MC0063(B)-unit11-fi

Embed Size (px)

DESCRIPTION

File

Citation preview

  • ModernApplicationsusingDiscreteMathematicalStructures Unit11

    SikkimManipalUniversity PageNo:234

    Unit11 Planarity,ColoringandPartitioningStructure

    11.1 Introduction

    Objectives

    11.2 PlanarandDualGraphs

    11.3 Coloring

    11.4 Partitioning

    11.5 AlgorithmsforChromaticNumber

    SelfAssessmentQuestions

    11.6 Summary

    11.7 TerminalQuestions

    11.8 Answers

    11.1Introduction

    In this unit we consider the embedding (drawing without crossings) of

    graphsonsurfaces,especiallytheplane.Westudythepropertiesofplanar

    graphsandobservesomeKuratowskisgraphs,andthecharacterizationof

    planar graphs. We also study the coloring of a graph, some of its

    characterizations and properties. We provide algorithm for finding a

    chromaticnumberofagivenconnectedgraph.

    Objectives:

    Attheendoftheunitthestudentmustbeableto:

    i) Studytheplanerepresentationofgraphs.

    ii) CharacterizetheKuratowskisgraphs.

    iii) Findachromaticnumberofagivengraph.

    iv) Apply the concepts to some real world problems like four color

    problem.

  • ModernApplicationsusingDiscreteMathematicalStructures Unit11

    SikkimManipalUniversity PageNo:235

    11.2PlanarandDualGraphs

    Consideragraph G1=(V,E, j).Supposevertexset V ={a,b,c,d,e}

    andanedgesetE={1,2,3,4,5,6,7}.Therelationshipbetweenthetwo

    sets V and E isdefinedbythemapping j.

    Here 1 {a, c} means that object 1 from E is mapped onto the pair

    (unordered){a,c}ofobjectsfrom V.G1=(V,E, j)canberepresentedby

    meansofageometricrepresentationgiveninfigure11.1.

    11.2.1Definition

    i) AgraphG issaidtobeaplanargraph ifthereexistssomegeometric

    representationofG whichcanbedrawnonaplanesuchthatnotwoof

    itsedgesintersect.

    ii) Agraphthatcannotbedrawnonaplanewithoutacrossoverbetween

    itsedgesiscalledanonplanargraph.

    iii) A drawing of a geometric representation of a graph on any surface

    suchthatnoedgesintersectiscalledanembedding.AgraphGisnon

    planar if all the possible geometric representations of G can not be

    embeddedinaplane.

    1 {a,c}5 {b,d} j =2 {c,d}6 {d,e}

    3 {a,d}7 {b,e}4 {a,b}

    b

    3

    a

    c d

    e

    1

    2

    4

    5

    6

    7Fig11.1

  • ModernApplicationsusingDiscreteMathematicalStructures Unit11

    SikkimManipalUniversity PageNo:236

    11.2.2Definition

    AgeometricgraphGis planarifthereexistsagraphG*whichisisomorphic

    toG thatcanbeembeddedinaplane.Otherwise, G isnonplanar.An

    embeddingofaplanargraphGonaplaneiscalledaplanerepresentation

    of G.Agraphisdrawnontheplanewithoutintersectingedgesiscalleda

    planegraph.

    11.2.3 Example

    ConsiderthegraphgiveninFig.11.2.3A.

    Ifwedraw theedge fout side thequadrilateralwhile theotheredgesare

    unchanged,thenwegettheFig2.3B.ThegraphgiveninFig2.3Bcanbe

    embeddedinaplane.SothegraphgiveninFig2.3Bisplanar.Therefore

    thegraphgiven inFig2.3A isaplanargraph. Thegraph2.3A isnota

    planegraphbutitisplanar.

    11.2.4 Example

    Observe the graphs (i) and (ii) given here. These two graphs are

    isomorphictoeachother.Buttheyaredifferentgeometricrepresentationsof

    thesamegraph.HereGraph(i)isaplanerepresentation,andtheGraph

    (ii)isnotaplanerepresentation.

    d

    a

    b

    c

    e

    f

    Fig.11.2.3A

    fe

    Fig11.2.3B

  • ModernApplicationsusingDiscreteMathematicalStructures Unit11

    SikkimManipalUniversity PageNo:237

    11.2.5 Example

    Considerthefollowinggraphs G1,G2 andG3.ClearlyG1andG3areplanar

    G3 is a geometric representation of G2 and G3 can be embedded in a

    plane.Therefore G2 isalsoaplanargraph.

    11.2.6Problem:Thecompletegraphof5vertices(denotedby K5)isa

    nonplanargraph.

    Proof:SupposethevertexsetofK5 is{v1, v2, v3, v4, v5}.

    Sincethegraphiscomplete,wegetacircuitgoingfromv1 to v2 to v3 to

    v4 to v5 tov1.Thatis,wehaveapentagon(giveninGraph(a)).

    Nowthispentagonmustdividetheplaneofthepaperintotworegions,one

    insideandtheotheroutside.

    Graph(i) Graph(ii)

    G1G2

    G3

  • ModernApplicationsusingDiscreteMathematicalStructures Unit11

    SikkimManipalUniversity PageNo:238

    Wehavetoconnect v1 and v3 byanedge.Thisedgemaybedrawn

    inside(or)outsidethepentagon(withoutintersectingthe5edgesofGraph

    A).Letusselectalinefrom v1 to v3 insidethepentagon.(ifwechoose

    outside, thenweendupwithasimilarargument).NowwehaveGraphB.

    Nowwehavetodrawanedgefromv2 to v4,andanotheronefrom v2

    to v5. Since neither of these edges can be drawn inside the pentagon

    withoutcrossingovertheedgesthathavealreadydrawn,wehavetodraw

    boththeseedgesoutsidethepentagon.

    NowwehaveGraphC.Theedgeconnectingv3 andv5 cannotbedrawn

    outsidethepentagonwithoutcrossingtheedgebetween v2and v4.So v3

    and v5 havetobeconnectedwithanedgeinsidethepentagon.Nowwe

    havetheGraphD.

    v1

    v2

    v3

    v4v5

    GraphA

    v2

    v1v3

    v4v5

    GraphB

    v2

    v1 v3

    v4v5

    Graph C

    v2

    v1 v3

    v4v5

    Graph D

    v2

    v1 v3

    v4v5

    Graph E

  • ModernApplicationsusingDiscreteMathematicalStructures Unit11

    SikkimManipalUniversity PageNo:239

    Nowwehavetodrawanedgebetween v1 and v4. It isclearthatthis

    edge can not be drawn either inside (or) outside the pentagon without a

    crossover(ObserveGraphE).

    Thusthisgraphcannotbeembeddedinaplane.Hencethecompletegraph

    K5 on5verticesisnonplanar.

    11.2.7Definition

    A Jordancurve is the continuousnonselfintersecting curvewhoseorigin

    andterminuscoincide.

    11.2.8Example

    i) C1isnotaJordancurve(sinceitintersectsitself).

    ii) C2 is not a Jordan curve (because origin and terminus are not

    coincide).

    iii) C3 isaJordancurve.

    11.2.9Definition

    Considerthegraphs(i)and(ii)givenhere.Theseareregular(eachvertex

    isofsamedegree)connectedgraphswith6verticesand9edges.These

    two graphs are isomorphic and so they represent the same graph. This

    graphiscalledastheKuratowskis2nd graph. Thesetwographsshowthe

    twocommongeometricrepresentationsoftheKuratowski'ssecondgraph.

    intersection

    C1

    origin terminus

    C2

    C3

  • ModernApplicationsusingDiscreteMathematicalStructures Unit11

    SikkimManipalUniversity PageNo:240

    TheKuratowskis2ndgraphisdenotedby K3,3.

    11.2.10Problem:Provethat theKuratowskis 2nd graph (that isK3,3) isa

    nonplanargraph.

    Solution:ObservetheKuratowskis2ndgraphK3,3.

    Itisclearthatthegraphcontainssixvertices vi,1 i 6andthereare

    edges 21vv , 32vv , 43vv , 54vv , 65vv , 16vv .Nowwehave

    aJordancurve.Soplaneofthepaperisdividedintotworegions,oneinside

    andtheotheroutside.Since v1 isconnectedto v4,wecanaddtheedge

    (i) (ii)

    v3

    v4

    v1 v2

    v5

    v6

    K3,3

    v3

    v4

    v1 v2

    v5

    v6

    Fig.11.2.10A

    inside

    outside

    v3

    v4

    v1 v2

    v5

    v6

    Fig.11.2.10B

    v5

    v3

    v4

    v1 v2

    v6

    Fig 11.2.10C

  • ModernApplicationsusingDiscreteMathematicalStructures Unit11

    SikkimManipalUniversity PageNo:241

    41vv in either inside or outside (without intersecting theedges already

    drawn).Letusdraw 41vv inside.(Ifwechooseoutside,thenweend

    upwiththesameargumentNowwehavetheFig.11.2.10(B))Nextwehave

    todrawanedge 52vv andalsoanotheredge 63vv .Firstwedraw

    52vv .Ifwedrawitinside,wegetacrossovertheedge 41vv .Sowe

    drawitoutside.ThenwegettheFig.11.2.10(C).Stillwehavetodrawan

    edgefrom v3 to v6.If 63vv drawninside,itcrosstheedge 41vv

    (seetheFig.11.2.10(D)).

    Sowecannot draw it inside. Soweselect the caseofdrawing 63vv

    crosstheedge 52vv (seetheFig.11.2.10(E)).Thus 63vv cannotbe

    drawneitherinsideoroutsidewithoutacrossover.Hencethegivengraph

    isnotaplanargraph.

    11.2.11PropertiesofKuratowskis1stand2ndgraphs:

    i) Bothareregulargraphs.

    ii) Botharenonplanner.

    iii) Removalofoneedge(or)vertexmakeseachaplanargraph.

    iv) The two graphs are nonplanar with the smallest number of edges.

    Thusbotharethesimplestnonplanargraphs.

    v3

    v1 v2

    v4v5

    v6

    Fig11.2.10(D)

    v1 v2

    v3

    v4v5

    v6

    Fig.11.2.10(E)

  • ModernApplicationsusingDiscreteMathematicalStructures Unit11

    SikkimManipalUniversity PageNo:242

    Observation:Aplanegraph G dividestheplaneintonumberofregions

    [alsocalledwindows,faces,ormeshes]asshowninfollowingfigure.

    Aregioncharacterizedbythesetofedgesorthesetofverticesformingits

    boundary.

    Intheabovefigure,thenumbers1,2,3,4,5,6standfortheregions.

    Aregionisnotdefinedinanonplanargraph.

    Forexample,wecannotdefineregioninthegraphgivenbelow.

    Observation:Theportionof theplane lyingoutsideagraphembedded in

    plane (such as the region 4 in the first graph) is called an infinite [or

    unbounded or outer or exterior] region for that particular plane

    representation.

    11.2.12Example

    Observe thegraphgiven in theFig.11.2.12.Clearly ithas4 regions.The

    region4isaninfiniteregion.

    6

    4

    5

    321

    v6

    v1

    v2 v3

    v4

    v5

    1 2

    3

    4

    Fig.11.2.12

  • ModernApplicationsusingDiscreteMathematicalStructures Unit11

    SikkimManipalUniversity PageNo:243

    Ifweconsider twodifferentembeddingsofagivenplanargraph, then the

    infiniteregionsofthesetworepresentationsmaybedifferent.

    11.2.13Theorem:Agraphcanbeembeddedinthesurfaceofasphere if

    andonlyifitcanbeembeddedonaplane.

    11.2.14Theorem:Aplanargraphmaybeembedded inaplanesuch that

    any specified region (that is, specified by the edges forming it) can be

    madetheinfiniteregion.

    11.2.15EulersFormula: Aconnectedplanargraphwithn verticesande

    edgeshas en+2regions.

    [LetG beaconnectedplanegraphandlet n, e,andf denotethenumber

    ofvertices,edgesandfaces(orregions)of G respectively.Then ne

    +f =2(or) f = en+2].

    Proof: (UsingMathematicalInductiononthenumberoffacesf).

    Part(i): Supposethat f=1.

    ThenG hasonlyoneregion.IfG containsacycle,thenitwillhaveatleast

    twofaces,acontradiction.SoG containsnocycles.

    SinceG isconnected,wehavethatG isatree.

    Weknowthatinatreen = e+1.

    So en+2= e(e+1)+2=1=f.Sothestatementistruefor f =1.

    Part(ii): InductionHypothesis:Supposethat f>1,andthetheoremistrue

    forallconnectedplanegraphswiththenumberoffaceslessthan f.

    Sincef>1,wehavethatG isnotatree(asatreecontainsonlyoneinfinite

    region).

    ThenG hasanedgek,whichisnotabridge[sinceG isatreeifandonlyif

    everyedgeofG isabridge].

  • ModernApplicationsusingDiscreteMathematicalStructures Unit11

    SikkimManipalUniversity PageNo:244

    Sothesubgraph Gk isstillconnected.

    Sinceanysubgraphofaplanegraph isalsoaplanegraph,wehave that

    Gk isalsoaplanegraph.Since k isnotabridge,we

    havethatk isapartofacycle[sinceanedgeeofG isabridgeifandonly

    if e isnotpartofanycycleinG].

    Soitseparatestwofaces F1and F2 of G fromeachother.

    Thereforein Gk,thesetwofaces F1and F2 combinedtoformoneface

    of Gk.Wecanobservethisfactinabovegraphs.

    Let n(Gk), e(Gk), f(Gk)denotethenumberofvertices,edgesand

    facesof Gk respectively.

    Nowwehave n(Gk)= n, e(Gk)= e1and f(Gk)= f1.

    Byourinductionhypothesis,wehavethatn(Gk)e(Gk)+f(Gk)=2

    n(e1)+(f1)=2 n e+f =2 f = en+2.

    HencebyMathematicalInduction,weconcludethatthestatementistruefor

    allconnectedplanargraphs.

    11.2.16Definition:Let f beafaceofaplanegraphG.Wedefinethedegree

    of f (denotedby d(f))tobethenumberofedgesontheboundaryof f.For

    anyinteriorface f ofasimpleplanegraph,wehavethat d(f) 3.

    11.2.17Theorem:LetG beasimpleplanargraphwith nverticesand e

    edges,wheren 3.Then(i)2e 3f(or e f23 )(ii) e (3n6)

    F2

    F1 Fig. 11. 2.15 B

    Graph G k 3 faces

    Fig 11.2.15 A Graph G 4 faces

    k

  • ModernApplicationsusingDiscreteMathematicalStructures Unit11

    SikkimManipalUniversity PageNo:245

    11.2.18Example: Using theEulers theorem,weverify that Kuratowskis

    1stgraph K5 (Thecompletegraphonfivevertices)isnonplanar.

    Ifpossible,supposethatK5 isplanar.Observethegraph(giveninFig2.18)

    for K5.

    Here,n =5 3and e =10.ByEulertheorem,wehavethat3n6

    e 9 e =10,acontradiction.Soweconcludethat K5 isanon

    planargraph.

    Fromthefollowingexamplewecanunderstandthat K3,3 isanonplanar

    graphandsatisfiestheconditionthat e 3n6.

    11.2.19Example: Showthat K3,3 isnonplanar.

    UsingEulersFormula:Ifpossiblesupposethat K3,3 isplanar.Notethat n

    =6and e =9.

    In K3,3 everyfacehasatleastfouredgesonitsboundary.

    So d(f) 4foreachface f.Write b = x f f)(d (i)where x denotesthesetofallfacesof G.

    Fig. 11. 2.18

    K3,3

  • ModernApplicationsusingDiscreteMathematicalStructures Unit11

    SikkimManipalUniversity PageNo:246

    Thenotationweuseis|x |=f.Now b= x f f )(d x f 4 =|x |

    4=4f.

    Sinceeachedgewascountedeitheronceor twice in (i) (if it iscounted)

    (twiceifitoccurredasaboundaryedgefortwofaces),wehavethat b

    2e.

    Therefore2e b 4f e 2f e 2(e n+2)(sincef =en+2)

    9 2(96+2) 9 2(5) 9 10,acontradiction.

    Hence K3,3 isanonplanargraph.

    11.2.20Definition:

    Let G beaplanegraph. Wedefinethedualof G tobethegraph G*

    constructedasfollows:

    i) Toeachface(orregion) f of G thereisacorrespondingvertex f*

    of G*.

    ii) Toeachedge e of G,thereisacorrespondingedge e* of G* [if

    theedge e occursontheboundaryofthetwofaces f and g,then

    createanedge e* thatjoinsthecorrespondingvertices f* and g*

    in G*].

    [Iftheedge e isabridge,thenwetreatitasanedge,itoccurstwice

    on the boundary of the face f in which face it lies. So the

    correspondingedge e* isaloopincidentwiththevertex f* in G*].

    11.2.21Constructionofadualfromagivengraph:

    Step(i):Considerthegivenplanargraph andidentifytheregionsFi,1 i n.

    [Considertheplanerepresentationof thegraphgiveninFig.11.2.21A. In

    thisgraphthereare6faces(orregions)F1, F2, F3, F4, F5,and F6].

    Step(ii): Place thepointsp1, p2,, pn on theplaneone for eachof the

    regions.

  • ModernApplicationsusingDiscreteMathematicalStructures Unit11

    SikkimManipalUniversity PageNo:247

    [Intheexample,place6points p1, p2, p3, p4, p5,p6. Notethat pi isa

    pointintheinterioroftheregion Fi].ObservetheFig.11.2.21B.

    Step(iii): If two regions Fi and Fj are adjacent (that is, having a

    commonedge),thendrawalinejoiningthecorrespondingpointspi and pj

    thatintersectsthecommonedgebetween Fi and Fj exactlyonce.

    [Ifthereismorethanoneedgecommonbetween Fi and Fj,thenwedraw

    onelinebetweenthepoints pi and pj foreachofthecommonedges].

    Weperformthisprocedureforall i, j {1,2,.,n}suchthat i j.

    Step(iv):Supposea region Fk containsanedge e lyingentirely in it,

    thenwedrawaselfloopatthepointpk intersecting e exactlyonce.

    We perform this procedure for all such Fk. By using this procedure we

    obtainanewgraph G*.Suchagraph G* obtainedhereiscalledadual

    (orgeometricdual) of G.

    [In this example, the dual G* was shown with broken lines (observe

    Fig.11.2.21C).Thisdual G* consistof6vertices p1, p2, p3, p4, p5,

    and p6 andtheedges(broken)joiningthesevertices].

    F6F2

    F3

    F4

    F1 F5

    Fig. 11.2.21A Fig. 11.2.21C Fig 11.2.21 B

    2p

    6p

    1p 5p3p

    4p

  • ModernApplicationsusingDiscreteMathematicalStructures Unit11

    SikkimManipalUniversity PageNo:248

    11.2.22Observations

    i) Fromtheconstructionof thedual G* of G, it isclearthat there isa

    onetoonecorrespondencebetweenthesetofalledgesof G andthe

    setofalledgesof G*.Alsooneedgeof G* intersectsoneedgeof G.

    ii) AnedgeformingaselfloopinGyieldsapendentedgein G* anda

    pendentedgein G yieldsaselfloopin G*.

    iii) Edgesthatareinseriesin G produceparalleledgesin G*.

    [If e1, e2 areinseriesin G,then 1*e , 2*e areparallelin G*].

    iv) Paralleledgesin G produceedgesinseriesin G*.

    v) It is a general observation that the number of edges constituting the

    boundary of a region Fi in G is equal to the degree of the

    correspondingvertexpi in G*,andviceversa.

    vi) Thegraph G* isembeddedintheplane,andso G* isalsoaplanar

    graph.

    vii) Consider the process of drawing a dual G* from G. It can be

    observedthat G isadual G*.Thereforeinsteadofcalling G*,a

    dualof G,wecanusuallysaythat G and G* aredualgraphs.

    11.3.Coloring

    OneofthemostfamousproblemsinGraphtheoryisthefourcolorproblem.

    Theproblemstatesthatanymaponaplaneoronthesurfaceofasphere

    canbecoloredwithfourcolorsinsuchawaythatnotwoadjacentcountries

    have the same color. This problem can be translated as pa problem in

    GraphTheory.Werepresenteachcountrybyapointandjointwopointsby

    a line if thecountriesareadjacent. Theproblem is tocolor thepoints in

    suchwaythatadjacentpointshavedifferentcolors.Thisproblemwasfirst

    posedin1852byFrancisGuthrie(astudentattheuniversitycollege,London).

    Fourcolorconjectures(4CC)wasthemostfamousunsolvedproblemingraph

    theory.Inthissectionwegivebriefideaofcoloringofagraph.

  • ModernApplicationsusingDiscreteMathematicalStructures Unit11

    SikkimManipalUniversity PageNo:249

    11.3.1Definition

    i) LetG beagraph.Paintingall theverticesof thegraph G with the

    given n colorssuchthatnotwoadjacentverticeshavethesamecolor,

    iscalledapropercoloring(or)simplycoloringofthegraph G.

    ii) Agraphinwhicheveryvertexhasbeenassignedacoloraccordingto

    "propercoloring"iscalledaproperlycoloredgraph.

    11.3.2Note:Agivengraph G canbeproperlycoloredindifferentways.

    ThefollowingFigures2.2(a),(b),(c)showthreedifferentpropercoloringsof

    thesamegraph G.

    11.3.3Definition

    A graphG that requires k different colors for its proper coloring andno

    less,iscalleda kchromaticgraphandthenumberkiscalledthechromatic

    number(orchromaticindex)of G.

    11.3.4Observations:

    i) ThegraphgivenintheFig.11.3.2(c)isa3chromaticgraph.

    ii) IfthegraphG hasloopatthevertex v,thenv isadjacenttoitselfand

    so no proper coloring for G is possible. So we assume that in any

    coloring(thevertices)context,thegraphsconsideredhavenoloops.

    v4 Pink

    v5Yellow

    v3Green

    v2 Blue

    v1 Red

    Fig. 11.3.2(a) 5 colors used

    v4 Red

    v5Yellow

    v3Green

    v2 Blue

    v1 Red

    Fig. 11.3.2(b) 4 colors used

    v4 Red

    v5Yellow

    v3Yellow

    v2 Blue

    v1 Red

    Fig. 11.3.2(c) 3 colors used

  • ModernApplicationsusingDiscreteMathematicalStructures Unit11

    SikkimManipalUniversity PageNo:250

    iii) In graphs considering for coloring, there is no point in considering a

    disconnected graph. Coloring vertices in one component of a

    disconnected graph has no effect on the coloring of the other

    components.Soweusuallystudythecoloringoftheconnectedgraphs

    only.

    iv) Paralleledgesbetweenanypairofverticescanbereplacedbyasingle

    edgewithouteffectingtheadjacencyofthevertices.

    v) For coloring problems, we need to consider only simple connected

    graphs.

    11.3.5Observations:

    i) Agraphconsistingofonlyisolatedverticesis1chromatic.

    ii) Agraphwithoneormoreedges isat least2chromatic. 2chromatic

    graphsarealsocalledasbichromaticgraphs.

    iii) A complete graph on n vertices is nchromatic, as every pair of

    verticesareadjacent.Soagraphcontainingacompletegraphon r

    verticesisatleast rchromatic.

    [Soeverygraphcontainingatriangleisatleast3chromatic].

    iv) A graph consisting of simply one circuit with n 3 vertices is 2

    chromatic if n iseven,and3chromatic if n isodd. [Numberthe

    verticesas1,2,,n (sequence)andassignonecolortooddvertices,

    andanothertoeven.If n iseven,thennoadjacentverticeswillhave

    thesamecolor.Thusif n iseven,thenthegraphis2chromatic.If n

    isodd, then the nth andfirstvertexwillbeadjacentandhaving the

    samecolor.Soitrequiresathirdcolorforitspropercoloring.Thusif

    n isodd,thenthegraphis3chromatic].

    Graph Kp Kpx pK Km,n C2n C2n+1

    ChromaticNumber

    p p1 1 2 2 3

  • ModernApplicationsusingDiscreteMathematicalStructures Unit11

    SikkimManipalUniversity PageNo:251

    11.3.6Theorem:Everytreewithtwoormoreverticesis2chromatic.

    Proof:Selectanyvertexvinthegiventree.

    Consider T as a rooted tree at vertex v. Paint v with color 1. Paint all

    verticesadjacenttovwithcolor2.

    Next,painttheverticesadjacenttothese(thosethatjusthavebeencolored

    with2)usingcolor1.

    ContinuethisprocesstilleveryvertexinThasbeenpainted.

    NowinTwefindthatallverticesatodddistancesfromvhavecolor2while

    v and vertices at even distances from v have color 1. (Observing the

    followingtree).

    NowalonganypathinTtheverticesareofalternatingcolors.

    Sincethereisoneandonlyonepathbetweenanytwoverticesinatree,no

    two adjacent vertices have the same color. Thus T has been properly

    coloredwithtwocolors.Onecolorwouldnothavebeenenough.

    11.3.7 Remark:

    i) Every2chromaticgraphmaynotbeatree.

    ii) Theutilitiesgraphisnotatreebutitis2chromatic

    1

    2

    2

    1

    2

    22

    2

    1

    Fig. 11.3.6

  • ModernApplicationsusingDiscreteMathematicalStructures Unit11

    SikkimManipalUniversity PageNo:252

    Considerthefollowinggraph.

    .

    11.3.8 Definition

    Let G beagraph.Write

    dmax =max{d(v)/v isavertexof G}.

    Thendmax iscalledthemaximumdegreeofverticesinthegraph G.

    11.3.9Notation

    i) dmax(G)=maximumofthedegreesoftheverticesinthegivengraph G.

    ii) dmax(Gv)=maximumofthedegreesoftheverticesinthegraphGv.

    iii) k(G)=thechromaticnumberof G.

    11.3.10Theorem

    ForanygraphG,chromaticnumber 1+dmax.(Thatis,k(G) 1+dmax).

    11.4Partitioning:

    11.4.1Definition:

    Let G =(V,E)beabipartitegraphwiththepartition{V1,V2}of V such

    thateveryedgein G joinsavertexin V1 andavertexin V2.Ifforanypair

    ofpointsv1 V1and v2 V2 therecorrespondsanedge 21vv in G,thenwe

    callthegraphascompletebipartitegraph.If V1 containsmverticesand V2

    contains n vertices,thenthatcompletebipartitegraphisdenotedby Km,n.

    11 1

    22 2

    Fig11.3.7BUtilitiesgraph

    B

    RR

    B

    Fig.11.3.7A2chromaticbutnotatree

    BforBlueRforRed

  • ModernApplicationsusingDiscreteMathematicalStructures Unit11

    SikkimManipalUniversity PageNo:253

    11.4.2Example

    i) Graph11.4.2A, is K3,3 which isabipartitegraphwith thebipartition

    V1={v1,v2,v3}, V2={v4,v5,v6}.ThisisalsoknownasKurotoski's2nd

    graph.

    ii) Graph 11.4.2 B is K4,3 is a bipartite graph with the bipartition

    V1={v1,v2,v3,v7},

    V2={v4,v5,v6}.

    11.4.3Observations:

    i) Everytreeisabipartitegraph.

    ii) Abipartitegraphcontainsnoselfloops.

    iii) Asetofparalleledgesbetweenapairofverticescanbereplacedby

    oneedgewithoutaffectingbipartitenessofagraph.

    iv) Every2chromaticgraphisbipartite.

    [Verification:LetG bea2chromaticgraphcoloredwithcolor1and

    color2.

    Write Vi =thesetofverticeswithcolori for i =1,2.

    Now V1 V2 = f .Notwoverticesof V1 (or V2)areadjacent.So

    everyedgeconnectsavertexof V1 andavertexof V2].

    v) Every bipartite graph is 2chromatic with one trivial exception (the

    exception isthatagraphof twoormoreisolatedverticesandwithno

    edgesisabipartitegraph,butitis1chromatic).Sowecanconclude

    thatabipartitegraphiseither1chromaticor2chromatic.

    v v v

    vvv

    Graph 11.4.2 A

    vvv

    vvvv

    Graph 11.4.2B

  • ModernApplicationsusingDiscreteMathematicalStructures Unit11

    SikkimManipalUniversity PageNo:254

    11.4.4Definition

    A graph G is called ppartite if its vertex set can be partitioned into p

    disjointsubsets V1, V2,,Vp suchthatnoedgein G joinstwoverticesof

    thesamesubset Vi for1 i p.

    11.4.5 Example

    Thefollowinggraphisa3bipartitegraph.HereV1={v1,v2},V2={v3,v4}and

    V3={v5}.ObservethatthereisnoedgeinGwhichjoinstwoverticesinthe

    sameset Vi,1 i 3.

    11.4.6Definition

    A set of vertices in agraph is said tobe an independent set of vertices (or)

    independentset(or)internallystableset ifnotwo verticesinthesetareadjacent.

    11.4.7Problem:Thefollowingstatementsareequivalent:

    i) Gis2colorable

    ii) Gisbipartite

    iii) EverycycleofGhasevenlength.

    11.4.8Example:

    i) Asetconsistingofasinglevertexformsanindependentset.

    ii) ConsiderthegraphgiveninFig.11.4.8.

    Heretheset{a,c,d}isanindependentset.

    a

    f

    gd

    e

    b

    c

    Fig. 11.4.8

    v2

    v4

    v1

    v3

    v5

  • ModernApplicationsusingDiscreteMathematicalStructures Unit11

    SikkimManipalUniversity PageNo:255

    11.4.9Definition

    i) A maximal independent set (or) maximal internally stable set is an

    independent set to which no other vertex can be added without

    destroyingitsindependenceproperty.

    [Inotherwords,amaximalindependentsetisamaximalelementinthe

    collectionofallindependentsets].

    ii) A graphmay havemanymaximal independent sets. Among these,

    thenumberofverticesinthelargestindependentsetofagraph G is

    calledtheindependentnumberofG(or)coefficientofinternalstability,

    and thisnumber is denoteby b(G). Here largest setmeans the set

    containingmorenumberofelements.

    11.4.10Example

    i) Thesets{a,c,d,f},{b,f},{b,g},{b,e}aremaximalindependentsets

    ofthegraphgiveninFig4.8.Theindependencenumberofthisgraph

    is4.

    11.4.11Note:

    Consider a kchromatic graph G of n vertices properly colored with k

    differentcolors. Takeaset Aofverticeswithsamecolor. Thenno two

    verticesinAcannotbeadjacent.SoAisalinearlyindependentset.So

    |A| b(G).

    Thelargestnumberofverticesin G withthesamecolor b(G)

    k

    n b(G).

    11.5AlgorithmsforChromaticNumbers

    11.5.1 Algorithm to find the independence number b (G) of a given

    graph G:

  • ModernApplicationsusingDiscreteMathematicalStructures Unit11

    SikkimManipalUniversity PageNo:256

    Step(i):Findallthemaximalindependentsetsofthegivengraph.

    Step(ii): Find out the number of elements in eachmaximal independent

    set.

    Step(iii):FindthelargestnumberamongthenumbersobtainedinStep(ii).

    Thisnumberis b (G)whichdenotestheindependencenumberof G.

    11.5.2Example

    ConsiderthegraphinFigure11.5.2.

    i) Themaximalindependencesetare{a,c,d,f},{b,g},{a,e},{a,c,d,g},

    {b,f}.

    ii) The largest number among the number of elements in the maximal

    independentsetsis4.

    Thustheindependencenumberof G is b (G)=4.

    11.5.3 Algorithmtofindthechromaticnumber

    k(G)ofagivengraph G.

    Step(i):Findallthemaximalindependentsetsofthegivengraph G.

    Step(ii):Express V astheunionofsomeofmaximalindependentsets.

    Step(iii): In different expressions (obtained in Step(ii)), the number of

    maximalindependentsetsusedaredifferent.Wefindtheminimumnumber

    k(G)ofmaximalindependentsetswhoseunionisequalto V.Thisnumber

    isthechromaticnumberof G.

    a

    f

    gd

    e

    b

    c

    Fig. 11.5.2

  • ModernApplicationsusingDiscreteMathematicalStructures Unit11

    SikkimManipalUniversity PageNo:257

    11.5.4Example

    ConsiderthegraphgiveninFig.11.5.2.

    Step(i):Themaximalindependentsetare{a,c,d,f},{a,c,d,g},{b,g},{b,

    f},{a,e}.

    Step(ii):V={a,c,d,f} {b,g} {a,e},V={a,c,d,g} {b,f} {a,e}

    V={a,c,d,f} {b,g} {a,e} {a,c,d,g}.

    We can express V in different ways. Finally, we can observe that the

    minimumnumberof independentsets thatcanbeusedis3. Thusforthis

    example, k(G)=3.

    11.5.5Definition:

    i) Let G beasimpleconnectedgraph.Findapartitionofallthevertices

    of G intothesmallestpossiblenumberofdisjoint,independentsets.

    Finding suchapartition is knownas the chromaticpartitioning of the

    graph.

    ii) A graph that has only one chromatic partition is called a uniquely

    colorablegraph.

    11.5.6Example

    ConsiderthegraphintheFig.11.5.2.

    Thenthefourchromaticpartitioningof G aregivenbelow:

    i) {{a,c,d,f},{b,g},{e}},(ii){{a,c,d,g},{b,f},{e}}

    ii) {{c,d,f},{b,g},{a,e}},(iv){{c,d,g},{b,f},{a,e}}.

    11.5.7Note

    {{a},{b},{c},{d},{e},{f},{g}}isapartitionofthesetofverticesintodisjoint

    independentsets.Itdoesnotcontaintheminimumnumberofsets.Hence

    thisisnotachromaticpartition.

  • ModernApplicationsusingDiscreteMathematicalStructures Unit11

    SikkimManipalUniversity PageNo:258

    11.5.8Example

    i) ThegraphinFigure11.5.2isnotuniquelycolorable.

    (Since,thereareseveralchromaticpartitions(ObserveExample5.6)).

    ii) ButthegraphinFigure11.5.8isuniquelycolorable.

    (Since,{v1},{v5,v3},{v2,v4}isonlythechromaticpartition).

    iii) isuniquelycolorable.

    iv) Inthisgraph{v1,v4},{v2},{v3}and{v1},{v2,v4},{v3}aretwochromatic

    partitioningexist.Sothisgraphisnotuniquelycolorable.

    11.5.9Definition:

    Let G beagraph, V thesetofverticesof G,and W V.

    i) Theset W issaidtobeadominatingset(orexternallystableset)ifit

    satisfies the following condition: v V either v W or there

    exists u W suchthat u and v areadjacent.

    ii) Wesaythat W dominatesavertex v V ifeitherv W orthere

    exists u W suchthat u and v areadjacent.

    iii) Aminimaldominatingsetisadominatingsetfromwhichnovertexcan

    be removed without destroying its dominance property. [In other

    words,aminimalelement in thesetofalldominatingsets iscalleda

    minimaldominatingset].

    11.5.10Note:

    i) It is clear thatW is a dominating set for a graphG if and only ifW

    dominateseveryvertex v of G.

    ii) Dominatingsetneednotbeindependent.

    iii) Thesetofallverticesofanygraph G isadominatingsetfor G.

    v1v2

    v3v4

    v5

    Fig. 11.5.8 v4

    v2 v3

    v1

    v2 v3

    v1

  • ModernApplicationsusingDiscreteMathematicalStructures Unit11

    SikkimManipalUniversity PageNo:259

    11.5.11 Example:ConsiderthegraphinFig.11.5.11.

    i) The vertex sets {b, g}, {a, b, c, d, f} and {a, b, c, d, e, f, g} are

    dominatingsets.

    ii) Thevertexset{a,f,g}isnotadominatingset.

    iii) Theset{a,b,c,d,e,f,g}isadominatingset.

    iv) {a,f,g}isnotadominatingset.

    11.5.12Example

    ConsiderthegraphgiveninFig.11.5.11.Thevertexsets{a,c,d,f},

    {a,d,e},{a,c,d,g},{b,e},and{b,f}aresomeminimaldominatingsets.

    11.5.13Observations

    i) Foranyvertex v inacompletegraph, theset{v} formsaminimal

    dominatingset.

    ii) Everydominatingsetcontainsatleastoneminimaldominatingset.

    iii) A graph may have many minimal dominating sets (observe the

    Example11.5.11).Thenumberofelements intheminimaldominating

    setsmaydiffer. Thenumbermin{numberofelements in W /W isa

    minimaldominatingsetofagraphG}iscalledthedominatingnumber

    of G.Thisdominationnumberisdenotedby a (G).

    So a (G) = min{number of elements in W / W is a minimal

    dominatingset}.

    iv) Aminimaldominatingsetmaynotbeindependent.

    a

    f

    gd

    e

    b

    c

    Fig. 11.5.11

  • ModernApplicationsusingDiscreteMathematicalStructures Unit11

    SikkimManipalUniversity PageNo:260

    Forexample,wemayconsiderthegraphgivenintheFig.11.5.13A.

    W={a,b,f}isadominatingsetfor G. W isaminimaldominatingset.

    But W isnotanindependentset.

    v) Asmallestminimaldominatingsetneednotbeindependent.

    Forexample,considerthegraphgiveninFig.11.5.13B.

    The set {b, c} is smallestminimal dominating set, but it is not an

    independentset.

    vi) Let M be an independent set. IfM is amaximal independent set,

    thenMisadominatingset.

    11.5.14Definition

    i) Let G beagraphon n vertices.Supposethenumberofcolorsgiven

    is l .ThenG may G beproperlycoloredinmanydifferentwaysby

    using the given colors. We can express this number in terms of a

    polynomial.Suchapolynomialissaidtobethechromaticpolynomial

    ofG.ThispolynomialisdenotedbyPn(l ).

    ii) Pn(l )denotesthenumberofwaysofpropercoloringthegraph G by

    using l orfewercolors.

    h a

    f

    gd

    e

    b

    c

    Fig. 11.5.13A

    a b c d

    Fig. 11.5.13B

  • ModernApplicationsusingDiscreteMathematicalStructures Unit11

    SikkimManipalUniversity PageNo:261

    SelfAssessmentQuestions

    1. Verifywhetherthefollowinggraphsareplanar.Ifso,redrawthegraphs

    sothatnoedgescross.

    2. Verifywhetherornot,thefollowinggraphsareplanar?

    (i)

    f

    c

    e

    b

    d

    a o

    o

    o

    oo

    o

    (ii) o

    o oo

    o

    (iii)

    a c

    de

    bo

    o

    o

    o

    o

    (iv)

    c

    a

    d

    b

    o

    o

    o

    o

    (i)o

    o

    o

    o

    o

    of

    d

    c

    e

    ba(ii)o

    o

    o

    o

    o

    o

  • ModernApplicationsusingDiscreteMathematicalStructures Unit11

    SikkimManipalUniversity PageNo:262

    3. Drawthedualofthefollowinggraphs

    4. Statethefollowingtrueorfalse(oryesorno)

    i) K5{e}isplanarforanyedgeeofK5

    ii) K3,3{e}isplanarforanyedgeeofK3,3

    iii) Anygraphon4orfewerverticesisplanar

    iv) AcompletebipartitegraphKm,n isplanar.

    5. Findtheminimumnumberofcolorsrequiredtopointeachmapgivenbelow.

    (i)

    o

    o

    o o

    o

    o

    (ii)

    o

    o

    o

    o

    o

    o o

    o

    o

    oo

    o

    o(i) (ii) ooo

    o

    oo

    o

    o

    o o

    o

    o(iii)

    o

    o

    o

    o

    (iv)

    oo oo o o

  • ModernApplicationsusingDiscreteMathematicalStructures Unit11

    SikkimManipalUniversity PageNo:263

    11.6Summary

    This unit provides some geometrical representations of graphs. Planar

    graphs play vital role in real world problem. Interrelations between the

    kpartitegraphsandcolorabilityofsuchgraphswereobserved.Thereader

    abletoknowaboutthefamousfourcolorconjectureanditsimportance.

    11.7TerminalQuestions

    1. Findthechromaticnumberofeachgraph.

    2. Theminimumnumberofcolorsrequiredinanedgecoloringofagraph

    GiscalledtheChromaticindexofG.Findthechromaticindexofthe

    followinggraphanddenoteit.

    oo

    o

    oo

    o

    o(i) (iii) o

    o

    o

    o

    (iv)

    o

    o

    o

    o

    (ii)

    o

    o o

    o

    o

    (v)

    o

    o

    o

    o

    o

    (ii)

    o

    o

    o

    o

    oo o

    o

    o

    o

    (i)

  • ModernApplicationsusingDiscreteMathematicalStructures Unit11

    SikkimManipalUniversity PageNo:264

    3. Determine which of the following statements are true and which are

    false.

    i) Everyplanargraphisaplanegraph

    ii) Everyplanargraphisisomorphictoaplanegraph

    iii) Anyplanegraphcanbeembeddedonthesurfaceofasphere

    iv) Everysubgraphofaplanargraphisplanar

    v) Thechromaticnumberofacompletegraphofpverticesisp.

    vi) Thechromaticnumberofanytotallydisconnectedgraphis1

    vii) Thechromaticnumberofanycycleis2

    viii) Everyplanargraphis5colorable.

    11.8Answers

    SelfAssessmentQuestions

    1.

    s

    fb

    d

    e(i)

    a o

    oo o

    o o

    (ii)

    o

    o

    o o o

    c

    b

    a

    de

    (iii)

    o o

    oo

    o

    c

    o

    a b

    d

    (iv)

    o

    oo

  • ModernApplicationsusingDiscreteMathematicalStructures Unit11

    SikkimManipalUniversity PageNo:265

    2. i) Nonplanar,sinceK3,3 isasubgraph

    ii) Nonplanar,sinceK3,3 isasubgraph.

    3. i) Selfdual

    ii) Selfdual

    4. i) Yes

    ii) Yes

    iii) Yes

    iv) No

    5. i) Numberofverticesn=7,edgese=12,regionsr=7.

    Theminimumnumberofcolorsrequiredis3.

    ii) Minimumnumberofcolorsrequiredis3.

    iii) Minimumnumberofcolorsrequiredis4.

    iv) Minimumnumberofcolorsrequiredis3.

    TerminalQuestions

    1. Thechromaticnumberofeachgraphisasfollows.

    i) 2

    ii) 3

    iii) 3

    iv) 2

    v) 5

    2. Chromaticindexis3:

    4

    4

    3

    32 2

    1

    1o o

    o

    o

    o

    (i)

  • ModernApplicationsusingDiscreteMathematicalStructures Unit11

    SikkimManipalUniversity PageNo:266

    3. i) False

    ii) True

    iii) True

    iv) True

    v) True

    vi) True

    vii) False

    viii) True

    (ii)

    Chromaticindexis5.

    5

    54

    4

    3

    32

    2

    1

    1

    o

    o

    o

    o

    o