40
ME242 Vibrations- Mechatronics Experiment Daniel. S. Stutts Associate Professor of Mechanical Engineering and Engineering Mechanics Wednesday, September 16, 2009

ME242 Vibrations- Mechatronics Experimentweb.mst.edu/~stutts/ME242/PowerPointLectures/VibeMechPresF09.… · ME242 Vibrations-Mechatronics Experiment Daniel. S. Stutts Associate Professor

  • Upload
    others

  • View
    10

  • Download
    0

Embed Size (px)

Citation preview

  • ME242 Vibrations-Mechatronics Experiment

    Daniel. S. StuttsAssociate Professor of

    Mechanical Engineering and

    Engineering Mechanics

    Wednesday, September 16, 2009

  • 2

    Purpose of Experiment• Learn some basic concepts in vibrations and

    mechatronics.• Gain hands-on experience with common

    instrumentation used in the study of vibrations

    • Gain experience in taking and reporting experimental results in written and verbal form

  • 3

    Basic Concepts in Vibrations• Free vibration of a Single DOF system• Damping measurement via the logarithmic

    decrement method and half-power method.• Natural frequencies and modes of a beam in

    bending • Harmonic forcing via piezoceramic elements and

    the steady-state response

  • 4

    Basic Concepts in Mechatronics

    • Material properties and behavior of a piezoceramic, PZT (Lead Zirconate Titanate)

    • Electro-mechanical coupling: Actuation and Sensing

  • 5

    Instrumentation

    • Signal generator

    • Amplifier

    • Accelerometer and conditioning circuitry

    • Data acquisition computer

  • 6

    Cantilevered Beam Schematic

  • 7

    SDOF Oscillator

    ( )Mx Cx Kx f t+ + =&& &EOM:

    2 ( )2 n nf tx x xM

    ζω ω+ + =&& &Canonical form:

  • 8

    Solution to free-vibration problem

    22 0n nx x xζω ω+ + =&& &

    ( )2 2( ) cos 1 sin 1nt n nx t e A t B tζω ω ζ ω ζ−= − + −

  • 9

    Example Plot of Decaying Motion

    21 10d nω ω ζ= − =

    0.2nζω =

    0B =(Sine term set tozero)

  • 10

    Harmonic Forcing: Effect of Damping Near Resonance

    0( ) sinf t F tω=

  • 11

    Half-Power Method to Determine Damping

    nfff

    212 −≈ζ

    maxmax 707.0

    2max accaccrms U

    MUacc ≈=

  • 12

    Piezoelectric Effect

    • Direct effect: the charge produced when a piezoelectric substance is subjected to a stress or strain

    • Converse effect: the stress or strain produced when an electric field is applied to a piezoelectric substance in its poled direction

  • 13

    Perovskite Structure

  • 14

    Poling Geometry

  • Detailed View

    15

  • 16

    Poling Schedule

  • 17

    Field Induced Strain

  • 18

    Piezoelectric Constitutive Relations

    EεeSDEeScT

    S

    tE

    +=−=

    where

    Etcde =

    T = resultant stress vectorD = electric displacement vectorS = mechanical strain vectorE = electric field vectore = piezoelectric stress tensoret = piezoelectric stress tensor transposed = piezoelectric strain tensorcE = elastic stiffness tensor at constant fieldεS = dielectric tensor at constant strain

    and where

  • 19

    1-D Constitutive Equations

    ESYdDEYdYSTε+=

    −=

    31

    31

    Y = Young’s modulus

  • 20

    Relevant Geometry

  • 21

    Applied Voltage Distribution

  • 22

    Effective Moment Arm of PZT Elements

  • 23

    System Wiring Schematic

  • 24

    Interconnection Diagram

    CHAN 1 CHAN 2 CHAN 3

    X1 X1 X1 X1 X1 X1

    X100X100X100X100X100X100

    X10 X10

    Data Acquisition Input

    Piezo Inputconnections

    GND P1 P2 P3 P4 P5 P6

    Attenuator Outputs

    Isolated Attenuators

    GND P IN GND P IN

    PowerAmp SignalGenerator

    AttenuatorCables

    MUST be useddata Acq Card

    Interface

    DO NOTc onnec t

    anyting to thisbox!!

    ch0

    ch1

    ch2

    ch3

    ch3

    ch1

    ch2

    AccelerometerIntegrator

    Accelerometer

    ch1

    ch1

    ch2

    ch2

    PZT Ground

    PZT #1 drive line

    PZT #2 drive line

  • 25

    Mathematical model of an Ultrasonic Piezoelectric Toy

    The following is an example of the use of vibrations and mechatronics theory to model (or design) a simple piezoelectric toy.

    All of the theory presented in this example directly applies to modeling the piezoelectriclly driven cantilevered beam used in the ME242 lab, and explained in the vibrations mechatronics manual --http://web.mst.edu/~stutts/ME242/LABMANUAL/Piezo-Beam_F09.pdf.

    http://web.umr.edu/~stutts/ME242/LABMANUAL/MechVibLab.pdf

  • 26

    •PZT – Lead Zirconate Titanate (PbZrTiO3)

    • Applied voltage –> strain (converse effect)

    • Alternating strain in PZT “buckles” beam into first mode

  • 27

    • Crawler “gallops” due to beam flexingin its first natural mode – U(x)

    • First natural or “resonant” modecorresponds to first resonant frequencyat approximately 26k Hz – inaudibleto most humans – hence, “ultrasonic”

    • Beam is supported at nodes whereU(x) is zero so little vibratory energy islost.

  • 28

    Euler-Bernoulli Beam with Moment Forcing Equation of Motion

    ρ∂2u∂t2

    + c∂u∂t

    + YI∂ 4u∂x4

    = b∂ 2 Me(x,t)

    ∂x2

    Where, M(x, t) = rPZTd31YPZTV (x,t),and,

    [ ] txxHxxHVtxV ωsin)()(),( 210 −−−=

    ⎩⎨⎧ ≥=−

    otherwise ,0for ,1

    )(ax

    axHand,

  • 29

    Free Vibration SolutionThe general form of the spatial solution for the Euler-Bernoulli Beam is

    )sinh()cosh()sin()cos()( 43213 xAxAxAxAxU λλλλ +++=

    And the free-free boundary conditions are:

    0)()0( 23

    2

    23

    2

    =∂

    ∂=∂

    ∂x

    lUx

    U

    0)()0( 33

    3

    33

    3

    =∂

    ∂=∂

    ∂x

    lUx

    Uand

  • 30

    ( ) ( ) ( )( ) ( ) ( )( )⎥⎦

    ⎤⎢⎣

    ⎡+⎟

    ⎞⎜⎝

    ⎛++= xxAAxxAxU nn

    n

    nnnn λλλλ sinhsincoshcos1

    21

    The general eigen-solution for discrete eigenvaluesIs given in terms of the unknown constants:

    The leading constant is arbitrary, and may be set to unity.

  • 31

    Forced Free-Free Beam Solution

    ),(3 txbfxVubh +∂∂−=&&ρ

    Equation of Motion:

    Where u3 is the transverse deflection, V is the shear, b and h are the beam width and height respectively,and f(x,t) is an applied pressure in the 3-direction.

    xtxMtxV

    ∂∂= ),(),(

    For the Euler-Bernoulli beam, we have

  • 32

    32

    2

    3 FxMuh =

    ∂∂+&&ρ

    32

    2

    3 bFxMbuA =

    ∂∂+&&ρ

    ),(121

    3123

    23 txVYdr

    xu

    YhM pztpztss −∂∂

    =

    bhA =

    ( ) ( ) ( )txMtxMtxM em ,,, +=

    Hence:

    The moment, ignoring the stiffness of the PZT layer, is given by:

    where

    So, the total moment may be divided into mechanical and electrical components:

  • 33

    ( )23

    23

    121,

    xu

    YhtxM ssm

    ∂∂

    =

    ( ) ),(, 31 txVYdrtxM pztpzte −=

    ( ) ( )[ ] ( )txxHxxHVtxV o ωsin),( 21 −−−=

    ( ) ( ) ( )[ ] ( )txxxxVYdbrtxbFxu

    YIuu opztpzt ωδδγρ sin, 2131343

    4

    33 −′−−′+=∂∂

    ++ &&&

    [ ]2

    damping ddistributelength

    timeforce ⋅=≡γ ρρ bh=≡ lengthmassand

  • 34

    ( ) ( ) ( )∑∞

    ==

    13 ,

    nnn txUtxu η

    [ ] ( )( ) ( ) ( )[ ] ( )txxxxVYdbrtxF

    xUYI

    opztpzt

    nnnnnn

    ωδδ

    ηληγηρ

    sin, 213131

    4

    −′−−′+

    =++∑∞

    =

    &&&

    ( ) ( )tFtF mnnnnnn ˆˆ2 32 +=++ ηωηωξη &&&

    Seeking a solution in terms of the natural modes viathe modal expansion process, we have

    Canonical form, we have:

  • 35

    ( ) ( ) ( )

    ( ) ( ) ( ) ( )[ ]

    ( )

    ρξωρ

    λω

    ρωρ

    c

    YI

    dxxUN

    NxUxUtVYdbr

    tF

    NdxxUtxF

    tF

    n

    nn

    l

    nn

    n

    nnopztpztm

    n

    l

    n

    =

    =

    =

    ′−′=

    =

    2

    sinˆ

    2

    02

    1231

    0 33

    where

  • 36

    ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )xxllllxxxU nn

    nn

    nnnnn λλλλ

    λλλλ sinhsinsinhsin

    coscoshcoshcos +⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛−−++=

    ( ) ( ) ( ) ( ) ( )( )[ ]xxAxxxU nnnnnnn λλλλλ coshcossinsinh 2 ++−=′

    ( ) ( )nnn tt φωη −Λ= sin

    ( ) 22222*

    41 nnnnn

    nrr

    Fξω +−

  • 37

    ( ) ( )[ ]n

    nnopztpztn N

    xUxUVYdbrF

    ρ1231* ′−′=

    nnr ω

    ω=and where

    where we have ignored the contribution of any externaltransverse forcing (F3).

  • 38

    Crawler Steady State Simulation

  • 39

    Crawler displacement magnitude.

  • 40

    Ultrasonic Motor Example

    ME242 Vibrations-Mechatronics ExperimentPurpose of ExperimentBasic Concepts in VibrationsBasic Concepts in MechatronicsInstrumentationCantilevered Beam SchematicSDOF OscillatorSolution to free-vibration problemExample Plot of Decaying MotionHarmonic Forcing: Effect of Damping Near ResonanceHalf-Power Method to Determine DampingPiezoelectric EffectPerovskite StructurePoling GeometryDetailed ViewPoling ScheduleField Induced StrainSlide Number 181-D Constitutive EquationsRelevant GeometryApplied Voltage DistributionEffective Moment Arm of PZT ElementsSystem Wiring SchematicInterconnection DiagramSlide Number 25Slide Number 26Slide Number 27Euler-Bernoulli Beam with Moment Forcing Equation of MotionFree Vibration SolutionSlide Number 30Forced Free-Free Beam SolutionSlide Number 32Slide Number 33Slide Number 34Slide Number 35Slide Number 36Slide Number 37Crawler Steady State SimulationSlide Number 39Ultrasonic Motor Example