6
Measuring fundamental properties of dense plasmas on X-ray Free-Electron Lasers 1 Sam Vinko Workshop on Modern Methods in Plasma Spectroscopy Trieste, 23 March 2015 sam.vinko@physics.ox.ac.uk [email protected] Collaborators 2 U Oxford: Orlando Ciricosta, David Rackstraw, Thomas Preston, Justin Wark SLAC: Bob Nagler, Hae Ja Lee, Phillip Heimann U Berkeley: Richard Lee GIST: Byoung-ick Cho LBNL: Kyle Engelhorn, Roger Falcone IAEA: Hyun-Kyung Chung Czech IOP: Jaromir Chalupsky, Tomas Burian, Vera Hajkova, Libor Juha European XFEL: Ulf Zastrau … and others – see all authors of Nature Communications 6, 6397 (2015), Nature 482, 59 (2012). [email protected] Outline X-ray Free Electron Lasers & High Energy Density Matter (HDM and WDM) Isochoric heating to HDM conditions on LCLS Spectroscopic plasma studies of HDM Ionization Potential Depression Electron Collisional Ionization Rates Future directions & conclusions 3 [email protected] What is a Free Electron Laser (FEL)? 4 Courtesy of PSI [email protected] LCLS – Linac Coherent Light Source 5 SLAC Linac (3km) LCLS injector Near and Far Experimental Halls World’s rst X-ray Free-Electron Laser tunable photon energy range: <500 eV – 12 keV (fundamental); pulse repetition rate 120 Hz; ~1-3 mJ average pulse energy; bandwidth 0.3% variable pulse length: <10 fs - 300 fs focusing to achieve X-ray intensities >10 18 Wcm -2 [email protected] 4th generation FEL light sources Peak brightness 9 orders of magnitude higher than 3rd generation synchrotrons short X-ray pulses ( 1–100 fs); lots of photons per pulse (10 12 ); fully tunable wavelength Hard X-ray FELs: LCLS at SLAC, USA : 0.12-2.5 nm, 2009 SCSS at SPring-8, Japan : 0.1 - 3.6nm, 2011 European X-FEL at DESY, Germany: 0.1 - 6nm, 2016 Swiss-FEL at PSI : 0.1 - 7nm, 2016 6 0.01 0.1 1 10 100 Energy (keV) 16 18 20 22 24 26 28 30 32 34 Peak Brightness (photons/s/mm²/mr²/0.1% bandwidth) 2016 2009 2017 2011 European XFEL LCLS SwissFEL SACLA FLASH FERMI 2005 2011 XFEL Spontaneous LCLS Spontaneous Laboratory X-ray laser High Harmonic Generation Synchrotron Light Source Capability ESRF/APS Undulator Diamond Undulator APS Wigglers ALS Undulator ALS 200 fs source NSLS [email protected] High energy-density systems: Warm and Hot Dense Matter 7 Hydrogen Phase Diagram Aluminium Phase Diagram classical plasma dense plasma high density matter Γ = 1 Γ = 10 Γ = 100 10 3 10 4 10 1 10 2 10 2 10 4 10 0 10 -4 10 -2 1 WDM Temperature (eV) Temperature (eV) Density (g/cm 3 ) Density (g/cm 3 ) R.W. Lee et al., J. Opt. Soc. America B 20, 770 (2003). Γ= V Coulomb E Kinetic [email protected] Outline X-ray Free Electron Lasers & High Energy Density Matter (HDM and WDM) Isochoric heating to HDM conditions on LCLS Spectroscopic plasma studies of HDM Ionization Potential Depression Electron Collisional Ionization Rates Future directions & conclusions 8

Measuring fundamental properties of dense plasmas on X-ray ......Mar 23, 2015  · Measuring fundamental properties of dense plasmas on X-ray Free-Electron Lasers 1 Sam Vinko Czech

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Measuring fundamental properties of dense plasmas on X-ray ......Mar 23, 2015  · Measuring fundamental properties of dense plasmas on X-ray Free-Electron Lasers 1 Sam Vinko Czech

Measuring fundamental properties of dense plasmas on X-ray Free-Electron Lasers

1

Sam VinkoWorkshop on Modern Methods in Plasma Spectroscopy

Trieste, 23 March 2015 [email protected]

[email protected]

Collaborators

2

U Oxford: Orlando Ciricosta, David Rackstraw, Thomas Preston, Justin Wark

SLAC: Bob Nagler, Hae Ja Lee, Phillip Heimann

U Berkeley: Richard Lee

GIST: Byoung-ick Cho

LBNL: Kyle Engelhorn, Roger Falcone

IAEA: Hyun-Kyung Chung

Czech IOP: Jaromir Chalupsky, Tomas Burian, Vera Hajkova, Libor Juha

European XFEL: Ulf Zastrau

… and others – see all authors of Nature Communications 6, 6397 (2015), Nature 482, 59 (2012).

[email protected]

Outline

‣ X-ray Free Electron Lasers & High Energy Density Matter (HDM and WDM)

‣ Isochoric heating to HDM conditions on LCLS

‣ Spectroscopic plasma studies of HDM‣ Ionization Potential Depression‣ Electron Collisional Ionization Rates

‣ Future directions & conclusions

3 [email protected]

What is a Free Electron Laser (FEL)?

4

Courtesy of PSI

[email protected]

LCLS – Linac Coherent Light Source

5

SLAC Linac (3km)

LCLS injector

Near and Far Experimental Halls

World’s first X-ray Free-Electron Laser ‣ tunable photon energy range: <500 eV – 12 keV (fundamental);‣ pulse repetition rate 120 Hz;‣ ~1-3 mJ average pulse energy;‣ bandwidth 0.3%‣ variable pulse length: <10 fs - 300 fs‣ focusing to achieve X-ray intensities >1018 Wcm-2

[email protected]

4th generation FEL light sources

‣ Peak brightness 9 orders of magnitude higher than 3rd generation synchrotrons

‣ short X-ray pulses ( 1–100 fs);

‣ lots of photons per pulse (≥1012);

‣ fully tunable wavelength

‣ Hard X-ray FELs:‣ LCLS at SLAC, USA : 0.12-2.5 nm, 2009

‣ SCSS at SPring-8, Japan : 0.1 - 3.6nm, 2011

‣ European X-FEL at DESY, Germany: 0.1 - 6nm, 2016

‣ Swiss-FEL at PSI : 0.1 - 7nm, 2016

6

0.01 0.1 1 10 100Energy (keV)

1x1016

1x1018

1x1020

1x1022

1x1024

1x1026

1x1028

1x1030

1x1032

1x1034

Pea

k B

right

ness

(ph

oton

s/s/

mm²/

mr²

/0.1

% b

andw

idth

)

2016

2009

20172011

European XFELLCLS

SwissFELSACLA

FLASH

FERMI

2005

2011

XFELSpontaneous

LCLSSpontaneous

LaboratoryX-ray laser

High HarmonicGeneration

Syn

chro

tro

n Li

ght

So

urce

Cap

abili

ty

ESRF/APSUndulator

DiamondUndulator

APSWigglers

ALSUndulator

ALS200 fs source

NSLS

[email protected]

High energy-density systems: Warm and Hot Dense Matter

7

Hydrogen Phase Diagram Aluminium Phase Diagram

classical plasma

dense plasma

high densitymatter

Γ = 1

Γ = 10

Γ = 100

Density ( g/cm3)

103

104

101

102

102 104100

10-4 10-2 1

WDM

Tem

per

atu

re (

eV)

Tem

pera

ture

(eV)

Tem

pera

ture

(eV)

Density (g/cm3) Density (g/cm3)

R.W. Lee et al., J. Opt. Soc. America B 20, 770 (2003).

Γ =VCoulomb

EKinetic

[email protected]

Outline

‣ X-ray Free Electron Lasers & High Energy Density Matter (HDM and WDM)

‣ Isochoric heating to HDM conditions on LCLS

‣ Spectroscopic plasma studies of HDM‣ Ionization Potential Depression‣ Electron Collisional Ionization Rates

‣ Future directions & conclusions

8

Page 2: Measuring fundamental properties of dense plasmas on X-ray ......Mar 23, 2015  · Measuring fundamental properties of dense plasmas on X-ray Free-Electron Lasers 1 Sam Vinko Czech

[email protected]

The experiment at the Linac Coherent Light SourceX-ray Free-Electron Laser

X-ray spectrometer: K-alpha emission Al around 1200-1900 eV

LCLS pulse

Photon energy: 1300–2000 eVPulse length < 80 fs Pulse Energy ~1 mJBandwidth ~ 0.4%

Diode

Braggcrystal

9

1 micron thick Al, Mg, Si sample

Vinko et al., Nature 482, 59 (2012)Cho et al., PRL 109, 245003 (2012)Ciricosta et al., PRL 109, 065002 (2012)

CCD

Peak Intensity ~1017 W cm-2

[email protected] 10

K-edge

L-edge

ωp

σff

(μm

-1)

Ephot

ωp

σff

EEphot

K-edggge

LCLS

K: 1s2

L: 2s2 2p6

Photo-ionization

Neutral Al

Electronic structure of Aluminium

Core-hole lifetime ~1fs

[email protected] 11

K-edge

L-edge

ωp

σff

(μm

-1)

Ephot

ωp

σff

EEphot

K-edggge

LCLSNeutral Al

K: 1s1

L: 2s2 2p6

K-alpha emission

Electronic structure of Aluminium

Core-hole lifetime ~1fs

Kα photon

[email protected] 12

Electronic structure of Aluminium

Photo-excitation (of 6+)

Ionized Al:

K: 1s2

L: 2s2 2p3

K: 1s1

L: 2s2 2p3

K-alpha emission line VIIfrom different charge states

Kα photon

~96% of all recombination is Auger, not radiative!This keeps the energy in the system and it heats up.

[email protected]

X-ray isochoric heating: plasma evolution

13

0 1 2 3 4 5 6 7 8 9 10 11 12 13Charge state

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Frac

tiona

l yie

ld in

tegr

ated

ove

r pu

lse

1580 eV1630 eV1680 eV1730 eV1780 eV1830 eV

0 20 40 60 80 100 120 140 160Time (fs)

1x1023

2x1023

3x1023

4x1023

5x1023

6x1023

Den

sity

(ele

ctro

ns c

m-3

)

0 20 40 60 80 100 120 140 160Time (fs)

0

50

100

150

200

Tem

pera

ture

(eV

)

X-ray pulse

Vinko et al., Nature 482, 59 (2012)[email protected]

K-shell spectroscopy of Hot Dense Aluminium

14

IV V VI VII VIII IX XIX V VI VII VIII IX X

Emitted photon energy (eV)

En

erg

y o

f x−

ray F

EL

excita

tio

n (

eV

)

1460 1480 1500 1520 1540 1560 1580 1600 1620 1640 1660 1680

1475

1500

1525

1550

1575

1600

1625

1650

1675

1700

1725

1750

1775

1800

1825

Resonant transitio

ns

Cold K-edge

Single K-shell hole Double K-shell hole

Vinko et al., Nature 482, 59 (2012)

[email protected]

K-shell spectroscopy of Hot Dense Aluminium

15

VIIIV

K shell

L shell

Continuum

L shell

K shell

FEL

pho

ton

ener

gy

0

Continuum

We observe very clean absorption [email protected]

Outline

‣ X-ray Free Electron Lasers & High Energy Density Matter (HDM and WDM)

‣ Isochoric heating to HDM conditions on LCLS

‣ Spectroscopic plasma studies of HDM‣ Ionization Potential Depression‣ Electron Collisional Ionization Rates

‣ Future directions & conclusions

16

Page 3: Measuring fundamental properties of dense plasmas on X-ray ......Mar 23, 2015  · Measuring fundamental properties of dense plasmas on X-ray Free-Electron Lasers 1 Sam Vinko Czech

[email protected]

Continuum lowering in dense plasmas

17

Figure taken from Umstadter, Physics 5, 88 (2012)

Isolated atom

In dense systems at some radius outer orbitals may overlap – these can no longer be considered bound to a specific ion

ionised.

This means the energy required to ionise a bound state is reduced as the density increases:

Ionization Potential Depression (IPD)

[email protected]

‣ Analytical models used when fast calculations required (atomic kinetics, hydrodynamic codes, etc.):‣ Ion sphere (compute total energy of free electron in Wiegner-Seitz ion sphere, originates from

condensed matter theory):

‣ Debye-Hückel (calculate electrostatic energy of electron/ion + Debye cloud, works in weak-coupling):

‣ Stewart & Pyatt model (bridges between the two above):

‣ Ecker & Kröll model (different Z scaling, matches LCLS data)

Some simple Ionization Potential Depression models

ΔIIS =3

2

ze2

4πε0rSP

ΔIEK = Cze2

4πε0rEK

ΔISP =kBT

2(z∗ + 1)

{(3(z∗ + 1)ze2

4πε0λDkBT+ 1

)2/3

− 1

}ΔIDH =

ze2

4πε0λD

18

3r3SP = n−1

i

3r3EK =

1

ne + ni

Preston et al., HEDP 9, 258 (2013)

[email protected]

1500 1550 1600 1650 1700 1750 1800Photon energy (eV)

1x104

1x105

1x106

1x107

Em

issi

on (p

hot/

eV/s

tera

d)

IVVVIVII

Resonant emission peaks

Ionization thresholds

Experimental IPD = Atomic edge - Measured edge

Experimental measurement of IPD on LCLS

Emitted photon energy (eV)

Energ

y o

f x−

ray F

EL e

xcitation (

eV

)

1460 1480 1500 1520 1540 1560 1580 1600 1620 1640 1660 1680

1475

1500

1525

1550

1575

1600

1625

1650

1675

1700

1725

1750

1775

1800

1825

IV V VI VI VI IX XIX V VI VI VI IX X

Resonant transitio

ns

19

Ciricosta et al., PRL 109, 065002 (2012)[email protected]

K-shell spectroscopy of Hot Dense Aluminium

20

VIIIV

K shell

L shell

Continuum

L shell

K shell

FEL

pho

ton

ener

gy

0

Continuum

We observe very clean absorption thresholds

[email protected]

Modelling the data via collisional-radiative super-configuration code SCFLY

‣ Proven to work in modelling intense X-ray interaction with atoms in the collision-less regime

‣ All atomic configurations up to n=3 included

‣ Self-consistent temperature calculated via X-ray deposition within duration of pulse (with instant thermalization)

‣ Spectral synthesis via a super-configuration transition array model

‣ Included opacity via escape factor formalism, IPD via a choice of IS, SP and EK models

21 [email protected] 22

Ciricosta et al., PRL 109, 065002 (2012)

1580 eV

1600 eV

1630 eV

1650 eV

1720 eV

1830 eV

LCLS pump energy:

Continuum lowering results on LCLS

[email protected]

Experimental measurement of IPD on LCLS

O.Ciricosta et al., PRL 109, 065002 (2012)

1450 1500 1550 1600 1650 1700 1750 1800Energy from K-shell (eV)

IV

V

VI

VII

VIIIL M

50 100 150IPD (eV)

EK

SPexp

continuumatomic edgeSP edgeEK edge

range ofexperimental edge

Single core holes Double core holes

Note: M-shell always in continuum according to EK model.

~50 eV!

23 [email protected] 24

Proven impossible (so far) to reproduce set of experimental spectra using the SP IPD model.

1.Possibly explained by pumping bound states below continuum? No states are expected at the threshold energies observed; any such states would still have to show a sharp edge and be broadened to ~50-100 eV to yield the spectra.

2.Possibly explained via spectator M-shell electrons? No model predicts rebinding below line 8. Emission from higher charge states with spectators is inconsistent with spectral lineouts.

Emitted photon energy (eV)

En

erg

y o

f x−

ray F

EL

excita

tio

n (

eV

)

1460 1480 1500 1520 1540 1560 1580 1600 1620 1640 1660 1680

1475

1500

1525

1550

1575

1600

1625

1650

1675

1700

1725

1750

1775

1800

1825

IV V VI VII VIII IX XIX V VI VII VIII IX X

Resonant transitio

ns

SP edges

Experimental measurement of IPD on LCLS

EK model “works” because ionization thresholds match EK K-edges.

Page 4: Measuring fundamental properties of dense plasmas on X-ray ......Mar 23, 2015  · Measuring fundamental properties of dense plasmas on X-ray Free-Electron Lasers 1 Sam Vinko Czech

[email protected]

These IPD measurements have spurred further modelling

25

3 4 5 6 7Charge state

0

50

100

150

200Io

niza

tion

Pot

entia

l Dep

ress

ion

(eV

) Exp.; Ciricosta et al., PRL109, 065002 (2012)Stewart & Pyatt, ApJ 144, 1203 (1966)Ecker & Kroll, Phys Fluids 6, 62 (1963)Son et al., PRX 4, 031004 (2014)Crowley, HEDP 13, 84 (2014)

Aluminium

[email protected]

Continuum lowering via Density Functional Theory

‣ There is a fundamental problem with the way we think of continuum lowering‣ cannot explain the experimental observations: EK works only in some cases, SP only in others

‣ we seem to be missing some physics

‣ Treatment of shells near continuum (M-shell) in analytical models is very poor‣ models need a sharp cutoff to what is physically a continuous process

‣ states within a shell not always treated individually

‣ Lets try a different approach that we know works for ground-state metals:‣ Calculate IPD independent of a specific analytical model

‣ Want the results to be consistent with relevant atomic physics and thermodynamics

‣ Applicable to the plasma conditions reached on LCLS

‣ Possibly extend beyond the average atom picture

26

[email protected]

7+

7+

Continuum lowering via DFT - add electrons

27

6+

6+

6+

4+ 5+

Box should be charge neutral (here I need 41 electrons)

Find the free-electron density via finite temperature DFT

[email protected]

Excited state PAW potentials

‣ Core-excited (rather than ionised) = global charge neutrality of the system

‣ PAW formalism is key‣ allows for frozen-core, all-electron potentials

‣ can calculate all core wave functions for excited atomic configurations to whatever accuracy required

‣ can freeze holes in core states – allows for a fully 3D multi-centred approach of charge states which are integers (no average atom approximation for ionization)

‣ charge state independent of temperature/density: can model equilibrium (pick the right temperature for the mean chosen ionization) or non-equilibrium systems (in terms of the ionization), includes some fluctuations (ensemble of integer charge states is simulated directly),

‣ can reconstruct the “real” valence density everywhere, including on ionic cores, where overlap with core wave functions becomes relevant

28

[email protected]

Identical to above, but with additional 1 K-shell hole in ionof interest

Calculate the IPD from first principles - Roadmap

29

Generate pool of excited-configuration PAW potentials with frozen inner shell core-hole states

Input: ion structure (crystal), charge state distribution and temperature

FT-DFT calculation: minimize energy under constraint of potentials

K-edge via free-energy difference

IPD!

Vinko, Ciricosta & Wark, Nature Comm 5, 3533 (2014)

[email protected]

What do we calculate?

30

Dens

ity o

f Sta

tes

Energy

Valence

2p states

2s states1s states

Populations selected in creation of the potentialCalculated in the single atom limit (radial DFT, Hartree-Fock-Dirac, etc.)

Core

Determined from 3D DFT calculation: the lowest energy configuration possible given our choice of the core (still formally ground-state)

Populations determined by chosen temperature via the Fermi-Dirac distribution

3s states

Continuum

[email protected]

Al continuum structure at different charge state

31

7+

X+X+

X+

Atomic-like 3s state

Calculation box:

Calculation for cold system @ 1eV

-20 -15 -10 -5 0 5 10Energy (eV)

0

5

10

15

20

25

30

35

40

Den

sity

of S

tate

s (s

tate

s/eV

/cel

l)

Total DOSpDOS of 7+ central ion

X = 3+

4+

5+

6+

7+

8+

9+

11+

10+

Vinko, Ciricosta & Wark, Nature Comm 5, 3533 (2014)

[email protected]

-20 -10 0 10Energy (eV)

0

5

10

15

20

25

Den

sity

of S

tate

s (s

tate

s/eV

/cel

l)

Al continuum structure at different temperatures

32

7+

6+6+

6+

Calculation box:

Atomic-like 3s state

(Electron density 3.75 x1023 cm-3)

100 eV

75 eV

50 eV

25 eV

10 eV

1 eV

Vinko, Ciricosta & Wark, Nature Comm 5, 3533 (2014)

Page 5: Measuring fundamental properties of dense plasmas on X-ray ......Mar 23, 2015  · Measuring fundamental properties of dense plasmas on X-ray Free-Electron Lasers 1 Sam Vinko Czech

[email protected]

K-shell spectroscopy of Hot Dense Aluminium: 3+

33

IV

L shell

Continuum

K shell

FEL

pho

ton

ener

gy

0

1800

1700

1600

1500

DFT

[email protected]

K-shell spectroscopy of Hot Dense Aluminium: 6+

34

VII

FEL

pho

ton

ener

gy

0

1800

1700

1600

1500

DFT

K shell

L shell

Continuum

[email protected]

3 4 5 6 7 8 9Charge state

0

50

100

150

200

250

Ioni

zatio

n P

oten

tial D

epre

ssio

n (e

V)

ExperimentSP (a.a.)EK (a.a.)DFT (a.a., Gamma point)DFT (a.a., p-like)S-K Son et al., PRX 4, 031004 (2014)B Crowley, HEDP (2014)

35

Comparison of calculations with experiment: Aluminium

0

50

100

150

200

250

[email protected]

DFT method reproduces experimental IPDs

36

Electron interactions with ions and other electrons remains strong in the conditions generated on LCLS. At solid density, continuum states are formed due to the interaction of M-shell states which form the conduction band (tight-binding picture).

Vinko, Ciricosta & Wark, Nature Comm 5, 3533 (2014)

0 0.5 1 1.5 2 2.50

2

4

6

8

10

Atomic core density 7+Atomic valence density 7+Average valence densityDFT 1 eVDFT 10 eVDFT 25 eVDFT 50 eVDFT 75 eVDFT 100 eV

r (a0)

Ele

ctro

n de

nsity

r2 ρ(r)

(a0-1

)

1s2 2s2 2p2

Aluminium

[email protected]

Atomic bound-bound transitions can be a good approximation for bound-free edge

K: 1s2

L: 2s2 2p6

M: 3s2 3p1

Isolated Al Atom Al Atom in metal

Atomic Continuum

Continuum in dense system

37

Higher statesConduction bandIPD

K-M bound bound transitions

model the K-edge

[email protected]

Outline

‣ X-ray Free Electron Lasers & High Energy Density Matter (HDM and WDM)

‣ Isochoric heating to HDM conditions on LCLS

‣ Spectroscopic plasma studies of HDM‣ Ionization Potential Depression‣ Electron Collisional Ionization Rates

‣ Future directions & conclusions

38

[email protected] 39

IV V VI VII VIIILine

K-edge region

Emission only due to collisions from lower charge state(s)

Experimental measurement of collisional ionization rates on LCLS

[email protected] 40

1500 1550 1600 1650 1700 1750 1800Photon energy (eV)

1x104

1x105

1x106

1x107

Em

issi

on (p

hot/

eV/s

tera

d)

IVVVIVII

IV V VI VII VIIILine

Clear steps in emission are observed below the K-edge of a given charge state!

Experimental measurement of collisional ionization rates on LCLS

Vinko et al., Nature Communications 6, 6397 (2015)

Page 6: Measuring fundamental properties of dense plasmas on X-ray ......Mar 23, 2015  · Measuring fundamental properties of dense plasmas on X-ray Free-Electron Lasers 1 Sam Vinko Czech

[email protected]

Process that produces Kα emission

41

K2Lμ

K1Lμ

K2Lμ-1K2Lμ-2

K-shellPhotoionization

Auge

r

LCLS Pulse

Radi

ativ

e Kα photon

L-shell collisionalionization K2Lμ-1

K-edge is too high for photoionization:no emission!

[email protected]

Process that produces Kα emission

42

K2Lμ

K1Lμ

K2Lμ-1K2Lμ-2

K-shellPhotoionization

Auge

r

LCLS Pulse

Radi

ativ

e Kα photon

K1Lμ-1

K2Lμ-2K2Lμ-3

Auge

r

Radi

ativ

e Kα photon

L-shell collisionalionization

[email protected]

Collisions occur within Auger lifetime of K-shell

43

1590 eV 1630 eV

102

103

104

105

106

Intensity (a.u.)

IV V VI VII VIIIInte

nsity

(a.

u.)

IV V VI VII VIII

ExperimentSimulation

a b

IVV VVV VVVIIIVV VVVV

Above-edge Below-edge Above-edge Below-edge

KβKβ

Collisions Collisions

Vinko et al., Nature Communications 6, 6397 (2015)[email protected]

We can model the effect of stronger/weaker collisions

44

1550 1575 1600 1625 1650 1675 1700Photon Energy (eV)

0.01

0.1

1

10

Em

issi

on In

tens

ity (

a.u.

)

ExperimentSim 0.2xCRSim 1.0xCRSim 3.0xCRSim 5.0xCR

V

VI

VII

VIII

IV

Rates are underestimated by a factor between 3 and 5!Vinko et al., Nature Communications 6, 6397 (2015)

[email protected]

The system becomes thermal very quickly

45

De la Varga et al., HEDP 9 (2013) 542

For Ne, 10^22 atoms/cm3 – Al density is 6x higher!

Temperatures also ~10x lower

0 20 40 60 80 100 120 140 160

Time (fs)

1x1010

1x1011

1x1012

1x1013

1x1014

1x1015

1x1016

Ioni

zatio

n ra

te (

Hz) Thermal

Photons

Auger

0

0.5

13+

4+5+ 6+ 7+ 8+

Fractional yield ofground state ions

-40-60-80 -20 0 20 40 60 80

Calculation for Auger relaxation in the time-dependent atomic kinetics in SCFLY(O. Ciricosta, Oxford)

[email protected]

Plasma conditions are well-defined

‣ Spectra are space and time averaged, but most of the emission comes from well-defined plasma conditions

46

1x1015 1x1016 1x1017

Intensity (W cm-2)

0

10

20

30

40

50

Ele

ctro

n te

mp

erat

ure

(eV

)

1x1023

2x1023

3x1023

4x1023

5x1023

Ele

ctro

n d

ensi

ty (

cm-3

)

1x1015 1x1016 1x1017

Intensity (W cm-2)

0

10

20

30

40

50

Ele

ctro

n te

mp

erat

ure

(eV

)

1x1023

2x1023

3x1023

4x1023

5x1023

Ele

ctro

n d

ensi

ty (

cm-3

)

FEL Intensity (Wcm-2)FEL Intensity (Wcm-2)

Ele

ctro

n de

nsity

(cm

-3)

Ele

ctro

n de

nsity

(cm

-3)

Line VI1590 eV

Line VII1630 eV

a b

Contribution to emission from various regions in the sample irradiated at different intensities.

Vinko et al., Nature Communications 6, 6397 (2015)

[email protected]

Conclusions

‣ LCLS can create well-defined plasmas at solid densities and at temperatures in the 100-200 eV range. X-ray-driven emission spectroscopy can be used to study the electronic structure of dense plasmas.

‣ We have measured threshold K-shell ionization energies in Mg, Al, Si, and compounds, resolved by core charge state (K and L shell populations). Results show the ionization energies in dense systems are lower than predicted by the most commonly used IPD models in similar conditions (Stewart & Pyatt, Ion sphere).

‣ Calculations based on DFT + excited potentials reproduce experimental absorption thresholds very well.

‣ We have measured electron collisional ionization rates in a solid-density plasma at temperatures ~30 eV. The experimental collisional rates are higher than predicted by standard models (W. Lotz, Burgess & Chidichimo) by a factor of 3-5.

47