Mechanical Behaviour & Testing Properties

Embed Size (px)

Citation preview

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    1/199

    Composite Materials:

    Mechanical Behaviour & Testing

    By Alkis Paipetis

    University of Ioannina

    Technological Education Institute of Serres, Greece. July 26, 2012

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    2/199

    http://www.sr-71.org/photogallery/blackbird/
  • 8/10/2019 Mechanical Behaviour & Testing Properties

    3/199

    2

    COMPOSITES:

    --Multi phase materials with

    measurable pw fraction of every phase

    Reinforcement:-- Discontinuous or dispersed phsae

    -- Role:MMC: increase sy, TS, creep resistance

    CMC: increase toughness

    PMC: increase E, sy, TS, creep resistance

    -- Classification : particles, fibres, structural

    metal ceramic polymer

    D. Hull and T.W. Clyne,An Introduction to

    Composite Materials, 2nd ed., Cambridge

    University Press, New York, 1996, Fig. 3.6,

    p. 47.

    DEFINITIONS

    Matrix:

    --Continuous phase

    --Role:

    Stress transfer to other reinforcing phasesEnvironmental protection

    --Classification: MMC, CMC, PMC

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    4/199

    3

    particles

    Examples:Al / SiC MMCs for

    aerospace

    automotive industry,

    Reprinted with

    permission from D.

    Myriounis,University of

    Ioannina

    Adapted from Fig.

    16.5, Callister 6e.

    (Fig. 16.5 is

    courtesy Goodyear

    Tire and Rubber

    Company.)

    Composites

    fibres Structural

    (a)

    (b)

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    5/199

    5

    Continuous aligned fibres E.g.

    From W. Funk and E. Blank, Creep

    deformation of Ni3Al-Mo in-situ

    composites", Metall. Trans. AVol. 19(4),

    pp. 987-998, 1988. Used with

    permission.

    --Metals: g'(Ni3Al)-a(Mo)

    Eutectic composition.

    --Glass w/SiC fibersEglass= 76GPa; ESiC= 400GPa.

    From F.L. Matthews and R.L.

    Rawlings, Composite Materials;Engineering and Science, Reprint

    ed., CRC Press, Boca Raton, FL,

    2000. (a) Fig. 4.22, p. 145 (photo

    by J. Davies); (b) Fig. 11.20, p.

    349 (micrograph by H.S. Kim, P.S.

    Rodgers, and R.D. Rawlings).

    Used with permission of CRC

    Press, Boca Raton, FL.

    (a)

    (b)

    particles

    Composites: FIBRES I

    fibres structural

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    6/199

    6

    Discontinuous randomly dispersed 2D fibres

    E.g: Carbon-Carbon--manufacturing: fibre/pitch,

    and pyrolysis at 2500C.

    --use: brakes, turbines,

    protective shells

    Additionally:-- Discontinuous randomly

    dispersed 3D fibres

    -- Discontinuous , 1Dfibres

    fibers liein plane

    view onto plane

    C fibers:very stiffvery strong

    C matrix:less stiffless strong

    Adapted from F.L. Matthews and R.L. Rawlings,

    Composite Materials; Engineering and Science,

    Reprint ed., CRC Press, Boca Raton, FL, 2000. (a) Fig.

    4.24(a), p. 151; (b) Fig. 4.24(b) p. 151. (Courtesy I.J.

    Davies) Reproduced with permission of CRC Press,

    Boca Raton, FL.

    (b)

    (a)

    particles

    Composites: FIBRES II

    fibres structural

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    7/199

    9

    Composite Laminates

    -- Lamination: e.g., [0/90]s-- Benefit: balanced, in plane stiffness

    Sandwich

    -- Low density, honeycomb core-- Benefit: weight, Flexural stiffness

    Adapted from

    Fig. 16.16,

    Callister 6e.

    Adapted from Fig. 16.17,

    Callister 6e. (Fig. 16.17 is

    from Engineered Materials

    Handbook, Vol. 1, Composites, ASM International, Materials Park, OH, 1987.

    Composites: Structural

    StructuralFibresParticles

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    8/199

    10

    CMCs: Toughness PMCs: Large E/r

    MMCs:

    creep resistance Adapted from T.G. Nieh, "Creeprupture of a silicon-carbide

    reinforced aluminum composite",

    Metall. Trans. AVol. 15(1), pp.

    139-146, 1984. Used with

    permission.

    Composites: Benefits

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    9/199

    Composites: A hierarchical structure

    http://www.jeccomposites.com/news/composites-news/progressive-failure-

    dynamic-analysis-composite-structures

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    10/199

    1. The interfacethe scale of the

    interface

    matrix

    matrix

    fibre

    Amorphous

    polymer matrix

    'sizing' or 'finish'

    Crystalline fibre

    Matrix

    Chemical bondsvan der Waals bondsAcid-base interactions

    Fibre

    Hydrogen bonds

    **********

    (a)

    Macroscopic scal e

    M i croscopi c scal e

    Atomi c scal e

    (b)

    (c)

    *

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    11/199

    Adhesion Mechanisms:Microstructure and

    Adhesion

    For carbon fibres, adhesion depends on the angel of the basal planewith the symmetry axis of the fibre. The plane edges are usually the sitesof chemical reaction.

    Smaller angle means better alignment and reinforcement but worse

    stress transfer.Oxidative treatment improves adhesion by removing exernal planesand creating edges [Drzal, 1983].

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    12/199

    The nature of the interface[Drzal, 1990]

    interface:a function of

    thermal,mechanical

    and chemicalenvironment

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    13/199

    Ceramic Matrix Composites

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    14/199

    Polymer Matrix Composites(Reifsnider, 1994)

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    15/199

    Fibre:Stiff, brittle

    matrix:compliant, tough

    composite

    s

    s= sfVf+ smVm

    The rule of mixtures:

    Advanced Polymer Matrix Composites

    Fibre: strength, stiffness

    INTERFACE

    matrix: binding material,

    Stress transfer, protection

    Interface:

    a function of mechanical thermal and

    chemical enviroment/history

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    16/199

    Distance along the fibre

    0

    0,2

    0,40,6

    0,8

    1

    1,2

    1,4

    Stress

    Concentration

    ineffective length

    Fibre fracture

    Neighboring

    fibres

    Composites: Fracture & Stress Concentration

    The matrix transfers the stress through the interface along the ineffective length.

    Large ineffective lengthleads to the magnification of the volume of influence of the

    fracture and increases the possibility of multiple fracture interaction.

    Small ineffective lengthleads to high stress concentrations and brittle failure.

    Fibre Fractures

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    17/199

    Interface and strength

    (a) Strength as a function of the transfer length

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    18/199

    fibre fibre

    matrix

    matrix

    fibrefibre

    matrix

    matrix

    fibrefibre

    (a)

    (b)

    (c)

    matrix

    matrix

    fibre

    mode I

    mode II

    mixed mode

    fibre fibre

    matrix

    matrix

    Failure of the interface

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    19/199

    Stress transfer at the interface

    dz

    R2

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    20/199

    )(2 dz

    zdRz

    rz

    s

    2)( R(z)dz zz ss 2R(z)z s

    Rdz(z)rz 2

    dz

    R2

    Shear stress at the interface

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    21/199

    Simple models of stress transfer

    Shear lag (Cox 1952)

    Constant shear (Kelly 1965)

    Mixed models(Piggott 1980)

    2)( R(z)dz zz ss 2R(z)z s

    Rdz(z)rz 2

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    22/199

    Shear lag (Cox 1952)

    Assuming that the shear force depends linearly on thedifference between the actual axial translation and theone that would be if the fibre were not present:

    where

    x

    s

    s e

    2

    2

    2 2z

    z f

    z

    z z E

    ( )( )

    2

    2

    G

    R ER

    R

    mR

    f ln

    S H w w ( )

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    23/199

    Shear lag (Cox 1952)

    e

    rz f

    m

    R

    f

    z E G

    E R

    R

    l

    z

    l

    2

    2

    2ln

    sinh

    cosh

    distance x

    s

    f

    x

    s e

    z fz E

    lz

    l( )

    cosh

    cosh

    12

    2

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    24/199

    Constant shear(Kelly 1965)

    Kelly & Tyson [1965] assumed that shear at the interfaceis constant. From the equilibrium equation:

    In this case the axial stress coincides with the strength of the fibrewhich is independent of z.

    lc is the critical length or the length needed to reach the strength of

    the fibre before fracture.The approach assumes a brittle fibre in a perfectly plastic matrix

    s

    rz

    fu

    c

    R

    l

    sf

    x

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    25/199

    Constant shear (Kelly1965)

    s

    rz

    fu

    c

    R

    l

    distance x

    s

    s

    f

    (a)i

    x

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    26/199

    Mixed models(Piggot 1980)x

    distance x

    f

    (b)

    my

    distance x distance x

    s

    f

    s

    f

    (c) (d)

    mymy

    s

    r

    s

    r

    (a) (b) (c)

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    27/199

    Experimental study of the stress transfer

    Fibre

    Binder

    BinderBinder

    Fibre

    Binder

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    28/199

    fibre matrix

    knife edges

    (c)

    (b)

    fibre

    matrix

    fibre

    (a) matrix

    holder

    matrix(e)

    fibre

    (d)

    indentor

    microscope

    composite

    Interfacial tests

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    29/199

    Pull out test [Shiryaeva,

    1962; Favre, 1972]

    During the pull out tests [Shiryaeva,1962; Favre, 1972], a length of the fobreis embedded in the matrix.

    The loading of the free end leads graduallyto the pull out of the fibre.

    The Force displacement curve may berecorded

    fibre

    (a) matrix

    holder

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    30/199

    Pull out test [Shiryaeva, 1962; Favre, 1972]

    Initially, the load increases linearly with displacement Matrix plasticity may lead to non linearities

    After a maximum load value, there is a sudden drop which lastsuntil the pull out of the fibre [Li, 1994].

    The interfacial strength is defined as a function of themaximum load Pmax.:

    The maximum stress on the fibre max should not exceed its

    strengthfu [Broutman, 1969] :

    P

    R

    max

    2

    s

    smax

    max

    P

    R fu2

    Load

    Displacement

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    31/199

    Pull out test [Shiryaeva, 1962; Favre, 1972]

    ADVANTAGES [Drzal, 1993]:

    (i) All fibre types can be tested

    (ii) All matrix types can be tested(iii) Direct measurement of interfacialstrength

    fibre

    (a) matrix

    holder

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    32/199

    Pull out test [Shiryaeva, 1962; Favre, 1972]

    DISADVANTAGES(Mostly due to the test geometry)

    The wetting of the fibre may create a meniscus thataffects the stress field.

    For small fibre diameters (>10 m) the technique isvey difficult.The axial fibre alignment is very importantThe maximum load Pmaxdepends on the embeddedlength. For constant shear, the dependence is linear.However, it has been shown both theoretically [Gray,1984] and experimentally [Meretz, 1993]that

    shear is not constant.The geometry does not simulate the stress field inmacroscopic composites because the stresses in theentrance of the fibre may be tensile [Drzal, 1993].Many tests should be performed for statisticalsignificance.

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    33/199

    fibre matrix

    knife edges(c)

    (b)

    fibre

    matrix

    fibre

    (a) matrix

    holder

    Pull out test: Variations

    [Penn, 1989][Qiu, 1993][Shiryaeva, 1962; Favre,

    1972]

    Paul J. Hogg, NOVEL TOUGHENING CONCEPTS

    FOR LIQUID COMPOSITE MOULDING

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    34/199

    The microindentation

    test (MIT) [Mandel,1986]

    is essentially a microhardness test. It is performed on a grinded and polished surface The force displacement curve is recorded Specimen preparation is critical

    (d)

    indentor

    microscope

    composite

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    35/199

    The strength is assumed arbitrarily as the point when there isinterfacial rupture of a percentage of the circumference, [Desaeger,1993], the change od slope in the force displacement curve[Netravali, 1989], the sudden load drop [Pitkethly, 1993].

    Interfacial strength is derived analytically (e.g. with shear-lag)[Desaeger, 1993] or numerically [Tsai, 1990].

    The major advantage is that the test is performed in macroscopic

    composites but it is outweighed by the absence of a single failurecriterion The stress concentration due to the indentor geometry may further

    complicate the interpretation of the data.

    Themicroindentationtest (MIT) [Mandel,1986]

    (d)

    indentor

    microscope

    composite

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    36/199

    Fragmentation test [Kelly, 1965]

    Fragmentation G auge Length

    f

    Distance Along the Gauge Length x

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    37/199

    Fragmentation test [Kelly, 1965]

    The fibre is embedded in a polymer matrixThe coupon in loaded in tension until the fibre starts to fracture

    Fragmentation continues until there is saturation, that is no more fracturesoccur. It is worth noting that if the interface did not fail, the fractures wouldcontinue until macroscopic failure of the coupon.As a result, saturation is connected with the failure of the interface

    During the fragmentation test, fractures are recorded either optically

    [Waterbury, 1991], or with other techniques (acoustic emission)[Favre, 1990].The distribution of the fragment lengths is recorded. Interfacialstrength must be derived assuming a stress transfer model.

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    38/199

    Fragmentation test [Kelly, 1965]

    During tension, the fibre breaks when it reaches its tensile strength.If lc is the required length for stress transfer then the distribution offragment lengths lfis between lc/2 andlc[Narkis, 1988].To define lc, the strength distribution of the fibre must be known. For anormal strength distribution the transfer length lcis defined as:

    lc= 4/3 lf

    To derive interfacial strength, the stress field must be defined. For constantshear the problem is simplified [Kelly, 1965]:

    srzfu

    c

    Rl

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    39/199

    Fragmentation test [Kelly, 1965]

    ADVANTAGESSymmetric stress field [Drzal, 1990].Large measurement number per test

    Sensitivity in different interfacial conditionsDirect observation of the failure eventsQualitative assessment of the stress fieldand the failure modesCorrelation with the fibre strength[Gulino, 1991]Ideal geometry for advanced methods(Raman microscopy, photoelasticity,

    Acoustic Emission)

    DISADVANTAGESOnly brittle fibres in ductile matricesmay be tested (at least threefold strain

    to failure [Drzal, 1993]).The saturation strain is much largerthan the real composite strain to failure,which instigates failure mechanisms notpresent in real life (debonding [Wagner,1995; DiBenendetto, 1996], shearflow [Nath, 1996], or frictional sliding[Piggot, 1980])Thermal stresses dominate the stressfield [Nairn 1996]The test is very difficult for small fibrediametres

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    40/199

    Interface tests:Interlaboratory Scatter [Pitkethly et al., 1993]

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    41/199

    Advanced methods for interfacial testing

    Acoustic Emission

    Raman microscopy

    Acoustic microscopy

    Polarised light microscopy

    SEM

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    42/199

    Acoustic Emission

    0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

    S train / %

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    Break Densi ty / mm

    Room Temperature

    MEBS/MY750: lc=0.420.10mm

    MUS/MY750: lc=0.480.12mm

    -1

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    43/199

    Acoustic Microscopy

    Measurement of the local elasticproperties near the surface andcorrelation with the stresstransfer

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    44/199

    Raman Frequencies:Dependence on Applied Stress

    Tension

    Compression

    The Raman Frequency

    decreases

    The Raman Frequency

    increases

    0 0,4 0,8 1,2 1,6 2 2,4 2,8 3,2

    Tensile Stress / GPa

    1570

    1572

    1574

    1576

    1578

    1580

    1582Raman Frequency Shift / cm

    M40: Stress Calibration

    Experimental

    slope: -3.0 cm /GPa

    Carbon Fibres:

    Raman Frequency/ stress calibrarion

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    45/199

    Fibre strain/%

    Distance along fragment/ mm

    ISS / MPa

    Stress transfer for different systems

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    46/199

    0

    0,2

    0,4

    0,6

    0,8

    11,2

    1,4

    -0,2

    -0,4

    -0,6

    -0,8

    -1

    -1,2-1,4

    Fibre S tress / GPa

    MEBS / MY-750 ( Short Fibr e)

    Applied Strain: 0.0% Applied Strain : 0.3% Applied Strain: 0.6%

    0 0.1 0.2 0.3 0.3 0.2 0.1 0

    Dis tance From Fibre End / mm

    0

    0,2

    0,40,6

    0,8

    11,2

    1,4

    -0,2

    -0,4

    -0,6

    -0,8

    -1

    -1,2-1,4

    Fibre Stress / GPa

    MUS / MY-750 ( Short Fibre)

    Applied Strain: 0.0% Applied Strain: 0.3% Applied Strain: 0.6%

    0 0.1 0.2 0.3 0.3 0.2 0.1 0

    Distance From Fibre End / mm

    Elastic Domain: The parametre [Cox, 1952]

    Sized fibre Unsized fibre

    s e

    z fz E

    lz

    l( )

    cosh

    cosh

    12

    2

    2

    2

    G

    R ER

    R

    m

    R

    f ln

    Ef : fibre modulus

    Gm

    : matrix shear modulus,

    R : fibre radius,

    : Matrix shear perturbation radiusR

    s s z

    z

    z e( )

    1

    )(zz

    s : local stress on the fibre

    s : stress at infinity : constant

    For large fibre length( shear lagtheory) [Cox1952]:

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    47/199

    (a)

    (b)

    0.5 mm

    0.5 mm

    Polarised Microscopy

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    48/199

    (a)

    (b)

    100nm

    (c)

    (d)

    1 m

    SEM (I)

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    49/199

    SEM II

    Macroscopic mechanical behavior of the composite lamina

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    50/199

    2/25

    Macroscopic mechanical behavior of the composite lamina

    1

    3

    2

    lamina

    10m

    Typical Lamina cross section

    Discrete Phases:

    fibre

    matrix

    thickness: 100250 m

    Fabrics carbon aramid

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    51/199

    3/25

    Plain weave (1 up, 1 down) glass fabric

    Fabrics carbon, aramid, .

    Eight-harness satin weave (1 up, 7 down)

    warp direction(1)

    weft direction(2)

    (1) In the fabric industry, those fibers or threads in a

    woven fabric which run lengthwise, or which are

    parallel to the selvedge

    (2) Filling yarn, running the width of a wovenfabric at right angles to the warp

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    52/199

    4/25

    Composite Laminates

    SEM photograph of a typical composite after exposure to water at 333 K for one day (c=0.59%)

    subjected to 45% of its UTS [O. Gillat, L.J. Broutman, STP 658 (1978)]

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    53/199

    In composite laminates the

    composite inhomogeneity is

    crucial to the mode of failure

    Intraply crack (matrix crack)

    Interply crack (delamination)

    5/25

    For a UD lamina, the composite inhomogeneity (at the fibre matrix level) dominates the

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    54/199

    For a UD lamina, the composite inhomogeneity (at the fibre matrix level) dominates the

    micro-failure mechanisms

    6/25

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    55/199

    Typical microstructures of fractured specimens [A.G.Miller, A.L.Wingert, STP 696 (1979)]

    7/25

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    56/199

    The mean apparent mechanical properties of the orthotropic lamina or the laminate

    Macroscop ic behaviour:

    The lamina is considered as a homo geneous anisotropic mater ia l

    (experimentally acceptable for mechanical properties such as technical elast ic constants or strengths)

    The anisotropic composite is usually regarded as a l inear elast ic medium unt i l

    8/25

    Hooke s Law: Axiom?

    Derived from energy principles?

    Empirical relationship;

    R b t H k (1635 1703)

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    57/199

    Robert Hooke (1635-1703)

    De Potentia restitutiv or Of Spring (1678)

    CEIIINOSSSTTUVC E I I I N O S S S T T U V

    TENSIO SIC VISUT

    The present form of Hookes Law the

    stress tensor formulation and the

    equilibrium equations are expressed by:

    Augustin Cauchy (1789-1875)

    9/25

    Composite Materials: Symmetries Orthotropic medium

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    58/199

    Composite Materials: Symmetries Orthotropic medium

    The elastic anisotropic medium with two mutually perpendicular planes of elastic symmetry.

    It can be proved that there is a third symmetry plane perpendicular to the other two..

    The intersection between the symmetry planes

    defines the principal axes of the orthotropic material.

    6

    5

    4

    3

    2

    1

    66

    55

    44

    332313

    232212

    131211

    6

    5

    4

    3

    2

    1

    S00000

    0S0000

    00S000

    000SSS

    000SSS

    000SSS

    There are 9 independent elestic constantsSij(or Cij)-

    compare to 21 for triclinic medium

    The elastic matrix is valid for the principal axes systemx1

    x2

    x3

    19/25

    Typical orthotropic medium : woven fabric

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    59/199

    yp p

    x1

    x2

    x3Pincipal axes

    20/25

    Transversely isotropic medium

    21/25

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    60/199

    Transversely isotropic medium

    It posesses an axis of elast ic symmetry:

    All directions perpendicular to that axis are elastically equivalent

    i.e all planes perpendicular to that axis are isotropic

    Elastic symmetry axis

    6

    5

    4

    3

    2

    1

    66

    66

    2322

    222312

    232212

    121211

    6

    5

    4

    3

    2

    1

    S00000

    0S0000

    00SS2000

    000SSS

    000SSS

    000SSS

    The independent Sijare 5(or Cij)

    The elastic matrix is valid for the principal axes system

    x2

    x3

    x1

    x2

    x3

    x1

    / 5

    Typical transversely isotropic medium: Fibre tow

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    61/199

    x2

    x3

    x1 Axis of elastic symmmetry

    x2

    x3

    x1

    22/25

    Isotropic medium 24/25

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    62/199

    Isotropic medium

    All directions are elastically equivalent

    x1

    x2

    x3

    x1

    x2

    x3

    C klijklij

    C klijklij

    )SS(20)SS(2

    00)SS(2

    000S

    000SS

    000SSS

    1211

    1211

    1211

    11

    1211

    121211

    Principal axes system?

    23/25Typical isotropic medium: Particulate reinforced composite

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    63/199

    x2

    x3

    )SS(2

    0)SS(2

    00)SS(2

    000S

    000SS

    000SSS

    1211

    1211

    1211

    11

    1211

    121211

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    64/199

    Elastic properties of a lamina

    Loading parallel to the reinforcement

    Loading perpendicular to the reinforcement

    Loading in an angle to the reinforcement

    Loading parallel to the reinforcement

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    65/199

    1es

    ff E 1

    esmm

    E

    For a tensile stress parallel to the reinforcement assuming that:

    Interfacial bond is perfect,

    The strain 1 of the matrix equals that on the fibre The matrix and the fibre are linear elastic solids:

    Which phase undertakes the maximum stress?

    and

    A

    P

    1s

    mf PPP

    fff AP s

    mmm AP s

    Loading parallel to the reinforcement

    and

    and

    fmff VEVEEE 1//1

    Rule of Mixtures

    Loading perpendicular to the reinforcement

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    66/199

    ffE es

    mmE es

    For a tensile stress parallel to the reinforcement assuming that:

    Interfacial bond is perfect,

    The strain 1 of the matrix equals that on the fibre The matrix and the fibre are linear elastic solids:

    Which phase undertakes the maximum stress?

    and

    Loading perpendicular to the reinforcement

    Rule of Mixtures

    fmffmf

    VEVE

    EE

    EE

    12

    Corrections

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    67/199

    Poisson effects:

    fmff

    mf

    VEVE

    EEEE

    '

    '

    2

    1

    2

    '

    1m

    m

    m

    EE

    Corrections

    Halpin Tsai: fmff VEVEEE 1

    //1

    fmff VV 112 ff

    m V

    V

    M

    M

    1

    1

    Where M is the composite property and a parameter depending on reinforcement attributes:

    Rule of mixtures

    Poisson Correction

    Halpin Tsai

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    68/199

    Stress concentration

    and strain magnification

    (Kies)

    f

    mx

    x

    E

    E

    r

    s

    r

    s

    2

    2

    e

    e

    2

    4

    R

    rVf

    f

    m

    f

    f

    x

    x

    E

    E

    V

    V

    22

    e

    e

    Strain Magnification:

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    69/199

    Strain Magnification:

    Glass polyester

    20

    m

    f

    EE

    Long fibre composites with random orientation

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    70/199

    Long fibre composites with random orientation

    (Nielsen Chen 1968)

    2

    0

    2

    dEE

    ():Stiffness of UD lamina as a function of Theta for constant Vf.

    4

    2

    22

    1

    12

    12

    4

    1

    12111S

    ESC

    EGC

    EE

    where: C=cs, S=sin

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    71/199

    Empirical relationships:

    Long fibre composites with random orientation

    218

    5

    8

    3

    EEE 21 4

    1

    8

    1

    EEG

    The effect of Vfcomes through 1and 2.

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    72/199

    Long fibre composites

    Typical 1,2, G12&12For composite types

    Material 1(GPa) E

    2(GPa) G

    12(GPa)

    12

    Glass-polyester 35 - 40 8-12 3,5-5,5 0,26

    Type I carbon-epoxy 190-240 5-8 3 - 6 0,26

    Kevlar 49 - epoxy 65 - 75 4 - 5 2 - 3 0,35

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    73/199

    gass fibre- polyester resin with Vf=0.30 [D. Hull, 1981]

    El ti ti f h t fib it

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    74/199

    Elastic properties of short fibre composite Ineffective length

    correction (shear Lag)

    distance x

    sf

    xfmffl VEVEEE 1//1

    2

    2tanh

    1l

    l

    l

    l

    cont

    short

    E

    E

    l

    (mm)

    Gm/ Ef r

    (m)

    Vf l

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    75/199

    Shearlag

    (mm) (m)

    Carbon-epoxy 0,1

    1,0

    10,0

    0,005

    0,005

    0,005

    8

    8

    8

    0,3

    0,3

    0,3

    0,20

    0,89

    0,99

    Glass-nylon 0,1

    1,0

    10,0

    0,010

    0,010

    0,010

    11

    11

    11

    0,3

    0,3

    0,3

    0,21

    0,89

    0,99

    Fibre length

    1 (mm)

    Vf

    E//Theoretical (GPa)

    //

    Experimental (GPa)

    l

    1 0,49 194 155 0,804 0,32 128 112 0,87

    6 0,42 167 141 0,84

    Elastic properties [Dingle 1974]

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    76/199

    Tensile strength of long fibre composites

    Typical strength of UD laminates (Vf

    0.50)

    Material

    *//

    (Pa)

    *// C

    (MPa)

    *

    (Pa)

    * C

    (MPa)

    *#

    (Pa)

    Glass-polyester 650-750 600-900 20-25 90-120 45-60

    Type I

    carbon-epoxy

    850-1100 700-900 35-40 130-190 60-75

    Kevlar 49-epoxy 1100-1250 240-290 20-30 110-140 40-60

    T: Tension, C: Compression

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    77/199

    From the rule of mixtures:||=

    fV

    f+

    m(1-V

    f)

    ||= Ef \\Vf+m(1-Vf)

    Failure Possibilities:

    1. *f> *m

    2. *f< *m

    Deterministic fibre strength

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    78/199

    Uniform fibre strength 1. *f> *m

    For small Vf:*// depends on *m.

    The matrix fails first

    The fibres take over

    but cannot take the

    load and fail

    fmff VV 1*'*

    // sss

    For largeVf:Since f>>Em The matrix undertakes a

    small load fraction

    The matrix fails

    The load is transferred to

    the fibres until they fail

    ffV**

    // ss

    * * F l V*

    ' mVs

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    79/199

    *f> *m: For equal Vf: *'*mff

    mfV

    sss

    *m

    e *f

    e

    *s

    *f

    s

    'fs

    *s

    0 1

    f

    *mf

    *f

    *//

    V1V sss

    f*f

    *//

    Vss

    ..

    *f

    s

    matrix

    fibre

    Vf

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    80/199

    Uniform fibre strength 1. *f< *m

    For small Vf:The fibres break.The matrix takes over

    the additional load

    The efficient cross

    section is reduced by

    the fibre breaks

    For largeVf:

    Since f>>Em The fibres break.

    The matrix cannot take

    over the additional load

    The composite fails

    fmmm VV 1***// sss f'

    mf

    *

    f

    *

    //V1V sss

    * * F l V '* ss

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    81/199

    *f< *m: For equal Vf:

    '**'

    mmf

    mmfV

    sss

    ss

    Fibre

    Matrix

    *f

    e *m

    e

    *f

    s

    *m

    s

    'm

    s

    0

    f

    'mf

    *f

    *// V1V

    sss

    Stress

    *m

    s

    *f

    s

    f

    *m

    *// V1

    ss

    Vf

    V i bl fib h

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    82/199

    Variable fibre strength

    The fibre is brittle Fracture occurs at the flaw sites where strength is reduced

    The strength reduction is stochastic

    How does the strength depend on the fibre size? (volumeor length for constant cross section);

    Experimental campaign: strength as a function of length:

    definitions: *ffibre strength 2r diametre,

    l length 1minimum fibre strength umaximum fibre strength

    Weibul distribution

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    83/199

    Weibul distribution

    ss

    sss

    m

    lu

    lG 11G ()

    ,

    ul

    r

    l

    2

    s5

    6sm

    Size parameter

    Shape parameter

    Where:

    21

    1

    2

    Ns

    N

    i

    i ss

    N

    N

    i

    i /

    1

    ss

    F fib b dl (C l 1958)

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    84/199

    For a fibre bundle (Coleman 1958)

    Assumptions:

    ) the fibres are distinct and have equal cross

    sections

    ) For stress i

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    85/199

    Fibre bundle strength(Coleman 1958) The maximum fracture load occurs when the developing

    stress on the remaining fibres reaches uand the bundlefails

    The strength, b, of the bundle is less than the mean fibrestrength

    The reductions depends on the spread of the fibre strength of

    individual fibres:

    mme

    m

    b

    /11

    11 1

    s

    s

    C l ti k i (R )

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    86/199

    Cumulative weakening (Rosen)

    The statistical distribution of

    fibre strength leads to global

    weakening and failure:

    cum: fibre strength lc: critical length

    m

    mel

    m

    c

    cum

    11

    111

    *

    s

    s

    Stress relief at

    fracture sites

    St ti ti l t th (C b / E )

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    87/199

    Statistical strength (Carbon / Epoxy)

    C k ti i UD l i t

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    88/199

    Crack propagation in UD laminates

    Stress

    concentration

    leads totransverse

    cracking

    C k fib i t ti

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    89/199

    Possibilities a) The crack propagates in the matrix.

    b) The matrix around the crack yields creating a plastic zonealong the fibre.

    c) The interface fails and the fibre retracts in the matrix.

    Crack-fibre interaction

    C k ti

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    90/199

    Crack propagation

    The stressconcentrationis proportionalto (c/)1/2

    is the radiusof curvature atthe crack tip

    2c is the cracklength

    The crack propagates And meets the fibre

    The matrix debonds from the fibre

    St fi ld t th k

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    91/199

    Stress field at the crack

    The maximum tensile stress1maxperpendicular to thecrack propagation and the

    maximum tensile stress 2maxparallel to the crack pathdevelop simultaneously atthe crack front

    St fi ld t th k

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    92/199

    Stress field at the crack

    For isotropic materials, 1max/2max~ 5

    For anisotropic materials

    the ratio depends on thecrack orientation and thedegree of anisotropy. For carbon fibre-epoxy

    with Vf= 0.5

    1max/2max~ 48

    1max/max=11 max/2max=4.4.

    F il h i i i f

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    93/199

    Failure at the vicinity of

    the crack

    The process depends on the values of //*, *, #*. :

    ) //*/ * > 1max/2max: tensile failure parallel to the interfacewill precede fibre fracture

    ) //* / #* > 1max/ max: shear failure will precede fibrefracture,

    ) #* / * > max/ 2max: tensile failure at the interface is more

    probale than shear failure.

    Typical values for laminates (Vf~50%)

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    94/199

    Typical values for laminates (Vf~50%)

    Transverse tensile strength

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    95/199

    Transverse tensile strength

    Often, transverse strength is less than thematrix strength

    Assumptions:

    Zero interfacial strength at the transverse direction Tough matrix (resisting crack propagation)

    The strength is that of the matrix with reduced

    effective cross section

    For square distribution

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    96/199

    For square distribution

    Derek Hull, 1981

    Transverse tensile strength

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    97/199

    Transverse tensile strength

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    98/199

    9/30

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    99/199

    Geometry of test specimens

    MATERIAL CODE NAME LAYUP

    GOB

    GOBU [0]TGOBM [90

    2]

    T

    GOBR [45]S

    HEX

    HEXU [02]T

    HEXM [903]T

    HEXR [45]S

    CRP materials

    10/30

    110

    120

    130

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    100/199

    500 700 900 1100 1300 1500 1700 1900 2100 2300 2500

    Strain (x-axis)

    20

    30

    40

    50

    60

    70

    80

    90

    100

    Stress

    (MPa)

    -3.055 + 0.05005*x

    Axial stress vs. axial strain UD laminate

    500 700 900 1100 1300 1500 1700 1900 2100 2300 2500

    Strain (x-axis)

    -1000

    -900

    -800

    -700

    -600

    -500

    -400

    -300

    -200

    -100

    Strain

    (y-axis)

    21.38 - 0.3843*x

    Transverse strain vs. axial strain UD laminate

    11/30

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    101/199

    12/30

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    102/199

    13/30

    Failed HEXM coupons

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    103/199

    14/30

    Coupons D1, failed in tension

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    104/199

    29/30

    Coupons D2, failed in tension

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    105/199

    30/30

    Longit dinal Comp ession

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    106/199

    Longitudinal Compression.

    Difficult to assess because it depends :On the compressive properties of both fibre andmatrix,On the interfaceOn the void content.

    The failure mode depens onThe lateral fibre support,The volume fraction

    The matrix properties.

    Prediction of compressive strength

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    107/199

    Prediction of compressive strength

    The fibres are regarded as Euler columns. The matrix prevents buckling and increases the

    critical buckling load

    The elastic properties of the matrix determine thecritical buckling load.

    The theoretical models are based on fibre buckling orshear matrix failure

    Euler BucklingMyEI

    eyPMyd 2 eP

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    108/199

    EI

    eyP

    EI

    M

    dx

    yd

    2

    KxCKxCey cossin21

    EIPK /

    KL

    KLeC

    sin

    cos11

    eC 2

    KxeKxKLKLeey cossin

    sin

    cos1

    :

    From the boundary conditions on A & B:

    To maximise y, the denominatior must be infinite or

    sinKL=0, or KL=0, , 2

    EIPLKL /2

    2

    L

    EIP

    Critical buckling load.

    The critical buckling load is less for shorter columns, stiffer materials and

    open cross sections!

    y

    x

    Out of phase failure In phase failure

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    109/199

    The fibres buckle out of phase

    The matrix is subjected to tension andcompression in the transverse direction

    Failure depends on critical buckling load

    Assumptions:

    Strain in the y direction is independentof y

    The matrix is essentially unloaded incomparison to the fibres

    The fibres buckle in phase

    The matrix is subjected to shear

    Failure depends on the shear strength ofthe matrix

    Assumptions:

    Strain in the y direction is independentof y

    Gf >> Gm or the fibres essentiallyremain undeformed

    Out of phase failure In phase failure

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    110/199

    sc: compressive strengthVf : volume fraction of the fibres

    Em: matrix elastic modulus

    Ef: fibre elastic modulus

    sc=

    Vf+ ( 1-Vf)Em

    Efsfcr(2.1)

    sfcr= 2 VfEmEf

    3 (1-Vf)(2.2)

    sc=Gm1-Vf

    (2.3)

    ecr=1

    Vf(1-Vf)

    Gm

    Ef

    C i h f

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    111/199

    Compressive strength ofunidirectional

    glass/epoxy composites

    cas a function of VfOut of phase failure is valid

    for low Vf.For typical 0.6< Vf 5%!

    Compressive failure

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    112/199

    Compressive failure

    Other affecting parameters: Local inhomogeneities in the fibre Vf,

    Void and defect content.,

    Fibre misalignment and curvature,

    Weak or bad interface which instigates debonding and

    decreases critical buckling load, Viscoelastic matrix behavior, or reduced Gm,

    Anisotropic fibres with weak transverse properties (carbon orKevlar) or non linear compressive behavior.

    Compressive Failure Modified models

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    113/199

    cas a function of Vf

    Gm is a linear function of compressive strain (Dow & Rosen)

    The matrix is perfectly plastic (Lager & June)

    Shear controlled model (M.R.Wisnom)

    Curvature and misalignment (Hahn & Williams)

    sc= cGm

    1-Vf(2.5)

    sc=Gmgm

    Vm(g+a)(2.6)

    sc: compressive strength.

    Vf: volume fraction.

    GLT: shear modulus of the composite.

    gLT: shear strain.

    fo/e : initial fibre deflection to wavelength.

    sc= Vf GLTgLT

    gLT+fo

    e

    (2.7)

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    114/199

    Effect of fibre

    misalignmenton predictedcompressivestrength of

    unidirectionalXAS/914, [7].

    Compressive failure (mechanisms)

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    115/199

    Compressive failure (mechanisms)

    Fibre buckling leads totheir failure. Buckled fibres are both

    subjected to tensionand compression

    Brittle fibres (e.g.carbon fibres) fail whentheir strength isreached locally creatinga characteristic failurezone

    Viscoelastic or plasticfibres create a plasticityzone when the yieldstress is reached

    Maximum Shear If Shear failure precedes buckling Failure:

    h

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    116/199

    For shear stress : = ||Csincos Shear is maximum for =45, max= ||C/2

    From the rule of mixtures: *||C= 2 [Vf*f+ (1-Vf) *m]

    Where *f *m the shear strength ofthe fibre and matrix respectively

    Shear plane

    Compression

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    117/199

    A. Paipetis, Mechanics of composite materials Lecture Notes

    Compression

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    118/199

    A. Paipetis, Mechanics of composite materials Lecture Notes

    Compression

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    119/199

    DONALD F. ADAMS, University of Wyoming, Laramie, WY, USA, Volume 5, Ch 5.05 of Comprehensive Composite

    Materials

    Compression

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    120/199

    DONALD F. ADAMS, University of Wyoming, Laramie, WY, USA, Volume 5, Ch 5.05 of Comprehensive Composite

    Materials

    ASTM Standard D695 compressive testfi t e fo igid plastics [17]

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    121/199

    fixture for rigid plastics, [17]

    Imperial College compression test rig andspecimen

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    122/199

    specimen

    Compression

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    123/199

    Typical failure modes under static compressive load.

    Compression

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    124/199

    Typical failure mode under static compressive load

    A. Paipetis, Mechanics of composite materials Lecture Notes

    Compression

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    125/199

    A. Paipetis, Mechanics of composite materials Lecture Notes

    Weibul distribution of experimental results

    (XAS/914 UD composite laminate)

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    126/199

    (XAS/914 UD composite laminate).

    Macrobuckling of the specimen prior to

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    127/199

    Macrobuckling of the specimen prior tofailure.

    Modulus reduction with increasing strain.

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    128/199

    g

    Shear Properties.

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    129/199

    Shear Properties.

    The shear properties are(): Shear modulus(): Shear strength

    Composites are anisotropic:Three types of shear

    interlaminar

    in plane longitudinal

    intralaminar

    Shear in principal planes:

    3

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    130/199

    1

    2

    3

    Shear planes: (2-3), (1-3) (1-2)

    Shear testing.

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    131/199

    Shear testing.

    interlaminar(13)

    Shear testing.

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    132/199

    Shear testing.

    In plane (12)

    Sh t ti

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    133/199

    Shear testing

    Intralaminar (23)no existing standard

    Shear tests are difficult: Uniform stress field is hard to achieve

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    134/199

    Few standard tests. No universally accepted standards for all types and structures

    of long fibre composites

    In-plane shear test methods:

    uniaxial tension of a 45 laminate

    Iosipescu shear specimen (V-notched beam, VNB method)uniaxial tension of a 10ooff-axis specimentwo- and three-rail shear teststorsion of thin-walled tubetwisting of a flat laminate

    ISO 14129

    ASTM D5379M-98(None)ASTM D4255M-83ASTM D5448M-93ASTM D3044-94

    45 Test

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    135/199

    45Test

    Symmetric 45laminate intension:

    12= 1/2 xx

    12= xxyy

    The test is accepted by all

    standards organisations Both for woven fabric and

    prepregs

    45TestSh t h t i i

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    136/199

    Shear stress vs. shear strain iscalculated by:

    12= 1/2 xx 12= xxyy

    Typical curve for Boron / epoxy

    AdvantagesSimple coupon geometryEasy to perform

    DisadvantagesThe coupling of the shear

    stresses between thelaminae affect themeasurementsMinor misalignment resultsto large deviations

    double V notchIsopescu test

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    137/199

    Shearplane

    double V notch Isopescu test

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    138/199

    double V notchIsopescu test

    Pure shear in the plane defined by the two notches Usually emplyed for 0or 90laminates For 90laminates, it is very reliable Shear strength is derived by diviiding the load with

    the shear cross section The local stress field may lead to erroneous results

    The positioning of strain gauges is crucial Usually yields smaller values than the cylindrical

    beam

    Shearplane

    rail shear tests

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    139/199

    rail shear test A rectangular plate is fixed in side

    beams while the longitudinal direction isfree

    The load induces shear stresses

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    140/199

    The load induces shear stresses

    For pure shear:

    , the shear strain

    0 yyxx ee

    45

    2egxy

    The shear stress is :

    b width

    t thickness

    Shear strain is measured at 45to the rail

    bt

    Pxy

    452eg

    xy

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    141/199

    Interlaminar shear: The ILSS

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    142/199

    test.

    Whereas the flexural stress decreases with s/t the maximumshear stress is independent of it.

    For small S/t shear failure is more probable

    )(23

    tS

    wt

    P

    xx s

    wt

    Pxz

    4

    3 max

    Shear or Flexure;

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    143/199

    Shear or Flexure;

    From the elastic beam theory:

    Maximum stress (compressive ortensile)-top and bottom surfacerespectively:

    Maximum shear stressneutralaxis:

    Maximum shear to maximumbending stress:

    2

    max

    2

    3

    wt

    SPult

    s

    F

    wt

    P

    ult4

    3max

    t

    S

    ult

    ult

    2

    s

    Shear or Flexure;

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    144/199

    Shear or Flexure;

    F

    S/t

    Maximums

    hear

    stressatfailure

    TransitionShearFailure

    Flexuralfailure

    Shear strength:

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    145/199

    Shear strength:

    For small S/t:

    M M

    Shear strength:

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    146/199

    Shear strength:

    4 < S/t

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    147/199

    ILSS test:

    Two geometries (ASTM D3244):

    Curved coupon

    Flat coupon

    ILSS tests:Standards

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    148/199

    Method w t S/t L d1 d2 Speed(mm/min)

    ASTM 10 2 5 14 3.2 6.4 1.3

    BSI 12 6 6 1

    CRAG 20

    Advantages:

    Simple to perform

    Simple test configurationComparable data from allstandards

    Disadvantages

    The geometry defines failure

    The through thickness sheardistribution is not parabolicDifficult to assess acceptablefailure mode

    Fracture Testing

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    149/199

    DONALD F. ADAMS, University of Wyoming, Laramie, WY, USA, Volume 5, Ch 5.05 of Comprehensive Composite

    Materials

    Opening mode

    Shearing mode

    Tearing mode

    Fracture Testing

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    150/199

    DONALD F. ADAMS, University of Wyoming, Laramie, WY, USA, Volume 5, Ch 5.05 of Comprehensive Composite

    Materials

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    151/199

    Fracture Testing

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    152/199

    25 mmP

    VIS

    5%

    Fracture Toughness : mode 1

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    153/199

    50 mm

    75 mm

    NL

    d

    a b

    Carbon/nylon Carbon

    Paul J. Hogg, NOVEL TOUGHENING CONCEPTS FOR LIQUID COMPOSITE MOULDING

    Plain glass DCB test specimen

    Fracture Toughness : mode 1

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    154/199

    Fibre bridging mainly due to polyester stitching

    Paul J. Hogg, NOVEL TOUGHENING CONCEPTS FOR LIQUID COMPOSITE MOULDING

    Fracture Toughness : mode 1

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    155/199

    Paul J. Hogg, NOVEL TOUGHENING CONCEPTS FOR LIQUID COMPOSITE MOULDING

    DCB test on Glass fibre : PP/Epoxy ep1

    Fracture Toughness : mode 2

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    156/199

    Paul J. Hogg, NOVEL TOUGHENING CONCEPTS FOR LIQUID COMPOSITE MOULDING

    100mm

    60mm

    Bearing to alloweven loading

    Specimen

    Four point end-notch flexure test

    150mm

    20mm

    60mm

    Delaminationinsert 12m

    thick

    Water-based correction

    fluid and pencil markings

    every mm.

    Fracture Toughness : mode 2

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    157/199

    Paul J. Hogg, NOVEL TOUGHENING CONCEPTS FOR LIQUID COMPOSITE MOULDING

    Carbon nylon Carbon nylon Carbon(modified specimen)

    Fracture mechanics

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    158/199

    Fracture mechanics

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    159/199

    Durability Testing of Polymer CompositesPAUL T. CURTIS, DERA, Farnborough, UK

    Volume 5, Ch 5.08 of Comprehensive Composite Materials

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    160/199

    FATIGUE TESTING

    Tensile tests

    Compression tests

    Flexural tests

    Shear tests

    Biaxial fatigue testing

    Machines and Control Modes

    Presentation of Data

    Monitoring Fatigue Damage Growth

    Microscopy

    Ultrasonics

    X-radiography

    Thermography

    Potential Problems with Fatigue TestingStress concentrators

    Frequency effects

    Edge effects

    Environmental effects

    IMPACT TEST METHODS

    High-energy Impact Test Methods

    Flexed-beam tests

    The drop-weight impact test

    Data analysis and failure modes

    Low-energy Impact Test Methods

    Ballistic impact tests

    Drop-weight test

    Residual Strength After Impact

    Crashworthiness

    CREEP TEST METHODS

    Creep Behavior of Polymer Composites

    Creep Test Methods

    ImpactLow velocity

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    161/199

    PAUL T. CURTIS, DERA, Farnborough, UK, Volume 5, Ch 5.08 of Comprehensive Composite Materials

    ImpactLow velocity

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    162/199

    PAUL T. CURTIS, DERA, Farnborough, UK, Volume 5, Ch 5.08 of Comprehensive Composite Materials

    i

    iiiii

    0

    90

    0

    (Ellis 1996)

    Through penetration impact

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    163/199

    Paul J. Hogg, NOVEL TOUGHENING CONCEPTS FOR LIQUID COMPOSITE MOULDING

    Through penetration impact

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    164/199

    60 mm

    60 mm

    1.3 m

    40 mm diameter

    Impact energy = 227 JEnergy absorbed calculated

    20 mm

    Paul J. Hogg, NOVEL TOUGHENING CONCEPTS FOR LIQUID COMPOSITE MOULDING

    I t d l i l fib i

    Through penetration impact

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    165/199

    Impacted plain glass fibre specimens.

    GF2/UP GF1/EP1 GF1/EP2

    Paul J. Hogg, NOVEL TOUGHENING CONCEPTS FOR LIQUID COMPOSITE MOULDING

    Impacted glass fibre/polypropylene

    Through penetration impact

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    166/199

    specimens.

    PP1/UP PP1/EP1 PP1/EP2

    Paul J. Hogg, NOVEL TOUGHENING CONCEPTS FOR LIQUID COMPOSITE MOULDING

    Impacted polypropylene

    Through penetration impact

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    167/199

    fibre/polypropylene specimens.

    Through penetration impact

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    168/199

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    169/199

    ImpactBallistic

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    170/199

    Neil Hancox 1996 " "

    Ellis 1996

    shear plug

    Wambua et al 2005

    ImpactBallistic

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    171/199

    Fibre

    pull out

    Degradation due to solid particle erosion

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    172/199

    Degradation due to solid particle erosion

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    173/199

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    174/199

    Degradation due to solid particle erosion

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    175/199

    Compression after impact

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    176/199

    Paul J. Hogg, NOVEL TOUGHENING CONCEPTS FOR LIQUID COMPOSITE MOULDING

    89 mm

    Compression after Impact : specimens and jig

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    177/199

    Paul J. Hogg, NOVEL TOUGHENING CONCEPTS FOR LIQUID COMPOSITE MOULDING

    55 mm

    3 mm

    Residual strength after impact

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    178/199

    PAUL T. CURTIS, DERA, Farnborough, UK, Volume 5, Ch 5.08 of Comprehensive Composite Materials

    Residual strength after impact

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    179/199

    Key resin properties.....strain to failure

    Paul J. Hogg, NOVEL TOUGHENING CONCEPTS FOR LIQUID COMPOSITE MOULDING

    Fatigue

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    180/199

    PAUL T. CURTIS, DERA, Farnborough, UK, Volume 5, Ch 5.08 of Comprehensive Composite Materials

    Fatigue

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    181/199

    PAUL T. CURTIS, DERA, Farnborough, UK, Volume 5, Ch 5.08 of Comprehensive Composite Materials

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    182/199

    Four Design Classeswhere creep is important

    Displacement-limited applications

    Creep

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    183/199

    Displacement limited applications,

    in which precise dimensions must be

    maintained (the disks and blades of turbine)

    Rupture-limited applications,

    in which dimensional tolerance is relatively

    unimportant, but fracture must be avoided

    (as in pressure-piping)

    Stress-relaxation-limited applications,

    in which an initial tension relaxes with time

    (as in the pretensioning of cables or bolts)

    Buckling-limited applications,

    in which slender columns or panels carry

    compressive load

    (upper wing skin of an aircraft)

    Creep

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    184/199

    PAUL T. CURTIS, DERA, Farnborough, UK, Volume 5, Ch 5.08 of Comprehensive Composite Materials

    Creep

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    185/199

    Creep

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    186/199

    Test Methods for Physical Properties

    MARK J. PARKER, BAE SYSTEMS (Warton), Lancashire, UK

    Volume 5 Ch 5 09 of Comprehensive Composite Materials

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    187/199

    Volume 5, Ch 5.09 of Comprehensive Composite Materials

    FIBER/VOID VOLUME FRACTIONS AND FIBER DIRECTION

    MOISTURE ABSORPTION AND CONDITIONING OF COMPOSITE MATERIALS

    Mechanism of Moisture Absorption

    Effects of Moisture Absorption

    THE GLASS TRANSITION

    DIFFERENTIAL SCANNING CALORIMETRY

    DYNAMIC MECHANICAL ANALYSIS

    THERMOPHYSICAL PROPERTIES

    POLYMER COMPOSITE MATERIAL DEGRADATION

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    188/199

    FIBER/VOID VOLUME FRACTIONS AND FIBER

    DIRECTION

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    189/199

    Moisture absorption

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    190/199

    MARK J PARKER Volume 5 Ch 5 09 o Com rehensive Com osite Materials

    Moisture absorption

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    191/199

    MARK J PARKER Volume 5 Ch 5 09 o Com rehensive Com osite Materials

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    192/199

    Environmental testing

    1,8

    2

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    193/199

    Weight gain versus square root of time for the neat and modified epoxy matrices

    reproduced after Barkoula et al. (Barkoula et al. 2009)

    0

    0,2

    0,4

    0,6

    0,8

    1

    1,2

    1,4

    1,6

    0 5 10 15 20 25 30

    Weightgain(%)

    Time1/2 (h1/2)

    0% CNT

    0.3% CNT

    0.5% CNT

    1% CNT

    DSC

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    194/199

    MARK J PARKER Volume 5 Ch 5 09 o Com rehensive Com osite Materials

    DSC

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    195/199

    MARK J PARKER Volume 5 Ch 5 09 o Com rehensive Com osite Materials

    DMA

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    196/199

    MARK J PARKER Volume 5 Ch 5 09 o Com rehensive Com osite Materials

    DMA

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    197/199

    MARK J PARKER Volume 5 Ch 5 09 o Com rehensive Com osite Materials

    DMA

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    198/199

    MARK J PARKER Volume 5 Ch 5 09 o Com rehensive Com osite Materials

    DMA

  • 8/10/2019 Mechanical Behaviour & Testing Properties

    199/199