ME 2220_SP15_LEC05 - Position Analysis II

Embed Size (px)

Citation preview

  • Prof. Albert Espinoza

    Mechanical Engineering Department

    Polytechnic University of Puerto Rico

    Spring 2015

  • 2

  • Circuits and Branches in Linkages

    Circuit: All possible orientations of the links that can be realized without disconnecting any of the joints

    Branch: A continuous series of positions of the mechanism on a circuit between two stationary configurations.

    These stationary configurations divide the circuit into a series of branches

    Branch 1

    Branch 2

  • Crank-Slider Position Analysis

    This configuration is a variation of the four-bar linkage

    In a general configuration, theres an offset between the slider and the crank pivot (R4)

    By using four vectors, we can constrain R1 and R4 to always be oriented horizontally and vertically, respectively (1=0, 4=90)

    The direction of R3 is determined (arbitrarily) for convenience

    Given:

    Link Lengths: a, b, c, 1, 4 Input: 2 Find:

    3, d

    NOTE: c is commonly known as the offset of the crank-slider

  • 2 3 4 1 0R R R R

    32 4 1 0jj j j

    ae be ce de

    2 2 3 3

    4 4 1 1

    cos sin cos sin

    cos sin cos sin 0

    a j b j

    c j d j

    Real part (x component):

    2 3 4 1cos cos cos cos 0a b c d

    1 4but: 0, 90 , so:

    2 3cos cos 0 a b d

    Imaginary part (y component):

    2 3 4 1sin sin sin sin 0ja jb jc jd

    1 4but: 0, 90 , and the 's divide out so: j

    2 3sin sin 0 a b c

    1

    23

    1 2 31

    sinarcsin

    cos cos

    a c

    b

    d a b

    Vector Loop: Crank-Slider Position Solution

    2

    23

    2 2 32

    sinarcsin 180

    cos cos

    a c

    b

    d a b

  • Vector Loop: Crank-Slider Position Solution

    As is the case for the four-bar linkage, there are two possible solutions for 3 and d for a given input angle, 2

    These solutions define the open and crossed circuits

    Note that in the crossed case, d is negative

  • Example 1: Crank-Slider

    Given:

    2 3 21.4 in, 4 in, offset 1 in, 45L L

    Find:

    3 and for the open and crossed positions.d

  • 8

  • Slider-Crank Position Analysis

    Same configuration as before, except that in this case, the mechanism is driven at the slider

    For this reason, in this particular case:

    Given:

    Link Lengths: a, b, c, 1, 4 Input: d

    Find:

    2, 3

  • Vector Loop: Slider-Crank Position Solution

    2 3 4 1 0 R R R R

    32 4 1 0 jj j jae be ce de

    cos sinje j

    2 2 3 3 4 4 1 1cos sin cos sin cos sin cos sin 0 a j b j c j d j

    3 2

    3 2

    cos cos

    sin sin

    b a d

    b a c

    2 22 2 23 3 2 2sin cos cos sin b a d a c

    2 22

    2 2cos sin b a d a c

    2 2 2 2

    2 22 sin 2 cos 0 a b c d ac ad

    2 2 2 2

    1 2 3 2 2 K a b c d K ac K ad

    1 2 2 3 2sin cos 0 K K K

    1 3

    2

    1 3

    2

    A K K

    B K

    C K K

    2

    22 2

    2 tan2

    sin ;

    1 tan2

    2 2

    22 2

    1 tan2

    cos

    1 tan2

    2 2 2tan tan 02 2

    A B C

    1,2

    2

    2

    42arctan

    2

    B B AC

    A

    NOTE: Once 2 is known, then 3 can be calculated using either equation in Box 2 (Use second eq. for convenience) This equation will yield two possible solutions for 3, (same as crank-slider case) but only one solution will be compatible with the given information (must check to see which one)

  • Vector Loop: Slider-Crank Position Solution

    As is the case for the four-bar linkage, there are two possible solutions for a given d

    These solutions represent two different branches:

    For a given d, there are two combinations of 2 and 3

    Changes between these two branches can occur once the slider-crank reaches the extreme positions (Top Dead Center and Bottom Dead Center)

    In real systems, stored energy in the crank (a flywheel) is used to carry the mechanism through these extreme points without switching branches

  • Example 2: Slider-Crank

    Given:

    2 31.4 in, 4 in, offset 1 in, 2.5 inL L d

    Find:

    2 3all possible solutions for and .

  • 13

  • Vector Loop: Inverted Slider Crank Solution

    2 3 4 1 0R R R R

    32 4 1 0jj j j

    ae be ce de

    2 2 3 3

    4 4 1 1

    cos sin cos sin

    cos sin cos sin 0

    a j b j

    c j d j

    2 3 4cos cos cos 0a b c d

    2 3 4sin sin sin 0a b c

    2 4

    3

    sin sin

    sin

    a cb

    2 42 3 4

    3

    sin sincos cos cos 0

    sin

    a ca c d

    3 4

    2 2

    2 2

    sin sin cos cos

    sin cos cos sin

    sin

    P a a d

    Q a a d

    R c

    ; 2 ; S R Q T P U Q R

    1,2

    2

    4

    42arctan

    2

    T T SU

    S

  • Example 3: Inverted Slider-Crank

    Given:

    1 2 4 26 in, 2 in, 4 in, 90 , 30L L L

    Find:

    3 4all possible solutions for , , and b.

  • 16