mechanism velocity analysis

Embed Size (px)

Citation preview

  • 8/18/2019 mechanism velocity analysis

    1/94

    • Time derivatives of the loop-closure

    expressions allow the analysis of velocities

    & accelerations, i.e.:

    Velocity & Acceleration Analysis

    MECH 335 Lecture Notes© R.Podhorodeski, 2009

    VELOCITY CLOSURE

    ACCELERATION CLOSURE

  • 8/18/2019 mechanism velocity analysis

    2/94

  • 8/18/2019 mechanism velocity analysis

    3/94

    • Example: Velocity analysis of the offset

    slider-crank

    Velocity & Acceleration Analysis

    MECH 335 Lecture Notes© R.Podhorodeski, 2009

    2

    3

    1

    0

    Displacement closure:

  • 8/18/2019 mechanism velocity analysis

    4/94

    • Taking the time derivative:

    • Rearranging and substituting:

    Velocity & Acceleration Analysis

    MECH 335 Lecture Notes© R.Podhorodeski, 2009

  • 8/18/2019 mechanism velocity analysis

    5/94

    • Taking the time derivative:

    • Rearranging and substituting:

    Velocity & Acceleration Analysis

    MECH 335 Lecture Notes© R.Podhorodeski, 2009

  • 8/18/2019 mechanism velocity analysis

    6/94

    • Taking the time derivative:

    • Rearranging and substituting:

    Velocity & Acceleration Analysis

    MECH 335 Lecture Notes© R.Podhorodeski, 2009

  • 8/18/2019 mechanism velocity analysis

    7/94

    • Taking the time derivative:

    • Rearranging and substituting:

    Velocity & Acceleration Analysis

    MECH 335 Lecture Notes© R.Podhorodeski, 2009

  • 8/18/2019 mechanism velocity analysis

    8/94

    • Splitting into real and imaginary eqns

    • The solution for is obtained by solving

    the imaginary equation as:

    Velocity & Acceleration Analysis

    MECH 335 Lecture Notes© R.Podhorodeski, 2009

    REAL

    IMAGINARY

  • 8/18/2019 mechanism velocity analysis

    9/94

    • Substituting this solution back into the real

    equation gives the other unknown:

    Velocity & Acceleration Analysis

    MECH 335 Lecture Notes© R.Podhorodeski, 2009

    REAL EQUATION

  • 8/18/2019 mechanism velocity analysis

    10/94

    • The velocity of one point can be expressed

    as the velocity of another point, plus the

    relative velocity of the two points

    Relative Velocity Analysis

    MECH 335 Lecture Notes© R.Podhorodeski, 2009

  • 8/18/2019 mechanism velocity analysis

    11/94

    • Example

    Relative Velocity Analysis

    MECH 335 Lecture Notes© R.Podhorodeski, 2009

    R

     

    R

    B

     

    R

    B

    A

    B

    O

    42

    θ 2 

    θ 3 

    θ 4 

    ω2 

  • 8/18/2019 mechanism velocity analysis

    12/94

    • Example

    Relative Velocity Analysis

    MECH 335 Lecture Notes© R.Podhorodeski, 2009

    R

     

    R

    B

     

    R

    B

    A

    B

    O

    42

    θ 2 

    θ 3 

    θ 4 

    ω2 

    V

    B

    Absolute velocity of point B

  • 8/18/2019 mechanism velocity analysis

    13/94

    • Example

    Relative Velocity Analysis

    MECH 335 Lecture Notes© R.Podhorodeski, 2009

    R

     

    R

    B

     

    R

    B

    A

    B

    O

    42

    θ 2 

    θ 3 

    θ 4 

    ω2 

    V

     

    Absolute velocity of point A

  • 8/18/2019 mechanism velocity analysis

    14/94

    • Example

    Relative Velocity Analysis

    MECH 335 Lecture Notes© R.Podhorodeski, 2009

    R

     

    R

    B

     

    R

    B

    A

    B

    O

    42

    θ 2 

    θ 3 

    θ 4 

    ω2 

    V

    B

    Relative velocity of point B w.r.t. point A

  • 8/18/2019 mechanism velocity analysis

    15/94

    • Example

    Relative Velocity Analysis

    MECH 335 Lecture Notes© R.Podhorodeski, 2009

    R

     

    R

    B

     

    R

    B

    A

    B

    O

    42

    θ 2 

    θ 3 

    θ 4 

    ω2 

    V

     

    V

    B

    V

    B

  • 8/18/2019 mechanism velocity analysis

    16/94

    • Note that:

     – The direction and magnitude of V  A is a known

    function of the input angular velocity, ω2 

     – The mechanism’s joints define the direction of

    many of the remaining relative and absolute

    velocities

     – This information can be manipulated to find thevelocity (direction and magnitude) of points not

    on the input link

    Relative Velocity Analysis

    MECH 335 Lecture Notes© R.Podhorodeski, 2009

  • 8/18/2019 mechanism velocity analysis

    17/94

    • There are 4 distinct cases where relative

    velocity analysis is applied (though only 3

    are non-trivial)

    Relative Velocity Analysis

    MECH 335 Lecture Notes© R.Podhorodeski, 2009

    Same Point Different Points

    Same

    Link

    Different

    Links

    Case 1

    TRIVIAL CASE

    Case 2

    DIFFERENCE

    MOTION

    Case 3

    RELATIVE MOTION

    Case 4

    DIFFERENCE & RELATIVE

    MOTION

  • 8/18/2019 mechanism velocity analysis

    18/94

    • Case 2: Different points on the same link

     – Want to find velocity of point B w.r.t. point A (V B|A)

     – Take the derivative of the rel. position vector (RB|A)

    Relative Velocity Analysis

    MECH 335 Lecture Notes© R.Podhorodeski, 2009

    R

     

    R

    B

     

    R

    B

    A

    B

    O

    42

    θ 2 

    θ 3 

    θ 4 

    ω2 

    V

     

    V

    B

    V

    B

  • 8/18/2019 mechanism velocity analysis

    19/94

    • Case 2: Different points on the same link

     – Examining this result gives simple method for

    calculation:

    Relative Velocity Analysis

    MECH 335 Lecture Notes© R.Podhorodeski, 2009

    R

     

    R

    B

     

    R

    B

    A

    B

    O

    42

    θ 2 

    θ 3 

    θ 4 

    ω2 

    V

     

    V

    B

    V

    B

    Always = 0 for a rigid link

    (no length change)

    Equivalent to rotation through 90° in the sense

    (CW or CCW) of ωB|A (i.e. ω3)

    So, for a rigid link :V B|A = (r B|A)(ω3),  ┴ R B|A

  • 8/18/2019 mechanism velocity analysis

    20/94

    • Case 2: Different points on the same link

     – Recalling that V B = V  A + V B|A we can set up a system

    of equations to solve for V B:

    Relative Velocity Analysis

    MECH 335 Lecture Notes© R.Podhorodeski, 2009

    R

     

    R

    B

     

    R

    B

    A

    B

    O

    42

    θ 2 

    θ 3 

    θ 4 

    ω2 

    V

     

    V

    B

    V

    B

    Tricky to approach analytically, but graphical

    methods can be used, and can be much more

    intuitive

  • 8/18/2019 mechanism velocity analysis

    21/94

    • Case 2 Example (Supp Ex V1)

    Relative Velocity Analysis

    MECH 335 Lecture Notes© R.Podhorodeski, 2009

    C

    B

    AO2   O4

    3   4

    2

    ω2 

  • 8/18/2019 mechanism velocity analysis

    22/94

    • Solve using a graphical method

    Relative Velocity Analysis

    MECH 335 Lecture Notes© R.Podhorodeski, 2009

    C

    B

    AO2   O4

    3   4

    2

    ω2 

  • 8/18/2019 mechanism velocity analysis

    23/94

    • Find V B by relative velocity analysis:

    Relative Velocity Analysis

    MECH 335 Lecture Notes© R.Podhorodeski, 2009

    C

    B

    AO2   O4

    3   4

    2

    ω2 

    0V

    1 mm = 5 mm/s

  • 8/18/2019 mechanism velocity analysis

    24/94

    •   V  A: direction, magnitude both known

    Relative Velocity Analysis

    MECH 335 Lecture Notes© R.Podhorodeski, 2009

    C

    B

    AO2   O4

    3   4

    2

    ω2 

    0V

    1 mm = 5 mm/s

  • 8/18/2019 mechanism velocity analysis

    25/94

    •   V  A: direction, magnitude both known

    Relative Velocity Analysis

    MECH 335 Lecture Notes© R.Podhorodeski, 2009

    0V

    1 mm = 5 mm/sC

    B

    AO2   O4

    3   4

    2

    ω2 

  • 8/18/2019 mechanism velocity analysis

    26/94

    0V

    V    A    

    1 mm = 5 mm/s

    A

    •   V  A: direction, magnitude both known

    Relative Velocity Analysis

    MECH 335 Lecture Notes© R.Podhorodeski, 2009

    C

    B

    AO2   O4

    3   4

    2

    ω2 

  • 8/18/2019 mechanism velocity analysis

    27/94

    0V

    V    A    

    1 mm = 5 mm/s

    A

    •   V B| A: direction known, magnitude unknown

    Relative Velocity Analysis

    MECH 335 Lecture Notes© R.Podhorodeski, 2009

    C

    B

    AO2   O4

    3   4

    2

    ω2 

  • 8/18/2019 mechanism velocity analysis

    28/94

    •   V B| A: direction known, magnitude unknown

    Relative Velocity Analysis

    MECH 335 Lecture Notes© R.Podhorodeski, 2009

    C

    B

    AO2   O4

    3   4

    2

    0V

    V    A    

    1 mm = 5 mm/s

    A

  • 8/18/2019 mechanism velocity analysis

    29/94

    •   V B| A: direction known, magnitude unknown

    Relative Velocity Analysis

    MECH 335 Lecture Notes© R.Podhorodeski, 2009

    C

    B

    AO2   O4

    3   4

    2

    0V

    V    A    

    d   i   r  (   V   B   |  A   )  

    1 mm = 5 mm/s

    A

  • 8/18/2019 mechanism velocity analysis

    30/94

    •   V B: direction known, magnitude unknown

    Relative Velocity Analysis

    MECH 335 Lecture Notes© R.Podhorodeski, 2009

    0V

    V    A    

    d   i   r  (   V   B   |  A   )  

    1 mm = 5 mm/s

    A

    C

    B

    AO2   O4

    3   4

    2

    ω2 

  • 8/18/2019 mechanism velocity analysis

    31/94

    •   V B: direction known, magnitude unknown

    Relative Velocity Analysis

    MECH 335 Lecture Notes© R.Podhorodeski, 2009

    C

    B

    AO2   O4

    3   4

    2

    0V

    V    A    

    d   i   r  (   V   B   |  A   )  

    1 mm = 5 mm/s

    A

  • 8/18/2019 mechanism velocity analysis

    32/94

    •   V B: direction known, magnitude unknown

    Relative Velocity Analysis

    MECH 335 Lecture Notes© R.Podhorodeski, 2009

    C

    B

    AO2   O4

    3   4

    2

    0V

    V    A    

     d i r (  V B )

    d   i   r  (   V   B   |  A   )  

    1 mm = 5 mm/s

    A

  • 8/18/2019 mechanism velocity analysis

    33/94

    • Solution is obtained by intersection &measurement

    Relative Velocity Analysis

    MECH 335 Lecture Notes© R.Podhorodeski, 2009

    0V

    V    A    

     d i r (  V B )

    d   i   r  (   V   B   |  A   )  

    1 mm = 5 mm/s

    A

    C

    B

    AO2   O4

    3   4

    2

    ω2 

  • 8/18/2019 mechanism velocity analysis

    34/94

    • Solution is obtained by intersection &measurement

    Relative Velocity Analysis

    MECH 335 Lecture Notes© R.Podhorodeski, 2009

    0V

    V    A    

     d i r (  V B )

    d   i   r  (   V   B   |  A   )  

    1 mm = 5 mm/s

    A

    B V B

    C

    B

    AO2   O4

    3   4

    2

    ω2 

  • 8/18/2019 mechanism velocity analysis

    35/94

    • Solution is obtained by intersection &measurement

    Relative Velocity Analysis

    MECH 335 Lecture Notes© R.Podhorodeski, 2009

    0V

    V    A    

     d i r (  V B )

    d   i   r  (   V   B   |  A   )  

    1 mm = 5 mm/s

    A

    B V B

    X

    C

    B

    AO2   O4

    3   4

    2

    ω2 

  • 8/18/2019 mechanism velocity analysis

    36/94

    • Noticing that , we measure:

    Relative Velocity Analysis

    MECH 335 Lecture Notes© R.Podhorodeski, 2009

    C

    B

    AO2   O4

    3   4

    2

    ω2 

    X

    0V

    V    A    

     d i r (  V B )

    d   i   r  (   V   B   |  A   )  

    1 mm = 5 mm/s

    A

    B V B

  • 8/18/2019 mechanism velocity analysis

    37/94

    • Noticing that , we measure:

    Relative Velocity Analysis

    MECH 335 Lecture Notes© R.Podhorodeski, 2009

    C

    B

    AO2   O4

    3   4

    2

    ω2 

    0V

    V    A    

     d i r (  V B )

    d   i   r  (   V   B   |  A   )  

    1 mm = 5 mm/s

    V   B   |  A  

    A

    B V B

    X

  • 8/18/2019 mechanism velocity analysis

    38/94

    • Noticing that , we measure:

    Relative Velocity Analysis

    MECH 335 Lecture Notes© R.Podhorodeski, 2009

    C

    B

    AO2   O4

    3   4

    2

    ω2 

    0V

    V    A    

     d i r (  V B )

    d   i   r  (   V   B   |  A   )  

    1 mm = 5 mm/s

    V   B   |  A  

    A

    B V B

    X

  • 8/18/2019 mechanism velocity analysis

    39/94

    • And compute:

    • Where the direction of rotation is inferred

    from the direction of

    Relative Velocity Analysis

    MECH 335 Lecture Notes© R.Podhorodeski, 2009

    C

    B

    AO2   O4

    3   4

    2

    ω2 

    0V

    V    A    

     d i r (  V B )

    d   i   r  (   V   B   |  A   )  

    1 mm = 5 mm/s

    V   B   |  A  

    A

    B V B

    X X

  • 8/18/2019 mechanism velocity analysis

    40/94

    • Similarly:

    Relative Velocity Analysis

    MECH 335 Lecture Notes© R.Podhorodeski, 2009

    C

    B

    AO2   O4

    3   4

    2

    ω2 

    0V

    V    A    

     d i r (  V B )

    d   i   r  (   V   B   |  A   )  

    1 mm = 5 mm/s

    V   B   |  A  

    A

    B V B

    X X X

  • 8/18/2019 mechanism velocity analysis

    41/94

    0V

    V    A    

     d i r (  V B )

    d   i   r  (   V   B   |  A   )  

    1 mm = 5 mm/s

    V   B   |  A  

    A

    B V B

    • Now, V C can be found in a variety of ways:

     – Intersect relative velocity directions w.r.t. A & B

     – Compute directly, e.g. V C = V  A+(ω3 X AC)

    Relative Velocity Analysis

    MECH 335 Lecture Notes© R.Podhorodeski, 2009

    C

    B

    AO2   O4

    3   4

    2

    ω2 

    X X X

  • 8/18/2019 mechanism velocity analysis

    42/94

    • Using the first method, note that:

    Relative Velocity Analysis

    MECH 335 Lecture Notes© R.Podhorodeski, 2009

    X X X

    C

    B

    AO2   O4

    3   4

    2

    ω2 

    0V

    V    A    

     d i r (  V B )

    d   i   r  (   V   B   |  A   )  

    1 mm = 5 mm/s

    V   B   |  A  

    A

    B V B

  • 8/18/2019 mechanism velocity analysis

    43/94

    • Using the first method, note that:

    Relative Velocity Analysis

    MECH 335 Lecture Notes© R.Podhorodeski, 2009

    C

    B

    AO2   O4

    3   4

    2

    ω2 

    X X

    and ,

    X

    0V

    V    A    

     d i r (  V B )

    d   i   r  (   V   B   |  A   )  

    1 mm = 5 mm/s

    V   B   |  A  

    A

    B V B

  • 8/18/2019 mechanism velocity analysis

    44/94

    • Using the first method, note that:

    Relative Velocity Analysis

    MECH 335 Lecture Notes© R.Podhorodeski, 2009

    C

    B

    AO2   O4

    3   4

    2

    ω2 

    X X

    and ,

    0V

    V    A    

     d i r (  V B )

    d   i   r  (   V   B   |  A   )  

    1 mm = 5 mm/s

    dir( VC|A)

    V   B   |  A  

    A

    B V B

    X

  • 8/18/2019 mechanism velocity analysis

    45/94

    • Using the first method, note that:

    Relative Velocity Analysis

    MECH 335 Lecture Notes© R.Podhorodeski, 2009

    C

    B

    AO2   O4

    3   4

    2

    ω2 

    X X

    and ,

    X

    0V

    V    A    

     d i r (  V B )

    d   i   r  (   V   B   |  A   )  

    1 mm = 5 mm/s

    dir( VC|A)

    V   B   |  A  

    A

    B V B

  • 8/18/2019 mechanism velocity analysis

    46/94

    • Using the first method, note that:

    Relative Velocity Analysis

    MECH 335 Lecture Notes© R.Podhorodeski, 2009

    C

    B

    AO2   O4

    3   4

    2

    ω2 

    X X

    and ,

    0V

    V    A    

     d i r (  V B )

    d   i   r  (   V   B   |  A   )  

    1 mm = 5 mm/s

    dir( VC|A)

    V   B   |  A  

    d    i    r    (    V    

    C     |    B      )    

    A

    B V B

    X

  • 8/18/2019 mechanism velocity analysis

    47/94

    • Intersection gives the solution for V C 

    Relative Velocity Analysis

    MECH 335 Lecture Notes© R.Podhorodeski, 2009

    C

    B

    AO2   O4

    3   4

    2

    ω2 

    X X X

    0V

    V    A    

     d i r (  V B )

    d   i   r  (   V   B   |  A   )  

    1 mm = 5 mm/s

    dir( VC|A)

    V   B   |  A  

    d    i    r    (    V    C    

     |    B      )    

    A

    B V B

  • 8/18/2019 mechanism velocity analysis

    48/94

    • Intersection gives the solution for V C 

    Relative Velocity Analysis

    MECH 335 Lecture Notes© R.Podhorodeski, 2009

    C

    B

    AO2   O4

    3   4

    2

    ω2 

    X X

    0V

    V    A    

     d i r (  V B )

    d   i   r  (   V   B   |  A   )  

    1 mm = 5 mm/s

    dir( VC|A)

    V   B   |  A  

         V C

    d    i    r    (    V    C    

     |    B      )    

    A C

    B V B

    X

  • 8/18/2019 mechanism velocity analysis

    49/94

    • Intersection gives the solution for V C 

    Relative Velocity Analysis

    MECH 335 Lecture Notes© R.Podhorodeski, 2009

    C

    B

    AO2   O4

    3   4

    2

    ω2 

    X X

    0V

    V    A    

     d i r (  V B )

    d   i   r  (   V   B   |  A   )  

    1 mm = 5 mm/s

    dir( VC|A)

    V   B   |  A  

         V C

    d    i    r   

     (    V    C     |    B      )    

    A C

    B V B

    X X

  • 8/18/2019 mechanism velocity analysis

    50/94

    • Another Case 2 Example (Supp Ex V2)

    Relative Velocity Analysis

    MECH 335 Lecture Notes© R.Podhorodeski, 2009

    C

    B

    A

    O2 3

    2

    ω2 

    4

  • 8/18/2019 mechanism velocity analysis

    51/94

    • Solve using the same graphical method:

    Relative Velocity Analysis

    MECH 335 Lecture Notes© R.Podhorodeski, 2009

    C

    B

    A

    O2 3

    2

    ω2 

    40V

    1 mm = 10 mm/s

  • 8/18/2019 mechanism velocity analysis

    52/94

    • Find V B by case 2 analysis:

    Relative Velocity Analysis

    MECH 335 Lecture Notes© R.Podhorodeski, 2009

    C

    B

    A

    O2 3

    2

    ω2 

    40V

    1 mm = 10 mm/s

  • 8/18/2019 mechanism velocity analysis

    53/94

    •   V  A : magnitude, direction both known

    Relative Velocity Analysis

    MECH 335 Lecture Notes© R.Podhorodeski, 2009

    C

    B

    A

    O2 3

    2

    ω2 

    40V

    1 mm = 10 mm/s

  • 8/18/2019 mechanism velocity analysis

    54/94

    •   V  A : magnitude, direction both known

    Relative Velocity Analysis

    MECH 335 Lecture Notes© R.Podhorodeski, 2009

    C

    B

    A

    O2 3

    2

    ω2 

    40V

    1 mm = 10 mm/s

  • 8/18/2019 mechanism velocity analysis

    55/94

    •   V  A : magnitude, direction both known

    Relative Velocity Analysis

    MECH 335 Lecture Notes

    © R.Podhorodeski, 2009

    C

    B

    A

    O2 3

    2

    ω2 

    40V

    AV   A  

    1 mm = 10 mm/s

  • 8/18/2019 mechanism velocity analysis

    56/94

    •   V B| A : direction known, magnitude unknown

    Relative Velocity Analysis

    MECH 335 Lecture Notes

    © R.Podhorodeski, 2009

    C

    B

    A

    O2 3

    2

    ω2 

    40V

    AV   A  

    1 mm = 10 mm/s

  • 8/18/2019 mechanism velocity analysis

    57/94

    •   V B| A : direction known, magnitude unknown

    Relative Velocity Analysis

    MECH 335 Lecture Notes

    © R.Podhorodeski, 2009

    C

    B

    A

    O2 3

    2

    ω2 

    40V

    AV   A  

    1 mm = 10 mm/s

  • 8/18/2019 mechanism velocity analysis

    58/94

    •   V B| A : direction known, magnitude unknown

    Relative Velocity Analysis

    MECH 335 Lecture Notes

    © R.Podhorodeski, 2009

    C

    B

    A

    O2 3

    2

    ω2 

    40V

      d   i   r   (     V

     B   |    A    ) A

    V   A  

    1 mm = 10 mm/s

  • 8/18/2019 mechanism velocity analysis

    59/94

    •   V B : direction known, magnitude unknown

    Relative Velocity Analysis

    MECH 335 Lecture Notes

    © R.Podhorodeski, 2009

    0V

      d   i   r   (     V

     B   |    A    ) A

    V   A  

    1 mm = 10 mm/s

    C

    B

    A

    O2 3

    2

    ω2 

    4

  • 8/18/2019 mechanism velocity analysis

    60/94

    •   V B : direction known, magnitude unknown

    Relative Velocity Analysis

    MECH 335 Lecture Notes

    © R.Podhorodeski, 2009

    0V

      d   i   r   (     V

     B   |    A    ) A

    V   A  

    dir(VB)

    1 mm = 10 mm/s

    C

    B

    A

    O2 3

    2

    ω2 

    4

  • 8/18/2019 mechanism velocity analysis

    61/94

    • Intersection & measurement give:

    Relative Velocity Analysis

    MECH 335 Lecture Notes

    © R.Podhorodeski, 2009

    C

    B

    A

    O2 3

    2

    ω2 

    40V

      d   i   r   (     V

     B   |    A    ) A

    V   A  

    dir(VB) VB

        V B   |    A

    B

    1 mm = 10 mm/s

  • 8/18/2019 mechanism velocity analysis

    62/94

    • Intersection & measurement give:

    Relative Velocity Analysis

    MECH 335 Lecture Notes

    © R.Podhorodeski, 2009

    C

    B

    A

    O2 3

    2

    ω2 

    40V

      d   i   r   (     V

     B   |    A    ) A

    V   A  

    dir(VB) VB

        V B   |    A

    B

    1 mm = 10 mm/s

    X

  • 8/18/2019 mechanism velocity analysis

    63/94

    • And ω3 is found from:

    Relative Velocity Analysis

    MECH 335 Lecture Notes

    © R.Podhorodeski, 2009

    C

    B

    A

    O2 3

    2

    ω2 

    4

    X0V

      d   i   r   (     V

     B   |    A    ) A

    V   A  

    dir(VB) VB

        V B   |    A

    B

    1 mm = 10 mm/s

    X

  • 8/18/2019 mechanism velocity analysis

    64/94

    • Solve for V C by intersection:

    Relative Velocity Analysis

    MECH 335 Lecture Notes

    © R.Podhorodeski, 2009

    C

    B

    A

    O2 3

    2

    ω2 

    40V

      d   i   r   (     V

     B   |    A    ) A

    V   A  

    dir(VB) VB

        V B   |    A

    B

    1 mm = 10 mm/s

    X X

  • 8/18/2019 mechanism velocity analysis

    65/94

    • Solve for V C by intersection:

    Relative Velocity Analysis

    MECH 335 Lecture Notes

    © R.Podhorodeski, 2009

    C

    B

    A

    O2 3

    2

    ω2 

    40V

      d   i   r   (     V

     B   |    A    ) A

    V   A  

    dir(VB) VB

        V B   |    A

    B

    d     i     r     (     V     

    C      |     A    

     )    

    1 mm = 10 mm/s

    X X

  • 8/18/2019 mechanism velocity analysis

    66/94

    • Solve for V C by intersection:

    Relative Velocity Analysis

    MECH 335 Lecture Notes

    © R.Podhorodeski, 2009

    C

    B

    A

    O2 3

    2

    ω2 

    40V

      d   i   r   (     V

     B   |    A    ) A

    V   A  

    dir(VB) VB

        V B   |    A

     d  i  r  (    V

      C  |   B  )

    B

    d     i     r     (     V     

    C      |     A    

     )    

    1 mm = 10 mm/s

    X X

  • 8/18/2019 mechanism velocity analysis

    67/94

    • Measuring then gives:

    Relative Velocity Analysis

    MECH 335 Lecture Notes

    © R.Podhorodeski, 2009

    C

    B

    A

    O2 3

    2

    ω2 

    40V

      d   i   r   (     V

     B   |    A    ) A

    V   A  

    dir(VB) VB

        V B   |    A

     d  i  r  (    V

      C  |   B  )

    B

    C   V  C  

    d     i     r     (     V     

    C      |     A    

     )    

    1 mm = 10 mm/s

    X XX

  • 8/18/2019 mechanism velocity analysis

    68/94

    • Case 3: Coincident points on different links

     – Occurs for slides & pistons, cams & followers:

    • Two points on different links momentarily occupy

    the same point in the plane• Each has a different absolute velocity, therefore a

    relative velocity exists

    Relative Velocity Analysis

    MECH 335 Lecture Notes

    © R.Podhorodeski, 2009

  • 8/18/2019 mechanism velocity analysis

    69/94

    • Case 3: Coincident points on different links

     – Calculate the slide (relative) velocity, V B3|B4

    Relative Velocity Analysis

    MECH 335 Lecture Notes

    © R.Podhorodeski, 2009

    B

    2

      B

    3

      B

    4

    4

    2

    3

    • So far, we have taken the derivative of

    the relative position vector, RB3|B4• But how can we express this vector for

    two coincident points?

    • Intuitively, we can imagine displacing the

    slide by some small distance along the

    slide, then drawing RB3|B4• Taking the limit as the displacement

    approaches zero, we can see that RB3|B4has zero length, and is directed along the

    tangent to the slide (link 4) at point B

  • 8/18/2019 mechanism velocity analysis

    70/94

    • Case 3: Coincident points on different links

     – Calculate the slide (relative) velocity, V B3|B4

    Relative Velocity Analysis

    MECH 335 Lecture Notes

    © R.Podhorodeski, 2009

    θ slide 

    B

    2

      B

    3

      B

    4

    4

    2

    3

    • So:

    • Taking the derivative:

  • 8/18/2019 mechanism velocity analysis

    71/94

    • Case 3: Coincident points on different links

     – Calculate the slide (relative) velocity, V B3|B4

    Relative Velocity Analysis

    MECH 335 Lecture Notes

    © R.Podhorodeski, 2009

    θ slide 

    B

    2

      B

    3

      B

    4

    4

    2

    3

    • Simplifying gives the final expression:

    • Note that this deceptively simple

    expression hides the potentially difficult

    task of finding the slide tangent angle

    • In the following examples, straight slidesare used to avoid this hassle (tangent

    angle = link angle for a straight slide)

  • 8/18/2019 mechanism velocity analysis

    72/94

    • Case 3 Example (Supp Ex V3)

    Relative Velocity Analysis

    MECH 335 Lecture Notes

    © R.Podhorodeski, 2009

    C

    B

    O2

    2

    ω2 

    4

    O4

    3

  • 8/18/2019 mechanism velocity analysis

    73/94

    C

    B

    O2

    2

    ω2 

    4

    O4

    3

    • Solve graphically

    Relative Velocity Analysis

    MECH 335 Lecture Notes

    © R.Podhorodeski, 2009

    0V

    1 mm = 10 mm/s

  • 8/18/2019 mechanism velocity analysis

    74/94

    C

    B

    O2

    2

    ω2 

    4

    O4

    3

    • Use case 3 analysis to find V B4:

    Relative Velocity Analysis

    MECH 335 Lecture Notes

    © R.Podhorodeski, 2009

    0V

    1 mm = 10 mm/s

  • 8/18/2019 mechanism velocity analysis

    75/94

    C

    B

    O2

    2

    ω2 

    4

    O4

    3

    0V

    1 mm = 10 mm/sC

    B

    O2

    2

    ω2 

    4

    O4

    3

    •   V B2: direction, magnitude both known:

    Relative Velocity Analysis

    MECH 335 Lecture Notes

    © R.Podhorodeski, 2009

    0V

    B2

    V   B  2  

    1 mm = 10 mm/s

  • 8/18/2019 mechanism velocity analysis

    76/94

    0V

    B2

    V   B  2  

    1 mm = 10 mm/s

    0V

    B2

    V   B  2  

    d    i    r    (    V    B    2     |    B    

    4     )    

    1 mm = 10 mm/sC

    B

    O2

    2ω2 

    4

    O4

    3

    •   V B2|B4: only direction is known

    Relative Velocity Analysis

    MECH 335 Lecture Notes

    © R.Podhorodeski, 2009

    C

    B

    O2

    2ω2 

    4

    O4

    3

  • 8/18/2019 mechanism velocity analysis

    77/94

    C

    B

    O2

    2ω2 

    4

    O4

    3

    C

    B

    O2

    2ω2 

    4

    O4

    3

    0V

    B2

    V   B  2  

    d    i    r    (    V    B    2     |    B    

    4     )    

    1 mm = 10 mm/s

    0V

     d  i r (   V  B 4

      )

    B2

    V   B  2  

    d    i    r    (    V    B    2     |    B    

    4     )    

    1 mm = 10 mm/s

    •   V B4: direction known, magnitude unknown

    Relative Velocity Analysis

    MECH 335 Lecture Notes

    © R.Podhorodeski, 2009

  • 8/18/2019 mechanism velocity analysis

    78/94

    • Obtain V B4 by intersection

    Relative Velocity Analysis

    MECH 335 Lecture Notes

    © R.Podhorodeski, 2009

    C

    B

    O2

    2ω2 

    4

    O4

    3

    0V

     d  i r (   V  B 4

      )

    B2

    V   B  2  

    d    i    r    (    V    B    2     |    B    

    4     )    

      V  B 4

    B4

    V    B    2     |    B    

    4    

    1 mm = 10 mm/s

    X

    l l l

  • 8/18/2019 mechanism velocity analysis

    79/94

    •   ω4 follows immediately from V B4:

    Relative Velocity Analysis

    MECH 335 Lecture Notes

    © R.Podhorodeski, 2009

    C

    B

    O2

    2ω2 

    4

    O4

    3

    0V

     d  i r (   V  B 4

      )

    B2

    V   B  2  

    d    i    r    (    V    B    2     |    B    

    4     )    

      V  B 4

    B4

    V    B    2     |    B    

    4    

    1 mm = 10 mm/s

    X X

    l l l

  • 8/18/2019 mechanism velocity analysis

    80/94

    •   V C follows immediately from ω4, or by:

    Relative Velocity Analysis

    MECH 335 Lecture Notes

    © R.Podhorodeski, 2009

    C

    B

    O2

    2ω2 

    4

    O4

    3

    0V

     d  i r (   V  B 4

      )

    B2

    V   B  2  

    d    i    r    (    V    B    2     |    B    

    4     )    

      V  B 4

    B4

    V    B    2     |    B    

    4    

    1 mm = 10 mm/s

    X X

    l i l i l i

  • 8/18/2019 mechanism velocity analysis

    81/94

    •   V C follows immediately from ω4, or by:

    • ,

    Relative Velocity Analysis

    MECH 335 Lecture Notes

    © R.Podhorodeski, 2009

    C

    B

    O2

    2ω2 

    4

    O4

    3

    X X0V

     d  i r (   V  B 4

      )

    B2

    V   B  2  

    d    i    r    (    V    B    2     |    B    

    4     )    

      V  B 4

    B4

    V    B    2     |    B    

    4    

    d i r ( V C | B 4  ) 

    1 mm = 10 mm/s

    R l i V l i A l i

  • 8/18/2019 mechanism velocity analysis

    82/94

    •   V C follows immediately from ω4, or by:

    • , ,

    Relative Velocity Analysis

    MECH 335 Lecture Notes

    © R.Podhorodeski, 2009

    C

    B

    O2

    2ω2 

    4

    O4

    3

    X X0V

     d  i r (   V  B 4

      )

    B2

    V   B  2  

    d    i    r    (    V    B    2     |    B    

    4     )    

      V  B 4

    B4

    V    B    2     |    B    

    4    

        d    i   r    (       V

     C     ) 

    d i r ( V C | B 4  ) 

    1 mm = 10 mm/s

    R l i V l i A l i

  • 8/18/2019 mechanism velocity analysis

    83/94

    C

    B

    O2

    2ω2 

    4

    O4

    3

    • Measuring:

    Relative Velocity Analysis

    MECH 335 Lecture Notes

    © R.Podhorodeski, 2009

    0V

     d  i r (   V  B 4

      )

    B2

    V   B  2  

    d    i    r    (    V    B    2     |    B    

    4     )    

      V  B 4

    B4

    V    B    2     |    B    

    4    

        d    i   r    (       V

     C     ) 

    d i r ( V C | B 4  ) 

    C

         V C

    1 mm = 10 mm/s

    X X X

    R l i V l i A l i

  • 8/18/2019 mechanism velocity analysis

    84/94

    • Another Case 3 Example (Supp Ex V4)

    Relative Velocity Analysis

    MECH 335 Lecture Notes

    © R.Podhorodeski, 2009

    C

    B

    AO2 O4

    3 4

    2

    ω2 

    D5, D6

    5

    6

    R l ti V l it A l i

  • 8/18/2019 mechanism velocity analysis

    85/94

    • Note: The 4-Bar was solved in Ex V1

    Relative Velocity Analysis

    MECH 335 Lecture Notes

    © R.Podhorodeski, 2009

    C

    B

    AO2 O4

    3 4

    2

    ω2 

    D5, D6

    5

    6

    R l ti V l it A l i

  • 8/18/2019 mechanism velocity analysis

    86/94

    C

    B

    AO2   O4

    3   4

    2

    ω2 

    D5, D6

    5

    6

    •   V C  is found by scaling arguments:

    Relative Velocity Analysis

    MECH 335 Lecture Notes

    © R.Podhorodeski, 2009

    V    A    

     V B

    V   B   |  A  

    A

    B

    0V

    1 mm = 5 mm/s

    R l ti V l it A l i

  • 8/18/2019 mechanism velocity analysis

    87/94

    C

    B

    AO2   O4

    3   4

    2

    ω2 

    D5, D6

    5

    6

    •   V C  is found by scaling arguments:

    Relative Velocity Analysis

    MECH 335 Lecture Notes

    © R.Podhorodeski, 2009

    V    A    

     V B

    V   B   |  A  

    A

    B

    V   C   |  A  

    0V

    1 mm = 5 mm/s

    R l ti V l it A l i

  • 8/18/2019 mechanism velocity analysis

    88/94

    C

    B

    AO2   O4

    3   4

    2

    ω2 

    D5, D6

    5

    6

    • Measuring:

    Relative Velocity Analysis

    MECH 335 Lecture Notes

    © R.Podhorodeski, 2009

    V    A    

     V B

    V   B   |  A  

    A

    B

    V   C   |  A  

    0V

    C

    VC

    1 mm = 5 mm/s

    X

    R l ti V l it A l i

  • 8/18/2019 mechanism velocity analysis

    89/94

    C

    B

    AO2   O4

    3   4

    2

    ω2 

    D5, D6

    5

    6

    •   V D5 is found by Case 3 analysis:

    Relative Velocity Analysis

    MECH 335 Lecture Notes

    © R.Podhorodeski, 2009

    X

    V    A    

     V B

    V   B   |  A  

    A

    B

    V   C   |  A  

    0V

    C

    VC

    1 mm = 5 mm/s

    R l ti V l it A l i

  • 8/18/2019 mechanism velocity analysis

    90/94

    C

    B

    AO2   O4

    3   4

    2

    ω2 

    D5, D6

    5

    6

    •   V D5 : only the direction is known

    Relative Velocity Analysis

    MECH 335 Lecture Notes

    © R.Podhorodeski, 2009

    X

    V    

    A    

     V B

    V   B   |  A  

    A

    B

    V   C   |  A  

    d   i   r    (    V    

    D   5    )   

    0V

    C

    VC

    1 mm = 5 mm/s

    R l ti V l it A l i

  • 8/18/2019 mechanism velocity analysis

    91/94

    C

    B

    AO2   O4

    3   4

    2

    ω2 

    D5, D6

    5

    6

    •   V D5|C : only the direction is known

    Relative Velocity Analysis

    MECH 335 Lecture Notes

    © R.Podhorodeski, 2009

    X

    V    

    A    

     V B

    V   B   |  A  

    A

    B

    V   C   |  A  

    d   i   r    (    V    

    D   5    )   

    0V

     d  i  r  (    V

      D  5  |   C  )

    C

    VC

    1 mm = 5 mm/s

    Relative Velocity Analysis

  • 8/18/2019 mechanism velocity analysis

    92/94

    C

    B

    AO2   O4

    3   4

    2

    ω2 

    D5, D6

    5

    6

    • Measuring:

    Relative Velocity Analysis

    MECH 335 Lecture Notes

    © R.Podhorodeski, 2009

    X

    V    

    A    

     V B

    V   B   |  A  

    A

    BV    D   5   

    V   C   |  A  

    d   i   r    (    V    

    D   5    )   

    0V

     d  i  r  (    V

      D  5  |   C  )

       V  D  5  |   C

    C

    D5VC

    1 mm = 5 mm/s

    X

    Relative Velocity Analysis

  • 8/18/2019 mechanism velocity analysis

    93/94

    C

    B

    AO2   O4

    3   4

    2

    ω2 

    D5, D6

    5

    6

    •   ω5 is found immediately from:

    Relative Velocity Analysis

    MECH 335 Lecture Notes

    © R.Podhorodeski, 2009

    V    

    A    

     V B

    V   B   |  A  

    A

    BV    D   5   

    V   C   |  A  

    d   i   r    (    V    

    D   5    )   

    0V

     d  i  r  (    V

      D  5  |   C  )

       V  D  5  |   C

    C

    D5VC

    1 mm = 5 mm/s

    X X X

  • 8/18/2019 mechanism velocity analysis

    94/94

    END OF LECTURE PACK 3