32
15th ETHConference on Combustion Generated Nanoparticles Measurements of oxidative capacity of combustion generated nanoparticles using profluorescent nitroxide probes Z.D. Ristovski 1 , B. Miljevic 1 , N. C. Surawski 1,2 , S. Stevanovic 1,4 , R. Brown 3 , G. A. Ayoko 1,3 , S. Elbagir 3 , K. E. FairfullSmith 3,4 , S. E. Bottle 3,4 , 1 International Laboratory for Air Quality and Health, Queensland University of Technology, 2 George Street, Brisbane, Queensland, 4001, Australia 2 School of Engineering Systems, Queensland University of Technology, 3 Discipline of Chemistry, Queensland University of Technology 4 ARC Centre of Excellence for Free Radical Chemistry and Biotechnology, QUT Oxidative stress caused by generation of free radicals and related reactive oxygen species (ROS) at the sites of deposition has been proposed as a mechanism for many of the adverse health outcomes associated with exposure to particulate matter (PM). In addition to particleinduced generation of ROS in lung tissue cells, several recent studies have shown that particles may also contain ROS. As such, they present a direct cause of oxidative stress and related adverse health effects. Recently, a new profluorescent nitroxide molecular probe (bis(phenylethynyl)anthracenenitroxide; BPEAnit) (FairfullSmith and Bottle 2008), developed at QUT was applied in an entirely novel, rapid and noncell based assay for assessing the oxidative potential of particles (i.e. potential of particles to induce oxidative stress). The technique was applied on particles produced by several combustion sources, namely cigarette smoke, diesel exhaust and wood smoke (Miljevic, FairfullSmith et al. 2010; Miljevic, Heringa et al. 2010; Surawski, Miljevic et al. 2010)). Profluorescent nitroxides have a very low fluorescence emission, but upon radical trapping or redox activity, a strong fluorescence is observed. One of the main findings from the initial studies undertaken at QUT was that the oxidative potential per PM mass significantly varies for different combustion sources as well as the type of fuel used and combustion conditions. However, possibly the most important finding from our studies was that there was a strong correlation between the organic fraction of particles and the oxidative potential measured by the PFN assay, which clearly highlights the importance of organic species in particleinduced toxicity (Miljevic, Heringa et al. 2010; Surawski, Miljevic et al. 2010). To further explore this correlation we have focused our research on investigating the role of various fuels and diesel injection technologies on the oxidative capacity (ROS concentration) of diesel particles. In the first study (Surawski, Miljevic et al. 2011) we have investigated 3 different fuels (biodiesel, synthetic diesel and petrodiesel) with 2 different injection technologies (common rail and direct injection). In the second study (Surawski, Miljevic et al. 2011) we have investigated the role of 3 different biodiesel fuel feedstocks (soy, tallow and canola) at 4 different blend percentages (20%, 40%, 60% and 80%). The first study

Measurements of oxidative capacity of combustion generated … · 2016. 4. 13. · emissions from a compression ignition engine: the influence of biodiesel feedstock." Submitted to

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Measurements of oxidative capacity of combustion generated … · 2016. 4. 13. · emissions from a compression ignition engine: the influence of biodiesel feedstock." Submitted to

15th ETH‐Conference on Combustion Generated Nanoparticles  

Measurements of oxidative capacity of combustion generated nanoparticles using profluorescent nitroxide probes 

Z.D. Ristovski1, B. Miljevic1, N. C. Surawski1,2, S. Stevanovic1,4, R. Brown3, G. A. Ayoko1,3, S. Elbagir3, K. E. Fairfull‐Smith3,4, S. E. Bottle3,4, 1International Laboratory for Air Quality and Health, Queensland University of Technology, 2 George Street, Brisbane, Queensland, 4001, Australia 2School of Engineering Systems, Queensland University of Technology,  3Discipline of Chemistry, Queensland University of Technology 4ARC Centre of Excellence for Free Radical Chemistry and Biotechnology, QUT 

 

Oxidative  stress  caused  by  generation  of  free  radicals  and  related  reactive  oxygen 

species  (ROS) at  the  sites of deposition has been proposed as a mechanism  for many of  the 

adverse health outcomes associated with exposure  to particulate matter  (PM).  In addition  to 

particle‐induced generation of ROS  in lung tissue cells, several recent studies have shown that 

particles may  also  contain ROS. As  such,  they present  a direct  cause of oxidative  stress  and 

related  adverse  health  effects.  Recently,  a  new  profluorescent  nitroxide  molecular  probe 

(bis(phenylethynyl)anthracene‐nitroxide; BPEAnit) (Fairfull‐Smith and Bottle 2008),   developed 

at  QUT was  applied  in  an  entirely  novel,  rapid  and  non‐cell  based  assay  for  assessing  the 

oxidative  potential  of  particles  (i.e.  potential  of  particles  to  induce  oxidative  stress).  The 

technique was applied on particles produced by several combustion sources, namely cigarette 

smoke, diesel exhaust and wood smoke (Miljevic, Fairfull‐Smith et al. 2010; Miljevic, Heringa et 

al. 2010; Surawski, Miljevic et al. 2010)). Profluorescent nitroxides have a very low fluorescence 

emission, but upon radical trapping or redox activity, a strong fluorescence is observed. One of 

the main  findings  from the  initial studies undertaken at QUT was that the oxidative potential 

per PM mass  significantly varies  for different  combustion  sources as well as  the  type of  fuel 

used and combustion conditions.  

However, possibly  the most  important  finding  from our  studies was  that  there was a 

strong  correlation  between  the  organic  fraction  of  particles  and  the  oxidative  potential 

measured  by  the  PFN  assay,  which  clearly  highlights  the  importance  of  organic  species  in 

particle‐induced toxicity (Miljevic, Heringa et al. 2010; Surawski, Miljevic et al. 2010).  

To  further explore  this correlation we have  focused our  research on  investigating  the 

role  of  various  fuels  and  diesel  injection  technologies  on  the  oxidative  capacity  (ROS 

concentration)  of  diesel  particles.  In  the  first  study  (Surawski, Miljevic  et  al.  2011) we  have 

investigated  3  different  fuels  (biodiesel,  synthetic  diesel  and  petro‐diesel)  with  2  different 

injection  technologies  (common  rail  and  direct  injection).  In  the  second  study  (Surawski, 

Miljevic et al. 2011) we have investigated the role of 3 different biodiesel fuel feedstocks (soy, 

tallow and canola) at 4 different blend percentages (20%, 40%, 60% and 80%). The first study 

Page 2: Measurements of oxidative capacity of combustion generated … · 2016. 4. 13. · emissions from a compression ignition engine: the influence of biodiesel feedstock." Submitted to

showed  a  stronger  influence  of  the  engine  technology  than  fuel  type  on  particle  oxidative 

capacity.  While  a  significant  decrease  of  PM  was  observed  for  the  newer  common  rail 

technology  it was  interesting  to observe an  increase  in  the particle oxidative  capacity. Given 

that  rather  large  increases  in  ROS  emissions  occurred  with  the  common  rail  injection 

configuration  (in some cases a more  than 10‐fold  increase was observed),  this has significant 

implications  for  the  overall  toxicological  properties  of  the  emitted  particles.  The  somewhat 

disturbing  overall  conclusion  from  the  first  study  was  that  the  injection  technology  which 

produces  fewer  particles  (i.e.,  common  rail  injection)  has  significantly  more  oxidative  and 

genotoxic material available on  the  surface of  the particle, potentially  causing health effects 

that are not captured by considering only particle number, or particle mass based emissions. 

In the second study we observed that ROS concentrations increased monotonically with 

biodiesel blend percentage, but did not exhibit strong feedstock variability.   Furthermore, the 

ROS concentrations, and therefore the oxidative capacity, correlated quite well with the organic 

volume percentage of particles – a quantity  that  increased with  increasing blend percentage. 

The  increase  in the blend percentage from 20 to 80% has on one side resulted  in a significant 

decrease in particle mass and particle surface but on the other side has resulted in an increase 

in the particle oxidative capacity. Our results have implications for the regulation of DPM using 

only physical properties such as mass, surface or even number based metric.  Regulating purely 

the  particle  surface  area  or mass would  not  be  able  to detect  results  such  as  these,  as  the 

surface chemistry of particles  is not explicitly considered.   Therefore, not only the raw surface 

area of particles but also the surface chemistry of particles is important for assessing the health 

impacts  of  DPM.  These  results  suggest  that  the  development  of  instrumentation  (and 

standards) that enable the internal mixing status of particles to be determined (within a surface 

area framework) are potentially required. 

References 

Fairfull‐Smith,  K.  E.  and  S.  E.  Bottle  (2008).  "The  Synthesis  and  Physical  Properties  of Novel Polyaromatic Profluorescent  Isoindoline Nitroxide Probes."  Eur  J Org Chem  32:  5391‐5400. 

Miljevic, B., K. E. Fairfull‐Smith, et al.  (2010). "The application of profluorescent nitroxides  to detect reactive oxygen species derived from combustion‐generated particulate matter: Cigarette smoke ‐ A case study." Atmospheric Environment 44(18): 2224‐2230. 

Miljevic, B., M.  F. Heringa,  et  al.  (2010).  "Oxidative potential of  logwood  and pellet burning particles assessed by a novel profluorescent nitroxide probe." Environmental Science & Technology 44(17): 6601‐6607. 

Surawski,  N.  C.,  B. Miljevic,  et  al.  (2011).  "Physico‐chemical  characterisation  of  particulate emissions  from  a  compression  ignition  engine:  the  influence  of  biodiesel  feedstock." Submitted to Environmental Science & Technology. 

Surawski,  N.  C.,  B.  Miljevic,  et  al.  (2011).  "Physicochemical  Characterization  of  Particulate Emissions  from  a  Compression  Ignition  Engine  Employing  Two  Injection  Technologies and Three Fuels." Environmental Science & Technology 45(13): 5498‐5505. 

Surawski, N.  C.,  B. Miljevic,  et  al.  (2010).  "Particle  emissions,  volatility  and  toxicity  from  an ethanol  fumigated compression  ignition engine." Environmental Science & Technology 44(1): 229‐235. 

Page 3: Measurements of oxidative capacity of combustion generated … · 2016. 4. 13. · emissions from a compression ignition engine: the influence of biodiesel feedstock." Submitted to

 

 

Page 4: Measurements of oxidative capacity of combustion generated … · 2016. 4. 13. · emissions from a compression ignition engine: the influence of biodiesel feedstock." Submitted to

Queensland University of Technology

CRICOS No. 00213J

Measurements of oxidative capacity of combustion generated

nanoparticles using profluorescent nitroxide probes

Zoran Ristovski, Branka Miljevic, Nicholas Surawski, Svetlana Stevanovic, Richard

Brown, Kathryn Fairfull-Smith, Steve Bottle

International Laboratory for Air Quality and Health, Center for Free Radical Chemistry and Biotechnology, Biofuels Engine Research Facility

Page 5: Measurements of oxidative capacity of combustion generated … · 2016. 4. 13. · emissions from a compression ignition engine: the influence of biodiesel feedstock." Submitted to

a university for the worldreal R

15th ETH Conference on Combustion Generated Nanoparticles

Zürich, 27nd-29th June 2011

PM & health effects• Epidemiological studies - strong associations between levels of

ambient particulate matter (PM) and increased respiratory andcardiovascular disease morbidity and mortality

• mechanism(s) by which particles induce adverse health effectsare still not entirely understood

Proposed mechanism: Oxidative stress hypothesis

PM → free radicals; ROS → oxidative stress → inflammation↓

cell injury / death

2

Page 6: Measurements of oxidative capacity of combustion generated … · 2016. 4. 13. · emissions from a compression ignition engine: the influence of biodiesel feedstock." Submitted to

a university for the worldreal R

15th ETH Conference on Combustion Generated Nanoparticles

Zürich, 27nd-29th June 2011

PM & health effectsOxidative stress hypothesis

↓toxicological studies

Cell-free (acellular)

assays

in vivo↓

Human inhalation studies;Animal inhalation and

instillation studies

in vitro

Expression of ox. stress markers(expression of genes involved in ox. stress / inflammatory response)

Cell exposurestudies

3

Measurement of ROS and radicals; antioxidant depletion

Oxidative stress potential

Page 7: Measurements of oxidative capacity of combustion generated … · 2016. 4. 13. · emissions from a compression ignition engine: the influence of biodiesel feedstock." Submitted to

a university for the worldreal R

15th ETH Conference on Combustion Generated Nanoparticles

Zürich, 27nd-29th June 2011

PM & health effectsOxidative stress hypothesis

↓toxicological studies

Cell-free (acellular)

assays

in vivo↓

Human inhalation studies;Animal inhalation and

instillation studies

in vitro

Properties of particles relevant for the observed health effects?-size-composition:

1. transition metals (Mn++ H2O2 → M(n+1)++ .OH + OH-)

2. organics (PAHs; quinones) 3. ROS

Cell exposurestudies

4

Generation of ROS in cells – endogenous ROS

inherent, exogeneous – direct cause of ox. stress

Page 8: Measurements of oxidative capacity of combustion generated … · 2016. 4. 13. · emissions from a compression ignition engine: the influence of biodiesel feedstock." Submitted to

a university for the worldreal R

15th ETH Conference on Combustion Generated Nanoparticles

Zürich, 27nd-29th June 2011

Motivation of the study

• Develop a cell-free assay for rapid and routine screenings of the oxidative potential of PM –ROS concentration.

• Establish a relationship between particle size/surface area and ROS concentration.

• Establish the relationship between the volatile organic fraction of PM and ROS concentration for various airborne particle (pollution) sources.

Page 9: Measurements of oxidative capacity of combustion generated … · 2016. 4. 13. · emissions from a compression ignition engine: the influence of biodiesel feedstock." Submitted to

a university for the worldreal R

15th ETH Conference on Combustion Generated Nanoparticles

Zürich, 27nd-29th June 2011

Profluorescent nitroxides (PFNs)

• powerful optical sensors applicable as detectors of radicals and redoxactive agents

• Nitroxides: -trap C- , S- and P- centred radicals – stable adducts- scavenge O-centred radicals through redox mechanisms

- applied in biological studies as antioxidants, detection of hydroxyl andperoxyl radicals, monitoring thermo-oxidative polymer degradation andphotogeneration of radicals in polymer films

6

nitroxide

Page 10: Measurements of oxidative capacity of combustion generated … · 2016. 4. 13. · emissions from a compression ignition engine: the influence of biodiesel feedstock." Submitted to

a university for the worldreal R

15th ETH Conference on Combustion Generated Nanoparticles

Zürich, 27nd-29th June 2011

Profluorescent nitroxides synthesised at QUT

Flourescein-nitroxide

9,10-bis(phenylethynyl)anthracene-Nitroxide (BPEAnit)

OHO

NO

COO-

O

NO

Phenanthrene-nitroxide

9,10–diphenylanthracene-nitroxide

λex= 294 nmλem=355 nm 

372 nm

λex= 495 nmλem=515 nm

λex= 395 nmλem=410 nm

430 nm

λex= 430 nmλem=485 nm

510 nm

7

Fairfull-Smith and Bottle. Eur J Org Chem (2008) (32) pp. 5391-5400

Page 11: Measurements of oxidative capacity of combustion generated … · 2016. 4. 13. · emissions from a compression ignition engine: the influence of biodiesel feedstock." Submitted to

a university for the worldreal R

15th ETH Conference on Combustion Generated Nanoparticles

Zürich, 27nd-29th June 2011

Sampling methodology

8

• Bubbling aerosol through an impinger with fritted nozzle tipcontaining PFN solution, followed by fluorescencemeasurement

• allow particles to react with the PFN probe in a samplingliquid during sampling → avoid any possible chemicalchanges resulting from delays between the sampling andthe analysis of PM

• liquid impingement - not 100% efficient - collectionefficiency?

Miljevic, B., Modini, R.L., Bottle, S.E., Ristovski, Z.D., 2009. On theefficiency of impingers with fritted nozzle tip for collection of ultrafineparticles. Atmospheric Environment 43, 1372-1376.

• Size dependent collection efficiency determined

Page 12: Measurements of oxidative capacity of combustion generated … · 2016. 4. 13. · emissions from a compression ignition engine: the influence of biodiesel feedstock." Submitted to

a university for the worldreal R

15th ETH Conference on Combustion Generated Nanoparticles

Zürich, 27nd-29th June 2011

BPEAnit assay – sampling:

• bubbling aerosol through an impinger with fritted nozzle tip containing BPEAnit solutionfluorescence measurement

• solvent – dimethylsulfoxide (DMSO)• test & HEPA-filtered control sample taken

• I485nm(test) - I485nm(ctrl) I485nm(ROSparticle)

calibration curve

n (ROSparticle)

Normalized to the measured particle mass

Page 13: Measurements of oxidative capacity of combustion generated … · 2016. 4. 13. · emissions from a compression ignition engine: the influence of biodiesel feedstock." Submitted to

a university for the worldreal R

15th ETH Conference on Combustion Generated Nanoparticles

Zürich, 27nd-29th June 2011

Cigarette smoke - mainstream

460 480 500 520 540 560 5800

20

40

60

80

100

120

140

160

180

200 1 M BPEAnit 2 puffs 4 puffs 6 puffs 8 puffs

Fluo

resc

ence

inte

nsity

(a.u

.)

W avelength(nm)

0 2 4 6 820

40

60

80

100

120

140

160

180

Fluo

resc

ence

inte

nsity

at 4

85 n

m (a

.u.)

No. of puffs

10

Linearity, reproducibility? Puffs – equal volumes of aerosol of the same physicochemical properties

Linear, reproducibleMiljevic et al., Atmospheric Environment (2010) vol. 44 (18) pp. 2224-2230

Page 14: Measurements of oxidative capacity of combustion generated … · 2016. 4. 13. · emissions from a compression ignition engine: the influence of biodiesel feedstock." Submitted to

a university for the worldreal R

15th ETH Conference on Combustion Generated Nanoparticles

Zürich, 27nd-29th June 2011

Cigarette smoke Diesel exhaust Wood smoke

11

Page 15: Measurements of oxidative capacity of combustion generated … · 2016. 4. 13. · emissions from a compression ignition engine: the influence of biodiesel feedstock." Submitted to

a university for the worldreal R

15th ETH Conference on Combustion Generated Nanoparticles

Zürich, 27nd-29th June 2011

Wood smokeAutomatic pellet boiler: Log wood

stove:

• Automatically fed• More controlled combustion conditions

(air supply and amount of fuel) – moreefficient

• Low particle emissions – dominated byalkali metal salts (KCl, K2SO4)

• Manually fed (batch-wisecombustion)

• less controlled combustion• highly variable emissions –

higher percentage of organics and soot

Oxidative potential?

Page 16: Measurements of oxidative capacity of combustion generated … · 2016. 4. 13. · emissions from a compression ignition engine: the influence of biodiesel feedstock." Submitted to

a university for the worldreal R

15th ETH Conference on Combustion Generated Nanoparticles

Zürich, 27nd-29th June 2011

Wood smokeAutomatic pellet boiler: Log wood

stove:

Page 17: Measurements of oxidative capacity of combustion generated … · 2016. 4. 13. · emissions from a compression ignition engine: the influence of biodiesel feedstock." Submitted to

a university for the worldreal R

15th ETH Conference on Combustion Generated Nanoparticles

Zürich, 27nd-29th June 2011

Results: Sampling through thermodenuder (TD)

Importance of organics in oxidative potential of particles !

Page 18: Measurements of oxidative capacity of combustion generated … · 2016. 4. 13. · emissions from a compression ignition engine: the influence of biodiesel feedstock." Submitted to

a university for the worldreal R

15th ETH Conference on Combustion Generated Nanoparticles

Zürich, 27nd-29th June 2011

Results: ROS vs. organics

More “reactive”

Organics – from the AMS

Miljevic et al. Environ Sci Technol (2010) vol. 44 (17) pp. 6601-6607

Page 19: Measurements of oxidative capacity of combustion generated … · 2016. 4. 13. · emissions from a compression ignition engine: the influence of biodiesel feedstock." Submitted to

a university for the worldreal R

15th ETH Conference on Combustion Generated Nanoparticles

Zürich, 27nd-29th June 2011

Experimental Setup for Engine Emissions Measurements

Page 20: Measurements of oxidative capacity of combustion generated … · 2016. 4. 13. · emissions from a compression ignition engine: the influence of biodiesel feedstock." Submitted to

a university for the worldreal R

15th ETH Conference on Combustion Generated Nanoparticles

Zürich, 27nd-29th June 2011

Summary:

17

E0 E10

id le

E0 E20

25%

E0 E10 E20 E40

50%

E0 E400

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

RO

S co

ncen

tratio

n (n

mol

mg-

1)

1 00%

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

RO

S c

once

ntra

tion

(nm

ol m

g-1)

B u rn ing phase

C old-startup

C old-stab le

W arm (1) W arm (2) Sidestreamcig .sm oke

Accumulation

mode

Nucleation mode

occurrence

Page 21: Measurements of oxidative capacity of combustion generated … · 2016. 4. 13. · emissions from a compression ignition engine: the influence of biodiesel feedstock." Submitted to

a university for the worldreal R

15th ETH Conference on Combustion Generated Nanoparticles

Zürich, 27nd-29th June 2011

Ethanol fumigation

460 480 500 520 540 560 5800

1000

2000

3000

4000

5000

6000

7000

Fluo

resc

ence

inte

nsity

(a.u

.)

Wavelength (nm)

4 M BPEAnit E0 - control (HEPA filtered) E0 - test sample E40 - control (HEPA filtered) E40 - test sample

10 1000

1x108

2x108

3x108

4x108

5x108

6x108

dN/d

logD

p (# c

m-3)

Dp (nm)

E0 E40

1700 rpm, 100% load

18

I485nm(ROSparticle) = 4.5 xI485nm(ROSparticle)

Surawski et al. Environ Sci Technol (2010) vol. 44 (1) pp. 229-235

Page 22: Measurements of oxidative capacity of combustion generated … · 2016. 4. 13. · emissions from a compression ignition engine: the influence of biodiesel feedstock." Submitted to

a university for the worldreal R

15th ETH Conference on Combustion Generated Nanoparticles

Zürich, 27nd-29th June 2011

Two injection technologies and three fuels (Diesel, B20, FT blend)

Page 23: Measurements of oxidative capacity of combustion generated … · 2016. 4. 13. · emissions from a compression ignition engine: the influence of biodiesel feedstock." Submitted to

a university for the worldreal R

15th ETH Conference on Combustion Generated Nanoparticles

Zürich, 27nd-29th June 2011

Two injection technologies and three fuels (Diesel, B20, FT blend)

Surawski et al. accepted for publication in Environ. Sci. Technol (2011)DOI: 10.1021/es200388f

Page 24: Measurements of oxidative capacity of combustion generated … · 2016. 4. 13. · emissions from a compression ignition engine: the influence of biodiesel feedstock." Submitted to

a university for the worldreal R

15th ETH Conference on Combustion Generated Nanoparticles

Zürich, 27nd-29th June 2011

Two injection technologies and three fuels (Diesel, B20, FT blend)

Page 25: Measurements of oxidative capacity of combustion generated … · 2016. 4. 13. · emissions from a compression ignition engine: the influence of biodiesel feedstock." Submitted to

a university for the worldreal R

15th ETH Conference on Combustion Generated Nanoparticles

Zürich, 27nd-29th June 2011

Influence of biodiesel feedstock

3 different feedstock's:• Soy• Tallow• Canola• 20, 40, 60, 80 and 100% (only soy)Measured:• Particle mass, number and surface (NSAM)• PAH, ROS (only for 20% and 80% blends)• Organic (volatile) volume percentage

Page 26: Measurements of oxidative capacity of combustion generated … · 2016. 4. 13. · emissions from a compression ignition engine: the influence of biodiesel feedstock." Submitted to

a university for the worldreal R

15th ETH Conference on Combustion Generated Nanoparticles

Zürich, 27nd-29th June 2011

Particle mass Particle number

Page 27: Measurements of oxidative capacity of combustion generated … · 2016. 4. 13. · emissions from a compression ignition engine: the influence of biodiesel feedstock." Submitted to

a university for the worldreal R

15th ETH Conference on Combustion Generated Nanoparticles

Zürich, 27nd-29th June 2011

ROS concentrations

No dependence on the feedstock

Page 28: Measurements of oxidative capacity of combustion generated … · 2016. 4. 13. · emissions from a compression ignition engine: the influence of biodiesel feedstock." Submitted to

a university for the worldreal R

15th ETH Conference on Combustion Generated Nanoparticles

Zürich, 27nd-29th June 2011

ROS v.s. organic volume percentage

Page 29: Measurements of oxidative capacity of combustion generated … · 2016. 4. 13. · emissions from a compression ignition engine: the influence of biodiesel feedstock." Submitted to

a university for the worldreal R

15th ETH Conference on Combustion Generated Nanoparticles

Zürich, 27nd-29th June 2011

Consequences

• In underground mines or tunnels the ventilation rate is limited.

• Very often the air quality limits the number of vehicles that can be used and therefore the productivity.

• If the biodiesels were used due to their much smaller mass emissions they would have enabled a larger number of vehicles to be used until the ambient PM mass level would reach the maximum allowed.

• Although we would have the same ambient PM the particles would have a much larger oxidative capacity –more toxic.

Page 30: Measurements of oxidative capacity of combustion generated … · 2016. 4. 13. · emissions from a compression ignition engine: the influence of biodiesel feedstock." Submitted to

a university for the worldreal R

15th ETH Conference on Combustion Generated Nanoparticles

Zürich, 27nd-29th June 2011

Particle Surface area as a metric?

Surawski et al. submitted to Environ. Sci. Technol (2011)

Page 31: Measurements of oxidative capacity of combustion generated … · 2016. 4. 13. · emissions from a compression ignition engine: the influence of biodiesel feedstock." Submitted to

a university for the worldreal R

15th ETH Conference on Combustion Generated Nanoparticles

Zürich, 27nd-29th June 2011

• Similar results on the role of organic/volatile fraction on particle oxidative capacity also observed by others (see for example Biswas et al, EST, 2009) but with a different probe DTT.

• A decrease in particle mass/surface emission is very often followed by an increase in the volatile particle component – increase in the oxidative capacity of particles.

• Regulating only physical metrics mass/number/surface area would not be able to detect results such as those presented here.

• Not only the raw surface area of particles but also the surface chemistry of particles is important for assessing the health impacts of DPM.

Page 32: Measurements of oxidative capacity of combustion generated … · 2016. 4. 13. · emissions from a compression ignition engine: the influence of biodiesel feedstock." Submitted to

a university for the worldreal R

15th ETH Conference on Combustion Generated Nanoparticles

Zürich, 27nd-29th June 2011

Acknowledgement

• SkillPro Services Pty Ltd • Australian Coal Association Research Program

for funding project C18014• Australian Research Council Center for Free

Radical Chemistry and Biotechnology.