V1) that takes account of

    reading engagement. Undirected Reading includes little or no reading and has very little focus

    (flip). The flip move (M5V2) also reflects a much faster behavior than the sweep move.

    Explore (M6): This mode embraces use of the navigation controls of the ICDL and/or Internet

    Explorer. It has two specific moves: Navigate (M6V1), which includes activation of all navigation

    controls, except for the Back button (Internet Explorer) and the various back icons (ICDL). All other

    navigation activities are classified under the backtrack move (M6V2).

    Finish (M7): This mode marks a completion of a task. It sometimes results in note taking, as

    required by a task.

    MODEL ANALYSIS

    The seven modes that characterized childrens information seeking behavior on the four tasks are

    seen in Figures 1-4. Childrens information seeking on tasks 2-4 (Figures 2-4) shows 7 modes of

    behavior (Start, Recognize, Browse, Differentiate, Read, Explore, and Finish). However, the

    behavior on Task 1 (Figure 1) precluded the Differentiae mode due to the nature of the task that

    did not necessitate book filtering or making book selection decisions.

    Childrens information seeking behavior was dominantly non-linear and iterative and included

    core iterative processes between modes of behavior that varied by task. The exception was the

    behavior on the fact-based task (Task 1) that was mostly linear in nature. On this task, children

    were asked to locate the total number of Arabic books, which pops up as soon as the Arabic

    language option is selected from the Language drop-down menu that resides in the ICDL Simple

    search interface.

    As seen in Figure 1, childrens iterative transitions were minimal and occurred only between the

    Information Need that was driven by the task and the Explore mode (Information need-Explore-

    Information need). However, from Start to Finish, childrens behavior on this task was typically

    linear between the modes and without iterations (Start-Recognize-Browse-Read-Finish). Children

  • made the lowest number of moves (ToMV=64) and the lowest level of iterative transitions

    (ToT=30) on this task (Figure 1).

  • On Task 2, childrens information seeking consisted of the seven modes of behavior and showed

    a higher level of interaction than on the previous task (Figure 2). Childrens iterative transitions

    progressed between Browse-Differentiate-Browse; Differentiate-Read-Differentiate-Explore; Read-

    Browse-Read-Explore. The core iterative processes occurred b between Browse and Differentiate

    (T=13) and between Browse and Explore (T-12) and accounted for half of the total number of

    transitions made (ToT=50). The total number of moves children exhibited on Task 2 were higher

    than those on Task 1 (ToMV=78 vs. ToMV=64, respectively). Similarly, the number of specific

    Explore moves were much higher on this task, as opposed to the previous one (MV=13 and MV=3,

    respectively).

    Childrens behavior was much more interactive on Task 3 (Figure 3) than on the two previous

    tasks, as evident in the level of iterative transitions they made between these modes: Browse-

    Differentiate-Browse; Browse-Explore-Browse; Differentiate-Read-Differentiate; Differentiate-

    Explore-Differentiate-Start; Read-Explore-Read-Browse-Read. Here too, the core iterative

    processes occurred between Browse and Differentiate. Children made 18 transitions (T=18) from

    Browse to Differentiate and 11 transitions (T=11) from Differentiate to Browse, totalling 29

    (T=29), slightly over one-third of the total number of transitions made on this task ((ToT=80).

  • The moves children made on Task 3 were much higher than those on Tasks 1 and 2 (ToMV=145

    vs. ToMV=64 vs. ToMV=78, respectively). Similarly, the specific Explore moves they made were

    also much higher on this task, as opposed to Tasks 1 and 2 (MV=21 vs. MV=3 vs. MV=13,

    respectively). Childrens reading reflected in the Read mode increased dramatically on Task 3

    (MV=47) over Task 2 (MV=7).

  • Figure 4 reflects childrens information seeking on Task 4. Children made nearly the same

    number of transitions on Task 4 as they did on Task 3 (ToT=79 vs. ToT=80, respectively).

    However, the total number of moves on Task 4 were much higher than those on Task 3

    (ToMV=286 vs. ToT=145, respectively), due to the amount of reading (MV=187 out of ToMV=286)

    that was driven by the task demand.

  • Childrens behavior on Task 4 flowed between Recognize-Differentiate; Browse-Explore-Browse;

    Browse-Read; Read-Recognize; Differentiate-Browse-Differentiate; Read-Explore-Read; and

    Explore-Differentiate-Explore. Again on this task, childrens core iterative processes progressed

    from Browse to Differentiate (T=10) and from Differentiate to Browse (T=12). However, these

    processes were slightly lower (T=22) on this task than they were on Task 3 (T=29) and Task 2

    (T=25).

    New patterns of behavior

    Childrens information seeking exhibited new patterns of behavior that are missed in models

    used as frameworks. These include the Explore and Read modes. While the Explore mode is Web-

    specific in that it an integral component of navigating web space (Back, Forward, Home, etc.), the

    Read mode is task-specific. The amount of reading was mainly driven by each task

    characteristics and was influenced by the level of childrens engagement with the content of the

    book they selected or encountered. Affective reactions that underlined the childrens information

    seeking behavior are also absent in these frameworks.

    DISCUSSION

    Arabic-speaking childrens task-based information seeking in the ICDL was characterized by

    seven modes of behavior: Start, Recognize, Browse, Differentiate, Explore, Read, and Finish.

    However, on Task 1, childrens behavior precluded the Differentiate mode due to the fact that the

    task was closed and had a target answer (numeric information) that did not necessitate filtering

    books and making a selection decision. The simplicity of this task combined with the convenient

    ICDL display of the target answer (26) above the Arabic book thumbnails made easy to find by

    older children. Two younger children (ages 6-7) who did not pay attention to this information

    pursued a different approach- counted each Arabic book thumbnails and calculated the total

    number of books (used their fingers to count). This alternative strategy, although creative,

    resulted in miscounting the books (37 instead of 26) by one child.

    The dominant linear behavior children exhibited on Task 1 (Figure 1) was not surprising,

    considering the small space allocated for the small Arabic book collection, sequential display of

    thumbnails, and immediate availability of the target answer. One should expect this type of

    behavior in using a small and structured Web space such as the ICDL. Conversely, in using a Web

    search engine to find information for a similar task, one should expect a more iterative behavior

    from children due to the heterogeneous nature of the Web (Bilal, 2000).

  • Childrens behavior on the known-item title (Dima) (Task 2) was somewhat iterative. As seen in

    Figure 2, childrens core processes flowed from Browse to Explore and from Browse to

    Differentiate. The centrality of these processes suggests that children continued to explore the

    collection even after locating the target book. This behavior can be explained by the fact that on

    Task 1, children did not have the opportunity to familiarize themselves with the content of the

    Arabic book collection, or that children were uncertain as to whether the collection had more than

    one book with the same title, Dima. It also insinuates that children began to construct knowledge

    about the content of the Arabic book collection and the ICDL various features as they began

    working on Task 2. The uncertainty children experienced in using ICDL was due to their perceived

    inability to use it successfully (based on data generated from exit interviews). This affective state

    is typical of user behavior and emerges due to lack of familiarity with the ICDL. Kuhlthau (2003)

    supports this view by noting that when the information search process is viewed as a process of

    construction, uncertainty and anxiety are anticipated and expected as part of the process (p.7).

    The behavior children exhibited on Task 3 (Figure 3) was more iterative than that seen on Task 2

    (Figure 2). Previous studies found that the more open-ended a task was, the more browsing

    moves children made (Large & Beheshti, 2000; Schacter, Chung, & Dorr, 1998). This was, indeed,

    the case in this study as childrens browsing moves (shown under the Browse mode) on Task 4

    were slightly higher (MV=35) than those on Task 3 (MV=31). The number of iterative transitions

    children made on Task 4 was nearly the same as that on Task 4. This finding was not expected as

    Task 4 was more open-ended, fully self-generated, and most complex. Finding a book of interest

    on the semi assigned topic (Animals) for Task 3 seemed to be slightly more complex for the

    children than Task 4. To select a book about the topic, children had to: a. identify the books in the

    Arabic collection dealing with the assigned topic, b. employ filtering skills, and c. make a book

    selection decision based on interest. The fact that childrens core iterative processes occurred

    between Browse-Differentiate and Differentiate-Browse and the fact that the number of moves

    they made (29) was the highest across all tasks substantiate the higher complexity level of

    executing this task.

    Figure 4 represents childrens information seeking behavior on the open-ended, fully self-

    generated task (Task 4). Children were asked to find a book of interest on any topic and read as

    many pages as they could. As avid readers, two children read two books instead of one and the

    rest completed one book each. The amount of reading children exhibited on this task was

    attributed to task demand that, in a few cases, children exceeded its requirements. Similar to the

    reading behavior on Task 3, children s reading on Task 4 was both Directed (View) and

    Undirected (Flip).

  • The level of iterative transitions children made on Task 4 was nearly the same as that on Task 3.

    Similarly, the number of moves associated with each of these modes was nearly the same as

    those shown on Task 3, with the exception of the amount of reading that was much higher on

    Task 4 (Figure 4). The iterative core processes that occurred between Browse- Differentiate and

    Differentiate-Browse were slightly lower on Task 4 than those on Task 3. By the time children

    performed Task 4, they had already been exposed to the Arabic book collection, constructed

    some level of knowledge about its content, and gained experience in manoeuvring within the

    ICDL environment. These skills and knowledge gain could have contributed to the childrens

    effectiveness in performing Task 4.

    The task-based models identified depict the combined nature of the childrens linear and non-

    linear iterative processes. Absence of one of the seven modes of behavior (Differentiate) on the

    fact-based task testifies to the fluidity of the stages of the information seeking process and, thus,

    provides additional perspectives about the influence of task characteristics on the process of

    information seeking.

    LIMITATIONS

    The limitations of this study may reside in using a small (10) and convenient sample. Like any

    research involving human subjects, obtaining a random sample was difficult to achieve.

    Therefore, the information seeking behavior reflected in the task-based models may not be

    representative of all Arabic-speaking children. Lack of a Search mode in these models was due to

    the design of the ICDL that, although it accepted Arabic script in the keyword searching box, it

    failed to retrieve Arabic books. Testing the validity of the models using the Arabic version of the

    ICDL could provide data about keyword searching that would contribute to building this important

    component. In addition, allowing children to use the entire book collection rather than limiting

    them to the Arabic collection could provide a more holistic picture of their interaction, book

    selection, and book reading strategies.

    CONCLUSIONS

    This study aimed at identifying task-based empirical models that could be generated based on

    data sets collected in a previous study of Arabic-speaking childrens information seeking behavior

    in the ICDL (Bilal & Bachir, 2007b). The data on which these models are based were collected in

    late 2004 when the ICDL interfaces could only be negotiated in the English language. Currently,

    most of the interface design of the ICDL has changed and versions in many languages, including

    Arabic are available. Validating these models in future research should account for language and

  • changes in the interface design.

    The task-based models are a crossover from the grounded works of Ellis (1989), Ellis & Haugan,

    (1997), Marchionini (1995), and Choo, Detlor, & Turnball (2000), yet they unveil new patterns of

    interaction (Explore and Read) that should be explored further in future research.Childrens

    information seeking was characterized by seven modes of behavior: Start, Recognize, Browse,

    Differentiate, Read, Explore, and Finish. Each mode consisted of moves that varied by task. On

    the fact-based task, however, childrens behavior precluded the Differentiate mode as it was

    strongly influenced by task characteristics. This finding affirms the fluidity of the nature of the

    information seeking process and that these modes of behavior are not fixed in space or time.

    Childrens behavior that combined linear and non-linear progression and the core iterative

    processes that occurred between certain modes of behavior and varied by task provide additional

    perspectives for understanding information seeking behavior within the specific context of a

    small and well structured Web space such as the ICDL.Further researchis needed to validate the

    models and to unveil the nature of the childrens searching strategies. Using a large sample of

    children from various geographic locations, allowing them to use the whole ICDL book collection,

    and constructing tasks with various layers of complexity could provide a more valid

    representation of childrens information seeking behavior in the ICDL.

    Acknowledgements

    This paper is based on a research project that was partially funded by the University of Tennessee

    Office of Research. The authors wish to thank the University for its financial support. The

    comments and suggestions of thereviewers are greatly appreciated.

    References

    Bailey, B.P., Adamczyk, P.D., Chang, T.Y, & Chilson, N.A. (2006). A framework for specifying and

    monitoring user tasks. Computers in Human Behavior, 22, 709732.

    Bartlett, J.C., & Neugebauer, T. (2008). A Task-based information retrieval interface to support

    bioinformatics analysis. Proceedings of the IIiX08, Information Interaction in Context, October

    14-17, 2008, London, UK, 97-101.

    Belkin, N.J. (1980). Anomalous state of knowledge as a basis for information retrieval. Canadian

  • Journal of Information Science, 5, 133-144

    Belkin, N.J., Chang, S., Downs, Saracevic, T., & Zhao, S. (1990). Taking account of user tasks,

    goals and behavior for the design of online public access catalogues. Proceedings of the 53rd

    ASIS Annual Meeting. Medford, NJ.: Learned Information, Inc. 69-79.

    Bilal, D. (2000). Childrens use of the Yahooligans! Web search engine: I. Cognitive, physical, and

    affective behaviors on fact-based search tasks. Journal of the American Society for Information

    Science and Technology, 51, 646665.

    Bilal, D. (2001). Childrens use of the Yahooligans! Web search engine: II. Cognitive and physical

    behaviors on research tasks. Journal of the American Society for Information Science and

    Technology, 52, 118136.

    Bilal, D. (2002). Childrens use of the Yahooligans! Web search engine: III. Cognitive and physical

    behaviors on fully self-generated search tasks. Journal of the American Society for Information

    Science and Technology, 53, 11701183.

    Bilal, D. (2007). Grounding children's information seeking and system design in child

    development theory, In D. Nahl D. & D. Bilal (eds) (2007), Information and Emotion: the Emergent

    Affective Paradigm in Information Behavior Research and Theory. Medford, NJ: Information

    Today, Inc., 39-50.

    Bilal, D., & Bachir, I. (2007a). Childrens interaction with international and multilingual digital

    libraries. I. Understanding interface system design representations. Information Processing &

    Management, 43(1), 47-64.

    Bilal, D., & Bachir, I. (2007b). Childrens interaction with international and multilingual digital

    libraries. II. Information seeking, success, and affective experience. Information Processing &

    Management, 43(1), 65-80.

    Bilal, D., Sarangthem, S., & Bachir, I. (2008). Towards a model of childrens information seeking

    behavior in using digital libraries. Proceedings of the IIiX08, Information Interaction in Context,

  • October 14-17, 2008, London, UK, 145-151.

    Bystrom, K., & Jarvelin, K. (1995). Task complexity affects information seeking and use.

    Information Processing & Management, 31, 191-213.

    Choo, C. W., Detlor, B., & Turnbull, D. (2000). Information seeking on the Web: An integrated

    model of browsing and searching. First Monday, 5(2). Retrieved February 15, from

    http://www.uic.edu/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/729/638

    Ellis, D. (1989). Ellis, D. (1989). A behavioural approach to information retrieval design. Journal of

    Documentation, 45(3), 318-338.

    Ellis, D., & Haugan, M. (1997). Modelling the information seeking patterns of engineers and

    research scientists in an industrial environment. Journal of Documentation, 49(4), 356-369.

    Gross, M. (2004). Childrens Questions: Information Seeking Behavior in School. Lanham, MD:

    Scarecrow Press, Inc.

    Gross, M. (1997). Pilot study on the prevalence of imposed queries in a school library media

    center. School Library Media Quarterly, 25, 157-166.

    Gross, M., & Saxton, M.L. (2002). Integrating the imposed query into the evaluation of reference:

    A dichotomous analysis of user ratings. Library & Information Science Research, 24, 251-263.

    Hyldegard, J. (2009). Beyond the search process Exploring group members information

    behavior in context. Information Processing & Management, 45, 142-158.

    Ingwersen, P., & Jarvelin, K. (2005). The Turn: Integration of Information Seeking and Retrieval in

    Context. Heidelberg: Springer/Kluwer.

    Jarvelin, K., & Ingwersen, P. (2004). Information seeking research needs extension towards tasks

    and technology. Information Research, 10(2). Retrieved March 12, From

    http://informationr.net/10-1/paper212.htm

  • Jarvelin, K., & Wilson, T.D. (2003). On conceptual models for information seeking and retrieval

    research. Information Research, 9 (1). Retrieved February 02, 2009, from

    http://InformationR.net/ir/9-1/paper163.html

    Kim, J. (2007). Modeling task-based information seeking on the Web: Application of information

    seeking strategy schema. Proceedings of the 70th Annual Meeting of the American Society for

    Information Science & Technology 2007. Milwaukee, WI, October 18-25. Available online.

    Kim, K., & Allen, B. (2002). Cognitive and task influences on web searching behavior. Journal of

    the American Society for Information Science and Technology, 53(2):109119.

    Kuhlthau, C. C. (2003). Seeking Meaning: A Process Approach to Library and Information Services

    (2nd ed.). Westport, CT: Libraries Unlimited.

    Large, A., & Beheshti, J. (2000). The Web as a classroom resource: Reactions from the users.

    Journal of the American Society for Information Science, 51, 10691080.

    Marchionini, G.(1995). Information seeking in electronic environments. New York: Cambridge

    University Press.

    Massey, S.A., Druin, A., & Weeks, A.C. (2007). Emotion, response, and recommendations: The role

    of affect in childrens book review in a digital library. In D. Nahl & D. Bilal (eds.), Information and

    Emotion: the Emergent Affective Paradigm in Information Behavior Research and Theory.

    Medford, NJ: Information Today, Inc., 135-160.

    Nahl D. & Bilal D. (eds) (2007). Information and Emotion: the Emergent Affective Paradigm in

    Information Behavior Research and Theory. Medford, NJ: Information Today, Inc.

    Reuter, K., & Druin, A. (2004). Bringing together children and books: An initial descriptive study of

    childrens book searching and selection behavior in a digital library. Proceedings of the 67th

    ASIST. Annual Meeting (pp. 339348). November 1317, Providence, RI.

    Saracevic, T., & Kantor, P. (1988). A study of information seeking and retrieving. II. Users,

  • questions, and effectiveness. Journal of the American Society for Information Science, 39

    (3):177196.

    Schacter, J., Chung, G. K. W. K., & Dorr, A. (1998). Childrens Internet searching on complex

    problems: Performance and process analyses. Journal of the American Society for Information

    Science, 49, 840849.

    Shenton, A. K. (2007). Causes of information-seeking failures: Some insights from an English

    research project. In M. K. Chelton and C. Cool (eds), Youth Information-Seeking Behavior II.

    Context, Theories, Models, and Issues. Lanham, MD: Scarecrow Press, 313-364.

    Terai, et al. (2008). Differences between informational and tansactional tasks in information

    seeking on the Web. Proceedings of the IIiX08, Information Interaction in Context, 2008, October

    14-17. London: UK, 152-159.

    Thatcher, A. (2008). Web search strategies: The influence of web experience and task type.

    Information Processing & Management, 44(3):13081329.

    Vakkari, P. (1999). Task complexity, problem structure and actions: Integrating studies on

    information seeking and retrieval. Information Processing & Management, 35, 819837.

    Vakkari, P. (2003). Task-based information searching. Annual Review of Information Science and

    Technology, 37, 413-464.

    Wildemuth, B.M., Hughes, A. (2006). Perspectives on the tasks in which information behaviors

    are embedded. In K. E. Fisher, S. Erdelex, & L.F.F. McKechnie (eds.), Theories of Information

    Behavior. Meford, NJ: Information Today, Inc., 275-279.

    Xie, H.I. (2007). Shifts in information-seeking strategies in information retrieval in the digital age.

    A planned-situation model. Information Research,12(4). Retrieved March 1, 2009, from

    http://InformationR.net/ir/12-4/colis/colis22.html

Recommended

View more >