46
Mechanics Science 1.1

Mechanics) - Dr Macleod's Websitedrmacleod.weebly.com/uploads/1/2/2/7/12278357/y11_mechanics2.pdf · Y11#Mechanics#Equations ... power pack ticker timer trolley pulley string mass

  • Upload
    dothien

  • View
    219

  • Download
    1

Embed Size (px)

Citation preview

Mechanics  Science  1.1  

Topic  Outline  •  Speed  •  Accelera+on  •  Distance-­‐Time  Graphs  •  Speed-­‐Time  Graphs  •  Balanced  Forces  •  Unbalanced  Forces  •  Mass  and  Weight  •  Pressure  •  Kine+c  Energy  •  Gravita+onal  Poten+al  Energy  •  Conserva+on  of  Energy  •  Work  •  Power  

Equa6ons  Y11#Mechanics#Equations#

!

! = !∆!∆! ! ! = !∆!∆! !!!"# = !"! ! = !!!!

!

∆!! = !"∆ℎ! !! =12 !!!

!! ! = !"! ! =!!

!

g!=!10!ms(2! g!=!10!Nkg(1!

!

!

Speed  •  Speed  is  the  distance  covered  in  a  given  +me.        

v  =  d/t    v  =  speed,  m.s-­‐-­‐1  d  =  distance,  m  t  =  +me,  s  

Speed  –  Prac6cal  Speedy Cars

Measure the time taken for a number of cars to travel 20 m along Balmacewen Road. When you are back in the class, calculate the average speed of these cars in m.s-1 and km.h-1.

Car Time (s) Distance (m) Average Speed (m.s-1)

Average Speed (km.h-1)

1

2

3

4

5

6

7

8

9

10 Macleod

Speedy Cars

Measure the time taken for a number of cars to travel 20 m along Balmacewen Road. When you are back in the class, calculate the average speed of these cars in m.s-1 and km.h-1.

Car Time (s) Distance (m) Average Speed (m.s-1)

Average Speed (km.h-1)

1

2

3

4

5

6

7

8

9

10 Macleod

20  m  

•  Distance-­‐6me  graphs  have  distance  travelled  on  the  y-­‐axis  and  +me  along  the  x-­‐axis.    

•  The  slope  of  the  graph  gives  the  speed  at  that  +me.  

     

Distance-­‐Time  Graphs  

0  

2  

4  

6  

8  

10  

12  

0   1   2   3   4   5   6   7   8   9  

Distan

ce  (m

)  

Time  (s)  

Distance-­‐Time  Graph  for  a  Short  Walk  

Slow  speed  Sta+onary  

Fast  speed  

Distance-­‐Time  Graphs  •  In  a  distance-­‐+me  graph,  the  slope  indicates  the  speed:  – a  steep  slope  indicates  a  fast  speed    – a  gradual  slope  indicates  a  slow  speed    – a  flat  (horizontal)  slope  indicates  the  object  has  stopped  moving  

Ticker-­‐Trolley  Prac6cal  

Ticker'Trolley'Experiment'

Aim:!To!plot!a!distance.time!graph!for!the!journey!of!a!ticker!trolley.!

Hypothesis:'I!think!that!as!the!trolley!is!pulled!off!the!table!its!speed!will!<insert'your'prediction>.!

Method:!!

<Insert'steps>'

tape

power pack ticker timer trolley pulley

string

mass

'

'

'

Results:'

Table!

Interval'Number'

'Time'(s)' Distance'(cm)' Distance'(m)' Summative'Distance'(m)'

Average'Speed'(msD1)'

1! 0.1! ! ! ! !2! 0.1! ! ! ! !3! 0.1! ! ! ! !4! 0.1! ! ! ! !5! 0.1! ! ! ! !6! 0.1! ! ! ! !7! 0.1! ! ! ! !8! 0.1! ! ! ! !9! 0.1! ! ! ! !10! 0.1! ! ! ! !

!

Graph!

!

Conclusion:'

Agree/disagree!with!hypothesis!!

Ticker-­‐Trolley  Prac6cal  •  Aim:  To  plot  a  distance-­‐+me  graph  for  the  journey  of  a  +cker  trolley  

•  Hypothesis:  I  think  that  as  the  trolley  is  pulled  off  the  table  the  speed  will  <increase  /  stay  the  same  /  decrease>  

•  Method:  Outline  steps  and  draw  a  diagram  

Ticker-­‐Trolley  Prac6cal  •  Results  

Once  you  have  filled  out  the  table,  draw  a  distance-­‐;me  graph  for  your  results  

Ticker'Trolley'Experiment'

Aim:!To!plot!a!distance.time!graph!for!the!journey!of!a!ticker!trolley.!

Hypothesis:'I!think!that!as!the!trolley!is!pulled!off!the!table!its!speed!will!<insert'your'prediction>.!

Method:!!

<Insert'steps>'

tape

power pack ticker timer trolley pulley

string

mass

'

'

'

Results:'

Table!

Interval'Number'

'Time'(s)' Distance'(cm)' Distance'(m)' Summative'Distance'(m)'

Average'Speed'(msD1)'

1! 0.1! ! ! ! !2! 0.1! ! ! ! !3! 0.1! ! ! ! !4! 0.1! ! ! ! !5! 0.1! ! ! ! !6! 0.1! ! ! ! !7! 0.1! ! ! ! !8! 0.1! ! ! ! !9! 0.1! ! ! ! !10! 0.1! ! ! ! !

!

Graph!

!

Conclusion:'

Agree/disagree!with!hypothesis!!

Ticker-­‐Trolley  Prac6cal  

0  

0.1  

0.2  

0.3  

0.4  

0.5  

0.6  

0.7  

0.8  

0.9  

0   0.1   0.2   0.3   0.4   0.5   0.6   0.7   0.8   0.9   1  

Distan

ce  (m

)  

Time  (s)  

Distance-­‐Time  Graph  for  the  Journey  of  a  Ticker  Trolley  

Ticker-­‐Trolley  Prac6cal  •  Conclusion  –   Agree  or  disagree  with  your  hypothesis  –   Explain  your  results  –   Suggest  three  reasonable  Improvements  

Accelera6on  •  Accelera6on  is  the  change  in  speed  over  +me.    

a  =  Δv              Δt  

   a  =  accelera+on,  m.s-­‐2  Δv  =  change  in  speed,  m.s-­‐1  Δt  =  change  in  +me,  s  

Worksheet:  Speed  and  Accelera;on  

Speed-­‐Time  Graphs  •  Speed-­‐6me  graphs  have  the  speed  on  the  y-­‐axis  and  +me  along  the  x-­‐axis.    

•  The  slope  of  the  graph  gives  the  accelera+on  at  that  +me.    

0  

2  

4  

6  

8  

10  

12  

14  

0   2   4   6   8   10   12   14   16   18   20  

Speed  (m

/s)  

Time  (s)  

Speed-­‐Time  Graph  for  a  Short  Bike  Ride  

Gradual  accelera+on  

Rapid  accelera+on  

No  accelera+on  OR    constant  speed  

Nega+ve  accelera+on    OR  decelera+on  

Speed-­‐Time  Graphs  •  In  a  speed-­‐+me  graph:  – an  upward  slope  indicates  accelera+on  – a  downward  slope  indicates  decelera+on  – a  flat  line  indicates  no  accelera+on  – a  steep  slope  indicates  a  fast  accelera+on/decelera+on  

– a  gentle  slope  indicates  a  slow  accelera+on/decelera+on  

– The  area  under  the  graph  gives  the  distance  travelled  

 

Worksheet:  Calcula;ng  and  Graphing  Speed  

Reac6on  Time  –  Prac6cal    Ac6vity:    1.  Set  up  a  chair  so  one  group  member  can  push  

their  foot  against  a  wall  2.  Drop  a  meter  ruler  between  the  person’s  foot  and  

the  wall  3.  Record  the  distance  the  ruler  falls    4.  Repeat  three  +mes  for  each  group  member  5.  Use  the  chart  to  work  out  the  average  reac+on  

+me  for  each  person  6.  Time  permieng,  repeat  using  a  different  

condi+on,  e.g.  having  a  conversa+on,  listening  to  music,  tex+ng…  (check  with  teacher  first)  

Reac6on  Time  –  Prac6cal    

Once  you  have  calculated  your  average  reac+on  +me,  calculate  how  far  you  would  travel  in  this  +me  in  a  car  travelling  at  50  km/h.    How  does  this  compare  to  sta+s+cs  that  people  travel  an  average  of  11  m  before  star+ng  to  break?  

Macleod

Worksheet: Calculating and Graphing Speed. Reaction Time and Breaking Activity: Measure reaction time by dropping a metre ruler between someone’s hand, take the average of 3 measurements for each student. Plot a histogram of class data. Use chart below to work out reaction time and calculate distance travelled by a car travelling at 16 m.s-1 (57.6 km/h) in that time (minimum time before you start breaking). Compare with statistics that an average driver will travel 11 m before breaking. Why do you think there is a difference? Distance on ruler (cm) Reaction time (s)

5 0.10 10 0.14 15 0.18 20 0.20 25 0.23 30 0.25 35 0.26 40 0.28 45 0.30 50 0.32

Force A force is a push, pull or twist. Contact forces require physical contact between the two objects, e.g. kicking a ball; non-contact forces do not, e.g. gravity and magnetism. All forces have a direction. When a force is applied to an object, the object will either: speed up, slow down, change direction or change shape. When two forces of the same size are acting against each other, they will cancel out (or ‘balance’). Force is measured in Newtons. 1 N = the force required to accelerate a 1 kg object at 1 m.s-2. Types of Force Types of Force cloze. Friction is a contact force. Friction occurs when two surfaces are in contact and one is moving relative to the other. The friction force is in the opposite direction to the motion of the object. Friction is increased when:

• the surface area of contact is greater • the speed of the objects is greater • the materials are ‘rougher’.

Magnetism is a non-contact force. Magnets contain iron (or cobalt or nickel) and all magnets have a North and a South pole. Opposite poles attract, like poles repel. Electrostatic forces are non-contact forces. Electrostatic forces occur between objects with an electric charge, i.e. a positive or a negative charge. Opposite charges attract, like charges repel.

Force  •  A  force  is  a  push,  pull  or  twist  •  Contact  forces  require  physical  contact  between  the  two  objects,  e.g.  kicking  a  ball;  non-­‐contact  forces  do  not,  e.g.  gravity  and  magne+sm  

•  All  forces  have  a  direc6on  •  When  a  force  is  applied  to  an  object,  the  object  will:  speed  up,  slow  down,  change  direc+on  or  change  shape  

•  When  two  forces  of  the  same  size  are  ac+ng  against  each  other,  they  will  cancel  out  (or  ‘balance’)  

•  Force  is  measured  in  Newtons.  1  N  =  the  force  required  to  accelerate  a  1  kg  object  at  1  m.s-­‐2  

   Worksheet:  Types  of  Force  

Newton’s  First  Law  of  Mo6on  •  Newton’s  First  Law  of  Mo6on:  An  object  will  con+nue  to  travel  in  the  same  speed  and  in  the  same  direc+on  unless  it  is  acted  on  by  an  unbalanced  force    

•  All  forces  have  a  size  and  a  direc6on  •  The  forces  in  a  given  direc+on  (e.g.  horizontal  direc+on  or  ver+cal  direc+on)  can  be  added  to  work  out  the  net  (overall)  force  in  that  direc+on  –  Thrust  is  the  force  that  is  intended  to  make  the  object  move  

–  Fric6on  is  a  force  that  opposes  the  movement  of  an  object  – Weight  is  the  downward  force  of  gravity  on  an  object  –  Support  is  the  force  holding  up  the  weight  of  an  object  

Free-­‐Body  Force  Diagrams  •  We  can  draw  free-­‐body  force  diagrams  to  show  the  forces  on  an  object    

Lin  

Thrust  Drag  

Weight  

Newton’s  Second  Law  of  Mo6on  •  Newton’s  Second  Law  of  Mo6on:  If  an  unbalanced  force  acts  on  an  object,  the  object  will  accelerate  in  the  direc+on  of  that  force  

•  Another  way  to  think  of  this  is  that  the  object  will  move  in  the  direc+on  of  the  net  force  

•  The  net  force  is  the  ‘overall’  force,  which  is  calculated  by  adding  all  the  forces  together  (remember:  forces  have  direc6on)  

Newton’s  Second  Law  of  Mo6on  !

!

!

Force  =  mass  x  accelera+on      

F  =  ma      F  =  force,  N  m  =  mass,  kg  a  =  accelera+on,  m.s-­‐2  

Worksheet:  Newton’s  Laws  Worksheet:  Warbirds  over  Wanaka  

Newton’s  Second  Law  of  Mo6on  

Force  –  Prac6cal    •  Aim:  To  determine  the  rela+onship  between  force  and  accelera+on  for  a  +cker  trolley  

•  Hypothesis:  I  think  that  as  force  increases,  accelera+on  will  <increase  /  decrease  /  stay  the  same>  

•  Method:  Set  up  ;cker  trolley  as  for  previous  experiment;  accelerate  the  trolley  using  100  g,  200  g,  and  300  g  masses;  analyse  the  traces  as  for  the  previous  experiment  

Force  –  Prac6cal  

Ticker'Trolley'Experiment'

Aim:!To!plot!a!distance.time!graph!for!the!journey!of!a!ticker!trolley.!

Hypothesis:'I!think!that!as!the!trolley!is!pulled!off!the!table!its!speed!will!<insert'your'prediction>.!

Method:!!

<Insert'steps>'

tape

power pack ticker timer trolley pulley

string

mass

'

'

'

Results:'

Table!

Interval'Number'

'Time'(s)' Distance'(cm)' Distance'(m)' Summative'Distance'(m)'

Average'Speed'(msD1)'

1! 0.1! ! ! ! !2! 0.1! ! ! ! !3! 0.1! ! ! ! !4! 0.1! ! ! ! !5! 0.1! ! ! ! !6! 0.1! ! ! ! !7! 0.1! ! ! ! !8! 0.1! ! ! ! !9! 0.1! ! ! ! !10! 0.1! ! ! ! !

!

Graph!

!

Conclusion:'

Agree/disagree!with!hypothesis!!

Force  –  Prac6cal  •  Data  Analysis  – Mark  off  intervals  by  puSng  a  line  through  every  5th  dot  on  the  trace  

– Measure  the  length  of  the  longest  interval  on  the  trace  –  Calculate  the  speed  for  this  interval  (s  =  d/t)  – Work  out  the  change  in  speed  from  the  start  (0  ms-­‐1)  to  the  maximum  speed  (which  you  have  just  calculated)  

–  Count  the  number  of  intervals  and  work  out  the  change  in  /me  to  reach  the  maximum  speed  

–  Calculate  accelera/on  using  a  =  Δv/Δt  

Force and Acceleration Aim: To determine the relationship between force and acceleration. Hypothesis: I think that <insert your prediction>. Method: <Insert steps> Results: To analyse your results:

1. Mark off every 5th dot. 2. Find the longest distance covered on one interval and work out the speed for that

interval. 3. Count the number of intervals to the fastest one and work out the acceleration. 4. Fill out the table below.

Mass (g) Force (N) Acceleration (m.s-2)

100 1 200 2 300 3

Graph <graph force on the x-axis and acceleration on the y-axis> Conclusion: Agree/disagree Explain your results Improvements

Force  –  Prac6cal  •  Results:    – Fill  in  the  table  – Draw  a  graph  of  accelera;on  (y-­‐axis)  vs.  force  (x-­‐axis)  

•  Conclusion:  –   Agree  or  disagree  with  your  hypothesis  –   Explain  your  results  –   Suggest  three  reasonable  Improvements  

Mass  and  Density  •  Mass  is  a  measure  of  the  amount  of  maoer  in  an  object  

•  Mass  is  measured  in  kilograms  (kg)    •  Density  is  the  amount  of  maoer  in  a  given  volume  

•  Density  is  measured  in  kg/l  (kg.l-­‐1)  or  g/ml  (g.ml-­‐1)    

Density  =  mass                                          volume  

 

•  One  kilogram  of  water  has  a  volume  of  one  litre,  so  the  density  of  water  is  1  kg/l  

Density  –  Prac6cal  •  Aim:  To  calculate  the  density  of  at  least  5  small  objects  

•  Method:  – Measure  the  mass  (g)  of  an  object  on  the  electronic  scales  

– Measure  the  volume  (ml)  of  the  object  using  water  displacement  in  a  measuring  cylinder  

– Calculate  density  =  mass/volume  •  Results:  – Make  a  table  of  your  results  

Density  –  Prac6cal  1.  Which  object  had  the  highest  density?  2.  Which  object  had  the  lowest  density?  3.  Which  objects  had  a  density  greater  than  1  g/

ml?  4.  Which  objects  had  a  density  less  than  1  g/ml?  5.  What  can  you  say  about  an  object  if  its  

density  is  less  than  1  g/ml?  

Mass  and  Weight  •  Mass  is  the  amount  of  maoer  in  an  object,  kg  •  Weight  is  the  force  of  gravity  ac+ng  on  a  mass,  Newtons,  N  Weight  force  =  mass  x  accelera+on  due  to  gravity  

 

FW  =  mg    

FW  =  weight  force,  N  m  =  mass,  kg  g  =  accelera+on  due  to  gravity,  10  m.s-­‐2    

Worksheet:  Planet  Gravity  

Measuring  Mass  in  Space  -­‐  Prac6cal  •  Aim:  To  measure  mass  without  measuring  weight  •  Method:    –  Tape  a  ruler  to  the  edge  of  a  desk,  with  most  of  the  ruler  hanging  over  the  edge  

–  Tape  a  50  g  mass  onto  the  end  of  the  ruler  –  Time  10  oscilla+ons  of  the  mass  on  the  ruler  –  Repeat  for  100  g,  150  g  and  200  g  masses  –  Plot  a  graph  of  +me  for  10  oscilla+ons  (y-­‐axis)  vs.  mass  (x-­‐axis)  

– Aoach  an  unknown  mass  to  the  end  of  the  ruler  and  +me  10  oscilla+ons  

– Use  your  graph  (a  calibra+on  curve)  to  es+mate  the  mass  of  the  unknown  

 

Pressure  •  Pressure  is  the  force  on  an  object  divided  by  the  area  over  which  that  force  acts  

   P  =  F                A  

 P  =  pressure,  Pascals  (Pa)  or  Nm-­‐2  F  =  force,  N  A  =  area,  m2    

Pressure  –  Ac6vity  •  Trace  the  sole  of  your  shoe  on  grid  paper  with  cen+metre  markings  

•  Count  the  number  of  squares  under  your  shoe,  then  double  this  area  (for  standing  on  both  feet)  

•  Convert  the  area  from  cm2  to  m2  by  dividing  by  10  000  

•  Calculate  your  weight  by  mul+plying  your  mass  by  gravity  

•  Calculate  the  pressure  you  exert  on  the  floor  using  pressure  =  force  /  area  

•  Repeat  using  the  area  of  the  chair  legs  

Energy  •  Energy  is  the  capacity  to  do  work  and  is  measured  in  Joules  (J)  

•  There  are  two  main  categories  of  energy:    – poten6al  energy  is  stored  energy,  e.g.  a  car  baoery  has  chemical  poten+al  energy  

– ac6ve  energy  is  when  the  energy  changes  are  observable,  e.g.  fireworks  exploding  

James  Joule  •   James  Prescoo  Joule  (1818-­‐1889)  was  an  English  Physicist  

•  He  demonstrated  the  equivalence  between  mechanical  work  and  heat  

Energy  Transforms  •  Energy  is  neither  created  nor  destroyed,  but  is  transformed  from  one  form  to  another  

Ac;vity:  Make  an  eight-­‐frame  cartoon  for  the  energy  transforms  that  result  in  one  of  the  following  situa;ons:  –  the  electric  light  shining  in  this  room  – you  wri;ng  on  your  page  – a  person  scoring  a  goal  or  a  try  

Kine6c  Energy  •  Kine6c  energy  is  calculated  from  the  mass  of  the  object  and  the  speed  it  is  going:  

EK  =  ½  mv2      EK  =  kine+c  energy,  J  m  =  mass,  kg  v  =  velocity  (speed),  m.s-­‐1      Ac;vity:  Calculate  your  average  kine;c  energy  when  running  25  m  

 Worksheet:  Kine;c  Energy  

Gravita6onal  Poten6al  Energy  •  Gravita6onal  poten6al  energy  is  the  amount  of  stored  energy  an  

object  has  when  it  is  held  at  a  height  •  E.g.  water  in  a  dam  or  a  person  on  a  diving  board    

EGP  =  mgh      EGP  =  gravita+onal  poten+al  energy,  J  m  =  mass,  kg  g  =  accelera+on  due  to  gravity,  10  m.s-­‐2  h  =  height  of  the  object      Ac;vity:  Calculate  the  gravita;onal  poten;al  energy  you  gain  by  climbing  a  flight  of  stairs    

 Worksheet:  Gravita;onal  Poten;al  Energy  

Work  •  Work  is  the  transfer  of  energy  from  one  form  to  another,  and  is  measured  in  Joules  (J).  

•  Work  is  calculated  from  the  force  used  to  move  an  object  a  certain  distance  

Work  =  force  x  distance  W  =  Fd  

   W  =  work  done,  J  F  =  force,  N  d  =  distance  the  object  is  moved,  m  

Work  -­‐  Example  A  force  of  15  N  is  applied  to  lin  a  school  bag  1.2  m  from  the  floor  onto  a  desk  Work  done  =  force  x  distance                                            =  15  x  1.2                                            =  18  J    In  this  case,  chemical  poten+al  energy  from  the  person’s  food  is  converted  into  kine+c  energy  as  the  muscles  and  school  bag  move,  and  then  the  kine+c  energy  is  converted  into  gravita+onal  poten+al  energy  of  the  bag  on  the  desk.    

Worksheet:  Work  

Conserva6on  of  Energy  •  When  an  object  is  in  free  fall  (e.g.  a  tennis  ball  dropped  from  a  building),  its  gravita+onal  poten+al  energy  is  converted  to  kine+c  energy  

       

Worksheet:  Conserva;on  of  Energy  

Power  •  Power  is  a  measure  of  how  fast  work  is  done,  i.e.  how  quickly  energy  is  converted  from  one  form  to  another  

•  A  powerful  car  is  able  to  turn  chemical  poten+al  energy  (petrol)  into  kine+c  energy  (speed)  in  a  short  amount  of  +me  

•  Power  is  measured  in  Waos,  W    Power  =  Work  /  +me  taken  

P  =  W  /  t      P  =  power,  W  W  =  work  done,  J  t  =  +me,  s  

Worksheet:  Power  

Power  –  Ac6vity    •  Calculate  your  average  power  when  climbing  a  flight  of  stairs  

   

Power  –  Ac6vity    Worked  example:  m  =  65  kg  F  =  mg  =  65  x  10  =  650  N  h  =  3  m  W  =  Fd  =  650  x  3  =  1950  J  t  =  4  s  P  =  W  ÷  t  =  1950  ÷  4  =  487.5  W    

Revision  •  Summary  ques+ons:  NZ  Cliff  Divers  •  Glossary  •  Past  exam  papers  (Science  1.1)