9
1/10/2011 1 TTL 746 Medical Textiles Higher expectations of quality of life Rising standards of living Changing attitude 2004: number of people aged over 60 amounts to 40% of the entire population. Textile products that have been engineered to meet specific needs of suitable medical & surgical applications, related to hygiene & healthcare 2009: 66.57 years Minor 1 OverviewClassification of Med Textile field Polymers & fibres Design criteria & fabrication methods Nonimplantable materials: Wound dressing, Bandages, Gauges Implantable biomedical devices: Hernia mesh, Vascular grafts, Sutures, Heart valves Minor 2 Scaffolds for Tissue Engineering : Cartilage (nonwoven, 3D weaving) , Skin (nonwoven, weaving) , Liver (rapid prototyping) Kidney Urinary bladder (nonwoven 3D weaving) (rapid prototyping) , Kidney, Urinary bladder (nonwoven, 3D weaving) , Tendons, Ligaments (Silk filaments, braiding), Cornea Major Healthcare & hygiene products: Surgical Gown, mask, wipes, Antibacterial Textile, Super absorbent polymer, Dialysis, adhesive, antiadhesive patches for Surgical application, Hollow fibre bioreactors, Coating & finishing technologies Characterizing tests, Evaluation of commercial Med Textiles products, Standards….. Legal & ethical issues Course structure Minor 1: 25% Minor 2: 25% (Open book) Major: 35 40% Term Paper : students should identify existing specific clinical problems of any Medical Textile product, & propose novel solutions using ‘smart’ Medical Textiles. (3 students per group) Major: 3540% Quiz, Term report: 1015% • Papers to be distributed in class • Medical Textiles, by Subhash Anand,Woodhead Publishing Ltd • Medical Textiles and Biomaterials for Healthcare, Ed by S.C. Anand, M Miraftab, JF Kennedy, Woodhead Publishing Ltd, 2005 • Medical Textile monthly newsletters , Technical Textiles Net Publications • Medical Textiles 2007: Proceedings of 4 th Int conf on healthcare and medical textiles, By JF Kennedy, SC Anand, M Miraftab, S Rajendran, CRC Press • Principles of Tissue Engineering, by Lanza , Langer , Vacanti • Tissue Engineering Journal , Mary Ann Liebert Inc. Publications Time Magazine online, http://www.time.com/time/magazine/article/0,9171,997028,00.html Hottest future professions of the twentyfirst century May, 2000

Medical Textiles

Embed Size (px)

Citation preview

Page 1: Medical Textiles

1/10/2011

1

TTL 746

Medical Textiles

Higher expectations of quality of life

Rising standards of living 

Changing attitude

2004: number of people aged over 60 amounts to 40% of the entire population.

Textile products that have been engineered tomeet specific needs of suitable medical &surgical applications, related to hygiene &healthcare

p p2009:  66.57 years 

Minor 1

Overview‐ Classification of Med Textile fieldPolymers & fibres Design criteria  &  fabrication methodsNon‐implantable materials:  Wound dressing, Bandages, GaugesImplantable biomedical devices: Hernia mesh, Vascular grafts, Sutures, Heart valves

Minor 2Scaffolds for Tissue Engineering :Cartilage (nonwoven, 3D weaving) ,   Skin (nonwoven, weaving)  , Liver

(rapid prototyping) Kidney Urinary bladder (nonwoven 3D weaving)(rapid prototyping) ,   Kidney, Urinary bladder    (nonwoven, 3D weaving) , Tendons, Ligaments    (Silk filaments, braiding),    Cornea 

Major

Healthcare & hygiene products: Surgical Gown, mask, wipes, AntibacterialTextile, Super absorbent polymer, Dialysis, adhesive, anti‐adhesive patches forSurgical application, Hollow fibre bioreactors, Coating & finishing technologies

Characterizing tests, Evaluation of commercial Med Textiles products, Standards….. Legal & ethical issues

Course structure

Minor 1:     25%

Minor 2:     25%     (Open book)

Major: 35 40%

Term Paper  :    students should identify existing specific clinical problems of any Medical Textile product, & propose novel solutions using ‘smart’ Medical Textiles.

(3 students per group)

Major:         35‐ 40%

Quiz, Term report:   10‐15%

• Papers to be distributed in class

• Medical Textiles, by Subhash Anand,Woodhead Publishing Ltd

• Medical Textiles and Biomaterials for Healthcare, Edby S.C. Anand, M Miraftab, JF Kennedy, Woodhead Publishing Ltd,2005

• Medical Textile monthly newsletters, Technical Textiles NetPublications

• Medical Textiles 2007: Proceedings of 4th Int conf on healthcare andmedical textiles,By JF Kennedy, SC Anand, M Miraftab, S Rajendran, CRC Press

• Principles of Tissue Engineering, by Lanza, Langer, Vacanti

• Tissue Engineering Journal, Mary Ann Liebert Inc. Publications

Time Magazine online, http://www.time.com/time/magazine/article/0,9171,997028,00.html

Hottest future professions of the twenty‐first century

May, 2000

Page 2: Medical Textiles

1/10/2011

2

1.  TISSUE  ENGINEERS2.  GENE  PROGRAMMERS 3.  Genetic Eng FARMERS  

...and which jobs will disappear?

Teachers

Market Size & Potential

(Rs. Crore) Market Size & Potential

(Rs. Crore)

S.

No

Technical Textile Sector

2003-04

2007-08

2005-06 (Actual)

Assumed growth rate

per annum (%)

2014-15

(Predicted)

1 Clothtech 6833 8415 7583 15 26677 2 Packtech 4602 7359 5152 12 14288 3 Indutech 2212 2993 1148 12 3182 4 Sporttech 1534 2049 1773 15 6238

Market size of Technical textiles in India Tata Economic Consultancy Services road map for Indian Technical Textile sector

4 Sporttech 1534 2049 1773 15 6238

5  Meditech  1525  2339  1152  20 %  5945 6 Mobiltech 1323 2046 1532 10 3613 7 Hometech 1029 1897 1398 15 4918 8 Agrotech 303 464 376 20 1938 9 Protech 284 638 819 10 1931

10 Buildtech 281 478 1333 20 6877 11 Oekotech 200 6732 42 10 98 12 Geotextiles - 6591 999 10 2357

TOTAL 20128 42006 23307 14.37 78060

‘Technical Textiles and Industrial Nonwovens: World Market Forecast to 2010’ published by David Rigby Associates

Current Indian scenario

Sanitary napkins, baby & adult diapers : 35%

Surgical wound dressing :  30%

Sutures : 20%

Medical devices & other healthcare textiles: 15%(angioplasty, bypass surgery, stent, compression garments, masks) 

• Consumption is increasing rapidly• Private Hospitals, Health centres are rapidly growing•Doctors/patients’ awareness for hygiene is increasing• Medical tourism

Why Textiles should be used for Medical purpose?

1. Combinations of variety of designs – Fibre, yarns, polymers

Greater freedom to optimize design and performance

2 Easy handling manipulation by surgeon2. Easy handling, manipulation by surgeon

3. Flexibility, supplenss, mechanical strength similar to soft tissues

4. Fatigue resistance to survive dynamic motions inside body

5. Porous structures of fabric will allow tissue in growth

Use of Textile‐based constructs for Med Textile & Tissue eng

Major challenges ahead:

Safe but cheaper solutions

1. Innovative designing

2. Better understanding of structure‐function relationship

3. Multidisciplinary approach of problem solving

4. GMP for Biological testing – in vitro, in vivo studies

5. Ethical regulations & Funding

Page 3: Medical Textiles

1/10/2011

3

What Constitutes Medical Textiles ?

Polymers (& Liq crystals, hydrogels)– Biocompatible

Chemicals – Medical Products

Fibres & Yarns ‐ Normal, Functional

Fabrics – Woven, Non‐woven, Knitted, Braided

F b i ti T h i M ldi C tiFabrication  Techniques – Molding, Casting

Products and Technologies

Chemistry,  Fibre Technol,  Textile Engineering,  Mechanical Eng,          Computer Sci, 

Product development,        Biology,    Biotechnology, Instrumentation & Biomed Eng

Healthcareproducts

Medical Textiles

Non‐ Implantablematerials

Implantablematerials

Scaffolds for Tissue

engineering

Suture

engineering

Non‐implantable materials Implantable materials

LiverLiver(Rapid prototyping)

Kid U i bl ddKid U i bl dd

CorneaCornea(Knitting, Electrospinning,Hydrogel composite)

MuscleMuscle(Electrospinning, Knitting,

Fibrous composite)

Blood vesselsBlood vessels(Electrospinning, Knitting, Braiding)

Cardiac tissueCardiac tissue(knitting)

NerveNerve

Tendons, LigamentsTendons, Ligaments(Mono/multi-filaments, Braiding)

CartilageCartilage(Nonwoven, 3D weaving)

Kidney, Urinary bladderKidney, Urinary bladder(Nonwoven, 3D weaving)

(Nonwoven, Weaving)SkinSkin

NerveNerve(Electrospinning,

Rapid prototyping)

Sewing ring fabric

Examples of some exciting Medical Textiles

Knitted heart valvedeveloped at IITD

Commercially available valve

Page 4: Medical Textiles

1/10/2011

4

Cardiac Constraint sock for congestive heart failure

Acorn cardiovascular Inc

Polypropylene or polyester mesh used for hernioplasty and pelvic floor surgery

Biocompatible Polymers

Ease of processing ‐ versatility of optionsImprove strength ‐ orientation, fibre‐hydrogel composites, crosslinks

Bio‐inert  ………. degradable

FDA Approved synthetic biodegradable polymers ( “ for  specific  applications” )

PLA, PGA,  PLGA,        Poly(caprolactone),    Polydioxanone 

Biodegradable polymers derived from natural sources modified polysaccharides (cellulose, chitin, dextran, alginate) Silk, modified proteins (fibrin, casein)

Fibres are present even within a cell !!

Globular Proteins Fibrous Proteins

Fibrous proteins are insoluble in water, due to a high percentage of hydrophobic amino acids in their primary structures.

Collagens & Elastins: the proteins of connective tissues.     tendons and ligaments.

Keratins: proteins that are major components of skin, hair, feathers and horn.

Fibrin: a protein formed when blood clots.

De Humnai Corporis Fabrica LibriAndreas Vesalius (1514–1564) 

1543 BaselSwitzerland

Collagen fibreNerve fibresElastinfibresMuscle fibres

Page 5: Medical Textiles

1/10/2011

5

Courtesy: Prof M Spector, MIT

Collagen fibres in Extra cellular matrix of cartilage

The major ECM molecules present in tissues

1. Collagen fibres.

2 Elastinfibres2.  Elastinfibres.

3. Proteoglycans and glycosaminoglycans (GAGs).

4. Cell‐adhesion molecules (fibronectin, laminin, etc).

5.  Water (about 65%). 

Protein fibres are polymers of amino acids

Two amino acids can be covalently joined by a amide linkage (Peptide Bond)30% of the human proteins consist of collagen

Collagen is the basic building material of fibrous connective tissue of living organisms.

Orientation of collagen fibres determines the mechanical behavior of the tissue.

Uniaxialorientation in tendon, ligamentRandom orientation in skin

wavy fiber morphology gives extensibility

Parallelyoriented collagen fibres Randomly oriented collagen fibres on skin 

Bone is a composite-hydroxyapatite reinforced by collagen

fibers.Large blood vessels are interpenetrating

networks of elastin fibers and collagen fibers.

y p gy g y

Orientation of collagen fibres in Cornea govern transparency Collagen molecules produced by the cells self‐assemble into fibres.These fibres provide functional integrity of tissues.

Cells in our body produce small collagen fibres

Characteristics of collagen fibres: digitation on surface

Page 6: Medical Textiles

1/10/2011

6

Collagen fibresare fibrous proteins with a unique amino acid composition rich in glycine, proline, and hydroxyproline

20 different amino acids…… 6 types of collagen fibres. 

Collagen I : striated fibres…….. Blood vessel wall, tendons, ligaments, bonebone

80‐160 nm in diahigh tensile str  ( Young’ s mod 1 X 109 Pa )

Collagen II :< 80 nm dia…… cartilage, intervertebral disc

Collagen IV  : abundant in Basement membrane

Collagen VI : joins cells with surrounding matrixRamachandran plot is a way to visualize dihedral angles phi against psi of amino residues in protein structures. it shows the possible conformation of of phi and psi

angles for a polypeptide.

Gopalasamudram Narayana Iyer Ramachandran (1922-2001)

Primary structure:  complete sequence of amino acids in the polypeptide chain. Scale: 1 nm.

Secondary structure: single peptide stands that are fold to recurring structural patterns.…..Alpha‐helix, beta‐sheet, beta‐turn    Scale: 10 nm

Tertiary structure:   Three helical polypeptide units twist to form a triple‐helical collagen molecule: a molecular “rope”   which has some bending stiffness and does not undergo rotation.

Quaternary structure: Several collagen molecules pack side‐by‐side in a highly specific register to give a crystalline fiber with a 64 to 67‐nm periodicity (collagen banding pattern)….. H-bonding, salt bridges, disulfide bonds

Differences in protein function result from differences in amino acid composition and sequence.

Metalloprotein enzyme Collagenase degrades collagen fibers.

Melting of collagen to gelatin (loss of tertiary structure) spontaneously follows such degradation.

collagen fibrils: 10-300 nm

Collagen fibres: few μm

Mechanism of collagen fibril assembly

C- terminal propeptidesN-terminal

by pro-peptidase enzyme

Intracellular : mRNA - Endoplasmic Reticulum- protein synthesis-3 proto-alpha- chains form soluble procollagen

Extracellular

Elastin   fibres

fibrous protein acts to impart elasticity and resilience to tissue

Present in walls of large arteries, lungs, skin

It is more compliant than collagenYoung’s mod 3 X 109 Pa

A network of randomly coiled macromolecules ( glycine, proline, but no hydroxylysine ) .

Highly extensible chains: alternating stretchy hydrophobic segments of beta-structure & rigid hydophilic segments of alpha-helix structure

Stretching of elastin fibers leads to large entropy loss due to reduction in chain configurations & increased “ordering” of water molecules against nonpolar amino acids. Spontaneous retraction

Page 7: Medical Textiles

1/10/2011

7

Silk

PupaPupa

FibroinFibroin(protein)(protein)

20~30 20~30 μμmm

SericinSericin(protein)(protein)

alanine, glycine-alanine, glycine-alanine-serine

primary sequences and secondary structures

crystalline β-sheets: contribute to the high tensile strength of silk fibersβ-turn, helical structures: provide elasticity

Silk

PEO

DIAMETER     <100 μm  microns 

CRYSTALLINITY 

MORPHOLOGY – surface area

Processing Options for Protein 

Processing Options

Courtsey: Prof D Kaplan, Tufts

Silica

hydroxyapatite

CHEMICAL DECORATION ‐ cell functions ‐

MINERALIZATION –composites ‐

β‐sheets

BiomaterialsProtein‐Based Biomaterials – silk

BMP2RGD

(i) Biocompatibility: Silk sutures (FDA approved),         biocompatible, less immunogenic and inflammatory than collagens or polyesters such as PLGA  

(ii)  Stability &Mechanical Properties: remarkable strength & toughness, compressive strength and modulus…… which exceed other commonly used degradable polymeric biomaterials. 

thermal stability ‐ can be autoclaved without loss of mechanical integrity 

Why Silk is suitable for Medical applications ?

stabilized by   beta sheet secondary structures which are physical crosslinks formed via hydrogen bonding and 

hydrophobic interactions via inter‐ and intra‐chain interactions.

(iii) Modifiable: chemical decoration with RGD peptide, BMP2 and other cell    modulating factors  using facile carbodiimide coupling 

attachment of antimicrobial peptides.

(iv) Slow Degradability: fast (weeks) to very slow (years) 

Alginate Seaweed – brown algaeAzotobactervinelandii, Pseudomonas

Fibrepropertiesdepend on ratio of G and M High G contentgivesmorebrittlegels, not good forfibreproduction.High M contentgivesmoreelasticgels.

Egg box model

Ca2+ Ca2+ Ca2+ Ca2+

Ca2+

Ca2+Ca2+

Ca2+

Page 8: Medical Textiles

1/10/2011

8

Seaweed + 0.1‐ 0.2 N mineral acid 

Neutralization with NaOH

Precipitation in CaCl2 Parameters:  NaCl/CaCl2 ratio, Exposure time,

Method of isolation

Preparation of Alginate fibre for wound care

Wet spinning of alginate fibres containing 25% w/w branan ferulate 1% w/v concentration of calcium chloride.

( Miraftab M, Qiao Q, Kennedy JF, Groocock MR, Anand SC, Advanced wound care materials: developing an alginate fibre containing branan ferulate. J 

Wound Care. 2002;11(9):353‐6 )

Concentration & mol weight of modifiers

Cospinning of Alginate with other polysaccharides (such as chondroitin sulphate, dermatan sulphate, heparan sulphate or heparin) 

(Qin Y, Gilding DK, Advanced Medical Solutions Limited (GB) , Fibres of cospun alginates, United States Patent 6,080,420 , June 27, 2000 )

Degradation

Lyases (bacteria, fungi) specifically depolymerise alginate

Chitosan

Chitin, poly[ β(1→4)‐2‐acetoamido‐2‐deoxy‐ D‐glucopyranose]

crustacean, insects, fungi, yeasts

poly[ β(1→4)‐2‐amino‐2‐deoxy‐D‐glucopyranose]

Extent of deacetylation governed by alkali conc and time of reaction.Degree of deacetylation & MW influence characteristics of chitosan

non‐toxic, non‐allergenic, anti‐microbial, and biodegradable 

Deacetylation of chitin by alkali generates chitosan

chitosan dissolved in aq. 1‐2% (v/v) acetic acid by stirring at room temp overnight.

Method of isolation

Waste crab shellDil NaOH

Deproteinization DemineralizationDil acid

DecolorationChitinChitosan

Method of Chitosan fibre preparation

Fibers kept in this coagulation medium for 1 day & washed with distilled water. 

Fibres are suspended in aq. 30% methanol for 4–5 hr & in 50% methanol overnight.

Plasticizer (e.g., PEG, Glycerol) at 1‐2% (w/w) concentration added (optional) 

filtered and injected into a coagulation bath at 40oC containing a mixture of 30% 0.5 M Na2SO4, 10% 1M NaOH and 60% distilled water.

Hudson SM, Review of Chitin and Chitosan as fibre and film formers, J Mater Sci, Mater Med, C34(3) 375‐437, 1994

‘‘Intelligent’’ or ‘‘smart’’ materials

Smart Hydrogels are water‐swollen polymeric networks containing chemical or physical crosslinks, which can undergo volume transitions in response to minute changes in environmental stimuli such as pH , ionic strength , temperature or electric fields etc.

pH sensitive‐ness of Chitosan 

Insoluble Soluble

Alginate Ca2+,     <pH 2  EDTA, > pH 2

Chitosan > pH 6.5 < pH 6.5

Chitin and chitosan can be degraded by Lysozyme, Papain which acts slowly to depolymerise the polysaccharide. 

Chitosan is known to degrade in human serum in vitro.

The biodegradation rate of the polymer is determined by the amount of residual acetyl content. 

Page 9: Medical Textiles

1/10/2011

9

Hyaluronic acid

Fidia Advanced Biopolymers, Italy

Hyaff‐11: an esterified form of hyaluronan.

The esterification process results in a highly hydrophobic polymer that can be spun, or woven.

Alternating   β‐1,4    and    β‐1,3 glycosidic bonds

Hyaff‐11 :     degradation time of around 40 days

Hyaluronidase

Degradation 

During in vivo degradation Hyaff‐11 fibres become  more and more hydrophilic, 

forming a gel similar to native hyaluronan found in the extracellular matrix.