297
CSN I Report No. 65 COMPARISON REPORT ON OECD-CSNI CONTAINMENT STANDARD PROBLEM No.2: "Water Line Rupture in a Branched C.ompartment Chain II by D.L. Nguyen W. Winkler Gesellschaft fur Reaktorsicherheit (GRS) mbH Garching near Munich, F ~R. Germany May 1982 Submission to OECD-CSNI Working Group on Reactor Containment Safety

May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

CSN I Report No. 65

COMPARISON REPORT

ON OECD-CSNI CONTAINMENT STANDARD PROBLEM No.2:

"Water Line Rupture

in a Branched C.ompartment Chain II

by

D.L. Nguyen

W. Winkler

Gesellschaft fur Reaktorsicherheit (GRS) mbH

Garching near Munich, F~R. Germany

May 1982

Submission to

OECD-CSNI Working Group on Reactor Containment Safety

Page 2: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

.'

Acknowledgements

This report is made. with the finClncial support

of the Federal Ministry for Research and Tech-

nology (8MFT) under Contract No .. RS 470.

Special thanks are .due to Mrs.U. Fahnroth

and Mr. Soeiarto for their valuable assistance

in preparing this report.

Page 3: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

June 24, 1982

CONCLUSIONS AND RECOMMENDATIONS

Arising from the result of discussions during the Workshop on OECD-

CSN I Containment Standard Problem (SP) No.2:.

IIWaterline Rupture in a Branched Compartment Chain"

the following was agreed. upon:

Ingeneral, best-estimate "open" calculations of this more complicated test

are quite satisfactory.

Reasons for deviations from experimental results are due to. .

possible effects of uncertainties of measured input data (e.g. boundary

conditions, coating thickness),

code handling (e.g. choice of. options, input parameters, nOdalization),

simplified models including unfavourably defined input parameters.

Conclusions:

On the average, calculational bandwidths of lIopen'l results are equal to

those of IIblindli results for this and the 1st Containment SP and are of

the same order of magnitude. as experimental margins of uncertainty.

Nevertheless. a few systematic. de~iations between experimental and the

average of calculated data can be observed.

Relations between choice of input parameter values and quality of cal-

culated results are difficult to be detected (hard!y separable and .part-

1'/ compensating effects).

Two Containment SP performed on basis of the same facility do not yet

ailow to draw quantitative conclusions vvith respect to the application of

codes en full size piants. Future use of these experiments should take

note ofa leakage of the facility of unknown magnitude.

Page 4: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

Recommendations

improvement of measuring technique (e.g. for break mass- and ent-halpy-flow, water transport, heat transfer mechanism) to reduce futuremargins of interpretation of experimental results.

Extended quantification of the sensitivity of codes to uncertainties Of

measured input data.

A finer nodalization of the system for long term calculations is neces-sary to predict temperature stratification (e. g. in. dome compartment).

Improvement. of some physical models as for heat transfer, two-phaseflow I water transport and thermal non.,.equilibrium between phases isdesirable. Some. basic laboratory experiments may be required toaccomplish this.

Fwrther, a I/blindl/ Containment SP based on a water':blowdown test,preferrabl'l in a large-scaled facility is recommended to perform animportant step for extrapolation of findings towards full size facilities.

The results of the numerical Benchmark activitiy on heat soakage prob-lems is addressed in specific to improve treatment of these processes

.within containment codes.

Page 5: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

CONTENTS.

1

55

101113232326

<> 323239

4344

4446

47536'1

6165

110124132133

135'135138150164

167References

c:oundary conditions

Comparison of important characteristic variables

Abstract and Conclusions

Introduction

Variables to be calculated

Time interval 0 to 50 s

Short description of the problem

Test facility

Initial conditions

of the codesllsed

Suppiementary information of individual participants

Comparison of seiected variables

Listing of important characteristic quantities

Time interval 0 to 2.5 s

Time interval 0 to 50 s

Time interval 0 to 1000 s

Boundary conditions

!nstrumentation

Consideration of errors

Special events in the experiment

Measuring errors and geometric deviations

Effects of deviations from nominal values

Time interval 0 to 2.5s

3.4

3.5.4

4

3.6' Comparison of remaining specified variables

3. 7 Measured resuits of non-specified variabies

3.8 Comparison \~ith the results of OECD-CSN I Containment

Standard Problem No. 1

Compartment scheme and flow paths

3.5.2.

3

3.8.3

3.5.3.

3.1

2

2.1

2.2

1

3.8.2

3.5

2.32.42.52.5.1

2.5.22.5.32.5.3.1

.2.5.3.22.6 .

Presentation of results

Comments on the experimental results and deductions

for the comparison

3.2 Selec.tion of important variables

.3.3 Listing of important features and input parameters

Appendix 1 (Results of "Blind" Predictions)

i.\ppendix 2 (Additional Information of Pai'tic:pants)

Page 6: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

FIGURES

Model containment in experiment D16/CASP2 6

Scheme of the containment and flow paths 7

Positions of measuring points, compartment R4 17

Positions of measuring points, compartment R5 18

Positions of measuring points, compartment R7 19

Positions of measuring points, compartment R8 20

Positions of measuring points, compartment R9. 21

Positions of measuring points, compartment R6 22

Gap between compartments R4 and R9. after partial

failure of a sealing 24o

Break mass flow m with error band (experiment

D16/CASP2) 28

Fig. 1 :

Fig. 2:

Fig. 3:Fig. 4:c' 5:,Ig.

Fig. 6:r-' 7:rig.

Fig. 8:

Fig. 9:

Fig. 10:

Fig. 11 :

Fig. p-

oBreak mass flow m With error band (experiment.

D16/CASP2)

Specific enthalpy h of the escaping fluid with error

band (experiment DI6/CASP2)

29

30Fig. 13:

Fig. Il.j...,..

C' 15:, .Ig.

Fig. 16:

Fig. 17.I.

Fig. 10•u.

Fig, 19:

Fig, 20:

Specific enthalpy h of the escaping fluid with error

band (experiment DI6/CASP2) 31

Model calculatios on the influence of gap R4/R9 on

pressure bui It-up 33

Pressure history in compartment R4 36

History of pressure difference R4':'R9 37

Pressure history in compa~tment R9 38

Pressure histori in compartment R9 42

. Pressure history in compartments R4, R5, R7, R9 45

The. heat transfer coeffiCients in different compartments

Fig _ 21:

(CASP2, "open" problem), Finland

Energy flow and heat transfer coefficients! Italy

(eN EN/Pisa)

56

58

Time interval 0 to 2.5 5

Fig. 22:"",: .Pressure history in compartment R4 70Fig. 228: Pressure. history in compartment R4 71Fi,g. 23A: Pressure history in compartment R5 72Fig. 238: . Pressure history in compartment R5 73Fig. 24A.: Pressure history in compartment R9 74Fig. 248: Pressure history in compartment R9 75

Page 7: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

Fig. 2SA: History of pressure difference R4-R9 78Fig. 25B: History of pressure difference R4-R9 79Fig. 26A: History of pressure difference R4-RS 80Fig. 26B: History of pressure difference R4-RS 81Fig. 27A: History of pressure difference RS-R7 82Fig. 27B: History of pressure difference RS-R7 83Fig. 28A: History of pressure difference RS-R9 84Fig. 28B: History of pressure difference RS-R9 8SFig. 29A: History of pressure difference R7-R8 86Fig. 29B: History of pressure difference R7-R8 87Fig; 30A: Temperature history in compartment R4 90Fig. 30B: Temperature history in compartment R4 "" 91Fig. 31A: Temperature history in compartment R4 92Fig. 31B: Temperature history in compartment R4 93Fig. 32A: Temperature history in compartment R5 94C::' 32B: Temperature history in compartment RS 9S.Ig.

Fig. 33A: Temperature history in compartment R5 96Fig .. 33B: Temperature history in compartment RS 97Fig. 34A: Temperature history in compartment R7 98Fig. 34B: Temperature history in compartment R7 99FIg. 35A: Temperature history in compartment R7 100Fig. 3':.8: Temperature history in compartment R7 101Fig. 36A: Temperature history in compartment R8 102Fig. 363: Temperature history in compartment R8 103Fig. 37A: Temperature history in compartment R8 104~. 37B: temperature history in compartment R8 105.19.

Fig. 38A: Temperature history in compartment R9 106Fig. 38B: Temperature history in compartment R9 107Fig. .39A: Temperature history in compartment R6 108Fig. 39B: Temoerature history in compartment R6 109

Time interval 0 to 50 s

F!g. 40A: Pressure history in compartment R4 112Fig. 40B: Pressure history in compartment R4 113Fig. 41A: Pressure history in compartment R9 114Fig. 41 B: Pressure history in compartment R9 115Fig. 42A: Temperature history in compartment R4 116Fig. ~:~B: Temperature history in compartment R4 117

Page 8: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

Fig. 43A: Temperature history in compartment R8 118

Fig. 43B: Temperature history in c.ompartment R8 119

Fig. 44A: Temperature history in compartment R9 120Fig. 44B: Temperature history in compartment R9 121Fig. 45A: Temperature history in compartment R6 122

Fig. 458: Temperature history in compartment R6 123

Time intervai 0 to 1000 s

Fig. 46A: Pressure history in containment 126Fig. 468: Pressure history in containment 127

Fig. 47A: Temperature history in containment 128

Fig. 478: Temperature history in containment 129Fig. 48A: History of water mass in containment 1.30Fig. 488: History of water mass in containment 131

Fig. 49A: Scheme of the compartment chain and associated flow

paths (015 ) 136(::' 49B: Scheme of the containment and flow paths ( CASP2) 137, .ig.

0

Fig. 50A: Break mass flow m with error band (DI5/0-2.5s) 1400

r-! g . 50B: Break mass flow m with error band (C,u,SP2jO-2s) 1410

Fig. 51A: Break mass flow m with error band (015/0- 70s) 1420

Fig. 518 : Break mass flow m with error band (CASP2/0-50s) 1431=' 52.4: Specific enthalpy h of the escaping fluid with error. !g.

band (015/0-2.55) 144Fig. 528: Specific enthalpy h of the escaping fluid with error

band (CASP2/0-2s) 145Fig. 53A: Specific enthalpy h of the escaping fiuid with error

band (015/0-705) 146Fig. S38 : Specific enthal py h of the escaping fluid with error

band (CASP2/0-50s) 147Fig. 54: Total enthalpy flown in (0 to 2.5 s) 148Fig. 55: Total enthalpy flown in (0 to 70 s) 149c' 5SA: Pressure history in compartment R6 152, Ig.

Fig. 558: P.ressure history in compartment R4 .'5.3 ..

Fig. 57.D., : Pressure history in compartment R9 154c;,.., 578: Pressure history in compartment R9 155I I ...~ ¥

Page 9: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

Fig. 58A: History of pressure difference R6"""R9 156Fig. 588: History of pressure difference R4-R9 157Fig. 59A: History of pressure difference R6-R8 158Fig. 59B: History of pressure difference R4- R5 159Fig. 60A: Pressure history in compartment R9 162Fig. 608: Pressure history in compartment R9 163

Page 10: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

TABLES

3

63

Mean values, bandwidths and deviations of important

characteristic variables

Participants and codes

Dimensions of containment compartments and vents in

experiment CASP2 8

Coating of the containment concrete walls 9

Break mass flow and specific enthalpy 12

Designation of measuring points .14

Measuring errors at the test Cf...SP2 26

Important features and input parameters of codes 48.

Important characterisitic. variables 62

Table 3:

Tabie ,i ~"".Table 5:

Table h.u.

Table 7:Table 8:Tabl~ 9:

Table 1:

Table 2:

Page 11: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

NOMENCLATURE

abs.

acc.

add.

atm

A

Acond

AUAAEC

AEeL-Ee

AEEW

AWBMFT

BWRccwAcalc.

e wc

CDeEA/EDFCNEN

eSNI

deer.D

DGD~,J1S

E

EXP.

f

r-w

FDFRG

absolute

according

additional

atmosphere

surface area

condensation area

vent area

.A.ustralian Atomic Energy Commission

Atomic Energy of Canada Limited-Engineering Company

Atomic Energy Establishment Winfrith

wall area

Federal Ministry for Research and Technology

Soi iing Water Reactor

spec. heat

water separation factor

calculation

water carry-over fraction == water flow quality

homogeneous upstream node quality

discharge coefficient

Commissariat a l'Energie Atomique/Electricite de France

Comitato Nazionaie per IIEnergia ,NLicieare

Committee on the Safety of Nuclear Installations

decreasing

diameter

density

strain gauge transducer

energy content

kinetic energy

Energieonderzoek Centrum Nederland

experiment( al)

relative atmospheric rwmiditywater mass flowtocal mass flow

force on drag body

Federal Republic of Germany

Page 12: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

GRS Gesellschaft fUr Reaktorsicherheit

h spec. enthalpy; htc

h maximum htcmaxhT t htc for concrete acc. to Tagarni,concre ehT fstf,e7d htc for steel acc. to Tagami

hU htc. acc. to Uchida

ham. homogeneous

htcH

HDR

incr.

JAER!

lin.

liq.

L

mo

m

max.min.

M

MOD.

n

NEA

NIRA

NW

o.d.

OECD

pn

PD

PLpp

PS

P\VR

heat transfer coeffiCient

total enthalpy; htc

He! Bdampfreaktor

increasing

Japan Atomic Energy Research Institute

!inear(ly)

liquid

length

mass

mass flow rate

air mass

vaoour mass

maximum

minimum

distribution box for transducer cabies

modified

number of orifices

Nuclear Energy Agency.

Nucieare Italiana Reattori Avanzati

nominal width

outer diameter

Organization for. Economic Cooperation and Development

pressure, with index

pressure difference

static pressure (slow)

dynamic pressure.

static pressure (fast)

Pressurized Water Reactor

Page 13: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

R

Rnsspec.

SP

t

UnUKAEA

v

V

VTT

WM nwsx

(Jw

o~p

6T'\v

radius

compartment, with no.

coating thickness

specific

Standard Problem

time

time up to end of blowdown

temperature, with index

temperature (slow)

temperature (fast)

temperature (slow)

vent, with no.

United Kingdom Atomic Energy Authority

specific volume

volume

Valtion Teknillinen Tutkimuskeskus

water mass! with index

water ievel

total vapour massLotal air mass

htc

wall htc

coating thickness

pressure difference

temperature ,difference

water in mixture flow

~,le

t\,v'p

pressure loss coefficient

thermai conductivity

water cat'ry-over factor

density

transportable= --~--- mass of W:::ite: intotai

Page 14: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

- 1 -

1 INTRODUCTION

In September 1979, at the workshop on the results of. OECD-CSNI* Con-

tainment Standard Problem (SP) NO.1 the Federal Republic of Germany

(F. R. Germany) offered experiment CASP2 to be the basis for OECD-

CSN I Cor,tainment SP NO.2. Specifications /1, 2/ taken from "blind"

German SP No.3. (2nd Containment SP), based on the same experiment,

were distributed. The workshop participants agreed to propose toCSN J

this SP, but as an 1I0pen" calculation. On its November 1979 full meeting

CSNI approved this proposal and Gesellschaft fUr Reaktorsicherheit (GRS)

agreed to act as the lead organization ..

. . 'As well as experimentD15 (basis for OECD-CSN I Containment SP NO.1)

experiment CASP2 was performed (September 21, 1979) in the model con-

tainment of Battelle-Institut, Frankfurt, FRG,and sponsored by the. Fe-

. deral Ministry. for Research and Technology (BMFT) within the frame of

the German Reactor Safety Research Program (RS 50: Pressure Distribu-

tion in Containment). With letter of December 19,1979 /3/ the measured

initial and boundary conditions /4/, mid of April 1980 after deadline of

the "biind" problem the experimental results /5, 6/ and mid of July 1980

some additional information /7, 8/ were communicated to 16 organizations

from 13 countries wt;,o originally wished to participate.

Incontrast to the 1st Containment SP (steam-blcwdcwn, simple chain of

compartments) the 2nd Containment SP is based on a pressurized water-

blowdown experiment to further go to acci,dent conditions more closely

approximating thos.e to be assumed for design of full-pressure contain-

ments. in addition, locating the rupture within.a relatively small compart-

ment and arranging the compartments in a branched chain with asymmet-

rical fi.::lW paths means that water transport will more heavily influence

the resuits.

The technical purpose of the problem is to compare experimental results

of history of pressure, pressure difference, temperature, and water mass

\/':ith the corresponding results of best-estimate posttest-calculations from

computer codes for three different time intervals.

;"Organization for Economic Cooperation and Development - Committee on

the Safety of Nuclear instailations

Page 15: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

-2 -

At the first meeting of the CSN I Working Group on Water Reactor Con-

tainment Safety (May 1980) the original deadline for submitting calculated

results of August 1980 was shifted to November 1, 1980.. Finally, in the

comparison took part 12 organizations representing 11 countries and using

12 different computer codes and, partly, several versions (see table 1).

Except one (June/August 1980) "open" contributions arrived at GRS main-

ly between October 30 and November 14, 1980, further two and one re-

vised in mid of December 1980 ..

6 international organizations felt it beneficial to IIblindli participate in this

SP. These results /9/ were discussed aLan informal meeting held at GRS,

Garching, in January 1981 after the workshop on the results of German

SP No. 3 and are included here in Appendix 1. A short note /39/ sum-

marizes these discussions.

The workshop on the results of the Standard Problem was held 'at GRS,

Garching, FRG on May 25/26, 1981. Comparison results and the results of

the individual participants were presented and discussed in detail (see

/41,42/).

Supplementary information to and comments on the draft comparison report

/40/ C3me from Belgium, Canada, France, Italy (CNEN/Pisa), Italy (NIRA)

and Sweden and are far extendingiy considered in the present final report.

Special suppiementary information on submitted' results -' as requested at'

,the workshop - and results of parametric studies (Belgium, France, Italy

(CNEN/Pisa), Sweden) are content of Appendix 2.

The scaies used in the comparative plots of this report equal with minor

inevitaDie exceptions those used in the compa,ison report on OECD-CSN I

Containment SP NO.1 /10/. By this a direct comparison of experimental.

and calculational results and bandwidths between' both SP is possible.

Page 16: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

-3-

0.0 - 2.50.0 500.0 1000 I,0.0 - 2.5 I•0.0 50 I

0.0 1000 I.0.0 2.5* I0.0 50 * I'0.0 1000 * 1~0.0 2.50.0 500.0 - 10000.0 2.50.0 - 500.0 "- 1000

I II

o. a - 2.5* iI. o. a - 50 I10.0 -1000 . II 0.0 2.5 i

0.0 - 50O.a - 1000

COFLOW

.CONDRUARIANNA-O

I CONTn1PT -LT-26 I

I II II P.ACOI

i

IRELAP4/fviOD5

IZOCO-V/MOD. I

I

I!

COPTA-6

ChiantoreMonti.Pennese

J . E. Mar k 1un d

J.P.A. van denBogaard

A. Woudstra

II ~:A.

K. Namatame ..I. TakeshitaY. Kukita

I ". Erdmann1M. Ti ltmannI!

iiR. Romanacci/ IUniv. F. Cassano . ,

A.M. Gorlandi! M. MarchiI M. Mazzini! F. Oriola

United K~ngdomI

W.H.L. Porter I CLAPTRAP II(UK.AEA, JI,EEW )

I 'r ICLAPTRAP I . I, 1

(EeN)Netherlands

S\'ieden(Studsvik)

Japan.(JfJ.ERI)

Ita ly(CNEN/Pisa

Country Contributor Computer Code Time Interval(Organization)Australia P.G. Holland ZOCO V 0.0 - 2.5(AAEC) J. Marshall 0.0 - 50

j 0.0 - 1000 IBelgium E.J. Stubbe TRAP-SCO 0.0 - 2.5(Tractionel) 0.0 - 50

I TRAP-CON 0.0 - 1000 .Canada vi .~. Collins PRESCON-2 0.0 - 2.5(AECL-EC) 0.0 - 50

0.0 - 1000Finland E. Pekkarinen RELAP4/~10D6 I 0.0 - 2.5(VTT ) CONTEMPT -LT/026** I o. a - 1000France I A.

Sonnet GRUYER 0.0 - 2.5(CEA/EDF) .A. Mattei/ 0.0 - 50 *F. Herber I ,0.0 - 1000*

ItalyI (NIRl\),Ii!

iI!

IIII!!

II'

I

I F:R. Germany(GRS)

I

I

II

I

* "bl ind" calculation ** (VTT version) .Table 1: Participants and Codes

Page 17: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

-4-

Page 18: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

5 -

2 SHORT DESCRIPTION OF THE PROBLEM

More detaiis can be found 1 among others, in the specification /1, 2/, the

report on the initial and boundary conditions /4/ and on the experimentalresults /5, 6/.

2.'1 Test Facility

The'test facility essentially consists of a high pressure system, and a

model containment. The high pressure system is installed mainly outside

the containment and consists of a pressure vessel, a pipeline. with a

length of approx. 26 m, and a recirculation system. The pipeline is con-

nected to the pressure vessel and leads through the containment to thebreak compartment. '

Before rupture, the heated water in the pressure vessel and in the piping

is kept at an approximately homogeneous temperature by the recirculation

system. The model containment consists of 6 compartments arranged accor-

ding to figs. 1 and 2. The location of the rupture (baffle plate at a di-

stance of 5 D) is approximately in the middle of the smailest compartment

R4. The fluid branches at the upper part of compartment R4. One portion

flows into compartment R5 via vent 045 (orifice) and from there, over a

short fLow path, through the ceiling of the compartment (vent 059B, ori-

fice) into the dome of the big compartment R9.The other portion flows

through vent 047 (orifice) into compartment R7 and from there, after flo-

wing longitudinally through R7, via' vent 078B (orifice) at the floor into

compartment R8. Compartment R8 as weil as compar'tment R6, which is

symmetrical to it, are open to compartment R9 by several holes in the

\,valls. During the, experiment a smail additional gap formed between rup-

ture compartment R4 and dome compartment R9.

The most important containment dimensions are given in table 2.

The steel surfaces are not coated; 'the concrete surfaces are provided with

coating (see table 3).

Page 19: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

.:..:E.!~£..~

ImI

32S'

cross section B-BC)~

--+i

i..El 0

pressure vessAl '1I ~,)m' I

"'easures in mm

:"f'''''~''--;:'""'' ~~-- dW't-'-,'::":.k~,'"0 0, :1''---', ~ '~".I':.,"; <, r.. ,;,,~~:\'.' ,'" .-r-o'

J'~tEJ~'~.0 _~ -;r't::_:\<:;i~-'-:J,':}'::Ji"\;\':"1 t[ZJ: ....._=-==~:l~-; ,~-E

• '~c~ '::- 000- j'---'" HB" ,. ' .'"'' _L7 ~,':: ...<: . .~..r: ~

U vent, ....ith no.

- r.1ain flow direction

(;;I ~ closed Vent

;9000

•• 000 •.

• 1000

.6000

.\,"I,Lt.C •

.4010 I. !.- ..~o

I-o~

- cr.':)ss :jf'('lJon 11-D(eTc\;'~lTO-'l+....~6.i(i)

0'

19[,0

'"

\~.~).,

l:rr'~' ".,'cllc>n (>C" Ij } ;. '.~'~-li'Z,;l'~'-;'-~;Cl~!5)

crosr. !:'Jct.iDn F-F";1cv-ati'o'~-'+--2(0)'

_oj

<:-.1

m

;Q

/

rnr

-~.-~

;.OJ

rj'l

<

--(

.>

'7T

(-

--~

~

;.-/'

;;r;

'7

:;.

Vi <c. 1 m~del Con tainmen t in EX'per irnen t b lG;CASP2

Page 20: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

-7-

containment nressurevessel

R5

US9B

I Ue9

~_R_9~

I "'71 r;;:1["'7 ----I K I

~~---I U 78B

R8 .,ff -R-5- - - -~ -~.-... I. O.42m3

I \1 U96! ..

\ rupture D=100 mm with baffle plate

rupture cornnartment : R4vents : U45! U47, U59B, UiSB

U89, U96

sharn-edoed orificeswall holes

flow pathsRS

R7

U 598-----i:=D-~ R 9

I~.. ~ R8U 78 B

Fig. 2 Scheme of the Containment and Flow Paths

B 1\ T TEL L E - I '.; 5 TIT L) T LV. F R :\ N K FUR TAM ."1:\ i N

Page 21: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

Table 2

-8-

Dimensions of containment compartments and ventsin experiment CASP2

Surface areaCompartment No. Volume Concrete Metal

(niJ) (m2) (m2)

RIl (rupture) 13.66 J8.6J 8.8JR5 41.05 76.08 ..17~23R6 41. 26 90.12 9.58R7 40.40 76.6J 15.41R8 40.53 92.00 6.17R9 465.00 645.82 57.30 ~

Sum of all canoartments 641.90 1019.28 114.52 -

Compartments Vent shape Vent VentVent No. connected diameter area(mm) (geometrical)

. (m2 ).

U 45 n4/R5 sharp-edged 750 0.442orifice

U 47 R4/R7 sharp-edged 750 0.442orificeTT 598 R5/R9 sharp-edged 550 0.2J8v orifice

U 78B R7/H8 sharp-edged .550 0.2J8orifice

RS/R9 ] several holes 1.933in the walls

R9/n6 2.109n'!/R9 gap* max. 0.0292

* see £io. 9

Page 22: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

Table 3: Coating of the containment concrete walls

v.:>

To prevent water excl)angc b~tw~en the containment atmosphe~e and the concrete walls, the concretesurfaces ~f the TIS 50 model containment are covered with a coating which consists of the following

-ilayers:-iri,.,-'r-r'p

;,'~I F1ate oa t (fi1/~ (EP-Betonspach("

;,: I J3anding agent(2K-I1aftvermit

I\DI

, " " * ) Densi ty ,' ,

Thickness Spec. heat c Thermal conductivity(mm)

,~ (kg/m3) (kJ/kgK) ,~ (W/mK)

el) ~O - - -ous spots variable 1,900 1.4 0.3tel)

ler) 0.5-1 ,1,900 1.l1 0.3tel)

tIer) :::::0 - - -ter PC- ~O. 1 1,100 . 0.95 0.2

::::::.2x 0.05 1,100 0.72 0.2

',-- _.

Layer(material)

Sealer(EP-Ti efEmsi eg

Filler for par(EP-Betonspach

]\Iaincoa t(faserverstarkAnstrich)

Top cbat (2x)(PC-Ahstrich)

z

- ..I

rn

j..,

U'

/:

,J>

;1.;

{...'

,-" '

*) The thickness of the individual layers varies. Systematic measurements of the thickness hasnot been possible, because a suitable non-destructive measuring method is not available.The thickness values indicated have been estimated on th~ basis of samples taken at varioussites.

Page 23: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

-10-

2.2 Initial Conditions

Initial Conditions Prior to Blowdown

Pressure vessel and Pi~in~:

D. L 0 1~1.0 bar

initial fluid mass

, d' -0 *)plpe, la. 1j ITLll

pressure vessel(mean temperature:

IfI

J

(level ?)

(level 3),

(le'v'e1 C)(level 0)(level .::)

(level ?)

2'::5.3°C

29:2.SoC

2G6.1°C23B.l°C (circ~lating PUQp)290.8°c (rupture sitE)286.6°C (near gate valve)

315 kg (pipe)3995 kg (press~r2 vessel)

=

=

=

=

=

=

=

=

Con.t2in~e~t:

1.0 bar

(relative atmospheric humidity)

R4 to R9, volumetricaverdge for wholecontainment: TC = 27.6°co .

mean valuesof compartments

)(annulus)(centre and dome)

26.0°C

100. 'Ii

D =~ C 0

TR41"'-RS

.TR6TR7TE8TR9 =

T..,o",........... -' '-"-

f =~

*) T~~~2 ~a~ues were obtained with two gauges of the plantins~r~~entation locates at the two pipe ends. Valuesmeasured with the standard experimental instrumentation,ho~ever, indicate an in~osogeneous te~perature distributionin =~e p~pe within the temperature range from 255 to 2900C.

Page 24: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

-11 -

2.3 Boundary Conditions

The boundary conditions for the containment are the measured mass flow

rates at the measuring point II (at a distance of about 2.7 m from the

rupture) with the associated specific enthalpy as a function of time (ta-

ble 4).

These mass flow values are determined from the signals of a gamma-den-

sitometer and from the mean value of the measured curves of two drag

bodies.

The mass flow values measured for the short-term period up to 1.2 s

have been taken without any correction. The measured mass flow values

for the long-term period after 4 s have been cprrected by a factor of

about 1.2, so that the time integral for mass .flow rate up to 50 s is.equai

to the discharged mass predicted from an integral mass balance . For the

intermediate period from 1.2 to. 4 s an interpolation is done.

The sDecific enthalpy of the fluid is determined by the measurement for

density and temperature (for single-phase flow) respectively pressure(for two-phase flow).

Page 25: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

Table 4

-12-

Grcak mass f16w and specific enthalpy

D16jc.-\SF:?

Tirne : 1-""15 S £' 101v Temperature Density Spec. enthalpy( S ) (krrjs) (oC) (k,:,:/m.5) (kJ /k ~)

0 0 260 795 1134O.OO!i ~') 260 7,Sli 1135:;J~

0.005 145 260 "7 (Vi 11350.0:3 200 260 784 11350.0)0 200 260 784 11350.oG7 340 260 784. IlJ50.086 335 260 784 113.50.105 405 260 784 11350.200 368 260 -0'-'- 1135(.u .'

0.350 270 283 715 12551

O.fWO 210 282 6liO 1260I 0.500 205 281 600 1260I 0.750 300 272 76l.l: 1195ii 0.850 324 272 76li 1195

I 0.<)20 374 273 763 1201

I 1. 20 230 281 580 126)

I 2.00 200 2130 530 12672.50 180 279 500 1267

I4.00 165 275 430 1261

10.00 lli5 268.5 310 1'266I

I 16.33 1)0 261 300 1225I

I

1195i 2J .50 115 252.5 255I 24.30 78 250 .')- 1323I .L-:;J

JO.OO 25 207 20 1737'1i 'to .00 J 156 3 2--'"I

(:' ,;..,I 50. (Vi 0 152 2. 7 2748I

i

irl~c~r~l iTIQ53 out.flo\~ +4075k.g -.55 kg

; -.- -. \.; '. ~ ... l '.

Page 26: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

- 13 -

2.4 'ristrumentation

Table 5 shows the designation scheme for the measuring points which also

gives information on object of measurement, measured variable and type of

sensor, positions of the measuring points I and the kind of installation.

Figs. 3 to 8 show the, partly redundant, measuring point positions in each

compartment of the containment.

The individual values are measured in the following way:

PS static pressure by piezoelectric transducer directly installed at the

measuring point (fast) ~

PL ... statitpressure by strain gauge transducer installed outside the con-

tainment (measuring point connected to transdu.cer by pressure lines)

or piezoresistive transducer installed inside some containment com-

partments (measuring channels 113, 128 and 130) (slow).

PD pressure difference by piezoresistive transducer or DMS-basis direct-

ly installed at the measuring point position.

is temperature by Ni/CrNi sheathed thermocouple (0.25 mm o.d., fast,

response time in water 15 to 20 illS).

TL. temperature by Ni/CrNi sheathed thermocouple (1 ~5 mm c.d., slow).

TV.'; temperature by miniature resistance thermometer (slow).

INS water level by capazitive transducer installed outside.

Out of 3 total of 117 measuring points in the containment about 10 failed

totai Iy c.nd 3 partly.

Page 27: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

Table 5

-14-

Designatibn of measuring points

for instance 9 p s 3 1 8 A 0 5 1'-1

or B T S 1 0 0 2 G 2

1 2 3 4: 5 6 7 8 9 10

-'H Q) I

+' 0 o..a:l~ H ?-.r-i

(;..{ Q) "Ci 0 Ul b/) +'r-i0 E 'd i=: (1J ~ ~ ill

Q) Q) It >:: o 0,-1 r-i+'+' H H OJ 0,-1 H Ul ell UlU ~ ~ OJ Ul +' ::l+' 0,-1 i=:OJ Ul CIl ... OM Ul ~ U OM ~.-'

0'J (tj a:l r-i'H Ul ell 0,-1 Q) 0,0 Q) Q) Cii 0 0 Q) 0 0.. 'H 0,-10 E ;s ::- 0.. E 0.. U) O+'

OJ(""\ .0.. ""+ >, I 0

...-4 C\l +' -:t' .,..,

DiJz:i t 1:..4 to 9

B

R

Object of measurement

Containment compartment number R40 to R9

Pressure ve:ssel.

High-pressure pipeline

D-.i..t~its.2 to 1.-' . Measured value and type of sensor

DG

FD

PD

pp

Density (gamma-ray absorption system)

Force on drag body (strain gauges)

Pressure differential (piezoresistive transducer

Static pressure, slow (strain gauge transduceror piezoresistive transducer)

Dynamic pressure (piezoresistive. transducer)

Page 28: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

Table

PSTLTS

TWWS

-15-

5 (continued)

Static pressure, fast (piezoelectric transducer)Temperature, slow (thermocouple 1 or 1.5 mm 0.0.)Temperature, fast (thermocouple 0.25 rom O.D.)Temperature (ohmic thermometer)Water level (capacitive transducer)

Di,l2:its4: to 9: Positiomof measuring points

I. Designations for pressure vessels (digit 1: "B"):

Digits 4: to 7:Digi ts 8 + 9:

Height in em, measured from the vessel floorA1 to A4 l..

Horizontal nozzles

Gl to G2 IJ

H- Upper vertical nozzleU- Lower vertical nozzle

Other

II. Designations for containment and pipeline

Digits 4 to 6:~'4" to. "9" or "R"

000 to 36~ polar. angle, in angular degrees,from manhole (= 00) in clockwise direction

Digit 7: 4to 9 In.wall to compartment R4 to R9A On/in outer wallF

IT'<.J

In intermediate flangeOn/in inner "".allOn/in overflow openingIn heat transfer measuring blOCK or disc

S j., T TeL L E - I ~ 5 TIT UTE. V. F R- ..\ .~ K F U R'T :\ ,'VI ,'vi!\!;'J

Page 29: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

Table 5 (continued)

-16-

Digits 8 ..,.9:

Digit 10:

Height in dm above bottom of the containmentcompartment in question (in compartments R4,R6 and R8 above s~~p floor, and in the case ofpipelines above the sumr floor of compartmentR6)

Special type of installation

M In spray protection tube

L At end of pressure measurement line

~ In d~ad-water area

\-1 In wall

Other

B .-\ T TEL L E - I ~ S T r T U T t. V. F R .--\ ~ K F lj R T ,; \,"\ ,\.1 ,-=\ I ~

Page 30: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

-17--

Fig. 3 Positions of measuring points Compartment 4

2122232526272829

167168

105

1041661651611163162161

channelDesignation of~easurin oirrts

4 PS 000 A 50 MIt TS 000 M 55It TS 000 A .....'J

...:.V

4 TS 006 A 134 TS 000 I 1)

~ it TS 011 I 02I. 4 TL 011 I 00...... Alpha-Block:

It TL 000 W 1)TL 001 W 13TL 002 W I).. TL 004 W 1) ..TL 005 W 1<./ .TL 006 W 13TL 007 W 13

008 w 1) .

006 A 1) M

[A1Pha- Disk~ TS 356 W 279c TS 357 Vi 27

Ir PL 354 A 46 L 116

.4 PL 008 A 25 L 114

. ,. 4: PO 000 9 21 W II! 9I~- ...-

I-7 PO 010 i[ 16 W 11iS I

- i ..____5 PO 350 Ii 16 W 147 III

III

4 PL 000 A 27 113 II

150 II ,- 1 4 PO 354 9 46 w• "t, "oJ I •

I4 WS 203

L BATTELLE.INSTITUI E. V. ' FRM~KFURT AM MA:NiI,

Page 31: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

-18-

Fig. 4 Positions of measuring pointsCompartment 5

Designation ofmeasurin oints channel

1210 I5 ws I '

II

II i

I

II

J

152

I

5 PS 215 A 12 W 107<: TS 214 A 12 170/

5 TL 252 A 00 171PL 255 A 17 L 127PL 271 A 11 128

t; TS 269 A 12 172-'

5 TS 270 I 12 173

PD 270 5 40 157

PS 312 .A 11 W 108TS )1) A 11 174

I,I

5 PD 1[\0 7 1,9

8AiTElLE-INSTITUT E. V.. FRANKFURT AM MAIN

IIIIi

II.

Page 32: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

-19-

Fig. 5 Positions of measuring pointsCompartmen t 7 .

Designation ofmeasurin oints channel

110175

PS ]8 A 11 \'1"TS JG .. A 12

7 TL 095 A 00 1797 TS 090 A 12 177

.7 TS 089 I 12 17G9 PD 090 7 40 1587 PL 090 A 11 1)07 PL 0.47A 16 L 129

7 PS 14] A 12 W 1117 TS 144 A 12. 180

iAIPha_DiSk7 TS 150 \'1" 12 1817 TS 151 \'1". 12 1827 TS 150 I 12 18]

7 WS 212

BATTELLE-INSTITUT E. V•. FRANKFURT AM MAIN

Page 33: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

Fig. 6

-20-

Positions of measuring pointsCompartment 8

Designation of.measuring points channe

8 TL '090 M 00 IB9

8 PS 153 A 21 W 1128 TS 158 A 21 190

8 TS 090 I 21 1888.PL. 053 A 25 L 1)1

8 TS 042 A 21 1861

III

8 WS 213

BATTELLE INSTiTUT E V. cRANKFtJRT At" MAIN

Page 34: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

-21-

Fig. 7 Positions of measuring pointsCompartment 9

Designation of channel:measurin oints

9 TW 180 M 75 579 T\{ 180 A 52 71

~..,.S,2 m 9 TW 180 M 52 569 TS 180 M 52 1911. 9 TW 180 A 29 66

, 9 T\{ 180 1'1 29 55.",r. 9 TW 180 A 06 610

c 9 TW 180 M 06 5'!"" 9 TW 180 M-9 5J

,0

PL 207 A 16 L 135TL 235 A 00 195TL 115 A 00 19J

PL 10J M 39 L 132TL 000 M -14 191TW 270 A 52 72

9 TW 270 A 29 679 TW 270 A 06 62 .9 TW'090 A 52 709 TW 090 A 29 659 TW 090 A 06 60

I9 TW 000 A 52 69~~

T\{ 000 A 29 64TW 005 A 06 59

9 TL 355 A 00 198

9. rrs 0')0 , 29 192"

BATTELL=:-!NSTlfUT

Alphablock:r9 TL 0)0 W 40 JO9 TL oJ 1 \{ 40 J19 TL OJ2 W 40 ~....

)<-

.9 TL ()J 3 w 40 JJ9 TL OJ4 W 40 J49 TL 035 W 40 359 TL 036 W 40 ~~ I'9 TL OJ7 W 40 Il~TL 038 \{ /10 J8

TL OJO I liO J9 I3 ws 209

19 WS 21'i

I

IFRANKF U RT AH '-'I":-:!J

Page 35: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

Fig. 8

-22-

Positions of measuring pointsCompartment 6 '

'Designation of.measuring points channel

6 TL 270 1'1 00

6 TS 270 1'1 216 PS 270 N 21 1'1

6 ws

184

185.

109

211

Ddum:BA~!:'-LE !NSTITUT E, 'I. FRANKFURT AM MAIN

Page 36: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

-. 23 -

2.5 Consideration of Errors

2.5 ..1 Special events in the experirflent

Gap:

As explained in /4/, during the test a relatively small additional vent

(cross section area = 236 cm2 = blown out sealing + lasting, plastical

deformation of the plate ~ 2.7 % of the cross section areas of both speci-

fied orifices in compartment R4). has formed between compartment R4

and the dome compartment R9, caused by the overpressure in rupture

compartment R4 at the upper cover (steel plate).

Originally, this gap should not be considered for the calculations (see

arguments in /3/).

In May 1980 at the first meeting of the OECD-CSNI \Vorking Group on

Water Reactor Containmellt Safety. the i.nfluerlCe of gap on the .re5ults

of SP-calcuiations was discussed with the heip of some preliminary com-

parison plots with the results of ublind" predictions from international

participants. The participants of the working group agreed that for

the uopen" caicuiations this additional gap (see fig. 9) should be ac-

counted for. Therefore the experimentator suggested after examining

the measu red results, as a rough approximation a time function of the

gap size as follows /7/:

1.5 to 5s

O. -:5 to 1.5 s

o to 0.15 s linear increase of gap size from 0 to 292 cm2

constant gap size of 292 cm2

linear decrease of gap size from 292 cm2 to 236 cm2

constant gap size of 236 cm2.

Hovvever, it results from a relation taken from HLltte I /11/ (vaulting.

of a rectangular plate under surface load: plate clamped at the back,

supported at the sides, unfixed at the front) that a plate's maximum

vault of 12 mm can be aiready caused by a differential pressure of

0.04 bar between R4 and R9. The experimentai history of the differen-

tia! pressure indicates that the maximum gap size of 292 cm2. (immedia- .

tely b!avm out seaiing + maximum vault of the plate). might be already

reached at 0.01 sand sustaineduntH approximately 16 s.

Page 37: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

o

p ~)s i. t i ()n .

IN

"'"I

,o

"C'

c

p

R 'i

1400

scale 1. : 10.

(vi.ew :from A)~~~

!)

Gap between compartrnen~s R4 and R9 after partialfailure of a sealing (measu~es in rnm)

25 mm (292cm2) maximum gap (load 30~kN)

'9

~) 19 mm (236 cm2) without load acting on ceiling of R4

f) • '."r~:1

I)

,1o

ry

~

A -::..-- -;.: ~-~ p to I_l __9

10 tel: 1 p 1[l t e2 9 2 C OJ 2" ) (c e i 1 in g 0 f H If )

._~~,. -~--

C,] ') C'J .:t' i .0Q MT I ~T 0

~ ~ ~ 0

9Fig.o

p

t;) 0

oo

..

o

&

o 0

.~"t.C) I}

p r -0()Q

" ., I()0

E-o

-.:%1-.d~j

o

o

~

oc

.. Q -.-o

" R l.r: 410. 0 0 ~

- , 11._~~

7'lJ:"U -~ -- ~.-- I[Xl' ",O-:l.~

. gn p

\ ",.~,,"",-''''rl:~ ..;30!''.n .-[~~~~[~.~:;::.. j:'. .

-.0, ~Qg--r"'j(.) '.:c.".

.. 450+ 3 _:;£lEt~o

4 0 O:~Olo

o 0

o 0~ <!l sc.10 50------

-I

)"..

-.1

_.,

"

,/

To

/

;--

.>',",

:.;"

scale 1 :50

Page 38: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

- 25 -

Non-insU,ation of high':'pressure pipe:

Especially the part of the piping inside the containment (appr. 9.5 m;

NW 150) leading to the rupture was riot insulated during the test CASP2.

This caused an increase of the containment initial temperatures. The

lowestihighest measured resuits in the individual compartments amountedto:

T R4 = 18.6 / 26.2 Or\...

T R5 = 21.6 / 27.8 °cT R7 = ;:>1 ~ / 24.2 °c_ .. 0

T R8 = 22.0 °cT R9 = 25.2 / 32.9 °ci

T = 18.2 / 29.7 °cR9aT R6 = .26.6 °c

Compared to the mean values given in Chapter 2.2 the temperature in

the individual compartments can deviate up to appr. :t5 K. The question

remains open of how much the structures were heated by it ..

Leakage in the high-pressure system:

Probably (o\l'er. a longer period of time before the experiment) a sma! I

leak occurred in the high-pressure system inside. the containment

(centre of R9). This caused an increase in the. relative humidity of

the containment atmosphere to 100 % and probably also a slight con-

densation at the containment wails. in combination with the heat re-

lease from the high-pressure pipe the leak may also have contributed

to the above-mentioned increase in initial temperatures of the compart-ments, and eventuaily of the walls.

Reduced circuiCJtion:

j t is to be assumed that shortly before the biowdown the circulation

in tile higil-;Jressure pipe has been reduced considerabiy. In combina-

tion with the non-insulation this led to a relatively inhomogeneous dis-

tribution of initiai temperature along the pipe (differences up to 35K)

and probably to a verticai stratification of temperature, too (at mea-

suring point I ilT ~ 30K). Therein is certainly caused the appearance

of .3 distinct. 2nd maximum in the history cf mass flow at 0.92 Sf which

was indicated in relatively good agreement between both drag bodies

at measw'ing. point II. Up to approximately 1 s the mass flow history

depends very sensitiveiy on the distribution of initial temperatureaiong tile pipe.

Page 39: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

-: 26 -

2.5.2 Measuring errors and geometric deviations

Tabie 6 shows the error bands of the initial conditions. in the contain-

ment and the measured values in it, as well as the geometric deviations

/6/, which were essentially estimated by Battelle-l nstitut.

Table 6: Measuring errors at the test CASP2

IMeasurand I absolute error relative error

(range) of measured value JP :t 0.005 bar :t 0.5 0 ICo u !

I

T R4-T RQ s. chap. 2.5.1 iIa .. 0 ~a I

PL ( 1 4 bar) :t 0.025 bar I- f

IPD (0.5 bar) :t 0.018 bar I

PD (1 . ,:t 0.02 baroar)

.,..~ -2.5 +1.4KI~

TVY :t -1.2K

WS (7 20 em) :! 0.5 em

L:WM + 345 kg.Isump

\Vfv1. ~ ' :to 57 kg 1.4 o.

Iin legraJ - '0

V :t ., ~ %I .•::> IA :t 5 0

Icond. -0

A .. + 0.5 o.U \)

IiI

! n addition to the errors given in table 6 and the uncertainty concerning

the thi.::kness of the coating of the concrete wails (see table 3) there are

other parameters to the containment calcuiations which are still uncertain:

thickness of the heat absorbing or heat releasing metal structures,

density, thermal conductivity! and specific heat capacity of. the con-

Page 40: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

- 27 -

crete coating (acc. to manufacturer: :t 10 %),

densitv! thermal conductivity, and specific heat capacity of the con-

crete (taKen from the Ifterature for pure, dry gravelly concrete:

p = 2200 kg/m3, A = 1.28 W/(mK), c = 879 J/(kgf<.); because of steel

reinforcement described in /1, 2/: p = 2200 kg/rn3, r, = 1.73 iN/(mK),

;: = 960 J/( kg 1<); steel reinforcement beginning 20 to 30 rnm off the

surface) f

density! thermal conductivity, and specific heat capacity or the metal

structures!

. temoerature and other dependencies of transport properties.

ingenerai, errors of variables measured in containment are smal! and most

of the time within the ascii !atory margins of the measured variables. There-

fore, in the comparative piots they are not shown as errorbands but only

as bars according to scale to improve comparability of experimental errors

For pure containment probiems the uncertainty in calculating mass flc"v

rate 2nd specific enthalpy at the break ill the primary system with. b!m\'-

down cedes is atypical. To reduce this, both variables are determined

from measurements. For reasons of uniformity. in the boundary conditions,

it '.v2S suggested /3/ basing the SP-ccllcuiations on their nominai values.

As fe'd" as the [:2rticipants cornmunisated on this, these vaLues were usea.

in figs. 10, 11; 12 and 13. these values are depicted along with their

ert'cr bandwidths estimated by 83ttelle-institut. The etTOrs. are lower

than the ones of the test first Containment-S? ,was

based. HoweJer; within certain. time intet'vals theyar'e to be described

as r'c!c;tiveiv' high, especially' in regards to SP A

Page 41: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

kg/5

o -t I f I I Iii --.:--r- I I I ., I I I - I 1.- 1 I

0_ OJ5 _ 11J5 _ 2 5

,-1'0OJI

.-.-I-.

<1l-.

~,nUl'I....,n

uj'

- .___-I===t-..

.-..N

g-!..o.....

.-..

"Ul..,'•

~~....

~..

% of measured valueI

.........,'+

lL;-.

;~ % of f~1 // ull scale (400'- • "" . kg/5)

or. ;--.. • ~() 01

::.[;+ ~.N N~ _:""''1':jl~¥'(',j1 ~ -..=~ ~ ..

+ •

en_rJ;:;/:::-i u:rI....

0"

+

-"-~-' -

-/- /.;~.- ...,

C::J"- .-.

/100 .

300 -

100 -

_500

200

-I

r-'",-.

'8~0

-I~

~.... tIl

Ul/ et1

::<:

:-1~:--,

---.-'

---,/_-

Time

Fi.s_._~ I3reak mass flo'~ In with error band (experiment D16/CASP2)

Page 42: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

kq/s

SOO -

I'

400-

IIV\.DI

% of full scale (400 kg/s).I......

u>,

. .-~ :;- ;-l~'l' ::<;, :J . ~. ~\ \::1="".0. -------3~--------=i-------., ."-.._.-----------=1-- _ - ~ . ~• -- .~. M

- ------. -~ at _ ,' •• ~. 0 ,_

~ ~ ~ ~ '" ~ '-.. 0 .. .~~,~_

' ~ N M' M • .. -._-.-._= ...."C=••.••_ ,- . . .. ..~ ~~---==~ .._.~~..'..I..- 50N MM., ... ,- ~,=_____ _ S~ ~;; ". / - r I,D'\ I.

----r-- !30 :;-..... ~

----, . ~red value "\ ..% 01 mea.:c:.__ , 20 "

I .. •---,-- 10 Time

o -o

100 ....i

"'1 .r:

. 1 ~ 300 .o ...I rl

4-;

U)., UJ,") rJ>~ 200.

.'

Dreak mass :flo\\" ril wi th error band (experiment D16/CASP2)

Page 43: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

-.i

,.:

.. ,

.--

1500 ..

~<J/ kg

1000 -

,...-,c..

'"""m..c+J~a>

uCJ.0-

(f)-

500 -

---------.'--/l::-'::~F--==-------- __--:--.-:::::::::::f------ --.------.-- ----- ~==--==----.-----.----

~

/ / //--- ~-----I----::b -~~-:--~-- - - ------~::-=-.:..~--:.:..-== - - "-:-~-=-=.t----- //~~'~, ...~---=--. =~=----- ~,------------------_.~----.-=- / -:':::," ~,~ ;",:: ~,~ :::, -; ';' cj ';' .1• _ ........ I

N. ltl --~.. ('"/ ~ ~~... .en.

% of measured value

Iwo,

/ Fig. 12 Specific enthalpy 11 of the escaping fluidHi th error band (experiment D 1(;;CASP:2)

'---1 I I r i I r I I Io -1-

DI IT I - I - 0 5

J

I 1------'

Time

1JS 2 5

Page 44: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

-31-

3000

C/" of meosured value-

kJ /kg

i

50540

/1I / j/ . I,/ II,

/ / //I

/I1/

/

20,

10

\

:.--N0

"" NN

2500 jI1

2000 J

~ I.~ 1500-f"'I

'I

1t !~==-- ~~===IiI! ~~1 ::

10001jIjI

500 l'j

'~

~I

io !

oTime

Fig.13: Specific enthalpy h of the escaping.fluidwith error band (~xperiment D16jCASP2)

" ",'" ~'.; \ '-.; " ~.\ : .....

Page 45: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

- 32 -

2.5.3 Effects of deviations from nominal values

With few exceptions the SP participants based the calculations on the

nominal values listed in chapters 2.1 to 2.3. In this chapter the effects

of the deviations described in chapters 2.5.1 and 2.5.2 on the calcula-

tional results shal! be considered somewh~t more closely. Results concern-

ing these effects are mainly supported by estimates and parameter studies

as far as. given by the experimentator (see /6/) and participants of the

SP (Australia, Belgium, F.R. Germany, Sweden, United Kingdom).

These are supposed to better safeguard and interprete the results; Re-

garding the most important deviations, mostly quantitative stcftements

could be found. However, the investigations carried out here are to be

more understood as a starting point, in respect to a more systematic ana-

lysis of other important values.

2.5.3.1 Tm e nterva. o to 2.55

For the time interval 0 to 2.5 s parameter studies are available:

on the influence of the gap (see also chapt. 2.5.1):

With the aid of code ZOCO VI, Battelle-lnstitut determined (see fig. 14

from. /6/) that for a gap size of 236 cm2 = canst (t) the calculational

results without gap for the foilowing variables are higher in percentage

than. the calculational results with gap (reiated to pressure built-up,

r-espectively pressure difference of calculational results with gap):

ce:lculated variable 1st maxim.um 2nd maximum

PR4 3.4 % 6.8 o.-0

P;;e. 2.2 9- 6 %R7 0,\o.J!

6.P . 3.9 0 8.3 %. R4- R9 -0

.\ i..... . 0 3.8 %i,..t'!:)4_RJ:; R4-R71\ Vf

.'p . 2_7 0 8.8 0~ Qc;-~9 R7-R8 IS -0i\. ..... K I

Page 46: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

,wWI

.......

I l1.5 s 2.0

R5 resp,R7

R4

. .· -=-~.-= ... -a...... T'-:-:-.

--------"---

_ 'Nith gap I~4/R9(236cm2since t=O)

.-..,..-without gap E4/R9••••• Experiment with gap

L1.0

clidnnel

0.5

calculation with ZOC06/;corr6Sp-OllclIn-g t.o mects1]1: ingr combination 89/91 .Po = 1bar J To=20 °C

~w= 0.1 for all UCo= 0.7

4 3Uw=lO (R4),10 (R5JR7),

102 (RBJR9JR6) W/m2K

...

/,.-- ....,//-- .....-

////

/./1' •

........ "",.'. ... '" .. ","". ",.- .",."" .' ' ~•• _"'~-:._._ :A •• ,0' .. r .." ·........ ~ .... ...,-".41" .........~ .

....... ---' ~.. ~ ...~;, ..-./ __~",,,,.-oJ R 8, R9 R 6

. ~ '

~

.--,;"":,~ .... ,,,...--...1

l>~ ••• ' •••••••

IlL "L""-_~~---"-'o __ I

2,-

1.21~

2.2

bar

ClJ~ 1.8'-::JUJUJOJ~c..~ l.fj.-c

E.~o15 1.4(J

/

;..

<

z

z

C7.l-,;..

Vl

-4

.,<

;>'J

;.."/To

-~C-4

co).~-4

rnr-rm

,n

Time

Fig. 14 Model calculations 6n the influence Of gap R4/R9 on pressure b0ild-up

Page 47: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

- 34 -

The maximum pressure differences calculated by the computer program

COPT A (Sweden) /34/, neglecting the gap formed between R4 and R9,increased with 0.01 to 0.05 bar and the pressure in compartment R4 at2.5 s with approximately 0.02 bar.

The calculational results of the SP participants not considering the gap

(F. R. Germany, Netherlands) would have to be systematically decrea-

sed. Different computer codes (differing simplifications) and similar

computer codes (differing input assumptions) would very Iikely result.

in differing outcomes. In comparison to the influence of other errors

(for example the boundary conditions, see below) this systematic in~

fluence, approximately determined in size, is nonetheless to be des-cribed as of minor importance.

on the influence of the error bandwidths of the boundary conditions:

On the basis of the information in figs. 10 and 12 the experimentator

also. computed the influence of the boundary conditions'. error band-

widths for the lower limit of errors /6/. Hereby receiving the following

deviations in. percentage (related to pressure built-up or pressure dif-

ference of the calculation without gap and nominal values. according totable 4):

I calculated variableI

1st maximum

-9.5 %-8.9 %

.

2nd maximum

-12.6 %-14.1%

The results of a caiculation with code COFLOW(see /12/). (also for the

Im\'e I' limit of errors without consideration of gap) fat' the 2nd maximum

concur favourably with the e)(perimentator's results. For the 1st maxi-

mum the results. are somewhat higher than the ones in. the computationof 8atte!le-1 nstitut:.

Page 48: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

3:;.-- -'

calculated variable 1st maximum 2nd maximum

PR4 ;.12.3 0 -14.4 g,-0 o .

,0,PR4-R9 -12.5 0 -16.0 0-0 -0

PRQ(2.5 s) -12.2 %,..,

A corresponding COFLOW-calcu!ation for the upper limit of error in-

dicates for the 1st maximum higher deviations . than for the lower limit

of error! caused by the higher upper limits of error of the spec. ent-

halpy and of the mass flow at the rupture site between 0 and 0.2 s.

For the 2nd maximum the values are in approximate agreement:

II .. caict:..dated variable

I

PR4

LiPR4- R9

1st maximum

+23.0 %+23.6 %

I

I.2nd maximum

+15.0 %+15.3 %

i,.., (~... '~R9 L.:J 5) .

I. I

+15.7 %I

in figs. 15, 16 and "17 taken from /12/ the influence of the boundary

conditionsl.upper and lower limits of error, as it was computed by

COFLOW, is shown for the history of seiected quantities.

Unc;Jer the assumption' that the measured curves correspond to the

nominal vaiues of the boundary conditions and that the effects of devia-

tions from nominal values on the experiment (\tJith gap). are identical

percemagewise with those of an assumed' COFLOW-caiculation (with gap)!

in addition arrows related to experiment are drawn to scale. They indi-

cate in. the order of magnitude at selected points in time, how mLlch

higher/ lower the experimental results could have been, if not the no-

minal ener'gy but the upper or lower limits of it had flown in the containment.

Page 49: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

2ND CONTAINMENT STr-11\Jf]r-=IF~~OF)~\OEjLEI/l( CASP 2)

'J

_._._ ..._._.------_._--.----_._---- ._----_.. --' --_._--~

(')

(\J

1\1

I EXP. ERRor~ 1!:25mbarlo EJI' . (': r~\, (J (I i)i'V / )IJ PRECAL(.i/I-'IHi''1X+ PRECAlC ,i'l+1-I111j6 C.ITI_OlJ- PRECALC

,'..--1::

IW01I

__ - -[J-'--

, ,.-\J- - --"-- - ._ --n- .. __//

/

ol\I

",,-1

,/'- 1 -.0' ~~ // ~ ~ -- - ,lc\,'\ ,.'i I '; "J I / I' I .. 11.;/(\1 ",1,

(

~. / ,/ ',' '1//"'1' I.,.

W

"' / . ,I ,-" "i,,"'\,1 'I\AI' I ', _ r' ~ I A \ '1'''. 1\ -/f 1",.... . . - ,., ", 1\1',,",~' ' "0:: ._ /

1

1

1

'/\'\")/\(\ ~!_), "_~~~.! ",1\ (~,' '------I \' ,,1\,1" I "\fI\i~-.'nJI,Nv"'),,Id~V,V~\\V'I,~\AA.'J\I\i""\AJ1r'1,,"V'i"~ 1/ //., "~,u,""'\I,ll,i,,1 "t.,' ,. \ ' '(/)... \ / 'j' f'-' . ......... /' '

(J) 'r, ,/ //J' -c- - ..-.o-

IlJ 11/ ;,'II0:::: ~.. ,IIf0.. .- y)!{

__I j 11~/rhl\I li/JIl9i.-I,IIII'~

.- l'iJi Vi:.!k:;. '.':"1'\- ';\I,~!\1,

C..) [',j

([-LL.

>I.tf) U! ..

Io

,- r----l----l--~-I'"--- ..l'-.-'-..T-.-----r----r.-'----I-r-T-- '~r""....."\~....-..-r--.--r~-.-T---~~-r...-_:_r--r-'----r-~--I--I-_____r-T-. --I() .0 0 .2 0 . '1 0 .6 0 ,8 1 .0 1 ,2 1 ,4 1 .6 1 .8 2 ,0 2 .2 Z .~

TIME (S lFIG. 15: PRE S SUR E r.i 1ST0 R=. I N C 0 H PA R T MEN T . R 4 '

Page 50: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

2 NO CO NTAINME NT r-)'n=jI\JlJnr~D r:)F~OBI_.Ervl (CASP 2)'n __ '. ,_ ••. ... •• •. __ •. _ ... •• _ •• _. .._ ..••. - - -- ••• ---.----- --- •• ---~-.------._---

('J

(J\

o

I EXP.ERI~OR.(:!:20mbarlo [:{f' . ('1I\CJ3519.1CiI~ I

.Ll PRECALC'M.I"-H1''1X+ PREC.,ll,Le;-'~1;,I+MII~& cor':LOI.J ... FRECALC

IW--JI

.L- .. .._..... • • .. .__ .. ---.-----~---------------_.-------- ------ ..------/

<D

o

~- . /.~)::.:':,,,: ... ~- ... <.c '. ....I "ii' IIV'I""'!.;'\r 1"', \ . ~_ .. ., .. ,,"',. -" . _c.,. '. ".-' .//'1"'4 ..:"'i" "V,l' 1\ ,;;. ". .. . "--. . '~'_ . "". . . .... ,. . ""'" '_ ", . . "

. I' ,,IldJ, i<I, . ---- ," 'ft'... ,- ,. "', "1'''',1 ""i,IN1 '", •.-Ii: ';, ,liT: , .11, , " Ii, ., , ,nI" ;11.1. )~(:!';!1tlkr'l'~'l 1111:\1' 1

'1

,10,\ :j -.- ...----1 \ IIJI': "'. '1\"II"III'i'iMiililtll:ll\l"lllr;IIIIIi'';iJltli\llli~ll/~~1~\il::'i\IIAI,:/I!.'11JIi!\\,\\,h"il

/:\1,,11,1

\ ",n:II!.!II'i,kl't)'i\\i\,:\\,1I!\il'~:I:r),\/i"\~iil,'1'\';I!)I)J~!I':'. 'j!'11 ':>':"',-- , ~ -" "i'I'.\J\,;i'!!'IAJ,f!l,,\IJI'\'J' . . ','" "il'I':1111 1lil,iL""I'J'i'ili\!I!ill\~i"l.r 11"-',--,,1,':' 'I" _"_1. r!II\I(. .J ... '" -- +.~ . ','" , , I IrI" - .. ,,:.;.' . . '. .'1- I .':/'

1.._ III ,'/Lf~: ~~.. I' 1\ dill ;\1

I I" ,'! 1\1c....... 'Iiti\'l)-../ -II;,,~I(!i'iJ;I

III

lJ.J ~.h-----.CC9:'Jtf)tf)

l.iJ encr:.Q 0- ,

lO

C1!

0)

oI. -L-,-- ..I--r--I--I- ..--,-~-.-r_-I----r-.-.--r--..c... ..y--T-.-.--r--l- ..~I~

o . 0 0 .2 0 .4 0 .6 0 . f3 I .0 I .2 t ,4 . I .5

TIME (S)

FIG, 16: HIS TOR Y 0 F PRE S SUR E 0 IFF ERE NeE R 4 - R 9

-r---r--i--r-'---'r--'--T"--'-r--I.B 2.0 2.2 2."1

Page 51: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

2 ~mCO NTAIN MENT STf~lt\IDr='IF~Dr-::f~LJr::3LEJ1 (C AS P 2.)_ ...•~-_._._._..-.•.- ...- .._ ...__ ..-------_. __ ._-_.----_ ....__ .._-_ .•...... - .. _._-_.-. __ .._.--: .._ ..-.._ ....._._----_._--.--_._-------_ .._.. -------_.

'I'

1\1

(\)

rJ

I EXP. Er~ROf~ l:!:25mborl(1 f)iP, (9H.l OJ,'IYLl[] PRECAL(.r1~fH,'n>('f- PR EC A LC .11~1-H11 r~~\ COI-=-LCJ+ P F-( E CA L C.

uI\J

([rf;f'In CJ?I ~,

(j ..-~ -------

~.--A' IWcoI

, I IIF! G17: P R F S <; II R F • HI STORI

('0

-O'-~ ~._.6'-

.------" .~ ~.. ~~--_ ..-----------.----.------- --~... -!j--"-"- ----- ..,-------

.-8............- ......--.,..~....-:-~ ----- .. -_.- \ h'./"Y/"'fw'\

~

_ f- ! I .VI,',....r'JI.1i- .,'--- '. -~ I .~'I '). \A, ", ..---. --- .....,....-- )'I? vy.t'..lIi" 'f' ('

.r"'/ -,--- -.---' ' I I '\!J\h ','..-' ._A"--- +.-~J';MuM'1/l,IJ'h'i{l \,

./,' .__/ _,--- - II \ ''fI vuV' ...• --- _--.------.,. ,:::!\//"IiJII'V\ {

. __ .-/ , ,"\~(rTf'll'" e I

.0 ....-----j,'<f'r/~i"'" ,Ir.r'" __...---"~ ~\J~t,?"I"N~'

/ ......- ....~,' '.'\ltif.i,:}-"!".~I '''f\')'/

/' ",..-r~-,""';";'.i,~): IJ, •__...........~.__~'i\'l\i....I,,;.J. ..:/{-"

. "-S;r,:J\J1IA'~:f{'i ..-G-J,jrJ!',Jl.N/' . .

. "'J,:;;.Ii.1V:H11\'~!(;'lrl

o ~ t I '0-\..J:~f~~Jl:j::t,CIi"~ 1

, \ "'1\,,11,,1 ,,\~.D' ,.'.\)~J"' I r.~.,-- ..r.--'"T---T--I.-~I-_r-,---T----r-_r---__r--r--I---T-I:--.-r--r--r--r II I T'-- I r'--YL1.0 0 .2 a . '1 0 .6 a .B l . () l .2 l .4 l.5 , l .0 2.0 2,2 2 ,'1

TIME:(S)!I\ICC)HPARTMFNT R 9

illa: 1(; ....::=J .~In<.I)llJa::0.. 'I'

Page 52: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

39 -

Nonetheless one has to add that by the approach applied above syste-

matic errors are treated like accidental errors. The share of systematic

ert'ors more or less eludes analysis. Therefore, the most certainly,

smaller effects on the calculations resulting from accidental errors can-

not be quantitatively considered.

on the influence of geometric deviations and of uncertainty concerninginitial temperature of walls:

In a further computation with the boundary conditionsl upper limit of

error additional changes were made in light of a high pressure built-

up in R4 respectively, a high pressure di.fference between R4 and R9:

the volumes (-1.5 % in R4, +1.5 % in R9), the structural surfaces (-1 %in R4, +1 % in R9), orifice cross-sections (-0.5 % in U45, U47 and U59B,

[j788), _and the initial temperatures of walls (+3K in R4, -3K in R9).

The effects of the additional changes on the parameters shown in figs.

15" 16 and 17 differ hardly from .those resulting from the calculation

with the upper limits of error of boundary conditions (see /12/).

The influence of the uncertainty in the concrete coating's thickness is to

be regarded as minor in this time interval (see chapter 2.5.3.2, fig. 18

at 4 s). On the some'Nhat uncertain parameters given in chapter 2.5.2 the

following might have a not at al! neg!igIble influence on containment vari-

abies.in this time interval; namely the thiCkness -of metal structures, the

transport >properties of the concrete coating, and a higher error in con-densation surface areas.

I

2.5.3.2 T m e n t e r val 0 t a 50s

For 4-f ..... pLII:_ time interval 0 to 50 s parameter studies are available:

on the influence of the boundary conditionsl error bandwidths, inciu-

ding geometric deviations and uncertainty in the structuresl initial tem-perature: -

The history orcontairirTient pressure (after appro :16 s pressure com-

pensation in the whole containment) mainly depends on the total ent-

ha!py flown in and the heat transfer to the structures (high surface

Page 53: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

- 40 -

area! volume ratio of ~ 1.8 .in model containment, ;;::0.4 in an operatingreactor). Compared to a postcalcuiation with nominal values .and a meancoating thickness of concrete of 5 =0.95 mm (= reference calculation),another postcalculation was realized with increasing the break mass flowof +1.4 %, with an associated specific enthalpy according to the upperlimit (on the average;;:: +4.5. b), and the initial temperature of thestruc-tures of +3K. Simi!arly the structural surfaces. were decreased -1 % aswel! as the containment volumes -1.5 %. These systematic changes wereto be expected. to cause a hioh containment pressure. The result can

.be seen in fig. 18 from /12/. Maximum containment pressure is appr.0.39 bar or related to the pressure built,-up of the reference calcula-tion appro 12.2 % higher.

on the influence of a deviation i.n the initial temperature of the struc-tures:

)n /12a/ among others two pcstcalculations can be found only differingin initial temperatures (23 °C and 12°C). Maximum containment pres-sure is appro 0.1 bar higher-in the calculation with higher temperature.This result is in accordance with a parameter study on steam-blo\rvdown

experiments 010 and D15 /13/ (t.T;;:: 11K -7 6:P ;;::0.1 bar). With amaxpossible deviation of :t5K at the maximum, resp. of :t4K on the averageduring experiment CASP2 (see chapter 2.5.1) one can anticipate thatonly from this the maximum containment pressure can deviate by appr.:to.05 bar resp~ appro :to.04 bar .. Since the heat penetration of thestructures is probably less than maximum, the deviation will more like-ly be close to the lower limit.

on the influence of uncertainty in the thickness of coating:

Fig. 18 also shows the results of COFLOvl-postcalcuiations consideringthe uncertainty in the thickness of concrete coating (see table 3). The3pplic2tion of the lower resp. upper limit (s :: 0.7 mm resp. s = 1.2 mm)as supplied by Battelle-institut results in well perceptible deviationsfrom the reference calculation in the amount of -0.15 bar! resp. +0.08

. bar (concerning the maximum pressure) or related to the pressure built-up in the reference calculation -4.7 %, resp. +2.4 %.

In fig. 18 the above-mentioned influences on the maximum pressure in thecontainment (with the. exception of initial temperature) are drawn as ar-

Page 54: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

- 41 -

rows to scale under the assumption that the computed deviations are valid

percentagewise for the experimental resuits. Parameter studies concerning

the influence of coating thickness have also been conducted by Australiai

by reducing the coating thickness of 1.2 mm by 25 % the maximum pres-

sure of the dome compartment R9 was reduced by 1.3 %. The gap certain-

iy does not play an important role in the overall pressure bui It-up. Ad-ditional cases worth examining in this time interval may be:

corresponding maximum lower limit for containment pressure;

a higher deviation in structural surfaces I

separate consideration of the boundary conditions' error ban,9widthsand geometric deviations I

deviations in the transport properties of the concrete coating,

deviations in the transport properties of concrete,

deviations in the thickness of metai structu res.

ConCerning. the manner of maximum error consideration the statements for

time interval 0 to 2.5 s should also be pointed to in this time interval(0 to 50 s).

Page 55: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

2 NO CO NTl:.,IN M E t\lT S'rFll\jDr:=1I~D 1~-.JF:\O[]l__Erv1' ( CAS P 2)

.~----------------.---~....-~~

I~t'0I

I I I --r---r---T-.-40,0 Lj~.O 48.0

I EXP: ERROR '(!:25mbarlo EX P, 19PI_l 03M391~ Io POSTCALCs'-'O ,g51'l1+ POSTCALCs= 1 .2 MMl::. POSTCALC.S=O.7 MM)( POSTCALc.s = 0.95 M M;> H ,H, T;-V, AW

5 = coating thickness

I I36.0

~.. _-.f.-------.~

/

. /' ..---- B-~-.------.-.~-'-/_~ --~// //' .,...----.....------_-k~-- _ - ~r-

///'/~ - -

/ /' / ---"~--"'--'-' -'b--- ---------=---/

/// ~ - . -'"-' /./ ./~:fJ;;/-/ _Q_~~~~ .

/ff / ~"'e,::;:/ -

/~/ /~//111//l!/ ...:;1/,5

. ;f/I/:1 1/Ill./

/'l

~'-I--;--r--I-r---r--l I I I I4.0 8.0 12.0 16.0 20.0 24.0 28.0 32.0

. TIME (S)~ ,r; 18: P R r~S S t'l R F . HIS Tn ~!Jr~ 'i'! r n H PA, R T M F i'] T R q

oN ...,._

0.0

'f

'I'

o'I'

'f

N

'f

m

W r,)

0''': I,i-:JUi _U)L..JJrr:: (~_O-N

([ --

LL.;\'

10 l(~_

I rr1

C'l

Page 56: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

temperatures each in compartments R4, R5, R7

temperatures each in compartments R8; R9

temperatu re in compartment R6

- 43 -

2.6 Variables to be Calculated

As stated in /2/,' corresponding to distinct measuring point positions,

each SP participant. should best-estimate post-calculate the following

variabies as function of time;

for time interval 0 to 2.5 s:

1 pressure in each compartment

7 pressure differences between different compartments

3

2

1

for time interval 0 to 50 5:

,. pressure each in compartments R4, R5, R7, R9

1 temperature each in compartments R4, R5, R7, R8, R6

2 temperatures in' compartment R9

for time intervai 0 to 1000 s:

pressure in compartment R9

. 2 temperatures in compartment R9

water mass in the whole containment.

Page 57: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

- 44 -

3 PRESENTATION OF RESULTS

3.1 Comments on the Experimental Results and Deductions for theComparison

III /8/ some explanations are given with regard to minor changes with some

specified measuring points and to measuring errors for a few specified

parameters. Also the measured results are - as far as possible -depicted

in the scaies used here and in the comparison report to the fi rst Contain-

ment-SP. Thereby a direct comparison between both Containment-SP is

possi bie on what concerns error bandwidths of measurements and! especial-

ly, bandwidths of calculations. In chapter 3.8 this will be treated ?n some-what more. detail.

The pressures measured in ail compartments for time interval 0 to 50 s

are jointly shown in fig. 19 for the purpose of visualizing extensive pres-

sure equaiization in the containment after about 5 s. The diagram also de-

monstrates that in view of total pressure built-up in the containment iden-

tical seaiesfor both Containment SP can be used without any loss of in-

formation even jf the pressure range 1.0 to 2.0 bar (corresponding to 0to about 5 5) is omitted.

Page 58: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

-45-

mrl

UJ0:::

!"~~i,-1,. ........1

U ),~~i-L

'rrJ~0i-Z1 I:'-'-'

Li--,.~---!'-

(L( .....1, ,

'"L-CJL)

InVI 7

c---<

LJJL- "---/

(.....1r- 0

i

(.Jr)--...:-:

i--'--

W'''-',--'

L-- .J

U),I'I' I-' "

~..-v-; ,'-'-t-' Ii-...!...-

~-~: 'I

!i.,

(..

0' I9' I

H 00+<1

----p., "- '- '- '-:x: "LrJ f' enIi:) 0:: IT: IT: rr

I I

O'p. r-'E:

(8d* s- [J

Ig';,.

L0:::

c)rYCL

Cf)'-

L-I

ZLJ;>7

([

II

(\Jj~i(f) ICLICJ I

I

~i(f) i'U iWi~I

I(\JI

• jOr71"""- I-,'-

Page 59: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

- 46 -

3.2 Selection of Important Variables

As stated in the specification a number of variables was t.o be calculated.

For assessment of the results it seems necessary only to. consider impor-

tant variables. All variables additionally wanted become important, espec-

ially when deviations are to be analyse(j more exactly and more individu-

ally. In the following a brief argumentation for selection made (mostly in

parentheses) is given. Fluid temperatures instead of wall temperatures

not measured in this test, give an approximate indication .on the tempera- .ture loads the wails are exposed to.

Time interval 0 to 2.5 s:

Pressure: 1 pressure each (pressure differences within a compartment arenegl igibiy small)

in .rupture compartment R4 (compartment with the highest pressurebuilt-up)

in first foilow-up compartment R5 (highest but one pressure built-up;

after flowing from R4 through orifice U45)

in dome compartment R9 (energy sink with slowest and time-delayedpressure built-up)

Pressui'e difference:

behveerl R4 and R9 (highest pressure difference).

between R4 and R5 (outflow from rupture compartment R4)

between R5 and R7 (information about influence of different heat trans- .

ler and different water .carry-over on .pressure built-up at differentoutflow conditions)

betvveen. qJ:; and R9 ( outflow upwards after short flow path)

between R7 and R8 (outflow downwards after long flow pa.th)

.Temperature: Because of differences expected inside. the compartments

2 t8mperatur'es in rupture compartment R4 (highest temperature load)

2. temperatures in compartment RS (highest but oneternperature, long.dead end)

.2 temperatures in compartment R7 (short dead end)

Page 60: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

- 47 -

2 temperatures in compartment R8 (half a dead end)

1 temperature each in compartments R6 and R9 (slowest, approx. the

same temperature built-up)

Time interval 0 to 50 s:

Pressure: Within this interval the maximum pressure in the whole contain-

ment and pressure equalization between all compartments occur, The follo-

wing pressures are selected as the most important variables:

in rupture compartment R4 and

in dome compartment R9.

Temperature: Within this interval the maximum temperatures and exten-

sive temperature equalization occur in each compartment .except in R9.

The fellowing temperatures are selected as the most important variables:

in rupture compartment R4 (similar in R5, H7)

in compartment R8

in dead end compartment R6

2 temperatures in dome compartment R9 (beginning of the temperature

stratification)

Time intervai 0 to 1000 5:

According to specification pressure-, temperature- (represented by R9),

and water mass history in the whoie containment during the cooling-downphase.

3.3 Listing of Imoortant Features and Input Parameters of the Codes Used

Tabie 7 combines for various time intervals important features and assump-

tions of computer programs used by individuai participants. This was pos-

sible as far as they could be taken from short reports and letters (12 par-

ticipants) and suppiementary information after the workshop.

Calculation resuits for all 3 specified time intervals were .subrnitted by

ail participants except Finiand (not fer 0 - 50 s).

Page 61: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

_T_a.~_l_~_T_~lmpnl'tilnt features :,n,J input pill'c1meter's of codes

I~coI

c = ;'iltr:,:_!_~o-"'.3!~~.!_ity'"C nO"10geneous ups t,'eam

node qua 1i ty

_ water mass flow- totaTlilass-noi:j= wate0 in mixture flow

tempera ture di rfe,~encewater separation factor

= initiol t.en ..pL't~atun~

fiT

clt/AToF Iv

'\'1:lldSS of\"61:01' inlIode

t ,-a n S PI) " t '\b 1c-.-.t'(lfi\l------

volumepn.:ssul'[, di ffel'er,cepreSSl"'e loss cOEfficiEntIvat.er carry-over factor .•

!,

[;I.J

v6f'

i\ = surfdce "rea m{, = air mass

Co =.: dlschar<jC: coefficient n1V = VJI)()IJr rnass

I: ' = I ",<,Lie (}Il(;"gy n = number of orifices

II = total tnUlillpy R = CC;lIpill'tmen th t c = I....,,>! (1-"nS fer coeffici l'nt t = timE

-- r--Time -----_. -Computer Number ofl,la tel' __ O,-ifice f 1Oltl lIeat T,-ansfer to structures Compute,' Compu-

Country Code In tel'va 1 correlation accYI

to ...... coating U".. Other Remarks._.J2L Nodes Transport C t Coefficients (!ltC:I'JLi.y'K'1 thickness rilile (s \.. ______ oncep

/lustralia ZOCO V 0-2.5_ Henderson and Marchello conc,- . 70.26 t, =0 compressible floltl CD = 1 fi J 1er

0-50 VI =1 mm -UQL0-1000 4(R4,R5,R7:1 C04-5 4_tO.I)'!

surface IflH 370/ 15109 gaps i ze.=264 cm2coating= 3031

---R6+R8+R9=1) C05-9 '7 _8=0.6 =0.2 mm

-- -------- ---~--Gel ()iLlin TR/IP-SCO 0-2.5 6 C de- Fauske subcrit.floltl (,4-5,4-7=1.5 no

I'IC pend s lIIoael (i .e.: 1sentr.ex- C =1. 0 (spec. enthalpy 34.5on tillle pansion f.the va~our gapsize= 292 cm2(see chapt phase,inco;]I[Jr. f 01'1 05 -9,7 -8, input reduced by 18/.1 370/__-12..l f.the liq. phase) 8-9,6'-9,4 -9 o to 7.5'1:) 3031

-0-50 break flol'l 0.2 mill condensation filmTRAP-CON f-'-'-- 1 flashing .- -----0-1000 - Tagami"Uchida thickness" Imm

... 25.5

Canada PllESCON-2 0-2.5 t: ::0.5 one dimensional mo- COC CYflER 12 gaps i ze = 292 cn/6 \./1j-5 4-7 mentum equa t ion, r, = 2.il5--- <1 -9' ,

f .\-E5 t5',' =1 hol'll. flo'.', 1300 0.2 mm 170 200-50 model 175 '--0-1000 _._-- -- o - 50 s : 1300 1.71 -- ~iO- 1000s: Uchida

.-"finland r(lL~.P4/I-IGD5 0-2.5 ~~ =D compres. single 1,4_7,4_5:2.8: 40 xOittus-[l~lter gapsize = F(t) (see

'Iv s trealn fl OIY Ivi th (liquid forced convec- EK I 0 chapt. 3.5)7-3,5-99(1l4,R5,R7:2; momentum flux (,8 _9=2.17

tion) ser, fig, 20 COC CYflER 90 complete separation1<6,Rfl,R9: 1) 170 of ahases 1n each con-

1,9_6=2.81 t,-ol volullle(lJoth phaseslave sallie t~llllJera tut-es \

all stn,ctures; 0.7 millcorn [l-IPT-L T/ 0-1000 1 pool t'ogion and

0('60-2.55 :1in. incl'. I BI.l 370/ 264 gaseous' region

from 45.4-,10000 168 may have eli ffe,'e'nt(1.1DO. ) -- - ,_._-

2.5 -50s : 1000050-1000s: IJch ida

t~llIpera tUI'~S

-- --_ ..

0-2.5 5(iifl ,R5,R7 ,Rfl[,1'1=1

steady state adiaba- CI)=f(IIl,ss ga, gapsize =F(t): 1 ; R6+R9 : 1 ) tic flolY;isentropic quality»1 IBf1 168 80 EK = 0

, =0 expansion;no frittio~CD'1-5CD4-7 =1 . 2

ECOTRA (see App.2) . EK=OFnnce', GRUYER 0-37 4(R4,R5.R7:l; '1.'/4-5,4-7 . hOIli. frozen ~odel .R6+I<S+ll9: 1 ) ~ '05-9 COfl_9=1. j . "hl ind'" ca 1CLl]ation-'1'15-900.25

i'\'17-9~0. 75 0.7 11\1\\ 181130-33

(HOOD 1 - '- - t<~;Os: 139,0: 1>50s:hlc=[\=0.6(t)

. Tu = 2,1DC .=1.5( ,H) ,/.3 f. \':anller W/(rIlK)j. nlv

11 "blind" calculation'IIa l1s; 11. 3+454 (--)nlA

>-- _0 ____ - • - and Uchida f. colder; I'la 11s ~-

Page 62: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

T,:,I, I to ;' (COlic iHued)

-~-'il-'-'----r-,;.. \ I ,( - I ~ L .... •LuFU'l:-, 0-2,J !3,/n,lb,Rl:]f(B : 2:1{6 ,f{,) : 1)

Gl:1T1011'/

COIWRU

0-50

0-1000

- ------_._----I'etlt/een I'oollls:quasl- P R4(1500),RS(1500,2XIOO),stc1ti~nuy cOIl\~r.ori. C .( )( f(.L R7(1500,2X100),t. rest

flli = 0 iJflCC tlO\I(hullI.,lllthout IJ OII,CI.I'I ) (100);f.stl°el alld COllcrete~,IIiJ) . ocollsl(L):f.Jtlll(10)( I '1III"n rll"lll.n,,~- dl- I Jubson) -'-_. __. _

,(III I", 1'7 Il IIA = II 11f!IlSIOlldl,lllstat.lll- l =0 D'5 ["gJIII'j-Uchida""", "0)"1'1 It I UIIl[/,' Ill.' It)1'l)II(dli~';.I: :' \; nil 1 . Oil \, 1 .:. _' l.Cconcl'~t." " 1 Csteel

11'lCtlOfi (lIlLl-lnenll\ lite = 1200_~~:..:2L. .. ... ~!:!2.?_!.lli.L_ lIIilX

0-345 : Tnga,lIi X 634 S - 1000s : lIchi dah Leilia x =8QOO ( s teec 1)h tclllaX =3200 (eoncre te)

0.95 mill/lJ~[)MIL

47UV(5

0.70 nllil

-------I'li tilout gap "b1 ind"ca 1cul . f .Gennan SP 3

140t=0 T =20DCII, • 0

.- .

630 EK = 0

T =120C(solid)20°C(ail'o-'--Go=2!lOC(S'Jl id:'Z50C(air;260 I~-34 5: thennodyn.

nonequilibriull\34-1000 s:thermodyn.equilibrium

It" 1y(C:OI/

P isa)

P.RIANi'Jt~-0~-2. 5 I~(R~ ,R5 ,R7: 1:--1R6\RG+ll9: l)0-50

-' --"mrnUIPT "LT ( , /2 (R4IR5+1\7 : 1;

026 ' 0 -l 000 1\6+R8+R9: 1 )

r = 0~w

Sltl = 0

Moody -~lod e 1

ideal gas ol'ificefl 0\'1 mod'el

CD=0.6 see fig.21

'as above up to 40 s thenI ili.decr. to 20 at t=1000s

0.25111111(\=0.32 /18H 370/W(IIlK) 158

204 -.-J .~--- Iga~slze = F(t)25602460

1 t) I Y(~II [;!\)

PACO, 0-2,5

0-501----'"

0- JOOO

6

6

=0.71-1,1-5,4-7

;1-15-9 =~~21 isentropic flO\v I CD = 1.0

',,,7-8,8-9------_._---

lin.incr. ~o ,10000 f.R4,R5; R7, R8

Uchida f. R6, R9

2510 up to 50s thenUchida

IBr~ 370(168

1-.2mm(~ \)

170gapsize = 292 cm'

750

54

I,l::>

'0I

witilout gap"bl ind" calculati'onEK = 0

ga~size = 240 cm2cOlllplete phase se-paration i~ assumed

"blind" calculation

gapsize = F(t)

flash eoeff'F -2T = 27°C esh-o725

16.89

70.50

205.29

292

2627

2~92124

FAcor~~1-200

CYBER-175

CYBEH 172CDC

1.2 mm

0.95 111m

2000

1700

f.R4,R5,R7,R8:0-50s:10000'50-70 s: 1 in.decr. to 1590L>70 s:Uchida; f.R6,R9:o ~ 50s: 3)( Uchida50 ' JOOO's : Uchida

Henderson alld Marchell °

L-.:_r '

---~

~ = 2.85

CD = i.o

CD = 1

CD= 0.88steady state compr.orifice flow

one dimensional~teady state incomprflow

RELAP4(i'10D5

S'!leuen

\JiliJi\n 0-2.5 6~-_._._---0-50 2(R4+R5+R7:1_____ R6tRE+R9: 1 )

0 .. 1000

I;~,nerlandslzoco V(HOD.) T'-;;~~~~-l(R4:3-:-I",\,!(R4'~)~,0F5,R7,R3.2; f. rest.:

0-50 1~6, R9_~ i;VI = 0.5

0-1000 ICOPTA-6 I ~---6-.--";

_____ .._.. "'14-5,4-7,0-50 ~(Rl ,R5,R7: I; Ij-9,7-8

R5+R8+R9:1) =1.

CLAP.!~0!_I] 0-II)OU_[~ __. L__-

IJ" i,t.~JKingdolll

'CI.,II'T'U,f' I!

0-1000

n-2.5~ 6 --.J[~~~- ---r --I '\'1=0,030'00 D

homogen~ous, ~lip,'adiabatic flow

O. 251-I~tc J28'E (LIP. A), 0.4: =0,8-0.2F n n \F!15D \'I '

but;,500 :a'dd. cOlllponent f.R4IltC=5.48Xl0~7 (~ ~fi.) 1.62

____ ] 00 - 50,0

0.8 mill 4-70

136

gapsize = 236 cm2EK f. 0

Page 63: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

- 50 -

, , '

The participants nodaiized in many different ways:

In time interval 0 to 2.5 s the containment was simulated by 4 to 13

zpnes . In relation to measured pressure in the ,compartments and

pressure differences between the compartments a subdivision of the con-

tainment into 5 to 6 zones (8 participants) seems to be sufficient. A

more detailed subdivision into 9 to 13 zones appears to be more suit-

able fer better describing energetic conditions, processes of water

transport and also their influence on pressure distribution: 14 tempe-

ratures with widely differing measuring resultshav,e to be calculated,

iongitudinal and short flow paths, dead ends, outflows upwards, down-

wards and sideways (Germany: 13 nodes, Netherlands: 11 nodes, Fin-land: '9 nodes).

III time interval 0 to 50 s the model containment was subdivided into1 to 11 zones.

One participant (Belgium) simUlated the whole containment by one zone.

This procedUre appears to be acceptablE: in view of the pressure built-

up, after about 5 s' when an almost complete pressure, equalization has

taken place. However, the zone temperature shou Id strictly simulate

the, average temperature in the' dome compartment R9 and the results

from other participants and the experimental results demonstrate even

in this relatively long' timeinterva!: that the temperature histories vary

strongly in the different compartments, so that a different influence, of

individual compartments on total pressure' built-up is to be expected.

Ther"erore a more 'detailed subdivision of the containment also in this

time inter"v"al is recommendable (4 ,to 6 zones: 8 pal"ticipants, 11 zones:

1 participant). In this respect it appears suitable on the one hand to

simuiate compartment R9 with 3 zones (because of the developing tem-

perature stratification), but on the other hand it is also possibie to

partly lump together compartments liedr the rupture site (because of

their extensive temperature equalization).

in tirn2 interval 0 to 1000 s most of the participants modelled the con-

tainrnentas a single node, except Australia (4 nodes), Italy/CNEN-Pisa

and Jaoah (2 nbdes).

Especiaiiy, in view of the temperature str'atificationmeasured in dome

compartment. R9 it is to question, whether the cooling process in the

containrnent - so essential for this time interval - couid be better des-

Page 64: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

-51 -

cribed in the calculations. This could be done by a subdivision into

several zones (e.g.: compartments near rupture-site, dome of com-

partmentR9, centre and annulus of R9 + compartment R6 vertically),

though thus certainly the costs of computation would increase.

Processes of water transport have a decisive influence on conditions in

the short-term. interval. They are generally described in an very simpli-

fied way., i. e. water carry-over factor ~ is input under the assumption. w .of a slip free flow. This parameter, mostly constant in time, often valid

for. ail rooms, is between 0 and 1.

According to definition (see nomenclature) for example ~ = 0.5 = const(t). win conjunction ;,vith the homogeneous model means that with increasing time

and a correspondingly rising portion of water in. the rupture compartment

a steadily increasing amount of water is transported oft the rupture com-

partment. Ho\'/ever, this amount. will increase as well as decrease on the

basis of existent flow conditions according to the course of the pressure

differences to the neighbouring compartments (two maxima) . The inclusion

of a time-function for water carry-over factor into the calculati::ms, which

.. would be necessary as a matter of principle, can certainly be regarded as .

a solution. It is very wel! possible. to obtain such a time-function from

post-calculations for one facility under the particular flow conditions of

one test. However', it seems to be very difficult to find a function in so

general terms of physics that it could be transferred to conditions at

another facility or the reactor. A. first step towards an improvement cer-

tainly is a definition of the portion of water !l . in the mixture flow, and of.w

3 ~vater separation ractor cwA (see nomenciature). These parameters couid

nCive a cn;:;nce of being described in more general terms, if experiments

with a suitable measuring technique have been performed (density measure-

ment at orifice vents). Supposedly, and as it has to some extent been used

in a calculation with a time-function for ~w (see chapter 6.3.4 in /6/), '\"\viil be substantially more independent on time than s\/. In a further step

:r,it wiil "Ol be possibie to avoid the inclusion of slip into the considera-

tions. Hopefully, thesecompiicated processes will then stil! be described

in a simplified but essentiaiiy physicai manner. A certain indication for

'1'/ater transoort conditions during this experiment are the sump tempera-

tures and sump water masses measured in the individual comoartments(see chspter 3.7).

Page 65: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

- 52. -

Orifice flow is mostly described in a simplified manner .. E.g. most of the

participants apply one-dim.ensional, quasi-steady, compressible flow with-

out slip and discharge coefficients between 0.6 and 1.2. As far as can be

drawn from the participantsl information the high portion of two-phase

acceleration losses(= momentum losses) within pressure differences is not

accounted for or very indirectly (correction for mass flow).

Heat transfer to structures. is treated very differently: with various dif-

fering relations respectively with input data, constant or some function oftime:

time interval 0 to 2.5 s:

The heat transfer coefficients of the participants are within 1300 and

15000 W/(m2K) for the rupture compartment, in part reduced for near

break, flown through compartments [within 1300 and 14000 W/(m2K)J

and dead ends as well as off break compartments [partly abou.t 100 W/

(m2K)]. Assuming an isenthalpic expansion. of the fluiddiscrlarging at

the rupture-site, e.g .. near zero time, vapour quality is between 0.3

and 0.4, which is equivalent toa void fraction of larger than 0.99 under

existing pressure conditions. Therefore, it can be supposed that for

the short time interval heat transfer conditions near the rupture-site

are existent in a water-blowdown test, as in a steam-biowdown .. From.1.

this high heat transfer coefficients in an order of 10' W/(m2K) for more

or less droplet condensation s.eem to be closer to reality. On a reduced

level these consideratioris are also valid for compartment parts near the

rupture and flown through by the fluid, while in the rest of compart-

rr.ents and dead ends with a high portion of inert gas (air)j heat trans-

fer is substantially lower.

in time intervals 0 to 50 sand 0 to 1000 s the highly empirical Tagami/

Uchida correlation, well-known from licensing, is applied most frequent-:

Iv I partly with multipiiers between 3 and 6. As far as found the maxi-

mum htc values in these time intervals are INithin (500) 1200 and 10000(22000) W/(m2f\).

With Three exceptions [Beigium f Canada: 0 .2mm, Itaiy (eN EN/Pisa): .

0.25 rnm] vclues for the thickness of concrete coating are used which are

within the possible limits of 0.7 mm and 1.2 mm from table 3. Quantitative

information on different assumptions can be found in chapters 2.5.3.1 and2.5.3.2.

Page 66: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

- 53 -

In general! computation times are short. Kinetic energy is considered bytwo participants.

3.4 Supplementary. Information of Individual Participants

! n this chapter information beyond the scope of table 7 is given from the

brief reports of the participants. In particular I reference to the pertinent

'literature on the programs used and essential characteristics of modifica-

tions are to be briefly described.

Austr2iia /15/: Code lOCO V /16/ was used for all three time intervals;

In addition, a calculation with code lOCO VI /17/ for time interval 0 to

1GOO:; was submitted. The results agree iess closely with the measure-

;-nents. But this code has the merit of operating considerably faster than.zocc v.

Mass .. flCl\v betvveen compartments is calculated in codes lOCO V and

ZOCO. VI by. an analytical/empirical method involving the expression

where P; is the pressure in the source compartmentI

fluid specific volume for .compartment i ..and v. is the mean

!

The effect of the water carry-over factor on . ehe calculated pressures is

studied by taking a constant value of 0.65 for all compartments. The

maximum pressure in dome compartment increases with ZOCOV by 3.7 (Jo,

cOfiloared to the reference calculatlon (~w= 0).

Belcium /18/: The essentials cf the computer codesTRAP-SCO and TRA.P-

.CC'N~an be found in /19/.

'ven c path simulation:

For' the flow paths close to the rupture compartment .:idditionai fric-

tion and inertia have been introduced; for the other vent paths, a

discharge coefficient or ui-dtyv"as used (see table 7).

Page 67: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

- 54 ..

The Water carry-over fraction is defined as:

c = \vat.er flow qualitv .. we homogeneous upstream node quality

With help of a common multiplier the water carry-over fraction can varyas a function of time:

o to 0.3 s: CwC4 ~-::J,

= 1; C = 0.54-7, 4-9 wc 5-9, 7-8, 8-9, 6-9

. 0 . 3 to 1. 2 s:

1.2 to 2.5 s:

C linear. decrease from 1 to 0.5wc4_5, 4-7, 4-9C linear decrease from 0.5 to 0.25we . 7-8, 8-9, 6-95-Q~,

C = 0.5wc4_5, 4-7, 4-9,.... = 0.25......WCt;_O 7-8, 8-9, 6.-9~ oJ,

Heat transfer coefficient:

The Tagami -Uchida. correlation was used:

T . It' h h \'t/t.. )0.5 [lA/1m.20C]3gaml corre!a IOn: T! steel = max'. p H,

h = 0 -'7 (1=/\'.1" \0.6. I _, v ~ Imax P.

wherein: v = 642 m3:

t = 23.5 s:pE = 10 GJ:

h-,- r = 0.4 hT t Ii ,concre~e .. ,s ee

total containment volume

end of water blowdown

about twice energy content liber'ated in

the containment

Uchida correlation:

CeaEing:

hU = 5.678 (2+50x) [W/m2°C]

1" ~ I. .X = ~OLa, vacour mass, total air mass

The fiiler for porous spots and the flat coat (filier) have been igncred

and only the main coat and the top coat have been accounted for and

simuiated by a singie coat jayer with the thickness 0.2 mm.

Page 68: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

- 55 -

Sensitivitv studies:

Fer the short term, parametric studies were performed to test the sen-

sibil ity of such parameters as:

1. Water entrainment: This influenced the pressure difference from

comeoartments R4 and R7 to the other compartments. The sign of

the pressure difference R7-R5 is influenced by the options chosen.

2. Energy reduction of break flow: This lowers the absolute pressure

profiles of all compartments after 0.5 s but does ,not influence so

much the differential pressures.

FOt' the long term, the influence of other parameters is illustrated as

follows 'bV varying only one parameter from the reference case:

Reference calcuiation:

Total paint thickness:

(8 = 1 mm; A ;:: 0.2727 W/m, °C)

Evaiuation models for integrity:

(E=5 GJ, <5 = 1 mm)

D = 4.032 bar (+2.8 %),max

p = 4.245 bar (+"10 %)max

P max - 4.325 bar (+12.7 %)

Canada /20/: The used program PRESCON-2 /20/ is based on the assump-

tion of a thermodyhamic equilibrium mixture bf air and two phase water

(i. e. common temperature). The mixture ishomogeneous!y distributed

throuahout, the node. The eauilibrium temDerature is eau~1 to the satur'a--- ". . . l '.', .

tion temperature corresponding t6 the' partial pressure of the steam.

Finland /21/: Codes REL.AP4/MODG for time interval 0 to 2.5 sand

COf\JTE:\1?T-L T /026 (VTT version) for time ,interval 0 to 1000 s are applied.

The heat trzmsfer coefficients in different compartments are given in fig. 20

(fr':::m 40 x Dittus-Bolter correlation).

,The aoproximation of thetirne function of the gap size IS as follows:

G to 0 _r 5 s:(' ..,:-J. j:J to 1 . .s .....

linear increase in gap size from ,0 to 292 cm2

constant gap size of 292 cm2

linear decrease in gap size from 292 Crr'l2 to 236 cm2.

Page 69: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

:c:"C,l));)/'i

... . .__'fH~.F~,.- ?:._~J<F..\ ,'~C-.~.(J2{~p.,~L}~~.~l:<:~.tJ!~?l'.1..9~.!-~:U'_~_!~IJ:NI~~~r~__1 ',_'.,f~ll t)n~,C T / 0 .Qr~0 l-!-?_~.?~__~.f~.c.I~-~)..0- 5. ,....".vP/) r-(I.: 01

u r Figure 20: Cl\SP '2, "open" problcni. The heat transfer coefficients in different compartments(40 x Di Lt us -13c)l t e r cor reI a t .i.0n) 0

( [] = Control vol urnenumber . ill the RELf\.l) - mode~ R = COITI!Jartrnent nun1ber. )

~.=

,V1CJ\I

III .--.-...---:--------

,----...~-- . -~.---:----..~_ ....------ R 4 .'-91

Inu

--"""-----_~~----------'--'--- .. -.--.- ..-.---.-----.L.--~~ _r . .'-...:<"b.....(I)f ....

~ II_~ _=-.__ :_j~2!JI{____ f5, CD------". -_._-~/ _-----r----.--------.-- .....-- -..

--_ ...---..-""'~-

"".-. 'I V .".-ILl ' I/:t:.; fl' . II; "-'"-~ I -/. ,E: rlll-- -'-'''\ . '//"" __""'"

I~ / ...'......"n .,' /"_' '\,

~- \ // '------,'.-- --,..~\J--._-_..-------.-.--L~:' [~--- .._---------'- ----() ., .. I" . '(- "n_

j II ,./--"-'-'~.- .. ' \ / /115, [~ _.-- ....---.---------------'--------

I // (-.---.- ..---.-.,..- ....-----.-\ ....-r-.-.--- .. --.~ ...--.7.-//---:~~------.-.----~~-~,J' --,- ... ," .__ .nj .. ""_ ...• ._ .......~ H6, f7l_:. ... _. _.- -- _. - -_.,...... - -- - --

~

~~'J 0,1) 0.2 O. !; O.G 0.8 1 . fl 1.2 1,4

T 111 F- SEe

..,,,.._._.__...~.L ... .._. __1.... ._.J. . L _

1.6 l.B 2,0 2.7, 2,4 2.6

Page 70: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

- 57 -

France /22, 22a (for "blind" results 0 to 50 sand 0 to 1000 s)/:

The homogeneous frozen model in co.de GRUYER /22/ is chosen. The as-.

sumptions specific to this model are as follows:

No transfer of mass from one phase to another.

No heat trarlsfer between the iiquid and the gaseous phase.

Average veiocity of the different phases is the same.

The air and the steam are at the same temperature and are an ideal

mix~ure of perfect gases undergoing an isentr"opic expansion.

The kinetic energy of the emulsion comes entirely from the expansionof the gaseous phase.

The g2p between compartments R4 and R9 is considered and the time-func-tion or the gap size is as fo!lows:

0 to 0.15 s: 0.0292 x t/O ~15 (m2)

. 0.15 to 1.5 s: 0.0292 (m2)

1.5 to 2.5 s: 0.0292 - (0.0056 (t-1.5))/3.5 (rn2 )

Germany /23/: The COFLOW pt'ogram /24/ enables the user to compute

short time as well as long time relations with the regard to stream fates

as \Nell as the heat transfer to solid structw'es and the heat conduction

',",rithin them. The main featur'E:s of the computer mode! are given belowin key-words:

The thermodynamic conditions within each node are either the stateof saturation or superheated steam.

The energy and continuity equationinc!ude the components 31 r! steam

and depending on the thermodynamic conditions; aiso v.'ater.

\h;Joci ty terms in the mcmentumeqI.J2~:on can be considered.

The V'later transport bet~tveen the nodes can be taken into account.

The he.:::t transfer to soiid structures can be considered as ,Neil as theheat conduction within them.

The COf\JDRU code /23/ is used for calculating long term pressure and

temperature hi 5 tories in tui I pressure containments (2-zones-modei). Either

thermodynamic equilibrium Or' noneqt..:ilibrium can be assumed.

Page 71: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

_._--_.-~--------------

:S SCXIL-

3CX"X)

Ileat tr:ll1sfer coefficient in1<4, RS, IG COfllP(] r tmen t s ;I~at transfer coefficient in(R6+R8+R9) compartment;

sex) .. 1

5,--..Lfl0I

w.~0. 4..~

\

. IIf)

J1

---... ::0

~I

'-'

'='-0 3~

Ir-L,

E3p::.

~ 2

44 48THfE (5)

--I _.__ ~

- - - - - - 1310\'; dO\m energy flO\.;.

.~~=-:- - -- - -=_1:-. . I . --40I .I . 368 322

-"

- --

1-_'. L16 20 ~

- '--

- --- ---.

-- -- -- ---

-- .----------------

10 . _/ +- _.-r - L_-c-_/ ---.-----~. ._.-.-12....-= . . 8

Cl 4

lOCO

E.~-"1"

~~

~i:J l>-<(.J ~/--< .. ) . ~p... 2CXX\ .. 1\IJ.•Ij~ I

8 \'1~ . IIIY) lSCX) ..~ \~s I \F. \

\.......... -.;.. --

;..::;o

('IG

:;: 2S0C1t-,-'

.Fig. 21 : I~ergy flow a1r1-heat transfer coefficients (,brief and medi'um term calculations).T'P,l\LY '(CNEN/Pj=-- ) ....

Page 72: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

- 59 -

, ,

Italy (CNEN/Pisa) /25/: For the short and the medium term calculation

codes ARiANNA-O /26/ is used which is based on COMPARE code. Ther-

modynamic equilibrium and a stagnant homogeneous mixture of steam, air

and water are assumed in each node. The heat transfer coefficients in

different compartments are given in fig. 21 (for details see App. 2).

For the long term calculation code CONTEMPT-L T 25 /27/ is applied.'

Itaiy (1'J IRA) /23/: Code PACO /29/ is used. For the short and medium

term calculations the liquid \'\'ater is assumed at equijibrium conditions in

Elil compartments. ! n the long term calculation the liquid water is assumed

at equilibrium until the end of blowdcwn; then separation from the air

, steam mixture is assumed.

A medium term calculation' has been performed using constant htc

(10 kW/m20C)in all compartments until the end of'blav/down:,

Reference calculation

Constant hic = 10 kW/m2QC

p = 4.4 barmax

p = 4.04 bar.rnax

Two ,ong term caiculations have, also been perfor'med using constant hte("!{\K "\V,;'m,2°(-'\ -'''-;0' a<:;<:;'umoln' g'\.LV .f. ' • ....:.,.) C1li I' .•

a) , ail the liquid water at equiiibrium condition? throughout the transient

0) no equilibrium of the liquid water thr~ughout the transient.

The results are as follows:

Reference calculation :

Cansta"t h = 10 kW/m20tp = 4.28 barmax

a) P = 4.03 barmaxb) p = 4.36 bar.max

,)20an /30/: The anaLysis, is performed bV the use of RELAP4/MOD5 /31/.Code modification is not made except the constant value of fluid/struc-

ture heat transfer coefficient IS ,given to the code instead of seiecting the

Duiit:"in heat transfer correlations.

Page 73: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

- 60 -

Netheriands /32/: Modified ZOCO-V code /33/ is used .. 't is assumed that

water, steam and air are in homogeneous thermal hydraulic equilibrium

with each other.

Sweden /34/: COPT A-6 code /35/ ai lows choice between seven different

models. In the most elaborate models each room is assumed to consist of

a liquid phase and a gas phase (or atmosphere). The liquid phase, which

may cor::a!n bubbles of air and steam, resides all the compartment floor

(sump). The atmosphere consists of. a homogeneous mixture of air and

steam and possibly aiso water droplets. The liquid phase and the atmos-

phere may have different temperatures.

The Iiquid phase and the atmosphere interact in two ways:

mass exchange by water drops falling down, steam boiling off and air

r'ising (normally only BWR-poo!).

heat exchange through surface heat transfer.

in the simoler models thermodynamic equilibrium is assumed throughoutthe ',)m.

in::he CASP2 runs, for the ,biowdown pericd (0-50 s),104 W/mf:'K) has

been used for the heat transfer coefficient a in the high-flow compart- .

. rnents (R4, RS; R7 and R8). This value corresponds to the order of hlag-

ni tude used by most participants in CASP1. For the low-f!ow compart-

ments (R6 and R9) a parameter study was conducted, using Uchida vai-

ues times some factor. For the medium-time case computer runs wi1;h a

equal to Uchida values times 1, 2, and 3 were made. Using factor 2 gave

::; signincantly better fit to the experimental data while the increased

in,p;'o\/ement for factor 3 was Fairly smail. Therefore it was considered

r:c,t worthwniie to step up further with the factor. The value a=3'Uchida

was then chosen fot~ the low-flow compartments (R6 and R9) in the short-

and medium-time cases. The results are as follows:

Reference calculations: P = 4.26 barmaxhte :: ) ;( Uchida: P = 4.34 bar'- maxhtc _. Uchida: P = 4.51 bar.max

Page 74: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

- pressure difference between R4 and R9

- pressure difference between R4 and R5

- maximum pressure in containment.

- 61 -

United Kingdom /36/: The calculations are done with CLAPTRAP I /37/ for

time interval 0 to 1000 s 'andCLAPTRAP II /38/ for time intervals 0 to

2.5 sand 0 te 50 s.

3.5 Comparison of Selected Variables

The ca!cuiated data used for comparison in chapters 3.5 and 3.6 were.tak-

en from the tapes (9 participants) and punched carts (3 participants) sub-

.mitted. They are identical to the participants. plot data. Most of the par-

ticipants used the recommended. formats,. scales and dimensions for plots,

tapes (cards) and lists, which facilitated the preparation and checking of

comparative plots.

Differences are cet'tainly to. be noted comparing the results of the partici-

pClnts. These differences may ar;se from handling the programs' or from

the quality of the models used in the programs .. However, in the following. .

no eV21uation as to. a ranking shail be made. The following sections com-

prise a selection of important quantities characteristic of the processes

taking pLace in the containment.

3.5. 1 Listing of important characteristic quantities

. . . ". '. ,." ".,

In this and the foliowingsections some observations made in the course

of this evaluation shall be pointed out during discussion of the individ-

ual variables. Prior to consideration of the individual comparative plots,

a short outline on the resuits of the Standard Problem is given by nu-

. meric3i!y comparing some important characteristic quantities from the ev-

periment and the participantsi c2\culations in table S. The following sym-

P R4 - pressure in rupture compartment R4

p 29 - pressure in dome compartment R9,\p..... R4- R9

Page 75: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

Country

__ _.__. ;. _ __.,__ _. ._._.._..~ __..__ ._._e_ _.__ ,_ .._ .~__ .._._ _.~ -_._ .._._-_ __ --_ ..__ _-- ---J Time IntervalTime Interva']. 0 - 2.5 s 0 - 50 s----...---r-~-4---.------ -PR

9-------Xp-~~;~'~-;-------..-----.-I----~P~~~R-5---.---I-..---p.;:-x -

Computer (ude lIst Max. 2n~1 ~"1~~--. L:c2.Ss --.;-;;--;~~~-T--2-~~~~~~~--j-1s-t-~~-~-.----;~--;~;~~--f)-(-~)-~~:) ~_t.-; ~~-~~r! ~~;( ~) P (b~1~')\~)(-I;~r!.~_~(<~,-P-(-b-~;"!-.~~-(_~_)J p]-~~-~i:-~~_;)r(bar) :--~(-~.) I P( bar) -t( s)

I01NI

38.5

33.5*

35.5

35.0

36.5

36.035.5

33.237.0

37.5

4.00.34.0

4.004.14

4.29

O. 95l f4j610.900.95

0.95

0.95

O. 19.* 0.95

1[L"@*

O. 19 0.9 S- 4 . 020.19 0.95 3.95

0.10[Q'~02]

0.10 0.14

o. 20ll1L~_llO.lS 0.17

0.i60.14

0.32

0.21

0.49 1.05

0.40 1.00

[Q_~z~J.1. 00

0.581.01.1

0.35

0.35

0.30

0.35

0.50 0.3010.55 1.00 0.22 0.15

n.55* 0.3&-10.63* 1.00*O.25~0.15k

0.52 0.35 0.58 0.95' 0.24 0.15

1.6810.56 0.3010.63 1.00 10.240.15 10.28

1.631'~)-9] 0.30 lQ.j~l 1.00 @.121 0.15 0.11 0.95/4.16

1.68 0.61 0.30 0.53 0.95 I~~~I0.15 0.23 0.95- .. 14.03

1. 64 I O. 49 0 . ~0 I 0.51 1. 00 10. 2D O. 15 j O. 18 O. 95 4 . 041.6110.49 0.35 0.55 1.00 0.22 0.15 0.18 0.95, ..

(4.29) (40.0)

1.66

IL_2~t1.66

1.61 0.44

].63 0.41

; 1. 61 ! Q-: f;~-II [L~~1 0.47

I\~~O. 351\1._~i] 1.101.67 0.35 1.81 0.95

ZOCO V

(I TR/\P-SCO~ TI(AP-CO~l

PRESCON-2 /1.57 0.3511.80 1.05

{I RELAP4iMODb 1.% O.J~ 1.8C! LOSCON1H1PT-

. LT/026 (VTT)

GRUYER 1.58 O.3~ 1.83 1.05.

COFLOI'1 1.61 * O-.35j 1.90* 1.10*

ARIANNA-O. 1.59 0.31 1.84 I.O~

PACO 11.63 0.3511.91 l.OO

RELAP~jr~ODS 11.50 0.35/1.76 1.15

ZOCO V(t~OD.) '1.52 0.35 1.7~ 1.10

COr)TA-6 11'.69] 0 .35 'I~9-~.11. 00

. CLAPTRAP II 1.53 0.35 1.83 1.D5UnitedKingdom

SVJeden

,JapanNetherlands*

AustraliaBelgium

CanadaFin'land

Ft"ance

Gei'Tilany

Italy(CNEN/Pisa)Ita 1yUl I f<A)

3.95 33.0

to.025

------_ ...__._---_..1 __._._._._----_._--------1 ...----_.--.-Experiment D16jCASP2 1.63 0.3511.81 D.97 1.55J 0.59 0.30

! Error . ~0.025 1~0.025 to.025 to.02

Influence of Gap* -0.03-0.061 -f-0.01 -0.02_____________ . . .__ 1 . .._._.l. __ ._. __ ...•. _ -_.-.-.

Tab 1_~_Q.: Important characteri s tic vari a9+~~

----- I -----------

0.62 1.0 0.33 0.lI70.23 1.02!0.02 to.018 to.Ola

-0.036 -0.0 -0.007_..:..__ .__ ._ ..__ ___. ._ J .__._.._. J

CJ Extreme* "blind" calculation

Page 76: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

......... - ....._. ., ..•. --- - .-- --- -- .. --- --- .. --- -.. -- ...--- .._.--- '-1' --. -._-.-~ --' -_.. __ ..- - -- - -. ---- -- -- -. ---- -- .-- -- --.----.- ..-- _ .... ---- --.- - .-._- ... _ ..--III Time I ntcl'.'a! 0 -. 2. S s

lia ri all 1 (~S PRII P 1~9 . 'p. 9L\ R,~-.R 6PR4-I1S

Time Intervalo - 50 s'

pmax1st Max.12nd Max. t=2.5s 1st ~~ax.j . 2nd~1ax.llst HClx.12nd Hax.

_.~ __ . __ ,_ ••• _._. ••• • _. _." '._ .•• •••• ,_. A .... _._ ••. _ •. __ •••• __ •• ~. _

~1ean value. (an participants) in bar

Spread bandwidth I ./ in barround mean value .---(all particiPants)! -, .... related to

mean value.---'~---'---------"--_._-_.__ .------"- -_._-~----_._--

1. 58

-I: 0.11~.0.12-I- 19~:- 21%

1.82 1. 64 .0;51. I 0.55 0.22 0.18 4.10'-I- 0.17 -I- () J) 5 -I- a.1i -I- 0.13 -I- 0.36-I- 0.14 .-I- 0.21- 0.18 - 0.08 - 0.12 - 0.20 - 0.10 - 0.16 - 0.29-I- 21?~ -I- 3% -I- 27% -I- 38% -I- 50% -I- 72% -I- 12.10- 22% - 13% - 24% - 36% - 45% - 89% - 9%.------ ...-----.--t ..:----- -- ----,,~ .

..---_.__ .._---------_ .._---_.--_.- ..__ ._.__ .__ .._.- _ ...-----_._ ....-----.---- •.•..

~.1t:an value (all participants} in barwithout extreme)

Spread bandwidth ~ _in barround mean va 1ue ( .---../'(all participants ( ....,----. related towithout extreme) ). 'mean value

1. 58

-I- 0.09- 0.08+ 16%- 145{

1.82 1. 64 0.50 0.55 0.22 0.19

-I- 0.09 + 0.04 -I- 0.11 + 0.08 -I- 0.10 + 0.09.:.0.08 - 0.03 --0.09 - 0.15 ..f).08 - 0.08-I- 11% -I- 65~ -I- 22% I- 15% I- 45~£ -I- 47%- 10% ..~i% - 1B% - 27% 1- 36% - 42%.~,.. _._,~_. ___ .u_._ .._

4.09-I- 0.20- 0.14

+ 6%_ (-01

... -? /~ ..- -._---

ImwI

.. __ • .4 •••__ ••• __ .. ~._~ __ ... _ .• 1,•• _ ..•• __ •• ~ ••• <i__ •• _,_ - ••• -~-.~-

3.95+ 0.03i 1%

+ 0.15

+ 5%- 0.05

- 22%,,_..... •__._n ._ ....__~ _

- 11% I ~ 33%

- 0.07 1- 0.11_. 0.09

- 15%-I- 16%+ 0.09

.._-._--_._-.......-._--_._._--_...._--_._---.-------~--_. ---_.+.-------_ ...----_._------

I- 1%+ 0.01

- 8%

- 0.05

1.63 1.81 1. 55 0.59 . 0.62 0.33 0.23i 0.03 .~ 0.03 -to.03 i: C1. 02 t 0.02 ~ 0.02 ! 0.02'-t 5% -k4% ~ 5% -I- 30; -t 3% -t 6% ~ 9%..... 10

Experiment in bar

b "d 'd h _in barExp. error an \;11 t ::::-.:- related to" .- .expennl .-~_..._--------_._---':-'-.-:--_. __ ..~---_..,---_.

Deviation mean value f} in barcalculation result (all :-~participants) toexp .. ' ...., related

to expo-"'"--_.:. __ ._._------_._-_._-------~'-_ ...~_.._-_._--_._-.'

18%

0.54

110%

0.23

74%

0.230.29

48%

0.22

39%33%

0.17

.., ......_~-~...... -.- ..._------_ ........_-----_.--------""'"-'._-, ..~-----_......,,---,,_.__.~---_..

0.21

27%33%

0.20[,to. A. a b S. de v i a t ion f. \ . bacalculation result (all; ..... In . rparticipants) to expo ,"'" relatect to- exp. error )' exp."

exp. error' ....__ ..•.~._.•__._ .. __ __ _.._ __ •..__ __.L.•. . --'._ -~." .

Tab'le 9: Mean values. banditlidths ancl deviations of imporL ..d,t characteristic variables

Page 77: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

- 64 -

Reference values are the pressure buiit-up values since 0 s (1.0 bar) for

pressur'es and the values ef differential pressures themselves. The results

of the "blind" calculations of Germany (COFLOW) and the. Netherlands,

not considering the gap, might be reduced/increased ..by the influence of

gap. in table 8 the approximate small amount of it (see chapter 2.5.3.1)

is added but not considered in table 9.

in time inter'val 0 to 2.5 s, for example; not only the initial maxima of

pressw'e in the rupture compartment R4 but also the differences in pres-

sure between the compartments occur i which are important for safety-

related design of thickness of inner. wal,s. The calculation results ob-

tained by Australia with the computer code ZOCO V more frequently are

t:,e lower bound, 'il/hile the results computed by COPT A-6 (Sweden) more

frequently are the upper bound of the field of. calculations and with a

. certain distance off the results .of the other participants. The participants

predicted the time for the first and second maximum, with any exception,closely to the experimental. data.

in time interv.ai 0 to 50 s, the maximum pressure occurs, which is impor-

tant for the structural design of the shell of a containment. The resu!+-s

calc;J ected with computer program PACO (Italy, N IRA) and to a some~vhdI

minor degree the results of COPTA-6 (Sweden) and CONTEMPT-L T/ 026

(Finland; however, taken from a run submitted fer the time interval 0 to

-1000 s) are to a higher amount distant from the experimental result and

the results of the other participants. Disregarding tt-lese exceptions the ..

maximum pressure in containment [3.81 to 4.16 bar; expo result: (3.95:t

0.03) bar} and also the moment of its occurrence (33.2 to 37.5 s; expo

result: 33 s) are quite well post-calculated.

In TCiCle 9 some mean values and spread bandwidths of the calculational

results are cornpared to the experimental results and their error band-

'::laths as wel i as deviations bet'vveen calculatiOnal and experimentai re-Si...!!tS.

;vlean "falues of results of ail partic4pants and those of all participants

without extremes hardly diff€;r.

Spread bandwidths of calcu!ational results diminish considerably whenthe e:<:tremes are het included.

Page 78: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

- 65 -

Compared to experimental values, the mean values of the computation

results are systematically below (by -0.05 to -0.11 bar or by -8 to

-33 %) in the case of the 1st maximum more than in the case of the2nd maximum.

The systematic over-calculation of pressure in compartment R9 at 2.5 s

(+16 %) is to be rated higher than deviations in other compartments,

since R9 is the largest compartment of the containment (465 m3 of all-

together 640 m3 in voiume,. resp. 700 m2 of altogether 1130 m2 in struc-tural surface area).

iVlean values for the computed maximum pressure in the containment are

about 0.09 resp. 0.15 bar higher than the experimental result (exp.

error: :to. 03 bar) which indicates that the participants have tried to

ilCJnservativelyl/ approach the experimental result.

:\1aximurn absolute deviations' of computation results (all participants)

for maximum pressure (0.54 bar, resp. 18 %) and especially for selec-

ted parameters in the interval 0 to 2.5 s (0.17 to 0.29 bar, resp. 27+- l10 90) are reiativeiy high.

With these considerations, hOl,vever, it has to be noted in accordance

with chapter 2.5.3, that deviations from nominal values can considera-

bl\irifluence. computation results.

3.5.2 Time interval 0 to 2:5 s

Because of the high number of SP participants, fer each variable two com-

parative piots (A and 8) have been made. Throughout, in each of the twoplots! .. the resuits of the indiviaual oarticipants and the. exoeriment 3r'e'

. 1 .' • •

shown 'Nith the same symbol and the same type of line to facilitate their

fi;,ding out in the different variables: plets. in the case of a lower nodaii-

sation tilan Ulat corresponding, e.g. to the number of temperature measu-

ring points to be calculated, these values were taken which the partici-

pantsN!shed to see assigrled to. themeasut'ing point. This way mean

values are in part compared to. local measurem,::nts.

Page 79: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

it seems justified to look upon

With the same program ZOCO V

in the. mean smaller deviations

- 66 -

Not only individual characteristic quantities at specified times are impor-

tant for evaluating the results but also the history of these and other

variables. Therefore, in this and the foljowing two sections the selected

variables and their behaviour within the different time intervals, are to

be investigated in some\i/hat more detail.

In view of the problem being more realistic compared to the first Contain-

ment-SP one may very well call the participants' predictions for this SP

as quite "I've!! in comparison to the ex.periment. As has been analysed for

some quantities in table 8 aiso histories of the results of Australia (com-

puter code ZOCO V ) and of Sweden (computer code COPT A -6) show some-

what higher deviations for some Values during certain time. periods ,com-

pared to those of most of the participants.

but modified ECN (Netherlands) co.mputed

. from the experiment. But on the whole!

the results of. all participants as lying within a statistical scatter field.

Now .a -rew. remarks shall be made on the diffe:~ent variables in the orderof chei r selection.

P;=ssure in rupture compartment R4 (figs. 22A, 228):

The experimental history is basical!y similar to that of the break mass

now and both its maxima. It shows the expected rapid pressure rise in

the small compartment and a type of plateau after the second maximum

because of the increasing influence of previous e:ventsand the smaii

dee.ease of the break mass flow.

incite compaf"ison it is to be noted that only Belgium (with a water

carry-over factor dependent on time) predicted the first and second

maximum quite well while the difference between the first and second

maxi.-num in the results of ail other participants except Australia 15

higher' in the experiment (calculational results: from 0.22 to

0.3 bar with a. mean value of 0.25 bar; experimental result: 0.18 bar) .

.Thi~ difference is mainiy caused by using a constant independent on

time fer the water carry-over factor in the calcuiations (see chapter3.3) .

Page 80: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

- 37 -

For illustration the following table is given:

CodeI CountryIIiIiI!

IiA,ust:~21 ia

Fmland '

I F.R. Germany

I: taiy (CNENjD' \'I' ' Isa)

JapanI

i Netherlandsi

I United KingdomiII "i Canacaj!~-_.~ii Ita j 'y (N I Rp', )

1\ Computer

II

II ZOCO V

I RELAP4jiViOD6

I COFLOWJ

I ARIANNA-OI ,

I RELAP/MOD5

I ZOCO V (MOD.)! .I CLAPTR,u,P I!! ."

, r PRESCON-2II

!iI

IPACO

Water Transport Difference in

Short Term

Pressure Maximal

(bar)II

iI

!

(0III 0.18I Ii ! I

III 0 I 0.24,

I

! I I

0 0.29 .. Ii

I. III

<-)

Sw= -<;I

II 0 I 0.25

II ii ? 0.26i ! fI 0.01 I 0.22 II J

I! II !I o 0.~ 0.30I i .u~ I

I '-- i

if; = 0.5 0.23."w I!!

<- 0.7 0.28';w=

0.14

i '! ,0 0.25i~V',/ "'! -1 .0. 0.30, I

L

France

3e!giuni

I

IGRUYER

I COPTA-b, iI ii II TR.AP-Sea i ewc = 1.0

I : (0 -:-0.3 5)

I !I e = 1\0.5\ i we ,~

L----------------L l_~~~~~~~:~~ ~:------------------------------------_._----------------,------------------j'Ii;

EXDerirnent D ISjCA.SP2 ? 0.18

it is recognizable that there is no indication of a distinct value for the

water carrv-over factor t = const. between 0 and 'J.O which results in• .JV'.,'

better an agreement of caiculationai with experiment21 values.

Page 81: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

- 63 -

A further reason for the difference between analytical and experimental

maxima difference is that the nominal values given for mass flow and spe-

cific enthalpy at the break within 0.1 s, i.e. that the decisive energy in-

put within this period of time,. might be too low (see the sharp pressure

rise with a crack at approx. 0.03 s, followed by an approximation to the

calculationa: results,. which are relatively close together for '0.1 s). A

higher enthalpy supply (corresponding to about the area of the triangle

between the experimental and the calculational course) has more influence

on the first maximum than on the second one and thereafter: the initial

excess of pressure is increasingly equalized by an increased flow from

compar'trnent R4, i. e. it is more and more distributed throughout the

other compartments of the containment. It is to be assumed (see chapter

2.5.1) that the temperature of a short portion of the pipe behind the rup-

ture site was initially above 260°C (used for determining the specific ent-

halpy; see aiso fig. 6.1 in /6/). FurthermOre~ the mass flow at the break

cannot be exactly measured at measuring point II - which .is located at a

distance of 2.6 m off the break- within approx. the first 0.17 s. An addi-.

tional' indication of the. above is provided by the difference between mea-

suring pointsll and ! within this time period. There is a further uncer-

tainty due to the fact that one thermocouple of me.:,suring point II was not

WGr"K::g and the measurements of the other can be relatively inaccurate

(short instal iation from design reasons, .insulation towards pipe wall?,

measurement at the non-insulated bottom part. of . the pipe). Another

reason for the differences between calculations and measured results could

be the oblique flow towards vents U45qnd U47 . In the experiment falsi-

fied meaSUt'ements from the bent Pitot-tubes in the orifices were noted,

since the maximum permissible flow ang"ie of 15° was obviously exceeded

(see p2ge 112 in /5/). This means not only a reduction in cross section

but also a decrease of e.g. the discharge coefficient by increased con-tr'actior; .

By this the systematic underestimation around the fii~st pressL;re maximum

(except t~vo participants) may also be explained.

The predicted pressure obtained by Australia, is lower than the measured. .

data UD to about 2 s (caused e.g. by neglecting water transport); but

the pressure history approaches .experimental. results more and more. Arter"

abouli s the results of Germany, Sweden and also Italy (N IRA) are rela-

tive!y higher than the experimentai t''25ults.

Page 82: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

- 63 -

No definite connection is ascertainabie between values for input' para-

meters and the qLlaiity of the results; this is due to the fact that the rele-

vant input parameters cannot be separated and may have a' compensating

effect on the results (for example, for low Dressure in the rupture com-

Partment ~ -'. ate t). A more detai led investigation is left to the SP....\-v t w'D ~participants in which certainly also differential pressures and tempera-tures '?nou!d be taken into account.

PressLlre in first follow-up compartment R5 (figs. 23A;23B):

The experimental. pressure history is in good agreement with the one

of R7 in the other sequence of compartments. in comparison to the

pressure history in R4 this one is somewhat leveled and delayed in

time: aueto flowing to and away from the orifices.

What has already been said concerning the maxima for compartment R4

is alsc ti'ue. The considerations fa, the initial phase in. R4 are not

\/alid h.€re. The resLJlts of most participants. concur fa~'ourabiy wit.h the

experiment and the spread range of the computation results is almost

identical with. the one in compartment R4.

Pressure in dome compartment R9 U!!;:)s. 24A, 248):

in the largest compartment of the containment, pressure rises slowly

and time-deiayed similar to compartments R6 and R8.

Neariy over the whole time interval all. participants except United King-

dom tena to' overestimate the pressure built-up. On' the. one hand this

could. be due to the fact that the energy input into the compartment is .

teo high (discharge coefficients may be too high) or that heat release

~:rQm the compartment is too low (low heat transfer coefficients).

Page 83: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

(i[=:.C.....[] ".-(-.c:~\1I ('(jl\Jl"c,=- I I'\J\'1[ 'l\jl- c;'~' ]\][)F:Jf.:JD PR- OE"LE'M ~JO '/ ( IT.- -'T C(:-'lSP".)}., .,.'. _/~.)I, _,.".. 1 I I I I ~ I H _ l \ , \ _5_ ,I".c:... C.:::; _...Tl L_-- - ----_ ..-_._--- - --- _.__ ._ ..-_._--_. -- -_._ .._-_ .._._-------_._--' -----_ ..•_._----_._---_. -_._.------------- .-._-_ .._--_._---- .._--------;----------_. __ ._._------

'I'•....[.J

['d

l\J

T CXP.ERROR (+25 mbar)() u:ro• ("lPLOOOi'1211o AUSTF,A_I A+ BELGIL.I!'1/) CA~i1:C;!JA)( F II'iU'1l'lO<) FRmJCEo GERr1At ..:Y

I-..JoI

IJ

I--r--- ..--T-:-~I-.'- ..- ..r--r--r.-l----r-~-----r--~-I1.(': 1.4 1.6 .l.B 2,0 2.2 2.4

T I fv)[ (S)PF\I ;SUF-~[ H I ~)TDF<Y I ~,j COI"'--:'::',RT[V1ENT RLtI~:'IC; ',. 2 2 A

1...0 /' --- -- ----------

/ !i1~ '~r'-'~-- --~0--._-./ ,,,.!~JiJ'9\'t%;;.,,I._. -- - -- ~ - --'- ~ ------/' ' 'f" W"l'~ "'I'tiJfjI'~:V--'

A~,\\;.;A;,;0,~/~,;A1~~r:.\~~\,,,~:<[-~-:j;,;;#1.' '. ~... '!'j.iii!5ii!!if¥~~~~t:J;:ifKri$;;;:,~-

jl ./--::.._" < ,.,~ '"\III. ,I,. I"'" ,..... .. ......... ..' .1':' .Ur

;/

" " "";"" .-"~.. 1 .. .. ..

"J'/" "",:(r_._. __~'.-J -';I " ",-_.-- .',r::!Q/ -

/t" ,....0 .... - .1\ /1: -'.

I" !f

-, I(/(/f{( "l~.:(\J r If!:-: .}r if

'~'r,i[\1,."fl"

~_J~I. ----'-r------r-.-i-.- ..- -.-'- -,--.--U.o 0.2' , I r r----I--------_ 0 . "'1 0 .(-) ():B -T-----.-IO------rI.

_ .... C"j

LiJcr lO=J ~:-(j)(f)lLi[(fl. \_

(i" [\1,c-

U.t

LOIr-~ J!J(. , '-'~

Page 84: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

-71-

T0:::

f---;>

LW'>f-r..-LLn-'-.....L

CL"'>L-,---.i---.JU

L

>-U) ,~r'LLr-,U

W f-L: en

,

, ,wcr. --------.!(I)"r\\j)

W0:::!'-i

coC'JN

( r)'-/

! !

,I!-

I~r-I [,.J

IIiri

L.. ['J

i ,\1!I

j

ILc:I (\!

!

toI-Ir~r-, -iI'

.~":I-I,.!I~ Ir- (.\J

,-Iif-

i10r-I-IrI1mi- 4

~:=;J.

-"""). lU i

iIIJ

.1I

i---! 0 0 + <i x <) 0o

f-(J)UJf-

"C)W

Page 85: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

-72-

L:J

Lnrr

,~.: !.'--'

U

iL~!oiIr!

I"I- _!N

\7" [i

9"10"2' S- I

(\-Id-*,..... liT\ '-' - ~-...." ..

L0N _

+I-.J-I .......

;--1 0 C -.- <l x <> 0

orr:([o----,./'

f-------;7--

,_. -

u

LL~CJ)

III- I!

oz

(J)w~

I~

(\J0-u;([CJ

Page 86: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

-73-

rrL..>" .. "

:---

L

c..

IfU "

Cc:

Z'l7" I-JW(.:...:t'--....r-.,.~\ i I

....=Jl-Jl 1:::;0-.:J~l~

1..1:

1---1 0 0 + <: )( <> 0

1

-'coo,--..- .....'-'-

I,-/

->-i , 1

U--=

oL

,,-(;,0~

Page 87: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

OECD-CSNI CONTAINMENT STANDARD PROBLEM NO.2 (TEST CASP2)-r --".-_ ...-.-....--.-- ...---- ...-...-----...---.--.--.--..-.-.-...-----..-----,------ ..- ..------- -..----.-: ..---..-..-----------.----. _."1'.-.N

N[IJ .

I EXP.ERROR (~25 mbarlo f)<FJ. (9F'Ll ()3f'-1J~JL Io F~JSTFlAl_ I Ft+ UEl_G [ lJI'1t:.CRt--JADf4x F r I\JLRI\lC.l(> FRAt.JCE<81 G'ERt'HJY

.~ 0a~['j-o~(.

If)Io Ul-.

'c"1

I-....J,j:o.

I~l

r 12.'1

r-'-r--i2.0 2.2

r-i1.8

['.j

.-;-;:..::t~_. ~~,:-"-:;.r¥-'____-~ _---..- ~.......~.' 1.

--~~.:1!.~:.~;;;'~:::~'.~'-----~• _ •• ~. -;:';r<'E'j . _.- - ---- .J '" ,,;,N..JA1V'~- - ~:,:;::-"".r- I.k IV" '{'P .

_---~~ ..--'_---- . '''''if-f!trww'. ~~.. - ,,..,QW\rrvfiV"rl._.,'-J;:;''''~- _----- ---.,-:w"JJI!lvf111).r</,' \' 1 ..

. ..; -- - - ~> @""'" . _ .--' - ~~! rl;,JIut'l.N'''J'W'W'''' ._ .' _;.:;.:'~ _._' ....-;;MH.'IJJ"/,.'0__ ~___ _ .... ~ lCl

_ •~ --- _ -to --ANt.;/Vi~ . . ._-";'~"'.~~/'J'~r{I .-';1'--_-..- '(...;-..,i:rI':'-..-.,- .....,.°wtJvl\ j

~-e?~' .-<Q,~:ftblil(1'V~:-/"". - XfrJ1"-q¥f'N .._.~H'<J .,.•. ::-,.,,-?'1'\-(

~"~'~ ,.. ilJ~-' ~i'1. _-,,,'1""~,,.A,v 1i1I\J\..-:::.:::~;;.r>ftJ\i(lw'V''' . .

. "'-::"f~'i,'r'fJ.\).\ . .. ;...,.---iOlf:(r~~'Jtf"'\11

-1 ..•,.1,\ 'h'o b . . ' I~SJ';'Ji?-' r .

• 'j ~~ !~,..,j:,:d!f!2:.r~"''''.- I 'b.:.":.:::"i':".~~--T--.-T--.'-- ..i--.-I.---T------r.---r .._____r_-.--r-- ..-r----~-r----_:_'I--l-.-.-.~~

iLOO.2 O.LI 0.6 0.8 1.0 1.2 1.4 1.6T I fvlE (S)

FIG. '2/ ..A. PRE-:;URE HI STOR'( IN COf1f=-JRTI'1E::~NTR9

Lt.1[(lO=-J .~-enenLJ.Jrr[L '\_

Page 88: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

"

[)F=-C]] --CS[\I I CUf\fI}:j r ~,.H'v1Er\IT~;Tr-1NDARD.F)f~OEJl_.EI'''1 NO.2 (TEST C(~SP2}'

J---.--..-----.------.-.-..------ --.--- - - -.-----.. . --.-.-.---.-'---"-'--".-.---.------

"to .,_. .

N

('J

[\I

I EXP.ERROR (~25 mbarlo EXF' • (~if'L 10 :)1'1JSL I

. 0 I TAL. Y I n.IEII /!:I I SiOlI+ ITF'lUI {N IF¥Hb S'U:'Ii-NK NETHEr~l.Al-,DSo SW[OE~.Io UN I TED K I i'ICnO/1

.....;0

(r C\i"CL-t

If)ID II!_.

J--.JInI

~,

r~rG.2/.B

(\J

__,-c,c.::.:~~~~- ~ - - :..... :r5~ _x~ - A -""" - M!JV0 -;J~'.. - .... - - ~~ !-.Jj~tvf"1rW

..-<~...;-;.;.;....:;=::';.;-:""~--" -{IF-P0 ;'-----:.~;:.:.~...;;""_=:~~~;.,,-~~t(P1~

r ..... ,x- ~-~ .. ~..N..~"UI"'rV"-""~..".:.;.<.~~--;ft1..,;::.J.lt.1IrP ......"

__"--:-.<'.' ~;- .....AIA.\!.r.L'I-'~.--:';:'-;~'-~"'I' 'W-,\}":f!t'J':-.]""

~ -;;:::: •.••• ...-:c. -::~A;P{\IfI',t frlI'--~;;.:-~?:-:d ~.J~f~)!-' -

.. __~'."" ~1iPI'J-'fU~S.;"~....~,d--' I.\"V ....-.~--__ .. ;: ~-:'7.-:-." l;'r'.Ti't'i!Ji1i ._---.... ;; .,.:.... 11.).,-.'11" ~

.. _::::,:-;",", nJ'..iJ,r' ' .. 0"-:;';"'[.A_'("1 . -__'" ..;:':;::l.JI:i\~H,J..'t" --__..~! 'f.hr.,h _.",----

_""'11'r~'.J~IJ' _., ..- I._.:-'\\-t/~.!I ..,l;,f:,o'J~" .-'--

o _:'''!''~I\,,1!~["~~tsJ~~~~r~--r---r-i.----.l-----T----r--T--l---r-----r---r--l-----r--T---r---r----l--r---ro . (1 0 .2 () •.1 C1. 6 0 •E:l 1 ,() 1 ,2 I •4 1 ,6 1 ,8 ;';J , 0 2 ,2 2 .4

T If'.1E (S)I:=)RESSURC=- ~I I STOr~y r N COf"1PARTMENT R9

lJJLL LO~~J...:(nenLdfT0._ '1:_

Page 89: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

- 76 -

Pressure difference between compartments R4 and R9 (figs. 25A, 258):

What is said for the pr'essure history in R4 applies correspondingly to

this experimental c6urs~; The effect of mass flow maxima can be more

clearly seen in comparison. The maximum pressure difference within

the containment is 0.62 bar. Austt"alia and Netherlands underpredicted,

while Sweden overpredicted this variable. The other participants! rE:'-

Sl! its at'e much closer to the measured data and are - except around

the First maximum - within in a narrow band partly within the mea-

sur'ed error range. Italy (N IRA.), Italy (eN EN/Pisa) and Germany cal-

culated the whole course best (although they overpr_edicted the pres-

SL: re in compartments R4and .R9), Belgium up to the 2nd maximum.

Pressut'e difference between compartments R4 and R5 (figs. 26A, 268):

The experimental behaviour of the pressure difference over the vent of

compartment R4 is the same as for the pressure difference R4-:-R9, butsomewhat iess pronounced.

The scatter range of the resiJits obtained by the parTicipants' is rela-

tiveiy small, except around the 1st maximum. The results of Japan

deviate from the experiment consideralby, i.e. they are surprisinglylow.

Pressure difference between compartments R5 and R7 (figs. 27A, 278):

This pressure difference between both the first folloW-Up compartments

exp"'esses differences in flow conditions (R5/R7):. short/long flow path

. upward/downward outflow

iong/snort dead end space .

..,..-' . t i . It I O. ~ ~h - <-'i ne experlmen a resu s are near y up 10 appr .. : s, L.;e; i Liley are

son::',vnat positive. Obviously the effects due to different heat' release

en R7 ;. in R5 by earlier air-washing) and differ'ent "vater transport

(from R7 > from R5) compensated for each other. The sma!1 difference

frcm 1 s on could' be explained by overflovv of the sump \.vater from R7IO R8.

i\'lost of the computer codes predict slightly high~r pressures in com-

pcttmenl R7 than in R5, while the experimentai results show an oppo-

site trend. However, the agreement between the calculations and the

Page 90: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

'.

- 77 -

measured data may be regarded as quite good (see also exp. error).

Also considerably differing heat transfer coefficients (see e.g. Finland

and Germany in table 7) and orifice flow coefficients have only a minoreffect on the resu its.

Pressure difference between compartments R5 and R9 respectively com-

partments R7 and R8 (figs. 28A, 28.8 and 29A, 29B):

In spite of different conditions of outflow - upwards and downwards

-visible differences only occur. after 1 s, the pressure difference be-

tween R5 and R9 being somewhat higher than between R7 and R8.

In both cases the results obtained by the participants show a similar

spt'ead range around the experimental results.

Page 91: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

(Jr~'C'I'-)'.._"'(::'I\j I,...L....._' ._. l--t ...,.) I . ._._-_._._--_ .._.- ..__ ._-~.__ ._-_.__ ._..

("J

Gl

(]

I-..j

coI

mbar)I EXP.ERROR (+20Q EXP. 14PD354946!--J Io ~iUSTRAI_ I A-I- BELCIUl'1l> CAt---Ir-DA>( F [ f'-LAt-Do FHf"1NCE<8> GERI"1AI'-JY'

ill

oI

. . /J!'ltJ~jtvv~~iJI~,I.\--C-,' '.. . . . .~/ ~--..ft l!"'~-- '-~ -:-J ~. .~'l. ~ r'~o.-,-._"\!.\'l\ I "II -"LI' '. t I I'll I

L0 /1\!I~I.,'li\~!l~lr\~JI.I~,~tr{l~l,.WA\,\~ . -- '--1- ~~~!IWt~-;:..~-", ':::: ,-::!' "<~1f~lllt,)~,'J'~ir1I\~:\~~~NIM~l'l,~I\I.~!,.I!~glAA~I\~1'\M~'II~!IIII'~~II'~;)~jr~~\.~R'.l,ltllll~~~iI'4\4~IIM~~il~~III/jt."', .- 1"I~lij IU1~--rlrll.,.,. r, ----- ~""'~"""'-' • '-f.hil!~,.,""W I ,1",~lift .l' Urii

l

., IJ~J... I--J1.~!1t~~,".. -,) 1... - -- .1'i'~i~'1!-1 Ih J l''''''''"f,il'~ , '_, '. ',_". . ,_ ..".1I 0 .:I - "-"=~"" ""i'\'I\"I,' '\\'"n"e.' ", _'" . "" "."" """. +__l,[: ';it;;~~~.~~.::c-~:!:cC:.~~~ .....El'" ' ...•........•.... "'" ' .. ,....-:~: ~+:~':"::::_------~"',£CF'" C" __ , __ " __ " _~) nil) ,Ji(:{./'" "-'''"-.,, _ _ __C '.- l 'll\~ff _~ CJ I;i/

I

,1.Y1~1 _ __._ .. _. ~1!ilrL, _ _. __-" 1

111

11. --' --jll~i ~._-ft~C! .. Y---._- _. . . _- ) 0

(7)'en .LJ.JfT,n[1. c~

I

01

,.."I----T---I-- ..I---[-.--,---I.G 2.0 2.2 2."'1

°1. .I .i-----.r--.--.--i-- ..-l.---.---r ---.t.---.-.T~.-..l-----r.---.T--T.- ..i-.--.T--c-.j -T----r- ..---r---I

0.0 0,2 0.4 0.6 0.8 I.U 1.2 1.4 1.6T I1"1[ (S ~ .,

r--"T -'. '')I:'A 111'c"-- I--J\./ rll-' r-I---'r-'c"c"'IJr""F- r--'Tr--"r"'--,[-t-"I("'-- R/I 1-,---- I r." :-1., .-. . .':J j., I Jr' 1'") -< r-- ,--) ,'J. I'~ .I I 1-'- -I: .-1 ',T' -V-t --.n "<J

Page 92: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

('l[CfJ--C:;~,jI CONTAINMENT ST~~DARO PROBLEM NO.2 (TEST CASP2l•• __ •••. __ ..... _--_.:_---_ •• _--_ ••• _ .. _ .•• _.~-_ •• _ .• - .-._-_._-_._ .... _---_. __ ._-,"-;_ •••• __ .__ •• _ ••• __ +

l\J

(JI

o

r--..J\.DI

mbar)I EXP.ERROR (~20o E><P. I '1PD3549'161-J Io lTALf IO'JEN/P [SA I+ 1TAL Y ( 1\1 I RA It, ,jAPA~i-R I'--JETI-ERLA\bS

~ G~jT9~~K 1~JG00'1

lfJoI

..0-.'-.~, ........ ......

/' ."'."',"'. 1t~IJIII~!~h~/,\I '- ........~.-<.~.-O--J .-- ..,1IP,';:~\"I~\.j~1\ I .. .•

-: ~.. ~\I,\l~~~~~l,\I\i\~!,q-.~...:-~,;~ijl~--=~==\ ¥f~,~~I~l\~\~W,~J~iiW~~I~II~.~&J~I~;~~;jl~li~Vll~.l~t~~!~j~Q /, -. .("~'~~j"liw.,\tVflri\wJ.'I" - '- I ,Ii ~ I ~ll~j''UJ'tl-!F~I-1l~...fW[if' }~~~/~:~~~.:.~'"t~.----- ' ~____________

Ln, l 11i1~:>:7 '(J) ~ "'-") • - I '\,

~~I 0 )11 \I\~!J~' .._- _ (11!.,\il;~

! !Ifl . _IJJ IV . _rr ~. vi . _---) Cl I-

m'(nl1..lCC enU-e;; ,

en? .i- ..---T---r--r-r-.l-----i---T.---r---T-.---T-----r-------T---r--r----l--._ ..-T---r-----r-----l-T--l

0.0 0.2 0.'1 0.[') O.B 1.0 1.2 1.4 1.6 1.B 2.0T II'1E (S)

I~--I C~, 25 B H I STCJF\Y [)r.~ r=-JFi[~~SSIJr~\L~[)] r.=-F--EF-~ENC[ F::~.!.f--1~9

'--r-.---I.---2.2 .2 ."1

Page 93: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

OECD-CSNI CONTAINMENT STANDARD PROBl_EM NO.2 (TEST CASP2)._------- _--"- . ----_._~-----_.-_._-_._._------_._--_._ .._---~-------',------------------------------------

(\J

I]l

o

IOJoI

mbar)I EXP.ERROR (+10o ExP. (5PD3504161:J1o AUSTRAL In+ tJELGIU~1t> CAi'JAOA>( Fli'LANOo FRfl\lCEo GER~'lAI\JY

llJ

o,

~ l~

([ 0

11_

~i,~I~,,lr~A-.~~,~ "Wi" .c. 'l A' V\~ " -F't,/'J /I~~~ ,~: a II, II.JtJ:~;\~.!J.~f.,)' tl\t --------~---:AJ'~~':J1Ijt,~~., _ /C-, •. 'k-vv-. ~~~~~0:_~_,- u~J~~l+~~--::~;~~~-~.---------.-----.---:~~~~~Tu~~~~~~~.[I If J/-- -...------....-8-V-":'- ...4jN~7~fV0'vvv\r.l\I\IJ _ __d:j~-f~--------:_,-~--,-..-..--------------- ' '--- ----------- ----en r I - __enLJI -[L-rn[1_ .

aI

CJro

r -i----T----r----T-----T----T-----T-----T---,--r--r----I-~----r-----r----T---I---,----T--:--I.---,--I----I"------r-----r----i---r-r-0.0 0.2 0.'1 0.6 0.8 1.0 - 1.2 l."1 1.6 1.8 2.0 2.2 2.4

T] ~-iE (S)I~-r (-:; • '26 A ' H J :-:~j='1tJI'lYO[=-- F~r\[~SSUr-lE [) Ir=-r-=L_RF-]\JC[~ r~A - RS

Page 94: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

(\J

(J1

o.

__ '-0

0:::00=*.

lJ)Ior;~...a

LJ0:::0::Jd(f)'(f)W0:::(lr;

oI

OECD-CSNI CONTAINMENT STANDARD .PR08L.EMNO.2' (TEST CASP2)

- ~~.ry;j '. ..... ,-1--- '"

i ;;.:::..=-.:..:. ". '~~ _. __ -:-~.:::::::.::>'~.~n~1t-.. .'.. . 11 . -----.;:-~--- . --~~~~~~~---,_-'-~~. ~~~~ ,,_ .. . ~. . _ __ _ .(jfi;.~-::-:-7:. ~. --.~~_.~ - . "'i_"~'!'.~':_"~~~~~~ ..'.~.'!.~~~~

'---- -- ==tt-- 6-,-- 8 b--- r'r---==-

IOJ->

1

lO

oI

enoI

0.0

I EXP. ERROR (+ 18 mbar)o EXP . 15PD390-'116W Io ITALY ICNEN/PISA I+ lTAL. Y IN IRA)

'f.:, . JAPAN)( NETI-ERLf'J\DSo SWEDEN~ UNITED KINGDOM

I I I 1 I I I 1 " I . I I 1 I 1 I I 1 1 r---, .1 I

0.2 . 0.4 0.6 O.B l.b 1.2 1.4 1.6 1.8 . 2.0' 2.2

TIME (S)FIG, 26 BH I STORY OF pr~[SSrJRF n I FFFREf\JCF R.1.....ns

2.-'1

Page 95: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

,--

(\J

eno

_1.0

CI:.0[l

*"LnI rno .

a

w[(0-)~-(j) I

(j)WcreLf':

oI

OECD-CSNI CONTAINMENT STANDARD PROBLEM NO.2 (TEST CASP2)

rtr~¥~-k~~~~~'d;;ftJf!flf!'2~~~:;;:;",~~~~~'-'~~"k~~=~_~~'~/~JV~l$--~,

ICD-NI

I EXP.ERROR (+18 mbar)o E)(P. ISP0180719To AUSTRALIA-t BELGI UM4:J CAI'jf'Dlx F [('LA('IDo FRHr\lCEo C[H1Ai\lY

nIFF~~ENCF R~-R7

1.0oI

enoI

0.0I I I I I I I I r-I I I

0.2 0.4 0.6 0.8 1.0 1.2 1.'1TIME (S)

F-- I G <> 27 A, H I S'-~RY nF-- [=:JRFSSl JRF

I I "I~1.6 1.8

-r--T2.0 I

2- ?_.~--r-------T----------

2.~

Page 96: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

OFCD-CSNI CONTAINMENT STANDARD PROBLEM NO.2 (TEST CASP2lC\J

(JI

o

~LOCLo[L

*"If)

I (T1o .o

..------1

LLJrr ~h.JJ.4..p-[I./\~~f'~-;"',~ t}tcbf\~"".r./\~\~~~ ,~ Ad~-v-----:,-,N)./\/\.t\...f\._JV~./vvv:"V3'-vJV\f\J\/--v'~\A./'-', "m ? \}'V-rr'Tl~'"<-.: ~ - 7~fi+:C-::-'~-=:'?'~=-'~==2~::-':=-_'::-'~~-=-~::T_'~~~~~~"~?~=?~~~~~t~~'~'.:::-.::--'::---,:---:.-_-=--,=--,=--~;:7:;¥:~'=' o,~:~~::.:.__ ::...~ ,0 '''~~-'

CDWD::(T10...

°I

ICDW

, I

LOoI

(JI

I EXP.ERROR (~18 mbar)o EXP.ISPD180719lo lTAl,'f lel'JEWP [SA I+ 1 TAL Y I N I RA I!'> JFIPfll\l>( 1\IETH[f~LAI\I[)S

<> S~,IEDEI\jo UN I TED K I I'JmOfvl

oI ~

0.0I--~ 11,1 1 1 I I I I

0.2 0.4 0.6 0.8 1.0' 1.2 1.4

TIME (SIFIG. 27 B H I STORY' (IF f~R[SSlJRF

r------T---I I Il.6 I.B

[J J FF--FF~Er\lc:F_-.

1------i----T----T'-----r---'--2.0 2.2 2.4

1:1C P.--'1'\ _) - \./

Page 97: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

N

eno

_1.0

0:::0[1_*"l.n

I (11o .o

LtJCr: 0~._,0(fJ1(fJILlrr:Ll~

oI

1.0oI

en

OECD~CSNI CONTAINMENT STRNDARD PROBLEM NO.2 (TEST CRSP2l

-- --..:.......----~~ . . -----~ .- ---- '. <&-"---

-----: ~- ~. . ~.- ---~.- .. ~ '. ~-,--- . F>'.' ~_'_ ""'- _-., •• _. _~~-+_._-_.-._---- ~~~.,,--~--~~d~'~ -=-:"~.~-.~:~~.~: m. u -'''' .. -" •• :.: ::. :.:.: :.~ :.::'c.:.'>.,.•.•. ,.,.,c., c H.,cC c,'", c::::', c c::.: C c CC':c''Ca,..-ifF

, /?

/

17'/ .'F

,-'

I EXP.ERROR (+18 mbarlo D(P. (9PD2I'05'iOIo AUSTRAL I A+ BELGIUf1'l; CAr'~,90A

>( FlbLAI'Do FRANCEo GEJlrv1(.:jNY

ICXJ~I

oI

0.0I I I I I I I I I I I I I I~-'--I 1'1 I ---j----r---r--'T-.--

o .2 0 .4 0 .6 0 .8 1.0 . 1 .2 1.4 1.6 1.8 2 . 0 2 .2 2 . "1

, . - ~,I,ME d£I)", ,', I' 'I='T ~ ? Q A' I J J c-li-hr:;v nr-:-' [-:J f'lr-:-C' C'I Inr=:- n T ,rr---:-i',r::-r\ Irr-:- nr- nqI _ '. ,.' ,. <",', l'-"~, r ! ".. I. ,.)1 ~. I ,"I I \i ,': .. I ! 1'1 .:'! I \ I \ _ .! I"'~) I \

Page 98: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

-85-

, IE'O

.~-

! ;

0.-..I1 ;

j.-,U,'

I:

~. -.J

'.-,j

,I~

I-,-L

i i-.::- --,.

U) ~/--- C:'

I

i,

;'J j 1

I ',-'.1 W .'--.~':~) ~ ..-- - /-,

t-----;.~-

o

:'.J

;

j

10I

6'0-I

9"0-

co+ 1--;:;=-':::OJ -::-~-- .~'-... :=:;g !5~~Q ~p::; ~h::;: ~ o.L

rr: ~;~=2JQ8~sg~~g~~

IE"O-

, I

II

iI

IIIi

IIi

iII

IgoO( t:Jdo~'s - 0 I l

I6'0

IZ;" 1

Z(j)U

IoUwo

Page 99: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

OECD-CSNI CONTAINMENT STANDARD PROBLEM NO.2 I TEST CASP2ll'J

eno

~LOo:::~lL"*LnIocr;.-to

LLJ(ro~~(f)1cnwcr::o..-cr;

°I

LO

oI

en

------ .~-- ---............-.--.... -- ~--~- .--~-~- ; ~- ---_."'. ~---' -----.-!V<N?J,..-~A~ - • ~- ~--:---- ~~~~~---;-:---l( '. ______. . .~'" ..'" .""""... .- ~~=~~c-._.. __ -.>--. .~-~ '",,~ r-------___ --=-'''. _~---==:::-:...-::--_=_~/?~-:..~~~.~~_:=::::~:::.:_-.:.::::.::::::~::":,"'''--------...,''cc f!.+ c,~==:~::::",./w

I EXP.ERROR (+18 mbar)o EXP. IBPDl <\87291o AUSTllAL I A+ EJELG I U'1l; CANADA

• >( F [~LAr-.1Oo FllRNCE@ GEr~rv'ANY

IOJ(J)

I

o

I -,----r- I 1 I I L I 1 '1 ~ I I I I I---r-----r-~~---I •.---I---r---_r_--____r-- ...0.0 0.2" 0.4 0.6 O.B . I ~o . 1.2 1.4 1.6 1.8 .• 2.0 2.2' 2.4

TIME (5j ,FIG •.29 A HI S-- .RY OF PRI-.SS1-IRF n ll=-F--=<Ef\JCF R7--RR

Page 100: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

,OECD-CSNI CONTAINMENT STANDARD .PROBLEM NO.2 .. (TEST CASP2)

(\J

(J1

o

'--:'LO([0[L

"*l[)

IDC';~--i.a

W[(0:::J ~-(/)1(f)LJ -[(flC';

oI

LOoI

~~ -:.=::::::::::::::.::: -. -. -.<>. -. -. _. -. -. -. -.-. -. -. -'--.-. -'~~--- ....- -----~- 0-._._._._._._ _._._.~-.-

-- l~ ~,.~~~~ __ ~

- ._' -"'M -~-=---- ---A-----.. __ . _~~-------- ~~'~~._=:~:=:==.--~~~------- ----- ------------~~~- ----------£/'-

tf!jPt}liJ

I EXP.ERROR (+18 mbar)o. EXP. I 8PD148729 1o ITAI_ Y I CNE::NIP I SA l+ I TAL Y (N r RF11l> JAPPiN>( NETHERLFNDSo S~.IEDE~~@ UNITED KINGDOM

I0)

---J.I

(J1

oI -I- I I I I I I I I I I I I I I I 1--. I I I l---r~--- ..T-- .. --r-._.-.-

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.'1

TIME (S)F r G ~2gB H J STORY. OF f:)HI=-SSIIRF rlll=-FFRF~!rF R7 - RR

Page 101: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

.- 88 .,

Temperatures in rupture compartment R4 (figs. 30A, 308 and 31A, 318):

At the bottom as well' as in the middle of the compartment temperature

breaks can be observed, which indicate the passage of large air bates.

what cannot be described by the programs. The steep rise to satura-

tion temperature in the lower region (= rapid propagation of the steam-

water-mixture) is calculated within a relatively small bandwidth dis-regarding 2 respectively 1 exception.

The calculational results of Germany are considerably lower than the

experimental data, although compartment R4 is simulated by 3 nodes

(hindered washing-out of air?). Results of Sweden correspond to thehigher pressure calculated for R4.

Temperatures in compartment RS (figs. 32A, 328 and 33A, 338):

The nearer the measuring point to vent U45, the sooner it is reached

by the steam front (sharp rise delayed by 0.1 s). The. rear part. of

the .compartment not directly flown through, is reached later by the

steam front (0.3 s). This temperature behi3Viour shows that there is a

large portion of air which is not washed out (slow rise with breaks).

The results of participants who do not subdivide the compartment are

approximately in the middle between both experimental curves. Parti-

cipants using a finernodalisation (F'inland, Germany, Netherlands) cal-

culate the temperature behaviour near the vent very well, however,. .

thei r resu Its for the rear part of the compartment fall considerably be":

low the experimental results (percentage. of air too high?). It is ob-

vious that no program describes the propagation of the. steam frontcorrectly.

Temperatures in compartment R7 (figs. 34A, 348 and 35A, 358):

In compartment R7 in which the flow is mainly longitudinal, the deadend effect is less pronounced.

Except in the initial phase (steam front) there is a good agreement be-.tween calculationai and experimental results.

Page 102: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

- 89 -

Temperatures in compartment R8 (figs. 36A, 36B and 37 A, 37B):

The arrival of a steam front can hardly be detected. Temperature rises

slowly near the vent of R7, but faster than in the rest of the dead

end space (additional temperature breaks caused by air bales).

The results obtained .by the participants differ widel y especially with

respect to the dead end space and fall mainly above the experimentalresults.

Temperature in dome compartment R9 (figs. 38A, 38B):

The measuring point located within the' inner cylinder at appro the

level of vent U59B shows the washing of air bales containing little

steam quality after a slight temperature rise until 0.7 s due to com-pression.

The calculational results of the participants with one node for R9 show

a,good agreement with the experi"mental results, while the other parti-cipants overpredicted this temperature.

Temperature in compartment R6 (figs. 39A, 39B):

The air in compartment R6 is obviously only compressed.

The participants, except United Kingdom, predicted the temperature in

compartment R6 higher than the expe.riinental one. The results remain

in a wide spreadband. The results of Austral ia, Canada, Italy (N IRA) ,.

Japan and United Kingdom are close to the experiment (all with 6-nodesimulation of the whole containment, i.e. 1.node for R6).

Page 103: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

OECO~CSNI 'CONTAINMENT.STANDARDPROBLEM NO.2 (TEST CRSP2lo('1[\J'f

o(Tl

o'f

o(Tl

\ / OJ.:cL (')

Ii~ :'~:::J

\0 ,;)'" 'If- .,~- ----0: - --~---. . - -' .. 0:: ~ '\ ..,_---- . \, --,---0----' ------. .

I

,0 . t. -- ~.D ' ,,,,,' . -~--.---- -- .

\Vf"/.~ , ~ , .( . ----0-

I EXP.ERROR (-2.5/+1.4 K)o [)(P. !4TS006AI31o AUSTRAL IA+ BEI.DIUi1t:. CANHOA)( F[NLFIi'IOo FR(=jNCEo CE:T?I1AI\lY

IU)

oI

(Tl[[)

[\J -1---1--r0.0 0.2

I I --'I I r---r-- I I 1 r----r-----r--~--I--T------l---T----r-----r0.4 0.6 0.8 1.0 1.2 1.4 1.6 I.B :--~.() ,?:)

T I ME (S) , , -F~r G : :in.A TEli!=)Fl=<.RTIIRF H J ~T(lRY T ",I I -llMPRRTr'1F",IT' F.J4

2,',1

Page 104: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

OECD-CSNI CONTRINMENTSTRNDRRD PROBLEM NO.2 (TEST CRSP2l.._---_ .._"--_._-----'.-

orn('J"

o(1, -

o'f

o

I'D

I EXP. ERROR (- 2. 5/+ 1 . 4 K)o EXP. 14TS006A I :OJ)o lTALYICI\J[N/PISAl+ ]'rFLY IhI I ~"r-llg JflF'FiN)( I\ETHERlJ1I\lDSo SlJF.DEI'.J

<8> LJI'~I TED K] r-JGUe)f'1

(Tl\ I rn.:-L (TJ

L.Ll ~0::: (TI---=: 10~) rn

f-= I il! ~ ~ 'I' '\rJ'<f~ •([ I" r ~ ....\0:::.. 0 Ii, I ~,"t)fvvA,JII\y?./ \~,J, r ~I~. W ~ ~. .(l~- if!L rn tW I,¥

I f~

f-- . I;:~ ;~irn Il

I,

il'o 1. I

~-f.rl(11 'jo-r

rn

~:-I- I I I r--I---r-, I I I r--r--r--r----.-T----.T---r-----r----i---r------j ....."--1'-- I ----T------/0.0 0.2 0,4 0.6 O.B 1,0 1.2 [,'I 1.6 1.8 2.0 2.2 ,:2./1

1-:'- r (~" :1n RTIME (S)

TFrvIFJFRRT[IRI~ H I c~Tr~lf~;Y T !\, r:(I~/1i'nRTr"lr-~n-:"~

Page 105: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

.

OECD-CSNI CONTAINMENT. STANDARD PROBLEM NO.2 ITSST CASP2l~l(Tl

N~

a(Tl.

o~

a..(Tl

CO. I I[\J_j.~ I 1 1 0.60.0 0.2 0.4 .

I\.D1'0I

I EXP.ERROR (-2.5/+1.4 K)o ExP.!4TSOOOA281D AUSTRAL I FI.t BEL_GlUMr:. CANADF)x FfbLANDo F.-R(-:'NCEo GEFlf1ANY

.1 1 I", ,. I I.------r-----:T------,----,-:--i-.-j --r-..--r-T.o .B 1.0 . 1 .2 1 .4 1.6 1.8 2 .0 2 .:;~ 2 .4

T I ME . (S) '.TEMFtllRTURF H 1 STCjRY . T 1\1. rriiPRRTrv1~!"!T F=<L+I=- Ie:;. 31 A

~~",,,,:,~.~:,:~~~':.f5c~~¥'i'~~-~:::_~~_O'~~-'.'.='~

t' J ." I:'!

" I,.:;" I::' I'I

II

I,.II

II

II

orrlN(Tl

o(Tl

o[11

'0

(Tl

~~

LJJ 0r.r~--~ lO--./ [n

l-cer.rLLJ ~II enLMLJJI-

Page 106: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

a(Tl

C\I

'"a(T1a"'"

a(T1

~ ~~

-W~er (Tl:=Jw,f-eeeraw.~(T1L:MWf-

a(T1(\J(T1

~1!;(T1

a(T1

mC\I_

I0.0

OECD-CSNI CONTAINMENT STANDARD PROBLEM NO.2" (TEST CASP2) I

~.I EXP. ERROR (- 2 . 5/+ 1• 4 K)o EXP. !4TSOOOA28Io lTALYICNEN/PISA)+ JTRI_ YI N 1RR }!':. .JF1PAN>( " NETf-ERLPJ\OSo SWEDEf'-.iIll> UN I TED K] NGDOf1

I r--r-" I I - I I I I I I I "I" I I" ~-~T-T----I-._--.---T"---."."T0.2 0.4 0.6 0.8 1.0 1.2 1.4 .1.6 1.8 .2.0 2.2 2A

TIME (S)r-=-I G . 31 B TEMPERRTURF H 1ST(JF~Y T f\1 Cniv1PRRTMFi',IT RLt

I'0WI

Page 107: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

OECD-CSNI CONTAINMENT STANDARD 'PROBLEM NO.2' (TEST CnSP2}o(TI

N'f

o(TI

o'f

r- 1- I I -- I 1-- I I I -- I I I I I----r-,--'-I I -I' I--'T---T -------r----Io .0 0 .2 0 •'1 0 .6 0 •B 1.0 [ .2 1 .4 1 .6 1 .B 2 .0 2 .2 2 .4

TIME (S)F- I G . 3.2 A ,TEMF l-HRTURE H I STORY I N C[[[IPRRTMENT F~5

I'-0oJ::.,.

I

EXP.ERROR (-2.5/+1.4 K)EXP . (5TS31 3A I 1 )AUSTRALIABELGIUMCAf\IAfJRF[I'LA~IDFRAJ\JCEGEm1AI\lY

Ioo+~x<>0'

~----~- .

cPt:-----~-- .v~.-_.--0-------.____-- --- _,. ~_\:~~~_ ---0------------

___r "" V - -~ . v' - - \0 - ->e- - - - - - - . -- -------0-

/ Y:;r;!-~_/.~~~~-.c:~,,%""'''''''~~~~/ ~~...-~~~...-~..-"c EJ"'-"" .

. _/~ - .. , .."'"

T<'/---. .

, .--Ii // .fIrji'

I,f/0/

,Iv'!t.,.

o(fl

Nr~

o[T1

~ffi

o(fl

rnN

o(Tlo(fl

L.u 0

lr ~:J~I-0:::lrW~[L [T1TMLiJ1-

Page 108: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

OECD-CSNI CONTAINMENT STANDARD PROBLEM NO.2 (TEST CASP2)o(1\

f\I'<f

o(T1

o'<f

I\.DV1I

I EXP.ERROR (-2.5/+1.4 K)o EXP . (5TS31 ::Jill I Io lTALYICNEN/PISAI+ lTF'L Y I N I RA IlJ. .JAPANl( NETHERLFNOS

<> SWEDE~~o U-.JI TED K J !'.IGD01

o

o(T1

f\I(T1

-'-__;,:~4f~0'=-~~;'5.oc~ ~ CC"" -CC~1f~~~.

/ _-:;;:;.:;.'7;;; ~; ,.~-:/~~

/ ~---:;;<----./~.I' :ot :-.:-::'''~-''

I-1(? ::>~../_: -::'-~'7f::-::::----

I ;:'..('/~~

/ ,~~r//I 1',..///

I /~/I ,/'l1,//1

I (':1J;'1//1/I/{I

Y/;.Ij'lII'~j'

1('1(I,II'

o J .t~

~lif!,-::;ro

(T1

~ffi

LJ 0rr:~:=J ~Rf-eecrW~(L(T1

Lei;LLJf-

(T1

rnf\I

0.0 0.2I I 1 '1 I. I I I- I I 1 I I r---r---r--r--i--

0.6 0.8 1.0 1.2 1."1 1.6 1.8 2.0 2.2 2.4T T 1\(.1l1 t:;" \I, ' ...1, It-- l \' ~J,

FIG.328 TEMPERRTURE HISTORY IN COMPRRTMENT R5

Page 109: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

OECD-CSN I CO~JTAI NMENT STANDARD PROBLEM NO.2- (TEST CASP2)a(1)

C\J'I"

a(T1

o'I"

.... --~---------

I\.00'1I

I- EXP.ERROR (-2.5/+1.4 K)o EXP . ~5TS2! 4A 12)o AUSTRRLIA+ BELGI LJMi, CANADA

- x FINLANDo . FRANCEo GERMFlNY

[email protected]_---.:...:....----- ---"-------- -~-----~ -----~--:- --- -~- --- --~----- - ===- --- -::j:::- --== =--~~=~

r-I---r-I I1..4 1.6 1.8 2.0 2.2 -2."1

TIME (S)FIG. 33 A TEMr====<ATURE H I STOr~y IN CI=- =IPARTMENT --R5

o(T1

N(T1

o(T1

~fli

o(T1o(T1

a(T1

mC\J

- 0.0

wocr:::~=:)~l-cecr:::w~eL(T1') '1"-,_ (T1

WI-

Page 110: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

OECD- CSN 1 CONTA T Nrv1ENT STANDARD PROBl_EM 1\]0.2 (TEST CASP2)arn[\J

"orno'i

I\.0--..J

r

K) .

----~----------

I EXP. ERROR (- 2. 5/+ 1 . 4o EXP.l5TS214A121o JTALY In~EN/P ISA I+ J TAL Y I N I RR lf",JAPANl( NETHERLANDSo SWEOEr\)

<8' UNITED 1(]NCOm

______________________________ ->f-- --

~~~/-

F=-IG.338

orn[\J(Il

__~'-~3F~~~ =c==t ~ ..-. -.~ ~~ -;:., ",._~",.~'~.~~_~-,,-,,___,. '0 ~v~ '~~;;.-:::::;.:;,-<";';: --- . ,... - .--~,/ -----~ . ..' '

~

:;;:-:,;:'._~J7\1\ " ,. ~~. ,.

~;;' ~'/;:: ~ fi' . '

,;;:;;; /-,,:I-"/./f\'" ~'/;//r ..:'i;/ .,)// ". ,

'11/~///'1/ _.

t.f1"/,j'1,',../,pffi ~~~~----~ ~,r; .; -- .-'/'1 /" ----~-

~"",I f/

01 I ~I

en /fr~ ~/;;../~JI

"'.I'~'-MJ~I,

a[Il

m[\I - I I I I I I I I I' I I I I I .I I ---r-~ I -T--'I---r-----r-'-----r----i----

0.0 0.2 0.4 0.6 O.B 1.0 1.2 1.4 1.5 1.B 2.0 2.22.Lj

T I ME( S) .'TEMPERATURE HISTORY IN COMPARTMENT RS

o-~ rn~ffi

wo0:: [~:::5/RI-0:::0::LJ ,~(lrn.- "Lrnl.J1-

Page 111: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

OECD-CSNI CONTAINMENT STANDARD PROBLEM NO.2 (TEST CASP2)

JU)

OJI

I EXP.ERROR (-2.5/+1.4 K)o EXP.17TS038A121o AUSTRALIA+ BELGI UMI:. CANADA)( Flf\LANOo FRANCEo GERMANY

I I I I I I ----r----r---r---0.2 0.4 0.6 0.8 1,0 1.2 1.4 1.6 1.8 . 2.0 2.2 2.4

T I ME (S).FIG. 34 A . TEMP=-=~RTURE HISTORY I N tC=PRRTMENT R7

~~- . C\Y~---- .-----------

/

"" _---~- c~-------- ---- ~ ---- ~/- ~-=--~._._~~~ -_._~--/ / _"" / _/ _/ _~~ '.'.'El c,. <,,,,,..,,,..c-c-,..,.,..,,,,,.J.,,-=,,,-_.'::_"';:"_';"';:'~-==;;:::;;;;;

I // tfJ.f'-"'~""""

/// -.,..,...... ...-_.

rD't .'/ ....

I .-'

uen[\J'f

aena

"

a

~ffi-

l.tJ ~~mI-erirLiJ ~[1- ~2:::: enWI-

am(\Jen

aena(11

aenm[\J

I0.0

Page 112: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

OECD-CSNI CONTAINMENT STANDARD PROBLEM NO.2 (TEST CASP2}arn[\j-q-

a

rna-q-

I\.D\.DI

I EXP. ERROR (- 2. 5/+ 1 .4 K)o EXP.I7TS03BA12Jo lTFLYICI'IEN/PISAl+ I TRI_ Y (f\j I RR I'" .JAfc'f'iN)( NETHERLPNOSo SL..JEOENo U~ I TED K I ~.JGOOfv1.

orn[\j(Tl

a

a

/./.-----~:~~~~~--=~~--------/ __::,K#/~--- -~-""=""'-~

I ;~~./'

;' >~;i:?'rI'.;t/// //1 .

//1l'l.t

j/(~rrn #1/1o I, ..(111.i/ /

. I...,<..:

LLI 0('r •LLrn-~ lO-J (n

l-eI: -crLtJ ~o rnL- Ml~l-

a,-,-- (il)Lm

I=- T r-=;. ~ I: R. .

rnm

. [\1-1 I I 1 I 1 -r I I I I I I I -r---r-I I I 1---1------1---- u--r---r---0.0 0.2 0.4 . 0.6 0.8 1.0 1.2 1."1 1.6 1.8 2.0 2.2 2.'1TIME (S)

Tr=-MPFR~:=)TIIRF i-j T CT('r--)'l T~! ("nr\'1;,nr;Tr'1!~ iT 1~1-'

Page 113: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

OECD-CSN 1 CONTAI NMENT STAf"JDARD PR08l_EM ~~O.2 (TEST CASP2)

a(Tl[\Jq-

a[1ho~

I---'

ooI

I EXP.ERROR (-2.5/+1.4 K)o EXP . (7TS089 r 12)o AUSTRAL_ I A+ BELGI UM/j, . . CflNi'=1DA

. )( F [ NLAI'iO. <> FRANCEo GERI1ANY

o

o(Tl(\1(Tl

~:::-~~~---- ~- -.- --~- - --'--~-;-~.~~-~. <>-. -----~- .' ~;-~~. ~_.-" .---------&-

_. __;::,/~ :: ":.~~_-",""~ •.,-"c"""."'C~="'CC'i"""~~"~."':::-=C~:=~C'

~,.-/./ ..~/' -~/'/ ----..

all-:,Jvf~ ..j~. // ....I D--'

I /;t .1/.f/

Ir;,)~

/j~1)/

. ,~"Ja

(Tl

~H1

LLIO0::: [1;:::J ~Rf-e[0:::lLJ'~(l rn

'LMW1-

(Tl

mr\J -j--------r- I 1 I I 1 I I I 1 I I .1 I I I I u---r---T----T-.---T'----T---- T---- .

o . 0 0 •2 0 •4 0 .6 0 .8 [ •0 1 .2 I .<1 1 .6 1 .8 2 .U 2 .2 ;::'.-'-1

TIME (5)FIG. 35 A . TEJv1F==~ATURE HI STOF~Y I ~.I C -1PARTMENT R7

Page 114: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

OECO~CSNI CONTAINMENTSTANDAROPR08LEM NO.2 (TEST CASP2l---------,-----------

o(11,

(\J'I'

o(11

o'f

-/-"

o

I EXP.ERROR (-2.5/+1.4K)o EXP.l7TS089! 12)o lTA_YICNEN/PISAI+ J TRL Y I~~r P,H It:. -JrlPAf'-l)( t~En-IEF~LAI\IDS<) S~JE[ENo UNITED K1NGDOM

o

(Tl(\I('1

o

,.~~2~~~~

~

~'¥i=~~_~~"fC"'<'c"~~~-=~~-'-,,'~_~~~ . .. ~~=~~=r~.'~'~~

iB~

'_/:._-::::7'" y-- ~ ---'~,-:~,~~...._' ....--47 - -'-~"

_/ / pP."" ;PP.;'.....,~~~_~v--

-,.{i/';:V'" ''/''M--I ..

/;~?,. '."//I.-:/{r//1/ ,

{f/'I(''I/'1

/-'1t( I

~_j 1~1o f);' .(11 ,,7 /

~I '-.:?~'o

(11-

~L foR

I,Ll 0

5~[--.:..n::cr.lLi ~[L (11",-_ '<;J .

.1_ (11

LJJ1-

(11

m(\J-l' I ---r-i--r------r---r----r--r- I I t 'r--I I ----j--T--i-r----r'---r----r"----I---I'--T----

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.5 1.8 2.0 2,;;~ 2,-'1

TIME (5). !:=- r r~ , ~ t; R TFI'v1f=:)FRRTIIR~- 1--11 (~Tr-'HY T r\! rJJMFJnnTrv1Fr'rr J;:

Page 115: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

I ,

C\J[Len([uf-enwf-

'N•o

Z

2:::W-.JrnoCLD-OCLeeoL.-eef-(f)

f-ZW2:::ZI----j

([f-ZoU

zenuIo

UWo

"1" ..

('oJ

I-

f\!p:;g:jOlfJp:;~a::p:;(fl-~bJcE~a::51w~'-:~GITS~~P-<[L(f)-lZZa::o:><X,Wa::-o:W

~Wu::rnUi.LLL(c)

t---!CO+<J"00

-102-:

( fI ", I' l,\ \ ,\

\\ , \ \\ '\ \I \

\ \.. ~ \

' \ \

\ \\ \\ \\ \\ ' \

. \ \\\ \" ~. \\'\\ \\\ \~\ \\\\ \

\ ,\\ \\ ..~\ \\~\ \\ \~\'\

\\t" \ \., \

\,': \ '

~ ':. ~~:" \'~..o \

\\"" \\; \,.. ' \.~\ \

, \\\' I,'\\~\ '\

~,~ \ "

~ \,

\

II,i""I ('.JI

LIN1- •i ('\I

LI~c;IN

CD

LDo

"o

(\J

o

[[IT

f-7LLLf-erITCL

ES.U

z

I IL.L.

0'E2!:r O-EOv O'E6E: O-ESS O'EvE O'E2E

(~ 1 3dnJJ=!~-{3d~~3-lO-EOE 0-E82

Page 116: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

-103-

( r

I I

f- LL0-':

~a::uLL0_~-L--.LLr-

m

i.O

o

i.O

o

oN

1 .

i0iI

IO"EZE

Cl

Cl

IO"EvE

1O"ESEO"EE€()j

O"EOv

+"---LII

I---!OO+<Jx00

O"EZp.

(\J0.-

~Iur-(f)wr-

z(f)U

IoUWo

(\J.oZ2::::W_JCDocr::CLocr::([oz([r-(})

r-zw~Zi---<

CLr-ZoU

Page 117: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

-104-

z

OJerf-ZW2:::f-era::[L'')

I' Iu

m

~~iN

~,iI-~I

f-

10~ ."

IN

\

\\

\\

\\

\\

~\

\\\

\\

~\

I

\\

\,\,\,\

\

\\

\\,

\

\\

\ \

\ \\ \" \\ \

\ \\ ~

\ \\ \

\ \\ \\\\ \

\\\ \

, '\\'. \ \~. \ .\ \\

'~,\),'. . '" ~

\

\I

\,. \

I

\\

\, \

\\

\\

~'\ ', 1\ ,1 \.

\\ \~\\'\1\ ,\ \\ ,

1,\\\ II ,

1 \

'\'I I\ \

t\\\'\'\ \\ ,1 \~\\ ., ,

\ \11\\\ \

\ "I\ .\~\ ;

. l~\~.. \ 'I. \.

. l' .

\~\\ ,. \ \

..~\\ ,\ \

\~\\\ .\ \ .

\~\ 'I,. \.

'\\~.\ \. ., ...

. . ~'.

'\~"\.~.

~.0

. '\.... .

'\\ .•..

~ ..

..-+.

'-...Ln

N1-~-. N

~8J0"~ ocr:~ ~- 0 >-ILl mcf5CI:zwz.~o:::-osu~p.,a:t;::3~zito:><X:=Jwa:~o:wILlWcr:mULLLLc.:J

~OD+<Jx<>18>

C\JCl:(j)([U

f-(j)Wf-

C\J•

oL

LW

. ~CDocrCl:

occ:([oz([f-ej)

f-ZWLZl----l

([f-ZoU

z(j)U

IoUWo

IO'Eep. O'EOp. 0" ESE:

()10" ESE 0" Ep.E 0" EeE

3C=Jn-.L8tJ3dYJ31O"EOE O'EBe

Page 118: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

OECD-CSN I COf\JTAI NMEi\JT STANDARD 'PROBlEM NO.2' (TEST CASP2)a(11_.

N'l"

arlo.'l"

I EXP.ERROR (-2.5/+1.4 K'G D(P. (BTS042A21 Io ITALY ICNEI'-J/PI SA)+ ITALY!NlRAII:J JAPANx NETHERLANDS

<) . S!,jEDENo UN I TED K 1NGOOM

o(11

~ffiI

---'oUl,

-----__----------k----------.. --.,.-

4-------------------------.---------------_---------- ~--=" _J~------"'=~:4--...... --- ~-~~~ -"'''''------'-,------/- ~' "~=-- ..

J' ~--:V--.:-

_ 0+' -'. ----:-?~-/-/- //~ "'~___ _.",,,,7,- ,

",,'- . /;:~~, ~./

,/ ." //:;/J;/¥ /:-///./

" ./ /,:' / ..// .(>/' 'i/ . .~l' "," /'" -;/ , ",: 0" " / /': ,..,........ '... -- ------~-

a " . " ---,::--;;1c--------- -(Tl ."_'" -' J~r'''7'...._.......~?..J.--:Y/

.~_.,~' /'.~--=-V'VV\...r.~

o(IIN(Tl

wo0::: r;=:J~f-a::[(l-iJ ~ll.(IIL(1;W1-

o(Tl

CON_j I I I I

0.0 0.2 . 0.4

I=- r (~

I I I--r-r----r. I I -r .1'-i--r-. -r--~-r-'-r-------I----'-I__r-----c"r_:__--"0.6 0.8 1.0 1.2 1."11.6 1.82.0 2.2 2."1'TIME (S)

17 R TFi1PFRRTI JRF H T ST(lr=;y Tf'.1 cn~1pn~.'T~1r-~ lT~~:

Page 119: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

-106-

I---!OO+<lX(>\9

iI,"INI,-;

I ('Jc- •

I r\l! (T~ 0::::i10 f-l-. Zl N

I wL

~~

f-0::::([D-

I 1=I~ --=1

LJ,-:Z

Ir i----l

«CQ('V)

~o

O'EOE O'E82O'ESE O'E:t:rE O'E2E

3dnlJ:Jd3dW~-.L0' ESE:

()10' EOt:r

N1-

~NLn

~~am~~a:~~:::iL: 0 >-WOla::)a:ZWZ.-o::~oa:ua:'I-"Ga:--.JZ~P:<[L(fl--.Jzza:a:XX::JW([~O::Wwwa:mULLLLG

I

O'E2t:r

z(J)U

IoUWo

JC\J'0-(J)a::u~(J)w

.~

C\J

oZLW-.Jrnocr:0-

ocr:a::oza::~(J)

~ZWLZ1--<.

a::~zou

Page 120: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

OECD-CSNI CONTAINMENT STANDARD PROBLEM NO.2 (TEST~CASP2) I

o(11(\)'I"

o(11

o'I"

I EXP.ERROR (-2.5/+1.4 K)o EXP • (9TS 180M52 Jo ITr-\LY (G~EN/P I SA I+ ITALYINlRAIt:, -JAPAN~ NETI-IERLRI\OS

<> SWEDEN<8> LN lTED KINGDOM I

o--(11

~~

I->

o-JI

o(11(\)(11

___ .<._ <OC C""CC ~ ,~~,..,..:- ~~-:-::.,-; = CC=~:=~:=:;'-l"~_.~"~"-"e~'O<poc.\' ~0-b ,..._:"'_'-'!f'~~''''::'''-:''_'.''''''-C?' .-.-.-.-.-. ~()-.", ..-~_._._.- _._-_._._.';:~

. _---~..... ,/, .•. ,._ :7""::-'-<> ~ ~

m -' •. _~,c«~---~ ,.,'-'- -- . .o ~. --' ""-,,, •• , .",., . ---- .'" -,c,-~=-",,--;:.'-' ,.-.- .•,_. ~ -~- .

-_...."'$ ...~-""""~-_.- .=~.:::--:--"_-",,t'r~~ ~ ~ ~ ~-_.~:.--""'- - - ...

WOr:r:~:::J~f-eecrWe:;[l.. (T1~MW1-

o(T1

CD(\)

0.0 0.2 0.4 0.6

r=- I G . 38 B

I . I . I I. I I I. I I I -r- I I r----.T--r--.1-- ..0.8. 1.0 1.2 1.4 1.6 1.8 .. 2.0 2.2 2.4

TU1E (S)TEMPERRTURE HISTORY IN COMPARTMFNT Rq

Page 121: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

o(T1[\)..a(T1

o..o

~(T1

~rn

woo:::~~~r-CI0:::W~O-..~2::::(T1

Wr-o(T1[\)(T1

°rn°(T1

arnrn[\)

OECD-CSNI CONTAINMENT STANDARD PROBLEM NO.2 ITEST'CASP2) i

I EXP.ERROR (-2.5/+1.4 K)o EXP. (6TS270M21 )o AUSTRALIA+ BELGIUM'" CANFOAx FINLAND

<> FRANCE0' GERf'IIFIf'-JY

_---------o-:~:;~;:~::~;::-~~~:~~~~~~-~:~~----- --~.~_#-"~" .-----::::::~.....--.-

--'-".-"~' ~:::~..-'-._.-- __ -.=,tt:::__ .--,,"- ----::-.------~.. _-----~~:;::~.3~--~~~=.G- -..-..==::":=~===~=.:..

_ •..-,~~ .-.-.---- .. -.0 . - ~~.--------- -_ .•..•. ,.;;::~~~,_ .."..~

----.-~ ... --!3-.-----.---.- ... -.---- _ ,'. . -------:. ~~_.~- .. v .

,.n,.N"I"'hP.'(>""w'w .._~tJ!W'"~'oM/M)J"f~~.. .' .

I I I I I I I I I I I I I I ~T~--I I---r----T--~-T-0.0 0.2 0.4 0.6 O.B 1.0 1.21.4 1.6 I.B 2.0 2.2 2.4

T I ME (S) .. "I

FIG. 39 A, TEfV~ -RRTURE H I STORY I-N C IrvlPRRTMFf\/T Rl~

I~oOJI

Page 122: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

OECD-CSNI CONTAINMENT STANDARD PROBLEM NO.2 (TEST CASP2l i

o(T1

N'1'"

o(T1o'1'"

I EXP.ERROR (-2.5/+1.4 K)a EXP. (6TS270M21 Io ITALY (CNEN/P ISA)+ !TAL Y I N I RFi II:> JAPAN" NETHERLAI\DSo SI...JEDENo UNITED KINGDOM

o(1l

":,L~

woCCm~~f--'rI0:::LJJ ~Q- ~L(T1Wf- ...... 0 ....

I--'

o~I

IY'

o

o

(T1

N(T1

g-k~~e:~:':">:~~~~~~~~-:_:~~~~;~-~~=~=~~~~,:~~;~~=--~~~~~-~-~~~~~~;~~~~-~-~:~=~~-~:~-~:~__ ' "'" v,w, ..¥><"~,,,"'''''1~''' ,.~L,~""-.r";JI ------- =er::'------- ' --- ------------~:,.-=:~-.~---,~,.,._"--,.....~~------~_ . ~-------~-,~~~---~--' _..--@-----,------,~--0--

a(T1

CON,.,

0.0I I I I I I I I I I I, I---c--'-r~-I I I r---r---r------r----r' "'r---

0.2 0."1 0.6 0.8' l.O 1.2 L.4 l.6 1.B 2.0 2.2 2.4

T I ME ' (S) ,I=-r c; ,. 3gB TE~1PFF~RTlJRF H I ST(JHY J ['\! CnMPRRTMFf\!T Rr!

Page 123: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

- 110 -

3.5.3 Time interval 0 to 50 5

The calculated results for this time interva.l relatively good agree with the

experimental results except 1 or 3 higher overestimations. of the important

total pressure behaviour. Because of the 1-zone simulation of the contain-

ment already in this time interval the results of Belgium are only compared

with the experimental results of big dome compartment R9, which approach

mean values for the whole containment still at best. In the comparative

plots for pressure and temperature in compartment R9 (figs. 41A and 44A)

the results of Finland (l-zone simulation) are .included,although they areobtained for time interval 0 to 1000 s ..

In the following selected vari.ables are considered in more detail:

Pressure in rupture compartment R4 (figs. 40A, 40B) and in dome com-partment R9 (figs. 41A, 41B):

After more or less pressure equalization . in the containment. after

approx. 4 s the experimental pressure behaviour in the individual com-

partments differs only slightly. At 33 s a maximum pressure occurs(3.95 bar) which is relevant to containment design.

As explained in chapter 3.1, the same scales as in the comparison re-

port for the 1st Containment-SP are applied for the purpose of directly

comparing within this report. With regard to total pressure history,

which is to be considered here, it should hardly be disadvantageous toomit pressure range 1.0 to 2.0 bar.

The results of the majority of participants are within a spread band,

which can be regarded as relatively narrow compared to the influence

of several possible deviations from nominal values (see chapter 2.5.3.2).

Except France, the participants overestimated these variables, parti-

cularly NIRA (Italy). About 6 participants are close to the experi-

ment, however, two or three of them consider only an essentially thin-ner coating than is given in table 3 as a minimum.

Temperature in rupture compartment R4 and in compartment R8 (figs.42A, 428 and 43A, 43B):

After initially smaller deviations the temperatures in compartments R4

Page 124: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

• 111 -

and R8 are essentially at saturation to the measured pressure, just itKein compartments R5 ar)d R7.

For compartment R4 the participants' results are close to the measuri:!g

results (+1 OK/-1 K with an experimental error bandwidth of +1. 4K/-2. 5K),

especially those of Italy (CNEN/Pisa) and France. The agreement be-

tween the ZOCO V (Australia), PRESCON-2 (Canada), PACO (Italyl

NIRA) and CLAPTRAP II (U.K.) calculations (6-node simulation of the

containment, i.e. one node for R8) and the measured data for compart-

ment R8 may be regarded as very satisfactory I while the other parti-

cipants except Netherlands (lumpingR6, R8 and R9) underestimate this

temperature after 2 s even if the pressure histroy is calculated well.

Temperature in dome compartment R9 (figs. 44A I 448):

At the measuring points to be computed in compartment R9 temperature

rises somewhat differently and. slowly caused by the high fraction of

air. After appro 25 s a temperature stratification starts to develop; At

50 s the temperature in. the lower part of. the inner cylinder . is about20K ./ess than at the dome's ceili~g.

The participants' results are considerably higher than the experimental

results, especially in th.e phase of .temperature increase. Temperature

differences present in the experiment cannot be included into the com-

putations, . if e. g. compartment R9 is only sim~lated by one node ..

Temperature in dead end compartment R6 (figs. 45A, 458):

After appr. 4 s the measuring point situated in the centre of the com-

partment indicates higher oscillations in temperature What can be attri-

buted to equalization streams with. different steam/air composition. This

temperature corresponds to those in the lower part of the innercylin-

der of compartment R9, but is on the average somewhat higher.

Partly, the deviations. of the participants' results from the measured

temperature history are considerable. The PACO (Italy/N IRA) calCula-

tions are in the mean close to experimental data. Higher underestima-

tions can be observed from the results of the other participants whoalso simulate R6 by one node.

Page 125: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

OECD-CSNI CONTAINMENT STANDARD PROBLEM NO.2 (TEST CASP2)CD

oq-

oq-.

oq-

.. _.... -.. -- .. -' -.' ,'-'---' -"--. "','El-- ..

t,..!

I

I-~

CAN'DA

I EXP.ERROR (+25 mbar)o EXP. (4Pl_OOBA2SL )o AUSTRFLIA+'

,I:>>(

,0 FRANCE, 0 (;[F,I'1JclNY

F r r~" I, O. A,

_.' _•••• - .. EJ'" - . _'_" __•..' ~-~-t: , ..... ~-------=---:-----.~- ,"...... ' --~----~- , - ~--:::::---

.- --- ' ~ ------..' ,.' ~ ' ----- ~ ---..::::::::-./~ -0-.-------------.--<0' ---............ -~

....;-/" _.-'-'~--- " .~/" ...... -- .. ', .?~<~//.'"',,

-//d/ ,,/ 7'//R '

..~,.;/ "

/~ '/17/~p',,p;hb:" '

.',f!,.''')

/;j/

I~/~~// 'It,/i

/(;

~-I--,,~~r1-'-r-I I I I I I' I I ,--' r-,,--pr:-'--T I I r--r----.T.-r---"I--, ..--~-."0.0 4.0 8.0 12.0 16.0 20.0 24.0 28.0 32.0 36.0 "10.0 Li'1.0 48.0

II , ' T I ME (S)' '. ,PRf-~SI IRi-- f-li ~Tn[=<y' f /".1 rr!/,.j-ll:jr~1RTIV1F-r\IT 1='/1

oq-

[\I

_0

w.cr [\I=:J (T;(j)(j)1..LJcr(lIT!

[\I

CL"0_"*

UlIO~

(T)

Page 126: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

OECD~CSNI CONTAINMENT STANDARD PROBLEM NO.2'ITEST CASP2) I

m'T

---------------------~--------------~--

I---'

WJ

-- ---+

:'

mbar)

'--I .....--r---44.0 "18.0

T EXP .ERROR (+ 2 5a EXP. 14PLOOBA2SLIo lTALYIC~EN!PJSAI+ lTRL Y IN I RFl )'" .JAPAN>( r~ETf--ERLPNOS<) S~~EOE~J<8> UN I TED K J NGDOr1

FIG.4GB

__,f- -/:;~~;~~=-:~--=~-~===~--~~~~~~~----, -,,,,' ,.?"" - - .....-- - --- ....~ ......-<S' ..,."/' --------@--~---==--~-_ ..._~ --

,'/ ----- . --- -- -- .'/ /-- -~--' -.. - . ._._--._~- --------------.,~'<// __..,~ . ~-----:-'"'-<-~-,.,.:--:-:.::~ -.~-.-*<~ ..: ~ ~.. ---------c... --,..

~

' c' ,"h'r • .',p .,.- "/

1<.4'. ':--'. ~[{(-/_.-.-d /"'-,.,v/ .'

I,~..I .- /i\,u/.l ,..' #jf«' "Ii / .• '~ r.,i ~~ ,....rY,fY'~.-' ..-

J\j?~..'". ;/,),'1 :'p~,-}--,~r,~":

/£!, ..)// /,.l?>

/1// 1'.(7I.;/;,?'

/ -,r///1;/ /III/"/II"

/ F-

/:/r-//J/;/

/ ,',/ I I I I I I II I I I I I I I I I T----rLJ.O 8.0 12.0 16.0> 20.0 24.0 28.0 32.0 36.0 40.0

TIME (S)PRESSlJRE H J STnRY r [\j COMPRRTMFf\IT R4

0.0

.0

N_

'T

N

oq-.'T

werN:=)rri(j).(j)W0:(LC!!

N

....:...0

a::~[L

"*UlIoLe!...-I(T\

Page 127: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

OECO-CSNI' CONTAINMENT STANDARDPR08LEM NO.2 (TEST CASP2)m'f

'f

'f

I->

->..,.I

mbar)

-I-~-l----' .~44.0 "1B.O

I"10.0

I EXP. ERROR (~2 5o EXP. (9PLl 03M39Llo AUSTRAL IA+ BELGIUMt:, em,FDR)( F [1\jl.AI'-JO (I) .. 'j CJ () (1 :c. )o FFlRNCEo GERMAf\JY

I I36.0 --rr-~

32.0

I N 'rt-JHpRRT~1F~IT Rq

I -- I I I I20.0 24.0 2B.0

TIME (S)8~ESSUREHISTORYF I,G. 4,1 A

~/,x----------'--/ ---~-/ --

/~ -~// -<:'.f~~::'~~~~':"'~'~""...." ". -~--'-

~/~ "~,,,~~'~'_"/;:?'"~'" _~_o- __--~ ----/ ~y;'--/ ~-.. - '.-'----r- ----:;;; - ...,~~~/'e->/- .-.,.,<>-.-._.-. ----- '-'" ~

Z-- _.- -. -_ _- .... _ ___' -'-'-._ A <>~ --~

/ .-;.",., //. .V ~ ----::::--

/./"; .. </. . ~~

--:>;~>/. . •/. /~ . .

/ / /'. ,/ ./.-/ .. ' .'

r ,./:.~." /-/. ./,/,"",' .

//,/// .,,',..', "/~;.,'; ~

. //".,.1<; ../',';' .v;;;~~,~.

/J!J /'"

:7:1 ..

/.I" /.:'.'

'/1/'

IV)/',;;.,/',J ,~;<:

I/.. ;;'.{f

/",i;I ,

I ~/~?l 'I ILJ .0 I I I8.0 I"" I IL.O 16.0 I

o

'f

'N

N-r0.0

werN~rriCf)(j)WerCL~

N

If)Io~.--1

01

Page 128: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

-115-

OJ

wrr=:J,(j)(j)W'0:::(l

-

N(r)

o

.f--I

o

o

o 'N

oN'

\D, -;-

,,10"-".OJIv

O"c

Hro'.DE

'I--I 0 0 + .q x <> 0

0'17 g"€ c"€ 8"c

(8d*s~O[) ~~nSS38d8"17

C\JCL(J)([U

f-(J)Wf-

C\J.07L.-

L< W

~rn0crCL

0crIT:0ZIT:f-(J)

f-ZWLZ>:---<

([f-Z0UI---<

Z(J)U

I0UW0

Page 129: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

OEcO~cSNI CONTAINMENT STANDARD PROBLEM NO.2 ITEST CASP2)a

I-->

0,I

(11O."l"

o

(T1

C\I

"_ ~~--0.~" ,.,_'~~""-'

~

~.~~---::::c:-:..,-:--' _~ " •..~>~==.~-=:O' .~ """~"=_ _ _ _~~_ r..

n

.

~

>"~~ - " ~,~""""""~_",,~._.- _, _UU""U""""U"

/"-- _~~? =ci"""C"""""""8

. 0 11_ t1

t

"';;;:7' - "__~_~:-:c:"c::.::"_' Ii ~ """'L fii- :' -- --=;;{

~

- .,

LLJ 0 ~-,cr':j rn If"":"cr[CI.LJ c::(~1~2....(11

lLI~-o

QUI

o(11o('1

a

I EXP. EHROR (-2.5/+1. <1 1\)a EXf;). 1..1TS000r1281o AUSTRAL fA+l:> CF1NF-DFI>(

<> FflRf,JCEo GEFlrvnl-N

.h .0

(11

ml\J -1"--[ I--'r-r~--I--r--I~-T-.--r-I--r------r-""-'I---'-T"-- I I T- 'r-'"

0.0 "1.0. 8.0 12.0 16.0 20,0 2'1.0 28.0 32.0 36.0 .iO.O

T I f'lIE (S)1=-IC-=;. 42 A ' TF~J1F..:I~r:(Frrl IPF f-1! C~T(lr~ Y T f\ I r'/=iMPR F!Tf'1i-=-~ iT P /1

.iC~~O

Page 130: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

o(T1[\)'f

o(T1

o'f

o;'-"(T1

~rn

wo1rmJIRI--0::::0::: 'w~0-(T1~MWI--

o(T1{\J(T1

o(T1

o[Tl

o(T1

m[\I

0.0

.j

OECD -CSN I CONTA INMENT STANDARD. PROBLEM NO.2' (TEST CASP2) ,I

I EXP.ERROR (-2.5/+1.4 K)o EXP. (4TSOOOA281o lTAL Y ICNEI\l/P I SA I+ !TAL Y IN IRA)

~ .JAPAN)( NET/-£RLA\lDSo Sl..JEOEN181 Ui'J I TED K 1NGDOf1

I I ~ I I I I I I I I I I ---r--r-'--T I I r-' ---r---r-------r--.r------r----4.0 8.0 12.0 16.0' 20.0 24.0 28.0 32.0 36.0.' "10.0 "14.0 "1£'J.O

T I fv1E (S)FIG.428 TEMPERRTURE HISTORY IN rnMPRRTMFNT R4

I--'

--.JI

Page 131: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

OECD-CSNI CONTAINMENT STANDARD PROBLEM NO.2 ITEST CASP2)o

(T1[\J'f

I-~coI

r'---T--,,'18,0

CRNFOA

I EXP.ERROR (-2.S/+1.4K)'o EXP.IBTS090121Io FiUSTRRL I A+/:,)(

<) FRANCEo GER~"1ANY

T 1\1 CJl' IPRRTrvl~~JT RR

T~----r---r--r--"I'---'r"'----'r"",32.0 36.0 40.0 44.0

1"1 I, II20.0 '24.0 28.0

T I ME ' (S)r:=-I G. 43 A ,TEMF==qRTlJPF- H I ST(lr-=-~y .

a(T1a'f

o(T1

~fR

~O"-. ,=~~~.rf-- .=""'<=~.";.;:e=.== ..."._."~~-~"{

. ------------~~~~-~-~-~-~~-~--~-~' ~~_/~ . .--~_=--0-

W D ./;;J<O- ----

OC~ ! .-J/ ---

~ ~. /;/.~ I :/'tE // ..L1J~, 1''//0.- (T1 / I

tL]M I YI- It

~ 1/'f./I}/I~Jn'

(T1 rj'j

0; If(T1

CD[\J -r---- I0.0 I I4.0 I I, EJ U 1• 12 11.0 16.0

Page 132: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

OECD-CSNI CONTAINMENT STANDARD PROBLEM NO.2 (TEST CASP2) I

-->\.0I

I-->

I EXP. ERROR (- 2. 5/+ 1 . 4 K)o EXP . (81S090 [21 l .o ITALYfCNEN/PISAI+ lTAL Y I N IRA)A .JAPAI\Il( NETHERLAl\lDSo Sl--IEOENI8l U~I TED K IhJGDOM

I I I I --r-~----r'---'--r------r---32.0 36.0, "10.0 44.0 48.0

I I I II I I I I I I12.0 16.0' 20.0 . 24.0 28.0

T I i"1E (S \. [=- I G . 43 B TEMPERATURF H I ST(J~~Y I ~j cnrv1PARTMF~IT RB

I I8.0

I I4.00.0

o

orr)[\J'f

or~o'f

o(1l

CD[\J

(1l~rn

__- ,.:;;;::S- ~ ',- -:--,::::: :--~-~ ~-.:..- ~-~ ~---~- - - - - - - --

, / ~~/~_=,::;;-~~;~~~i;~~:~~~:_-~---~~~~~-~~~~=-..,1 // ~------~-------- - ~- '-. ~- ,.:1 /' _",5-"'------ ~"'~-,=----~:-:::~:-.-... -

W c; 7/1 ,/ ..y;:;;:yV ~"'~'-----b-

LL (1l I •. /

:=J LO I .-;,/f- (rl . If /I .,';:; .:([ 'I / ..';/'/rr

I I ://

I V/I' 10 'II ,"..u' I I .f,n (1l 1/::~~ 'f t :/,L (1l I I

LtJ : /f- l~;J 'l.Oil}"• I.

(T1 I[\J ,

(1l :!' .I:I'

:Ji~~1!orT1

Page 133: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

OECD-CSNI CONTAINMENT STANDARD PROBLEM NO.2 (TEST CASP2larrIr\l'f

a

I->

NoI

I EXP. ERROR (+1.2 K)o EXP. (9HJ180M-9!

-0 D(P • (c:ltl~1801'-'1751o (CjUSTRAL 1(-=1+ BELGI Ur1l:; CAr\IHDFI-x F [f\!U-'li'n (0 -' 1(; /l (j S )o mAf\JCE -o GEHMAI'JY

rrIo'f

o

rrIo(Tl If'

~ IIrrIen[\I_j__ I r--- I I I I I I I . I I I I ) r- I r---J-----l--r---r---------r---'--,---T---I

0.0 LI.O 8.0 12.0 16.0' 20.0 24.0 28.0 32.0 36.0 40.0 '1"1.0 "'/CLO

TIME (S)r~ I C; . 44 A ,TEiv1F .-\ATURE H I STOF~(Y IN - t(_lr~ARTrVjFr\JT Rq

(Tl

"dffi

J,~c>~;;;::;:;~~~~~~Ci-~~~~--~-~__ '+_1. .;<,~ ~. . . - ~_~_._-d--~'-"'-"-- - -_.. -===-- -..::.:.:= .

- r -e./ ./~ ------- -- ~,-,' j;--4f/ - "..' --~. __.~ -- -

LP'

''''o./ C~.

iJ 0 .- ",;--. . ~-<Y • ,,/C' -'-

U. CO " /;;7," -~ ill ,/ r7/ /----d-(I / /// Icr " Ill' /1.iJ ~ ,/ /tf /CL rrI- ) 1;1 I

;_ " I I' I2-(Tl I,'

W //: II 1" I1_ . J f /I f~ / ~/, ;'

rrI I 0: I .('J I iF .(Tl :' I .

I '~/"I /p

'[/ia I~:(

Page 134: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

OECD-CSNI CONTAINMENT STANDARD PROBLEM NO.2 (TEST CASP2)a(T1

N'r

o"

(T1a'r

.'......>

N......>

r

48;0

I EXP. ERROR (+ 1 .2 K)6 EXP, '9Tl~180M-9To EXP . !9TW 180/'175 )o ITALY (CNEN/PISA l+ J TAL Y IN I RR It:. .JAPAN>( NETf-£RLPNJSo SWEDEN

'<8> UN!TED K J NGOO'1

16.0 20.0 24.0 28~0 32.0 36~0 ' 40.0 44.0TIME' (S) ,

TEMPFRRTIJRt- H J STnRY T ~.I Cn~'1FYlRT~/H:-:-~.,ITpq

8.0 12.0

F--rC;,.,44R

4.00.0

o(T1

CD[\1_

a(T1

:--Lffi r......,tf

W D . .r;: /cr:~/;;«:J rn.%J? //

f-' ;J:, (0.j,'//II .r'" /

~ ;~/.

W~ i;:/~~ till2:::: (T1 "" / .w /; /

f- ~ b'/Fa f(T1 I

) J~~$~/a(T1

Page 135: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

OECD-CSNI CONTAINMENT STANDARD PROBLEM NO.2 (TEST rASP2lo(Y)N"f

o

t•.)tvI

48.0

0-,

---"'0 ... -. '-'_' ,__. ....... ,_... _

CAt\RJA

I EXP.ERROR (-2.5/+1.4 K)o EXP. (6TS270M211o RUSTRALIA+f:.l(

<> FRFNCEo GERi"ANY'

.- .. --.0."-"'-'--".~~.-'

(T1

o"f

o

~-J! .'mm[\1 "1-- I I. I I I. I T I . I I I I i--:--r---I I . I I

0.0 4.0 8.0 12.•0 16.0 20.0 24.0 28.032.0_ 36.0 "10.0 -'14.0T I ME (S). I

r:=-f r"" . '/ C /\ . TFrvln,..,I.. 'rJnTI. InI' . r.- 1 ... 1 T r:':Tnr--:-)\I/ T, II rnr"':lnClf'Ti.j[-r .IT 1'1r . -'.. ..}:J /'-'\ J .1" !. :',! '.:' ',I" I I",.' , I', . I . I I

(T1

~ ~l '. //'//4-

W c; tZf;:/0::: (T1 ,/ /"

~ ~ /;/f- // "'J vcr ' / 8 ..

0:::: 1, ,..-.,

f ... -.--w ~,/ .--.----- -n (T1 /1 ..-" ---~ -~ .' O. ----- --~~i\.li ..' • ~ _. --b--

W If .,' ~ -f- if'-- /,,-/ --o!/ ." /' ---.. " //

gJ' i I--J //(T1 il .',.' /"

i ...'

c;46/'[y;(T) ,'.' .o .'~.I .

(T1 .

Page 136: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

OECO-CSNI CONTAINMENTSTANDAROPR08LEM NO.2~ITEST CASP2)a(Tl(\J'f

a

I--->

NWI

I EXP.ERROR (-2.5/+1.4 K)o EXP. !6TS270M21 Io ITALYICNEN/PISAI+ !TAL Y I N IRA)l!. -JAPAN)( NETf-£RLPJ\DSo SWEbEN-~ UN !TED K I NGDO'1

(Tl

o'f

a

orn(\Jrn

a

.",~/~;:::~::_::~~~~;~~;c'~~:C::~~~=:---'-".:;_/V ~- - _.-:...;// --- . . -- ~.~././ -----~~~@----"y.;' .' ~______ . __ -~---0-------.,'/ . . >---"'. .-,_.-.-' - ~--~

7

/ --c:- --'.--- ~----- --C' /~ ---' ---- -~,/ .",v-' ---- -8

,:1 ' /' ' ---- ..'Ii -?.r -,--

(

)' ,- 7// ---.---I . /" , --.-

:' /://, )( ..

;' //

/

: " I-_/rj" IP

I,' I/1,/ I_,I -

° f',' /m ),' -/o ' /(Tl :./

wory-'u_ (Tl

~?Rf-eerr:we:O.--rnL~LLJf-

(Tl

':-Lffi

rnCO(\J

0.0 4.0 I I I I I I I I II I I I I I I I I--~8.012.0 . 16.0' 20.0 24.0 28.0 32.0 36.0, 40.0 44.0 Ll8.0TIME (S)

-FIG.45B TEMPERRTl~E HISTORY IN COMPRRTMENTRG!

Page 137: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

I

- 124 -

3.5.4 Time interval 0 to 1000 5

For this time interval Australia submitted two calculations with comput€:;~codes ZOCO V and ZOCO VI. The results of ZOCO V are only included incomparison plots because for each organization on/yane calculation shallbe take. and the results of ZOCO V are considerably better than thos~ ofZOCO V I. A few remarks shall be made on the individual results as foi'lol!ls:

Pressure history in containment (figs. 46A, 46B):

After a maximum the pressure in the containment falls slowing down.continuously due to cooling of the. atmosphere.

With the exception of France and United Kingdom, pressure maximum ;soverpredicted by the participants. After pressure maximl,Jm c.alcufatio-nal results on the average agree in. course of. the cooling process, butare mainly higher than experimental results: This systematic deviaticn .can be explained by the influence of a possible leakage of the modeli::ontainmenton the total press(,Jre bLJilt-up in. the long term interval.Since there are no measured data available on the real leak tightnessof the containment all calculations could not take this into account.The results of Germany come. closest to the experiment. It may be in-teresting to quantify theirlfluence of the uncertainty of data of theconcrete coating acting more and more as heat conductive resistance(see also fig. 18).

.- TemperatUre in containment (figs. 47A, 47B):

Pressure decrease is caused by heat transfer from the containment at-mosphere to the concrete walls. Temperature stratification in the largedome compartment, which has started in time interval a to 50 s, is in-creasing. After about 250 s it has fully developed: Both of the depic-ted measuring points in R9 (bottom of inner cylinder, dome at the top)indicate a continuous, homogeneous cooling-down (constant differenceof about 40K). Temperatures are the same at the same level in theann.uJus of R9 as. in compartments R6 and R8, while in compartmentsR4, R5 and R7 temperature .leVelis always Somewhat higher.

Page 138: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

- 125 •

Considering these substantial. differences in temperature , a subdivi-sion of the containment, for instance in 3 or 4 zones, seems to be moresuitable than the 1-zone simulation: For a 1.-zone simulation calculatio-nal results, as a matter of fact, should have to be compared with atemperature averaged voiumetrically over the containment volume. Cor-responding to the different pressure histories, temperatures obtainedby the participants decrease and are on the average slightly above themiddle of. the two experimental curves. The temperature maximum incompartment R9 has been computed too early, but within a narrow ran-ge of 9K.

History of water mass in containment (figs. 48A, 48B):

The considerable discrepancy between experiment and the narrow ran-ge of calculational results (corrected curve of Canada in App. 2) ismainly causeqby the fact, that even after a ../onger time a substantialamount of condensed water is still adhering to the walls. It would re-sult in a mean th.ickness of condensed fi/mof about 0.85 mm (300 s)and 0.55 mm. (iOOO s), if we assume the difference between the meanvalue of the computed water mass and the measured sump-water to behomogeneously distributed on the total structural surface. Regarded asa pure heat conductive resistance, this film [(0.8 to 1.3)-10-3 m2K/W]is not at all negligible compared to the concrete coating[(3.7 to 4.3)-10-3m2K/W].

Page 139: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

OECD-CSNI CONTAINMENT STANDARD PROBLEM NO.2 (TEST CASP2)NIJ1

->N-(1)

mbar)I EXP • ERROR (.:!:. 2 <=;

o EXP, I9PLl 03M39Llo AUSTRAL I A l ZOCO V)+ BELGI UM~ CANADAx FINLAf\JD

<> FRANCE@ GERMANY

~

[~\-i, \ \ \j'- \\J! '\ '\\.' \\ \ \

.{ \\ '- \, -' -,\ \\

\,' ~

\~~~\'"\~~'" -, -

.~~~~"-'-R", ."\~ \~'~

", "~;;~~~::::: B. .•.....• '.."'0 ..~ ......... ---~.:::--...- ~--~ .

--..-:~"'-...- ------------.. -~--..-. -- -- ----------- ------a-~ ----o---"'=,= ~~.~.._._v_

-;;;:.~-~-~:-:;:;,-:.-::-==-::-~-~~===-,- '~,lD

ill

'l"

WD:::rn::::IN(f)(f)W[X::O-C\!

N

_ 0

o::::~[L*-

lJlI0'\.-1(1)

o

0.0 80.0 , ,r I I I I I --r-'-~--T---'---160,0 2~0.0 320.0 400.0 480.0 560.0 640.0 720.0 BOO.O 880.0 960.0TIME (S)

FIG + 46 A F =-SSURE H I STORY I f"J C(- TR I ~IME~IT

Page 140: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

OECO-CSNI CONTAINMENT STANDARD PROBLEM NO.2 lTEST CASP21 i

~N"-J

.r

mbar)I EXP. ERROR (~25o EXP , I 9PLl 03M39Llo ITALY ICNEN/PISA I+ ITA- Y IN [RA It, JAPAhlx NETHERLAN'JS'

<> SWEDENo UNITED KINGDOM

, ,

",'- \Ii,' \\if, \\I', ,~ ,

II' '\\ ..u fl ',.

~

v ~\. \~~~.'\. .~: \\ ,\ ~ .i ...~,,,,.,. , '\ .

. . ", ',,,'.~. . .' ""', ",~~>.

. ", ,." ,,~. .... "', ' ........ ,.

... ... .., '.'.,'-,

......... ".,...... , .............-"-~........ ~~ .--... ...... --...". "', ~'-...-.< ...... "'0-..._._

~. ~ "'" <, ~'"- -.=-.:::.;;:;::::::--------<>-< "--------------.e- ,, __: "'== ~_='-" . ~ ---..:::~~=----~----------------.~~~-~~-=::-0.~,_. . . - --~-~-~-- -~--~----------<- ~ . --------------. ------ ---<-., "' "'.' C'-'-'-'_1!r_, C., . -,,_-_-<-<"" "_.<""" ,_,_,_"" ,_, -,-ce-: _

(\J

lf1

liJ

ill

"t

Wcrrn:::Jr-ienenLJJcr(lr\!

(\J

o~ ,

IT:."t0.-*"UlI "to .

m..-1

o

0.0 80.0I I I I ~I-T~-r'-T-""'--

160,0 2"10,0 320.0 400!0 480.0 560.0 640,0 720.0 800,0 880,0 960.0

TIME (S)F rG , !~6 B PRFSSIJnF. Ii: ~Trlr~;y T ~.!. rnl\ITn T "JH~I\,IT

Page 141: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

OECD~CSNI CONTAINMENT-STANDARD PROBLEM NO.2-(TEST CASP2l

"

-'NCO

O---~V~~~'_ci-I_

I EXP. ERROR (+ l. 2 K)

d EXP.(9TW 180 M-9)o EXP. (9TW180M751 -o AUSTRAL I A I ZOCO V)+ BELGIUMt,. Cm-lAOAx F[NLANOo FRAI\ICEo GERMANY

r'~:'~",,'::::.'\~-'! >"~',. ....., ....... ',

r - "'':~':--'''''-'::::''_"':'t;.,,-, ,"",,,_

""'" ~ ~''''"~' ....~~~

"~-~'--'---- .. c

. . ~~~~:;~~~~~~~-::~~~~~~;;~~~. ------~-~-~-~<>------_._---

o(TI-['J

"

(TI

o

"

o(TI(\)(TI

o

LtJ 0

[(~~~~C[[(LLl ~(L (TI

;'L(hW1--

o(TI

o(TI

o(T1m[\I

0.0 80.0 160.0 2-40.0

FIG. 47A

1 1 I I I I I I I- I -r---T----r---320.0 400.0 480.0 550.0 640.0 720.0 800,0 880.0 ~)60.U

TIME (S)TE :JERRTURE H ISTORY IN nNTR If\IMFf\/T

Page 142: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

OECD-CSNI CONTAINMENT STANDARD PROBLEM NO.2 (TEST CASP2l

--- --j-..

-o.- ~~~~

....t\J(D

I EXP. ERROR (+ 1 .2 K)

o EXP.(91'W 180 M-9)a EXP • (9TW 180M75 Io ITALY tCf\JENfP ISA)+ ITAL Y l N I RR If::, -JRPA1'-Jx NETI-ERLANDS<> . SWEDEN@ UNITED KINGDOM

p~ .~' '~\-

fit,....",.",'~~,;::----

j' """'"' -,,~~/if.' ""--- '~, ":-:-::- .......II """--:...:.:~<::,'~~_ ....._.....I "',,-~_~<>_._.' '~~ ',,- -,-."'0":::;", ~~,~::-._._. ."G. ~~, _ ~~ ~,~ ,,_

'. '''''-o,~---....'''-. _ .......

' . ". '-'",:--.::::..<~-=-'"'cc_. -. _''''''--''' .... ._. .""0-_. __'_ _._" .. __... "

I ". '. ",_ ~---...---.........__ ~~". -, , '-.:...--..: -----=-----.. ~

' ".+ -"""""-"----~-=-~~==-----I

l

f

•....•.•••.. Q~~~. ::::.:. :':::. :.:.::::: =:::: :::::,~ •• ,_-'-'" _ --. a'~' .~'.~ -~. --.~.-:-.~:::~:

' --------------+-------

I .II

I

°m

~ffi

am[\J

"

o(l')[\Jm

°mo'l'

Wocr~:::J1il1_ m

([crLtJ ~[Lm_"LmWf-

om

°m ,amCDf\J

0.0 80.0 160.0 2-40.0

FIG.47B

I-r I I I' ---r----r---T-.---r---r-' ..-r'----l320.0 400.0 480.0 560.0 640.0 720.0 800.0 080.0 960.0

TIME (S)TEMPERATURE H ISTORY J N rOf\!TA r i\/fV!Fr\IT

Page 143: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

OECD-CSN I CONTA INMENT .STANDARD PROBI_EM NO.2 (TEST CASP2)

-.I

Wo

------

II' f'/~ -1 .-

o•ab(\J'f

oooLD(T1

oaao(Tl

0------; .----fr-----.------h--. .... . mass flown in

( . '. . -- --- -'--I::r- -- -. -- --- ---- --- -&--- -- ---- --<>--- --------/'s-

I .~:;:::::C:::_~ S?c:'::2c-:,0"oc-q~":"S..:.~.::' .:::::.:.~::.:: ..::-:.:"..::~.:~::.:..•~.: •...: ---' ' : -~":""

I~-.r' .. ,.,--/._* ..:.;.-7'/.~~~;;;-~.;-~

!A::.i>/~'

i:-"Y'

I{II'I

f

I

i~i

19~~g-. 'f(J)N(J)0:: a2:::' a

aaT

oooLD

EXP.ERROR (+345o EXP ,SU~1 W'1 -o AUSTRAL I A I ZOCO V)+ BELGIUMI::. CANAOF'll( Flt'-LANDo FRAI\ICEo GERM8NY

kg) .

o0_

0.0I I I I .I I II I. I I I. I I I I ~-_r__r--I-----r-.I----1

80.0 160.0 2.10.0 320.0 400.0 480,0 560.0 . 6""10.0 720.0 800,0 l380.0 ':'00.0

TIME (S)FIG. 48 A H I S~!~RYOF kJATER [\1ASS 11\-1CONTA I Nf'1ENT

Page 144: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

OECD-CSNI CONTAINMENT STANDARD PROBLEM NO.2 ITEST CASP2)o mass flown in

-'w--'

kg)EXP.ERROR (+345o E.l(P •S\JI"I [,,]"1 -o lTAL Y ICI\JEI\IIP I SA I+ lTRLY iNIRFI)[', 0APA'~x ~ETHERLANDSo SWEOE~Jo UNITED K1NGDOM

I I .I. I I-r----:r-720.0 600.0 680 0 960.0

IN CONTR J ~1~1Er\IT

320.0 480.0TIME (S)

HIS~ORY OF WRTER MRSS2"10.0

~/

160.0

FIG.488

80.0 .'

0-------

0.0

ooolDrn

oooorn

o

"", ," 0""'" ';;;~ ~ ~ ,-C"",C" 0'0'0"." 00'•• c -- •• - - CO'- ---,/'~~~__---=-'--..",-' -fl>__ n---~-,c-,~~-~---_....----- --=t= _n __

tJfr/if~ ----:-:-~- --=--=-=:..:::-""= --=--.~.::~1=-':;~::'~:';~~';::':;:"~'-::::-~~'~';:~

,! :V Ii} ,. +I I

, ''I I,:1 I, I'I: /... I

,: /: Ii Ii/I

YI

If

~11/ i/ :'II,,I

oo[\J

.0o[\J'f

0_

o

LJ~~g~ 'f

([)[\J

.([)([02:::' o

al

Page 145: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

-132 -

3.6 Comparison of Remaining Specified Variables

The presentation of these variables is meant to facilitate the individualparticipant carrying out detailed analysis of possible deviations. Corres-ponding figures can be found in the preliminary comparison report /40/.

Page 146: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

- 133 -

3.7 Measured Results of Non-specified Variables

}~Ipha-biock-measurements :

In order to determine long-term heat transfer, a so-called alpha-block

was installed, each in the lower part of rupture compartment R4 and

in the upper part of R9's annulus /6/.

Alpha-disk measurements

So-called alpha-disks were installed in rupture compartment R4 (at the

lower pert) and in follow-up compartment R7 (mean compartment height

at (783) for the purpose of determining short-term heat transfer.

Sump temperature and sump water mass:

As mentioned in chapter 3.3, the measured sump temperatures in con-

nection with masses of sump woter provide an indication for water

transport conditions (carry-over, separation). High sump temperature

i;-:cates that sump water contains a larger portion of het water I car-

ric:) over respectively separated, and low sump temperature (see es-

peciaily dead end compartment R6 at 300 s: 60 kg' with 32°C) shows

thuc the share of water resulting fr'om condensation at the colder

structures predominates. However, it is difficult, to easily quantify

~;r transport from the mass of sump water at e. g. 300 s (first

Ci'.,;::;iiable measuring point). Particulat'y this results ft'om unknown his-

tory of the condensed water added to the sump and relatively unknown

temperature history of the condensate. In addition, conditions in the

V2:'iOUS compartments of the containment are very different.

From a reiztively large constant m2SS of sump water (905 kg at 300 s)

at high sump temperature in R4 it can be concluded that the sump

wate,' essentially originated from the rupture-site; t'espectively that

c':Ji':d<::nsation in the smail compartment was low. in compartment R5

(outflow upivards, sump temperature somewhat below compartment tem-

perature) 'cil/ater carried-over/and after 20 s some condensate, may

have come to the bottom ( about 550 kg at 300 s). Probably the. W2~er

in Oil;" tment R7 (room temperature ~ compartment temperature)sepa-

rated ,juring the long flow path, was washed into compartment R8

3cro~::s the edge of vent 0788 [3 cm(?) above bottom]. A re!ativ<.":y

higt, sump temperature in comp2t'tment R8 already existing at the end

Page 147: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

• 134 -

of blowdown confirms this, yet, also demonstrates' that a some colder

condenS2',: is mixed in (at 300 s in R7: 10 kg; in R8: 430 kg) .. In

the centre of R9 only condensate of low temperature can be found (at

300 s: 170 kg with 32°C), which allows to conclude that no water was

carried over upwards via vent U59B. It is surprising (gap?) that

hotter water apparently Grrived in the annulus of R9 (relatively high

sump temperature of 55 to 80 °C and sump water mass of 760 kg at

300 s).

It is evident that a considerable amount of water was transported from

the rupture compartment to other compartments. Therefore, e.g. the

assumption of a zero' carry-over surely contradicts the experimental

results. The reason for this substantial difTerence between calculations

and experiment obviously originates from the description of the process

itself and from compensation with other assumptions. It seems necessary

to improve , possibly in quantity, the description of the real conditions

by way of suitable measurements,. for instance, in project HDR.

Static and dynamic measurements of pressut'e at the vents:

Because of the cc.ntraction a determination of the vent mass flow from

these measurem;"nts is as uncertain as corresponding results from codes.

From the measurements of the Pitot-tubes at U59B (flow upwards) and

G 78B (flow downwards) one can possibly observe a short term reduc-

tion in dynamic pressure by a smaller amount of ,water carry.over and,

. consequently; lower acceieration losses from the water dropiets.

Page 148: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

-135 -

3.3 Comparison with the Results Of OECD-CSN I Containment Standard

Problem NO.1

Test C.A.SP2 (basis of the 2nd Containment SP! performed on September

21, 1979) and test 015 (basis of the 1st Containment SP, performed on

December 20! 1977) both were conducted in model containment of Battelle-

institUTe ,;\/ithin project RS 50 of BMFT. in both cases best-estimate post-

caicuic:,'ions were pet'formed. (submittals due to May " 1979 resp. Novem-

ber 1,1980).12 organizations participated in the 1st and the 2nd Contein-

ment SP with 12 different computer codes and, partly, several modifica-+'~Ions .

Therefore some comparisons dre made possible betvveen the 1st Contain-

ment SP end this 2nd Containment SP. In the. following they are shortlyreported.

3.8.1 c.Jmpat'tmenl scheme and. flow paths

The cumpi:wtment scheme in test CASP2 (branched chain asymmetric in re-

lation to flo\\' paths, see fig. 498) is different from the one in test D15

(chain-type arrangement of 6 subsequen ~ .compartments, see fig. 49A).

The rupture is initiated in test D15 at the end of compartment R6 (~ 41 m3),

:n test CASP2 in the midd'''' of the sma! I compartment R4 (:;:::14 m3). in

bc-\ tests the vents weri', ,:nly orifices. Dimension of orifices! flow to

2nd fro vents as wed as ti'ii'ough compartments 3;'e largely different forboth t.ests.

Page 149: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

- 136 -

, __\Jt.'. Pt',

Of,loca'tionru'pt1..1TG.

R5

(

R9 g U-c~. , L~./~II - --R7 - -~-+-~-~----~j

I" I /Tl, '1",

I U 4 7 i'" P, t~!' tJ 4 5i I ,~72B _ ... 1I rT-t ~- i

I,

I .~.I ; -

I\ 81111 /C;' , ;01.~ ....; ~ ..; '- ,I. .:~ ...

EUDture COD::;a::::-t.1TIent: R6

R6 ~ R8 - ,R7 - R4 -R5- R9

. .c .Orl..:_lces

.210~'l. a!:'"e2S: U 46/48U 78B,U 45, U

} circular channel

U '47'"" " .' .

59.~. 1sharp-edged

R6 - U 46/43 - R8 - U 78B - R7 - U 47- R4 - U45 - RS - U 59A - R9

F iS~_:_lA,; SC;l'2!>1eof the Compartment Chain and .z,.s SOcia ted

Flow Paths (D15)

Page 150: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

- 137 -

nressureIi- r P =lL.Oba,-vessel 0

1503

1 To=290°C

1m3R9gap t U598

T I I 1I u t.71' I ij,;; 5 iI R7 -"I.. -- R5 i II ! IK , I 'I 1r l~'-lj-7-B-B----4-.. ' '\fl - - i ---if NW150

~'R8 \'. Rt=--~ .... Ijo.L.2mJl/11'!~Q' , '\" . , UC16!~............. -' -

~'

\ rupture D=100 mIll with baffle plate

. contc.inment

(II

vents U45, U47, U598, U78BU89, U96

sharp-eGged orificeswall holes

paths

U59B U9E~_------.!s--R 9 .d04-' ---'1fP- K bA't'!iCl',

,! ev'j::::JI

.. ~R8U 78 B

Fig.192: Scheme of the Containment and Flow Paths (CASP2)

B,-\ T TEL L E - i 'is T 1-:- (j T E. v, F R:\ -; K FUR T .\ ,\,1 ,\,; A I N

Page 151: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

- 138 -

3.8.2 Boundary conditions

Contiat"j to the initial conditions (e.g. small difference between the mean

values of initial temperature in the containment: for test 015: 8.9 °C; for

test CASP2: 27.6 °C) the boundary conditions of the two tests differ essen-tially.

Figures SOA, SOB and 51A, 51 B show in direct comparison the histories of

the break mass flow rate with the associated error bands. The maximum

mass fiow fate into the containment in the vapour blowdown test 015 is

equal La about 85 kg/s, while the two maxima in the water blowdown test

CASP2 are at 405 kg/s (0.105 s) and 374 kg/s (0.92s). In the short time

interval the error bands of the two tests are approximately equal. In the

iong time interval they are in test CASP2 (end of. blawdown at 50 s) only

half of trwse in test D15 (end of b!owdown at 70 s).

The histories of specific enthalpy of break mass. flc. w.ith the associated

error ')ands for both tests arid different timE: intervals are compared in

fias .. 2,6.,523 and 53A, 538. In test 015 up to about 3 s vapour (high

specific enthalpy of 2750 kJ/kg) flows from Hie break into the containment;

.then i/,tii 40 s water-vapour-mixture (minimum spec. enthaipy.1240 kJ/kg)

and finallV again pure vapour. In the w2t2r blowdown test CASP2 up to

about 23 s saturated water 1'2specti\/eiy two-phase mixture v:ith low quali-

T.\j (mean value of spec. enthalpy 1250 kJ/kg), after. that two-phase mix-

ture and from about 40 son pUie vapour (spec. enthc;lp~' 2730 kJ/kg) ..

flows imo the containment.

The erior band in test 015 is smail in the short time interval. in test

CASP2 up to 0.3 s it is greater (for example +9 %/-2.2 % of measured

value). However, during the two-phase fia\\! the '~rror band in both casesis sf the same order.

Besides the mass flown in [at blowdown e"d: 4075 kg (CASP2), 1310 kg

(C15)] the amount and hist,y"v of the total energy up to a cet"tain mame'lt

-',YI;\':I ir- have a considerable influence on the pressure built-up. The figs.

~4 and 5S shew the great differences between vJater and vapour biowGO\vn.

The ratiCl of the total enthalpy flown in for tests C.'\SP2and D15 iseaual

to 2bou~ 2.3 at time 2.5 s and about 2.4 at the maximum pressure in ;:on- .t::dnment (33 sand 40 s).

Page 152: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

- 139 -

Page 153: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

...i~oIO..il

f I!I

--------------_.--_._ •.-. _._----~- ~ ._-_ •.__ .__ oO-. _r"--'; ("l) .., -'TFir:--- _..-..In J ',,:,r (.,

, ,l,.

2;1) .T\',/ .'\. \

j_~:'_..Jn O..J i. \ \ .

l" ! I \

. I !~;({~;\. c .~ \~ I',.. \" \

c.: 7(J~" 1.-.) ,.,(", '.,'I II (). '"I " C) q '"",I .......!\) \~ "

'I ''''.I~, ",

60-

1

1 \\ "" - ""'~ ~~-~---'-----------------I "', ........~O __ ---- ~:2". _. ~"-... 0 ~_

'co . ____ko.r-' "" _D_ _ _~_J I ,. _ ,

~ "u,,- --,-i:;----- c__~. __ ._~ ____'____.'''-... 0" --.---- ..-'- oj ,"-...0> .1I

30%0£ measured value.

2. ['

i(.)-..,il,

".;"

O-!----------r--- 1-----.-------1--.--- -/----.----iGO 0.5 '1,0 1.5 2.0 2,5 Time [ s ]

£J.:S..:50A: Break mass flow In with error band (D15/0-2.Ss)

Page 154: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

- 141 -

~'l C) 0 0 0 0-.. 0 0 :::; c 0..... '1 l..(") ~ ~-i N'.#

Ul ~,,\°ld: sse:-r

I V'l

LIrrIIr

~L I..tlt -' Ul

('~

I0"--C')

0..

l Ul;::r;u

i C! ~I - ;::I .~r :-< ce

,aI

I kIr- 0HHC,)

r ..:::! +'i .rl

r --.s

t- ':>

I ...0

I rlI 'Hr

(I)

L 1..001'v

16' EI

XII ('jI ~

l H~,

I CO!~ OJLniI .,

G!i .ri j;-

I ~!I!

0

c

". r ..... :..... ~. .

Page 155: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

- 142 - !

rJl'Ulcd

'-'j,-ra

..Q

..~!.- ;

i..IIl.i

0'1.rii~I

rJlor-Io----.If)

:;:.0

,,-i4-!

i

L~IN

II.LnI

~-,-

rII

~..9-0o

,cr~oOi

6

a

4-!o

010

iIIIII 'I

I

I

I'

III

IIiI ,

I

Page 156: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

- 143 -

'OJ

ou

. l.f)

1lI:I:I:~7:'~•..-~~ ._-.!~-

oo("r}

l.11 "',°1.]

oo

IIr!

. OJ I~l5?1 ,viwI,--(-0

~I ~~ I'--' ,~i-I

!- I01

• Q i/6' L

V iI!

o

..... '.',

IJlCoL()

io..........N~UJn::C)

.~

Page 157: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

---~._-_.---------_.._-------' -----_ ....-.._ ..__ ._..._------_._--,---_.----- ---,----------------, l

l(a /k9

>,0..rlrU

.c. lnoo.-,jJ '•• ) .~OJ

UCJP.(J)

----------_._'-'----------------------.---_._---------- -------------------------0= -~---._o.- ..--, __ ,_,..._'-.(}--------------- ..o-,--- ..,'-, , . , _

Cll -I- l.G %

-'h

,.j;::.

25CO-'Fig.52A: Spe~ific enthalpy h of the escaping fluid------- with error band (D15/0-2.5s)

~

2()lO-I--.---.-.:.-_.----r---------T---------,00 0.5 1,0 1.5

1

2.0 [' ] 2.5Time _ s

Page 158: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

o

ILiI

tI Lr)f- ~10

lIrli

IrI!O

o

Q en..:: 0J+,1

~"o 0J:l;

..::tJ)Kt:U><~

C'_rl"V~ ::~ ~- '.

....Q I..<

o(J ;..

.~ ;..~ G)'

.~()~Q.j-l

Co'M(j) ;:=

ooL[)

c

(,1

oQ;

Q)

::J

o>U<l>

~

ooo

=-- '/, S'l -;, I

: I, II

!Ii

l.:J

o,-::J

.. . '. " ~ " ',!

Page 159: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

t.:.] / l\ CJ

1

,.-,..-----.-. '---'---'---"'"7"-:----. ----,---- ..._---.. . I .

3[))) I>;~l,

':-1crJ

.s.::~J~(j)

U(D0..U)

'Hi(Yj_ •..:. 1,. .1 ~ .•

'-~Inl[ :'I /'~:,1. . / -'-'~'ij;'-""--'=~'-, /;f2 ~,Q /","'= .;~---)1 I / ri / ~;/ ----==.=...=:--.:-=- '- __ -=-,?J

. ~ r/ .

. II . --------" -I- / //;,; ,'Y /

II'I'~ i~/ :r~ _n/OO

/, .. ' wI.i.~ /'~ ......-".-.0'------ .i //,,' / /"./ <f1 . ',/

f, .. / /,f1--------e... ~~j -...------'n/ .......-,,~ . ~C .... ------

cr-:r' 0) I/ I

....:.~(})

. 10JO"'I-.

(}i'-------l--------. -I ".-.----t----. ~._'o 10 . 20 30 l;O

t50

1---'60'I'ime [sJ 70

I}(J.:,~~!2: Specj fic enthalpy h of the escaping flui.d. with error band(D15/0.-70s)

Page 160: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

-147 -

1/. , ~: ~/', ~~/ / /

// / / .. / // ; /

1/1A / /. / I I ,/

/ / ;.'. ;1, / /. v/'III,J/% .

i~fV ..'f:!co... - __ ..//~::''''

~ ,I coQ • crl,...; ;~ ~"'1 ~. r.J.

~ w-.

~. ~

N. ,

'"~

\\

!3000 -I

JkJ/kq i

- -j

2500 ~

~~J

2000~

I" IJ; 1500 ~

.JI-;irv-e ~~

-JV ~;~, •• M

I N1000 ~

. II1Ji1!

SOO ~

1-i

jI1o ~.I ~--~------------...,.---~--------.

o 10 20 30 40. 5 50

Pig.53B;, 5pecif~c enthalp~~ h ~f the escap~ns fluidwith error band (CASPjO-SOs)

;'.

Page 161: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

- 143 -

>:::3orl4-1

o~.

UlLf)

UJ('-? .-,

UlL.-..

Q)

e.rl~1j

'-N III

lLfi~, ~I

I'

I~~I .:I

I!

\\)

\\I\\'. .\\\

UJ 1

I

Ln L'I L'i Ln Ln'..

:~ 0 0 c 0 0~'--' UJ ~ N

'\\ ..I

- --111'""--

\

10\

\ \c'\ '\~ \ \

~ \ \u '\ \

\\ \

~ \"" ," \" """,\" \,"" \.,,~ \

" \\\ \ UJ\ \ ro~\" \ !

',,- \ I'"", \. I

'~~ il'\,

'----------------------- ------------. C

III

I

I!

III

II .IIIi,

I!

Page 162: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

- 149 ~

>:::3o

.,UJ i

'",;1tnl

-r-'l

~i

.~

o

,_.a i'"I

I c-...... UJLJ

OJE.,.,E-i

I ~I ~ I:-1.--'! CD !

ILa1L0II

cL:) •

o<.0 '<.0'

o

I\\!I,II

\\\\

, en'N\ 0\eLl(f)\ \<r \ \u\ \\ \ I 0

i .I r "\ \.\. \ I\ 1

\

\ I\ I

'\ \\ r~" . -I~ ', \".",\ I ..

~, \'\ i~" I', \ .

. , \ I'- \ I

"" \ I~ \ ~2

" \ '_'-.,. \ i

'~'" \ I. \1~ .. l.",~-r-0

,.............

II

II!

iI

Ij

!II!!I

iI

IIii!

i!Iii

. ,!

Page 163: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

- 150 -

3.8.3 Comparison of i~T1portant characteristic variables

In the following r results for important characteristic variClbles of the two

SP are directly compared. The resuits of participants, who calcUlated the

experiment with essential higher deviation than the majority of partici-

pants, and the small experimental error bands [:1::(0.02 -:- 0.03) bar] are not

considered. Relative values for pressure are related to the pressure buiit-

up of the experiment, and for the differential pressures to the experimen-

Time interval 0 to 2.5s:

For test D15 the maximum pressure in the rupture compartmentR6

(exp. value: 1.53 bar) was calculated by the participants within a

margin of 0.12 bar (22.6 %) and with a maximiJm deviation of +0.09 bar

(n.o %). The corresponding values for test CAS'P2 are (2nd maxin"J. ~ .. R4 I ~ 81' , O?c::.' (30 9 ".in rupLurecompartment /, expo va,ue: ;. oar): .~ ..i oar . 11/

1

+0.'18 bar(22.2 %) (see figs. 56A and 568).

Whi!e the expet~itnental curve for the pressure history in the large dome

compartment R9 for test D15 is approximately in the middle of the c31-

culaLionai bandwidth I the pressure increase for test CASP2 is mainly

over-predicted (figs. 57A and 578). More details at the time 2.5 s are

oivE-n in Lhe following table:

I .. II Variable i D1S I CASP2 I! r 11 ')-h i -,- ,: r'~9~'" I I • .:-c'.. ~'Ct' I 1.::;) car J! 1-<, C ....p. i i!----------------------------~--------~--------~--------------------i Ii!

i CJlcu:ationa! I 0.25 b2r ! 0.13 bar! 'I/ r::nriVJiri ch I 7~~ 9' j ~4 9- I

. 1- - - ~ :'- -~- ~ ~.~~'- - - - - - - - - - - -- - - -1- - - ~ ~ - ~ - - ~ ~ - - - - - - -~ - - - - - - _: - - ~ - - - - - - - - - ~! [;:.:1xirnum deviation II' -0 .. 14 bar I +0.14 b~r ;

(,.::a!culation-exoeriment) -44 % +25 sJj

I

Page 164: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

The next table gives the results fOI' the maximum of the highest differ-

ential pressure (figs. SeA and 588) and for the maximum of the differ-

entia! p,'essure between the rupture compartment and the 1st fOllow-upcompartment (figs. 59A and 598).

i, , I Ii 'IiVariable ,D15 CA,SP2

I I'! II t.P~~~~~Z~~t.P~t~~~:p.1 0.49/0.27 bar I 0.62/0.33 bor I.---------------------- L J ~I ,i I I'I' caiculational f 0.09/0.']2 bar I 0.28/0.21, bar ~I

b- C' .;~th 18 0 !1l4 0 I Ll5 0 !F;'l 0r ---~~~'~~~:----------------- -~--~-~--~--------1- ---- ~--~~~~ _:- ----- ,I maximum deviation , -0.05/-.0.12 bar I -0.27/-0.21 bar i! (c2icuiatjon-e~(periment) I -10 %/-44 % I :"44 %/-,64 % I

! I I

Page 165: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

- 152 -

, .L_.

i-

z

lDcr:

o

)-NlJ1[C

o(jJ r-E (f)l-

oN

o

N

N

NN+1

Q~5 :j.-r. ,-"""u.J

25 t~j%~~ ....JLlJ-

~d.D

E

I II

N 0 CD('., N -

---' ,

0--:>'"

L-

)i I:....LJ-.J'(Y""'t~~"'--'.'--'1"-:---

!,.-.. ii ir-v-" I~- I, 1

(~ I~.I"

~ II

U; I

---,7LLI,-~.

-L.

!T...-._' -i./ \',----..,

''--', I

/ \

! , 1L..-l

r-.-. ,, .

,-

t-ef), ,~ , I~

0'

If)

(Vd'* SO-:3 'L ) 3mSS3Jd

Page 166: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

.•f-l ~

U,(",\i+ !--0

::-..1...,..0:::0s=~ gl,..:...., 1

;;: ==w .~

,~/~ 1

(1) \C_) I

! !r--,

:--.-: ir_J \: ,~ .~I

~_: i

\i'

L

'r. :, \j

n( rjL..L" ",

Page 167: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

LJ)---o+--

LJ

- 154 •

E

,- . "

'.-

I I ! 1

N. 0 OJ LO -:r

N N~. ~

N. Cl-

f-ZW~}-

cr:CIl.LLc=u.L

(\1.......:J

Page 168: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

155 -

."

\-ZL!J~I--,cc:IT0.-2::::oU

"-'./,y-LL,o,r-en

+'

o

o

f-~I ~,I

I

CDco

P.;X XW I~J

LIiN_

+ I,.,.;- '-'.'G

~~o (:)~-;~?f

I-j!i!t<

L---------" -----,.,-----,---l

o

.L- i( r-....'..J / \( " I'-'

,,~

( "

; , ;'-L.'

\C'J InU)c

~II: i 'It-

\C\J 1. I01LI

!~\W'I'r:~-'[Ir, Ir/ \,'-'-~ '\,~i~L.-J

~ICI) \

ti\) I

= \1'Lu(1 '\..-. i

I

Page 169: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

- 156 -

)-0::::C

II_'o

I •L'-

o

wULWcr.W=-u._LL.

<.~ccl.f\

en0::

I

"-.0CC

o

oN

N

N

II

II

I\

\iiI

I

\

.I II

! II

1 II\ il.i.' 1/: i I ~1-

i II ~I ,j I !i, J,/ ..I i1\ II < .~

\ /Ii: II:.~' t\ ..'.?I ..;-I I! :iI !, "! I I '.fi1 ,:1 ~I I i' RL .11 /,; I I, " ;ill, iiI 'I! ! I\, I ~iII I . .1'1

~ Ii ~'l1 11'11I . (I, 1"1

~ \1/,:}i

I v!I I .',t g f

It I. r'I . ,.

j j! f. .I I':i!. L-.?!

I 1'1:1I I ,';II : 7;:I i~'j

r 1ft.\1 \\\OJ\

\ i ..l \ \

. \\\}~\\" ,:<,. \ .'- ;.'" '- \.

'~~"~.,, I;,v:~ I-::"~>-,~!

L..:"/.we..;

E

r ';r

':::.:--:::~;::.::~~.:::.:.-j

.,

/

( -"

UJ.L7

(I'-..1 )

i

'--

._'

L

-. ,

I~I

wicO\(~ !.-/' (.LLI,~. i~I

01~;- I,. ,----.L-J

!

I-( (l'v,Wr-

oLJ")

eno G

NCl

cI

o-I

Page 170: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

- 1 S.7 -

I ~

~

I VlI N-

t ~ Cl

I E

I'I-

0

I~

IL~

0

i.

I. fLlJUZW0:::WLLLL.-.-.

o

OJ0:::

wrr:~(f)(J)WfYn-' '-

LLo>-("Y..~ot-,(J)

ro

oN

N

N

HiD

I,,~E;

0 I0-l

-.:::.,13 I\0

~

."..

p::; 01~0 lI1p::; 0'\p::; 9[.:.:j

"-Po:x:

"~ U

I--i I

I('J I0- I(I) I1"""-~

I( 'I'-./,( r..., I'..J )

IwI

('-\j

,r-"-

L;~L-

"'>.L-

W-.Jm0('('

r'L:-

r', l..~ !- Ir: !.r---.., ILiL(I'-'-Ir-/ '"\:.1 )

,

L, ,")--

Zr;-'-..1-!-~,"-.----Ll('-'

.. , I'" , I/

~, II j- I

, '. i!

: : , i"-J 1

.'

Page 171: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

- 153 -

(0i...} )

uCL:J(j)u:L.Lrr

"~

LL

-'

o

:)-.~

'-'-(---L-,())

"I.~

o

CJ

oo

I o

rIt::I"LlD

I~i-o

II!f~I'f,

Vl

N

N

o

r~Nco_~~ illr-~u.....

WU/.<-

W0:LJG.-L

r--:oI

oI

U1

C

x .-.

CD

C

< T,-

.a

E

\II

I

II

I!iI

I-I

!I

IiI;

i. ;

I!1...---_

LJf--

LJ~

!~

;I

I

o

Page 172: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

159 -

t "L!.....:o

i-

" .

>-

1,

illC)LWcrLLJ

LncrI

"1- ,ce

roo

!l-:-r- '

1°I1(".1!OII

I10o

\Nr- "'INII10INIr~L~

<""l

oI

oo

co,r-

+ I =?-ill

C7lci

\

I!

I.Ii1

iiij!..,\"

--

,,

Zi--U> "L

ir1

Ir::; ILl-lL ;

0 iI

./"" I

(T I,,-". I(1")

N I"

II

'~J I7I

;;- 1w ,_I In I(','-) I;r'" I

0- j

Page 173: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

- 160 -

Time interval 0 to 50 s:

The measured maximum pressure in test CASP2 (3.95 bar) is consider-

ably higher than in test D15 (2.08 bar). The ratio of the maximum pres-

sure built-up CASP2 : 015 amounts to 2.7. it is somewhat higher than

the ratio of the total enthalpy flown into the containment up to the res-

pective ma:<imum pressut'e (2.4); because the heat absorption of thE:

concrete walls in test D15 is gr~eater than in test CASP2. This may.be

caused by the longer time period up to maximum pressure (DI5: 40 s;

CASP2: 33 s), the slight!y higher surface area/volume-ratio (C15: 1.93;

CASP2: 1.77) and the lower initial temperature of the structures (D15:

C.A.SP2: at le2st18.2 DC) in tEst D15.

The maximum pressure for test D15 is calculated by' the partic'jpants

within a margin of 0.58 bar (54 % of me3sured pressure built-up). The .

. rna)<:iI"iJurr.c:eviatic'ns amount to +0.49 bai' (45 %) 2nd -0.09 bar (-18%)

(fi;j. SO,~). The scatter band of calculations for test CASP2 is equal to~J8' '1~O) -, ... '+'d .. ' oar t \ t, c. I fie maxImum Ce\/icLlons

and -0.14 bar (-5 %) (fig. 60B).

amount to +0.34 bar (12%)

Til2se values and the histories of the most important variables indiCate

that: the :::catter bandvvidths of the caiculctions respectively the maximum

deviations c,elv;een calcuiations and experiment at th2 2nd Containment-SP

(i.vater blG\;"vdo,,~/n; single branched chain) on the average ere of the saine

amount 2S ae the 1st Containment-SP (vapour b!owcown, single chain),

This pt)sitive resuit is certain!v caused by the experiences from the 1st

[.="ontainn"tent-SP ~

Page 174: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

151

Page 175: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

- ll)L -

<:oill

-/

L..

W2=:l-eecr:(lLoU

(Jl0::

o

o

o

oto '-..J'

oN

N

I

too

E

~'-,

";-: ...

'-"'--~.

;:: ,-=CC! -7v _

....I

+ ,

°1L1

~Ir~-~oL('t..':":""-

1_;.1

.-JI

--'

L.Jl-:'-1L "\OJ

o~(j;~'l--!

I~U,

Page 176: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

- 163 -

f-7LJ:Li-n--L-a:0-:LoU

! "I\!

IC?!; 0

o\

co

,~: '" 1 n 5 5 2J d\-J 'X Ol)'~'

( Y d s-

c

IIIIIIIIIIiIiIIjI!

'--.J

i

L_:I ~

~

. IL\.~l==\C[ Ir-I/" i

r-" IL!CJ

IN'I... i. I. \f) !~---..J IL!3]\ELI°1,~---LLj

0-1

01Ir;""\'-:- I/ .~.r- I~". ICLI1 !r- !(Ij 1

1

Page 177: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

- 164 -

4 ABSTRA.CT AND CONCLUSIONS

Whiie the relatively simpie test D15 (steam-biowdown, simple chain of com-

partments) was taken as a basis for the 1st Containment-SP, conditions of

test CASP2 (,vater blowdown, branched chain) at this 2nd Containment-SP

have been closer to Design Basis ; ,ccident Conditions of a PWR. Aim of

test CASP2 was to invc"stigate histories of pressures, pressure differences,

temperatUi"2S and water masses in a mode! containment after break of a

water line. Because of the sma! I rupture compartment and the arrangement

of compartments in a branched chain it is evident, that water' transport

had an increased infiuence on the resuits;

12 org.;r.izationsfrom 11 countries have participated in this second CSN!-

Contai:;rnent Standard Problem. 12 different codes and additional code modi-

L':2tions VJere used to a::E,iyseprocesses within mode! containment. The

caiCL;iations were to be performed with the nominal! me2sured initial and

bcundar'y conditions on best-estimate basis as an i'openllinternationa! SP.

E,Ters for variables measured in containment are as a rule sma!1 and most!y

withir; the osciliatory margins of ~he meaSL values. Boundary conditions

as determined from measurements and inpi .. _ for :he SP-caicuiations have

smaller error bands in this test than in test D15. in view of the consider'-

able influence on variables to be caicuiated for the containment, error bands

d,'e sti i i relatively high Tor cet'tain time periods. As already discussed at

the workshops for the 1stContainment-SP the relatsd me'asur'2menttech-"

nicue should be improved.

Q'.'antitative results concerning theeffe.cts .cf possible dEviations from no-

mina! valuE'S wet'e found for someimportam input data. The relativeiy high

2fT;()!.mi. of ;"fiuence G~: c3k:'.jlat!0nai results will be reduced on the one hand

Wflen,e nl.:.t'e or less unkncwn syscerna"tic errors could be separated.' bLi[

hanc 'Nhen teOarding all statistical'-' '- errors,

Assuming neariy compensation means that these effects ate about 3S high

25 the SC3:ter band..,v'idths of the caicuiatic,nai r",suits.

The bandwidths of the open results are on the average eQuci the band-

\'v'iGths of the blind results and of the resuits of the 1st Ccntainment-::.P.

Reiace':l to the mere difficult problem in comQarison ,t,'fth the 1st Contaln-

Page 178: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

- 165 -

rnent-SP and the possible effects of uncertainties of input data the agree-

ment between calcuiations and experiment can generally be considered 3:

quite satisfactory.

Because of the effects of uncertainties of input data quantitative state-

ments render more difficu It. However, some observations sh21I be summar-

ized partly in repetition of the conciusicns for 1st Containment SP:

Tirr,eintervai 0 to 2.5 5:

in generat the results of the p,.:,rticipants are within a 'Ica!culational

error bandi'. The mean values of the ca!c;uiationai results for the pres-

sure buiit-up deviate in part systematically from the experiment (-0.05

to +0.09 bar). For the pressure differences betwe:-, compat'tments, the

r:i2X_!lnUm absolute deviations of calculational reSUlts from the expe,j-

Time inter\j3/ 0 to SO 5:

... .parl!CipanTS pr'2dlcted tile fTl2Xirnum pr"essure

!il the containment within a smail bandwidth be!:weer; 3.31 and 4.-16 bar

(mean 'j-Slue: 4.02 bar; expo resuit: 3.95 :i: G.D':; bar).

I Ime jnts:~vai 0 to 1000 5:

! r: .rrlost of ti"lc calcu~Jttons long ter-m pressu.r? is o\'jer'.predict:~d, vjhic~!

resuits might be influenced bya leakage of the containment.

The de"vi,atiens; \'vh.ich are pal'tl~/ consider~ ~;jef bet\\le~n' calculational

resu:t5 .::nd the experirnent c"an be e~<pjained b~/ code handHng (ChC.lC:::

aT ~:.0tIGiIS., input pararnetersj nodciization) 3nd b)/ the anaiytical rno,deis

-rhern-:)eivcs. For example, conce:::ning the InfllJence of the hsat transf2r-

-or from structures (dead ends, .steam pr"opagation I . vertical

ternperature strati-rication), the nod2iizatfon seems to be not suffici"ent!\/

fine; r2:;peciaiI-y. in most calcu!2tions far th"e ~cng term.

it is to recommend to study thoroughiy t!le re3SGnS fot' deviations je-

t",',een . calculations. and experiment. This task being individual arid be-

'lend the scope of this report, should be done by each parTicipant for

his C\Ntl after exchange. crf E:x~erience5. ~3t "t.he '~vorkshoD. It shOUld

Page 179: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

- 166 -

SOil1e im!=)ortant physical phE:nornena were described in connection with

simplified models by different input parameters partly defined disad-

vantageously (v-Jater' transport: for example water carry-over factors

from 0 to 1; heat transfer: for example heat transfer coefficients from

'1300 to 15 000 W/(m2K) in the rupture compartment, from 100 to

2000 W/ (m2K) in dome compartmen~ during the short time interval;

o!'ifice flow: fer exar.lple discharge coefficient from 0.6 to 1.2). It is

difficult to detect a connection bet~veen input parameter .and quality 0,the. resuits, because the different infiuences are hardly separable and. .

have to a certain degree a cOfT,pensating effect on the calculational re-

. suits. !t seems to. be advisable to inlprove the physical simulation of

these phenome:Ja (e.g. based on tests v~it:l defined test conditions and

improved i nstrumentatiof").

:.. Fr'iction- ar.d acceier'3tion~iosses of the two-phase flow are often taken

into a~count by const2nt compressible or incomDressible discharge cosf-

ficients. Th'us I in connection Vv'i th the usuai ...~;e.script~on of water tr:::ns-

port bv homogeneous models momentum 't)sses were descrIbed by a me: s

flow c-Jrrei2tian.

it is to be assumed that subdivision of walls had en influence on the

celculationai results. ;;1 Oidet to examine this. problem more c;oseiy i

r'-....: !e CSi'J1 Benchmc. '{ Problem on containment codes should be taken

lnto account.

it is recognizable, that the quality of calculational r.2sults dc:;:;ended on

the expe~'ience from thE; .first Containme"t-SP and the kno\\i!edge of the

individu2i coce user and deveioper about tlw previous similar tests ir.

Ihe same rr<~jel cont2inment.

.A.ithough S? should preferably be. perforri'::=';J on best-estimate basis! it

is t<) note! that some participants rat.,'1ei' tried to obtain i!conservativ.;::!

Even aft€r this 2nd Containment-SP it is dif:';cu!t to dra\;vquantit2tive

CGnCiU5ions with respsct to the achievable accuracy of predicticilS of

therrno-fiuidcj\mamic effects within a rea! full pressure containment. E5"

peciaily r it seems to be benefic!2i to perform a further Containmf.:nt-S?

b2S.2d on a water biowdcwn test in the iarge-scaie HDR-facilitv and

pianned ~vithin :, German SP-activity for mid 6f 1982.

Page 180: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

- 167 -

REFERENCES

/ 1/ Sattel!e-Institut, Frankfurt

Projekt RS 50 - Investigation of the Phenomena Occurring Within

a Multi-Compartment Containment .~fter Rupture of the Primary

Cooling Cii'cuit in W2.ter-Coo!ed Reacto,s'

Specifi.:ation of the Containment 5t2ndard Pr'oblem Experiment CJI,SP2

Techn. Ser:cht BF-RS 50-42-11, September 1979

/ 2/ G. He/lings

German Standard Problem No. 3 (2nd Containment Standard p,'::Jbiern):

','\fater Line Rupture in a 8rar:cned Compartment Chain

Specification

GRS, August 1979

i 3/GRS-iettsr of December 19; 1979

referring to continuation of 2nd Containment 5t2ndard. Problem

4/ Battelle-institut, Frankfurt

Proiect R5 50: initial Conditions; Bre3K Mass Flow and Specific

Enthaipy from Experir"ent C;\SP2

(German 5tandard Problem No~ 3)

/ .5/ .T Kcnzieiter

j')rGjekt RS 50

Quick Leak Repor't [xper'!ment D16jCASP2

(C;erman .Standard. Problem N6. 3)

T 2chn. 2.er"icht B F-RS 50-30-015-2 (Englistl ;jerSlcn) f r\~arch 1980

,/ S/ !. Kanzie.iter

Proiekt RS 50: Erganzende \/ersucnsdOKumentation' D16/CASP2

(De'~;tsches Standard-Problem NT. 3)

Techn. 3ericilt 8F-RS 50-32-C-16

Sattel le- j nsti.tut, Fr3n kfurt.' 0/j;,:2: 1980

- .:.i ...

liSec'O;10 CCintainment StEndatd F'rot:!erT:/

Gcp ~'lze R4/R9 'in RS 50 E:xperirnent D:6/C ..~.S.P2il

T _ V.anzleltell Satt;::!le-!nstitut/ Fr'ankfur"t

Page 181: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

- 168 -

/ 8/ \t.i. Winkf':;I'

2nd Containment Standard Problem:

EKperimentai Data of Test D16/CASP2

(Battel!e Mode! Containment)

GRS, Garchingi July 14, 1980

/ 9/ ,H. Kan'i2t" D.L. Nguyen, W. Winkler

Containment St:Jndard Pt'obiem NO.2:

Results of "Blind" Predictions Submitted by international ?3rticipants

GF-S, 'November 1980

/10/ W. Winkler

Comparison Report On OECD-CSN J Cor, tainment Standard ProbL==m

NO.1: 115teamline Rupture Within a Chain of Compat'tments"

CSN I Report No. d~,I, rVlay 1980

/i 1/ ,IHutte". Des Ingenieu rs Taschenbuch

Sand !! Theoretische Gr'undiagen

28. .2..ufi3ge, Berl in 1955

/12/ N. Erdmann;:eh!e;-betrachtungen zurn Standard-Probiem-Versuch CASP2

GRr-' A .....,' ( '- -"',,, --- -.-,I I' ,!u,n' 1Li'" 1 '~_ ..... . ,",,:.1; ..... ..; .'

/12a/ \J.j. Erdmann

\/ergie:ch der gerechnetE:n ,Er'gebnisse zum RS 50 C.c..SP2-'/ersuch

r:!!t deniV1eBdaten Liild Nachrechnung

G;S-p.-502, September 1980

ContE:inment Stanoard-Probierf)

Uncersuchungen zu dCI Rand- und AnfangsbecJingungen des

S tanda ,0 - Probiem- V'-'rsuchs Dl0 una des Wiederhe! un,>vei~sucr-!::: :=.q 5

(.~;aUel! e-fvlode! I-Ce', ta inrnent)

G~S-p.-l1'!: FebrU2r '!978

: 14/ I,-~R.S-letter of Jul'y 231 ';980 on

Page 182: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

- 159

/15/ P. G_ Hol land and J. Marshall

The Use of ZOCO V and ZOCO VI in the Containment Analysis

5tancard Problem ~Jo. 2

t,AEC (;:\ustralia), Gctobe, 1980

/16/ D. Brcsche

"::::e':.:::o \/ - a computer code for the ca!cu!ation of time- and sp2ce-

d2pend-ent pressure distributions in r'eactor containments!:

~'4uci. c"g. Design, 23 (1972), pp. 23';-272

"zeee Vi - ein Recheilp; ~:gr2mm zur 8erechnung van zeitiichen und

ortl ichen Druckvertel!ungen in Volldrucksicherheitsbehalternwasser-

gekJhiter Kernreaktoren. Programmbeschreibungll

/18/ =~j.. Stubbe

Open analysis of the Batte!!e-FrankfU!~t water' line ruptui'e in a

S;"'ief c~~scripti.:)n of the cornputationa! models

Repor-'t PE/Te 260 ,4 (26.2.80), revision of Decernber 1920

Tr3cticna! Engineerir:g (Ee~gjurn)

/19/ E.J. ~;tLbbe, J. Rcbe\/ns, A. Danguj' (Tractione!)

TRp.P ~ computer codes for t!le 2\/a!uat.jcn of the pr-essuf:2 tran-

5;e1'n5 in the subcompartments (TRAP-See) and the containmem(TR/~F'-CCr~J) or a reactor plant fellott/ing a high ener"gy line brea~.

,::'rcc2eGings of the ENS/.4NS inter~2tj()nal T~picai meeting on nuciear

cc::.y~?r r:~3ctor safety. .

2,~USS2:S! October 1978, Voi. Iii p. 2-!68

/20/ \v. rVi. Coiiins

FRESCOi"-J-2 ::.jrnuia!ion of the OECD/C5f\1! Cont.::~nment ,~nai\/si,s

.s:E::Gerd Probiem f\10. 2

;:'.ECL (Canada); Cctobe:- -;980

Page 183: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

- j 70 -

/21;' Shot't Report of the Finnish OECD-CSN I Containment Standard

Probiem NO.2 Calculations, C10penli Problem Calculations Using

RELAF'4/MOD6 and VTT's Version of CONTEMPT LTj026)

VTT (Finian~); October 28, 1980

/22/ A.. ~v'1at:ei, ~. Sonnet / F. Herber

O. E. C. D. -C. S. N. i. Open Containment Standard Prcbiem No. 2

Pressure Distribution Within the Containment Following a Pipe Break

French Short Report

CEA/EDF (France); October 30, 1980

/22a/ p.,. rv'lat>~i, A. Sonnet / D. Roy

Containment Standar-d Probiemo f\Jc~ 2

Pressure Distribution Within the Containment Follmving a Pipe 8!~e.ak

French Short Report (il:blind" Results)'~~A '~r- C- ,\...:::. ,/ t:Li r r, aIice )

. /23/ \v. -Erdm2nn, f'l1. T!ltman~

OECD-CS;\Ji Containment Standard Probiem

Postcalcuiation With COFLOW and CONDRU for the RS-50-D16-t.ASP'2

Exper:n;ent

GRS-.u..-593 (.~'pr!j 1981), F. R. Germany

/;4/ C~. i'Vl,ms feid

Zum instationai'en Druck2ufbau in VGIldrue l:.s!cherheitsbeh2Itern

wassergekuhlter' Ke,'nreaktoren nach einern KL:himittei\/et'justunfa!1

Dissertation

Tecnn. Univers:tat i'v1unche,: I Juli 1977

/25/ ;: Cassano, .!:'.M. Gor-Iandi, :\~. lvlarchi, iV]; Mazzini, F. Oriolo/

R .. Rornanacci

OECD-CSr\f1 Containment Stand'ard Pt~cb!em No.2:

"=:31cuiation Using i\RiA~,l~.jA-O and COf\lTEivlPT-LT 26 Compute, Codes

RP ~22 (80)

.University of Pisa /Cf\!E~.~ (italy')

/26/A. ~ji. Goriandiet aiii

IIARiANN,A-O: Un codlce di c2icolo per l'ana!isi dei Lr,;ns:torio

~.tti 1st. !mpianti l\juc!e~('il RP 423 (80), Pisa 193J

..

Page 184: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

- j /: -

/27/ \v. J. r;1inQs

"Version 26 IV1odifications to the CONTEi\~PT-L T Program'l

SRD-.33-76; April 1979

/28/ B. Chiantore, R. Monti, A. Pennese

OECD-C':Si\ll Cont2innlent Standard Problem j\jo. 2

Report L-23000 -XX-OOO-004; 28/10/80

i'>!JR!~ (ita!y)

/29/ CECD-CSi'J: Containment Standard Probiem No. 1

Compariscn \vith PAC a code calculation-s;

by 8. Chiantore, A. Pennese, May 10, 1979;

presented 2t Garching! September 17th to 19th "1979

/30/ J. Takeshita, Y. Kukita, and K.~~3rnatarne

.J,c. ERI Anaivsis en the CSf'JI Containrr,eht l:..na!vtical Standard

. "re.Diem No.2

J .c.. EF\l (Japan)! Octobet 1980

/31/ RELAP4/fvl0D5: A Computer Prograrn fGr Transient Therrne+

H'/dl"auiic Ana!ysis of Nuclear Reactors an,::i Rel2t.ed Systsms'!

,;:,NC R -r~U REG-1335

. t,erojet .f'~uC:ear Company, S€ptember'! 9/6

/32/ J.P: ~.van den Bcgaard, .A. WoudstraCa!c;ji3ticna! R.esuits cf OECD-CSN I Containment Standat'd

P.rcc.iem f'Jo .. 2 by. l\-leans of a fVlodified ZC)CO-V Cede

f\/Jemo f\jG. 1.082 ..16 - GR 23.' r-eoruarv ;930

E!: r--1 (r~~'::theri'and s)

./32 .../ .ZC;CO-\! - E;n Rechenrncdei! zur~ Serechnung \/on zeitlichen una

ort! ~chen Drue k\iet'te~! ungen !n R2-3 ktors icher~"1eitsb(~: !a!te~'n

/'34/ J. E. f'~;!drkiund CalcuJ~tjons p~r~fQr!'""ned. sn HOEC C;-CSN I Ccntainrnent

Standc:-d Prcblem i'Jo~ 2!J" vv.ith Sf< i -814/80

Page 185: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

- 172 -

/35/ J. E. r',~arklund! A. Johansson fy'lodef description of containment

program COPTP..-6 AE-RD-1051 1979-07,.12

/36/ W. H. L. Porter OECD-CSN i Containment Standard Piobiem 2 - Open

UK Submission Using CLAPTRAP WR/HTSG/P(80) 1341 3 June 1980

UKAEA, AEEW (United r~jngdorr:)

iV.H.L. Perter CLAPTRAP - A Code for Calculating Pj'ES5Ure Tr2n-

sients in Totai Containments Enciosinq a S:--eached Water Reactor

Circuit AEEW-R 965, 1977

r8/ "\V.H. L. Porter C LAPTR.L\P ! I - A Code fer Calcu!ating Pressure

Transients in the Interconnected Compartments of a Total Contain-

ment Enclosing a Breached Water Reactor Cir'cuit AEE\V-R 1108,

/39/ E_ StiJbbe

Summary Report

Informai meeting of the international participants in the blind exer-

else fer the 2nd Standard Problem (D'16/C.'~SP2)

(:K!"""'':' !1~""rct-...,'ng) 'anua~'J .....t::.tl....... ""',C)81I' " r::>_.c:t;,o',~,:::_.'I.Prus:::e'ls1

-,....po' rUa~-'-~\J" "lqQ""'I,'.~, ~ ,,~a "I. 1 oJ ! " ,'-', ; ! _ _ _ •. l..J _ ~ _ _v

/40/ D.L. NguyenCc'mp2rison Report. on OECD-CSi'.j i Containment Standard Pi~objem

;--':0. 2: l!VJaterline Rupture in a Br-anciled Compartment Chain':

Reo;:;, \10. 65 (Draft), 1\'121:/ 198'1

(25-26 fV~=y 193'1)

/42: C'C:CD-',;EA. Paris

Summar).' of Concius!ons and Recof[::nendations from the \,Vorkshop on

~t";e Cort:parison of Results for CSf\)! Containment Stendal':] Problem

25th-26th r.1ay .. "j981; SE\1/S!!~(81)22j dr2fted JL:ne 198~1

Page 186: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

APPENDIX 1

Gesellsehaft fUr Reaktorsieherheit (GRS) mbH

CONTAINMENT STANDARD PROBLEM No.2

Results of "Blind" Predictions

Submitted by International Participants

November 1980

H. Karwat, TU Munchen

D. L. Nguyen, GRS

W. Winkler, GRS

Forschungsgelande. 8046 Garching . Tel. (089) 32004 (0) . Telex 5215110 grs md

Page 187: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

Page 188: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

On occasion of the Workshop for the discussion of the results of the first

CSNI-Containment Standard Problem held in September 1979 the Federal

Republic of Germany offered the second ContainmentSt"andard Problem

experiment to serve also as a basis for the 2nd CSNI-Containment Stand-

ard Problem. Several participants decided to submit within short deadlines

"blind" predictions based on given technical boundary conditions of the

experiment. . Officially the 2nd CSNI-Containment Standard Problem is

considered .to be an "open". SP. The complete experimental data report

has been distributed in April 1980. The deadline for submission of "open"

predictions was set for November 1, 1980. The workshop to discuss the

results of the 2nd CSNI-Containment SP is envisaged May 1981.

In order to shorten. the time for participants, which submitted "blind"

analytical .results I an informal occasion. has be.en established to discuss

these contributions in December 1980*. The following paper is a rough

compilation of a comparison of "blind" contributions submitted before the

release of the complete experimental data reports. This paper will not re-

place the preliminary comparison report to be produced before the CSN1-

workshop planned for May 1981. It merely serves as a discussion basis

for the forthcoming informal meeting.

November 1980

* (shifted to January 1981)

Page 189: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

- 2 -

1. PARTICIPATION

Table 1 lists the countries, institutions, and main contributors which sub-

mitted "blind" predictions based on the Specification-Report /1/ and some

additional information distributed with a letter, dated Dt;:!c. 19, 1979

(Winkler/wvo). 6 institutions made use of 7 different computer codes to

study the problem within the requested 3 characteristic time intervals.

Table 2 gives more detailed information about main assumptions (nodalisa-

tions, choice of governing parameters for flow resistance, water transport,

and heat transfer processes to be selected by the code user), the avail-

able computer and necessary computation time to perform calculations.

/1/ G. Hellings, German Standard Problem NO.3

(2nd Containment Standard Problem):

Water Line Rupture in a Branched Compartment Chain,

Specification byGRS, August 1979

Page 190: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

- 3-

Country Contributor Computer Code Time Interval(Organization) (s)

.

Belgium TRJl.P-SC0 a - 2.5(Tractionel) E.I. Stubbe

TRAP-C0N 0 - 50a - 1000

Finland H. Holmstrom, RELAP4/MOD6 0 - 2.5(VTT ) E. Pekkarinen

CONTEMPT-LT/026 a - 1000

France A. Ma ttei , a - 2.5(CEA/EDF) A. Sonnet/ GRUVER 0 50D. Roy -

0 - 1000.

Nether 1a'nds J.P.A. van den ZOCO V a - 2.5(ECN) Bogaard, (modif. )A. Woudstra 0 - 50

a - 1000

Unlted Kingdoli1 CLAPTRAP II a - 2.5(UKAEA, AEEW) W.H.L. Porter a 50-

CLAPTRAP I 0 - 1000.

United States S ..Fabicl BEACON/MOD3 a - 2.5C.R. Broadus(USNRC/EG&G) .

.

Table 1: Participants and Codes

Page 191: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

Table ,2 : !m~ortant features and input,para~cter5 of codes

/1 = SUl'face dl'Cil OI}\ = air mass V = volume ,6T = temperature' difference

CD = discli(1r~e ci;e!'ficicnt mV = vapour mass 6P = pressure difference ,cw = water ca~ry-over fraction

fk ~ ir:d i~ ~II(;I n = nurllber of orifices r, = press1lre 10ss'coeHicient E = energy into containment

II 'tulal "'IIt1ul[.j H = compul'tmcnt t; = 'vlater can'y-ove" factor. To " initial. tempe,'aturew carry, over coefficient (France)lite = IW,1t lrJn',fcr' codfic iellt t " t ilile

,

COUNTRY COHPUTER T I~IE nUl'l8ER OF HATER ORIFICE FLOIJ HEAT TRANSFER TO STRUCTURES ,COr'lPUTER ICOI'IPUTER OTHER

CODE INTERVAL IWDES TRANSPORT coeff ic ients correlat~on acc. to •.• TII,IE (s RE~\ARKS(s) concept coating

[htc:\jtOl Kt thickness

c\'14-7 =0.5 Fauske criticalcvl7 _8=0.9 no

0-2.5 flow model. fric- (specific' enthalpy paramo stud. for:

TRAP -S (0 6 cw8_9=0.5 ' tionlcss flow input reduced by 56 water entrainm.,

f. rest: without inertia 1 CO=I.0 o to 7 .5;~) energy reduc\. ,

cw=0,2 effectsBELGIUM IB~13701

3031 2 stratified regionste 23.5s: Tagami,0-50 E=2xrea 1 energy of equal temperature;

TRAP-CjJN 1 - - htcconcrete=0.4 htcsteel 0.2 mm' flashing fraction at,

break 90~, = 10% of0-1000 t>23.5s: Uchida released fluid to sump;

htc 24,6 paramo stud. for:max. steel = 2400 flashing. coating 1 mm.

htc = 1300_.

B(R5,R7:2;compressible single

'4 -) ,4 _5"' "}66stream fl ow wi th

R4,R6,RB, mom. flu x; , homo- ~7_8,5_9=2.8540~Dittus-Bblter Ek f 0

R9 :1) geneous'equilibrium H iqu. forc. conv.)noRELAP~/1'100 6 0-2.5 9(R4,R5.R7:2 model f. pred:icting ~8-9=2. 77 ' B4:10000,R5:3000/100, CDC- complete separa-

R6,R8,R9:1) critical. f10l1; ~9_6=2.81 R7:3000.R8:2000.R9:90,' CYBER 170 tion of phases with

I'ev. ca 1C.~ from Idel 'chik , ~CD=O.6

R6:4Q) , same temperatures

Finland0,7 mm

'f.R9:Uchida - f. rest: complete separa~(Olm~1PT -L T/ 0-25s: 45.4+10000 Immol tion of phases with,026 0-1000 1 - - - 1 in. incr. 168 276 different tempera-(mod. ) 25- 50s: 10000 tures

50-1000s :Uc h ida

J:>

Page 192: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

lJ1

Ta~.1.!'-2(cont inlicd)-

(w4-5;0.55(H4,R5, Cw4-7;0.5

0-2.5 IU ,1<11:1; ~w5-9;O.2: CO'1-'5~04-7 = 1.237

R6IR9:1) steady state'aJia-~wO-9;0.2S batic flOl'I;isen- C05 -9 ~07-B = 1.1

t.w7-0=0.75 tropic expansion, COB-9 = 1.05 ECOTRAno friction and gr, Ek f 0vity; hOOl.fl'ozen ---

~w.1-5=0.5 model C04-5~Ol-7 = 1.2France GR\JYER

0.7 mOl4(R4 ,R5,R7: 1 r,\~4-7=0.5 C05-9 = 1.1 lA=0.6(t) I[lI130-33

0-37 R6+RB+R9: 1) t.w5-9=0.25 C07-9 H/ (InK)1= 1. 1t.w7_9=0.75

t<50s: 1300t>50s :htC=1.5(tlT)1/3and 11 To = 24°C

0-1000 1 - - - Uchida fo~ warmer walls;11.3+454(_~)f.colder

mA wa 115

0-2.5 ~w(R4A) onedimensional Co = 111 (R4 3 =0.01 steady s ta te 292

R5,R7,RB 2 f. rest: incornpr. flow Henderson andE k = 0

lIetherlands 70CO V 0-.50 P,6,R9 1) t.\'I=0.5 flarchel16 1,2 nun CYQER-175 2627(mod. ) . ,....

0-1000 1 - - - 2492.• I - U 4

0-2.5htc~ l: tlp_A_\ .

II II v2/3 Ekir/O6 t.w= 0.03 homogeneous, sli~ Co = 1 but ~ 150 ;add. component

3180CLAPTRAP 11

(O-70s)adiabatic flow f. R4: 1 62 from

0-50 ' -1 1 ClH .United htc=5.48xlO (Vat) 0.801111 4-70 SPI

Kingdoln t<45s : htc = B571 660CLAPTRAP 1 0-1000 1 - - - t>45s : htc = 100

Un ited 136 2D-cells under developrnental

S ta tes BEACON/I'IDD 3 0-2.5 +2 regions yes 10-meshes,orifices forrnlosses, analogy bet\~een 0 checkout,(6) equivalent flw heat and mass transfer yes CO(-176 7200 Eki/O

(R6,R9) area

E _ transportablew - ---rDlar----- 'mass of water in node c _ water flow ~ual i tyw - nomog. ups tream no(Je[jUiiTlfY

Page 193: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

- 6 -

2. CHARACTERISTIC FEATURES OF THE EXPERIMENT

The initial conditions and the technical boundary condition "mass- and

enthaipy-flowll are given in tables 3 and 4. Figs. 1 and 2 give the break-

mass flow in (kg/sJ with associated error bands as given by the Battelle-

Institute while Figs. 3 and 4 show the corresponding information on the

specific enthalpy of the discharged fluid. Specific feature is the occurance

of two subsequent peaks in the flow discharge rates observed at -0.1 and

-0.9 sec.

Additionally a gap between compartments R4 and R9 has been formed

which was not specified before the test. A rough sketch of the gap is

given in Fig. 5. In order to preserve a common comparison basis a recom-

mendation was given to all participants in the IIblind" exercise, to dis-

regard the formation .of the gap and perform calculations according the

specified flow scheme.

Furt.hermore some preheating Occurred within the center and the dome due

to a small leakage before the specified test started leading to some devia-

tions in the initiaiconditions of the containment as indicated in table 5.

GRS has performed some COFLOW-ca/culations indicating the. effects. of

uncertainties. associated with some boundary conditions on the results of

calculations. Fig. 6 shows the calculated pressure built.-up for compart-

ment. R4. for nominal energy discharge rates (curve A) together with the

results based on the upper bound of uncertainties in energy discharge

(curve B) and the lower bound (curve C) ~ Additionally the two pressure

peaks are illustrated by arrows indicating the estimated influence of the

unspecif.ied gap on the measured pressure built-up~ Had the gap not

existed the first and second peak might have been raised correspon.ding

to the magnitude of these arrows based on the measured curve with gap.

Fig. 7 shows the corresponding results for a selected pressure difference

(R4-R9) while Fig. 8 indicates that short term calculations for nominal

conditions, for upper, and lower bound of energy discharge rates over-

predict the pressure increase within the main compartment R9.

Similar studies have been. made. for the time interval 0~50 sec. For this

period of the experiment the main uncertainties are associated with the

Page 194: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

- 7 -

heat soakage by structures coated with paintings of variable properties

and are additionally associated with initial conditions of the containment

atmosphere. More details can be found in /2/. Fig. 9 gives a selected

result of a parametric study indicating the effect of coating thickness

(+ = upper bound of M = mass flow, H = enthalpy, T = initial temperature;

- = lower bound of V = volume, AW = surface area).

/2/ W.. Erdmann,

Fehlerbetrachtungen zum Standard-Problem-Versuch .CASP2,

GRS-A-617 (Juni 1981)

Page 195: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

- 8 -

Table 3: Initial Conditions Prior to Blowdown

Pressure V~ssel and Pining:

Po = 141.0 barT1 = 288.3°C (level A)T2 = 288.5°C (level B) pressure vesselT3 = 293.1°c (level C) (mean temoerature:T4 = 29S.3°C (level D) T = 289.3°C)mT5 = .292.3°C (level E)

T6 : 286.1°C (level F)T8 = 288.1°C (circulating pump)T9 = 290.8°C (rupture site) } pipe, dia. 150 *)mmT10 = 286.6°C (near gate valve)ffiBO = 3995 kg (pressure vessel) } initial fluid massmRO = 315 kg (pipe)

Containment:

(annulus)(relative atmospheric humidity)

PcoTR4 =TRS =TR6 :

TR7 =TR8 :

TR9 :

T. =R9af =r

1.0 bar23.5°C23.0°C26.0°C24.0°C24.5°C30.5°C (centre and dome)

.100 '$

mean valuesof compartmentsR4 to R9, volumetricaverage for wholecontainment: Tco: 27.6°C

*] These values were obtained with two gauges of the plantinstru~entation located at the two pipe ends. Valuesmeasured with the standard experimental instrumentation,however, indicate an inhomogeneous temperature distributionin the pipe within the temperature range from 255 to 290°C.

B -\ T TeL L i' - : " S TIT L ~ E. \.. r R .-\ ~ K r U R T :\ ,\-I :'-1 A I "

Page 196: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

- 9 -

Table 4 Break mass flm" and specific enthalpy

D16/CASP2

Time ~lass flm'l" Temperature Density Spec. enthalpy( s) (lq,;/s) (oC) (k /m3) (kJ/kd

0 0 260 795 1134o .00't 52 260 784 11350.005 145 260 7?Vt 1135 .0.028 200 260 784 11350.056 200 260 784 11350.067 340 260 784 11350.086 335 260 784 11350.105 405 260 784 1135

I0.200 368 260 734 11350.J50 270 .28) 715 12550.400 210 282 6'10 12600.500 205 -281 600 .i2.600.750 JOO 272 764 11950.850 324 272 764 11950.920 374 27J 76J 12011.20 2JO 281 580 126J2.,)C; 200 280 530 12672..50 180 279 500 .12674.00 165- 275 4Jo 12G 1

10.00 145 268.5 310 126616.J3 1)0 261 300 1225

-23.50 115 252.5 255 119524.30 78 250 125 1J23)0.00 25 207 20 1737'1:0.00 3 156 3 275250.00 0 152 2.7 2748

integral mass outflow. .+. 4075 kg 55 kg

Page 197: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

- 10 -

.,. S'S -/5'6 + .'.LL-'6L+I

N

.....00'

\

..-..Np.,Ul<U

..........\0 .....Cl

+'-~<lle.,.,s..<llP:.><<ll

<ll"t:lE

'..I ~E-'. III

,.0

s..0s..s..Q)

.c:+'

-'M~

.s~0~~alaltllE

~tllQ)

s..co

U10'"

QJ:JC>-0QJl-:J11\

~E

.,. £'B-' L'9+

.,.1'01-/0", •

".6'L-/Z-g+. /I .,.L7:-IL"9.

"J.I.:Z-If:S' I:t.a-/5~+'J.''Z-/LS. - .'.67:-IL'9.

.'.7:'-H E.

-o::::J-

.2:!.cUIII

,0

III-..01

.::.::.

aa-4

oaM

ooN

aa

o

\! ., .'. ~ ~ I' t. R T

Page 198: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

-;'!-r>o'.1

""/l-.: .......~~=...""i.t". 1

/40 5 5Q~~.1

/I I I

-;'!- 30It>~".,

~ ~

<D~~ -;'!-

~.~~~...

~.

-;'!-~",f

.'

-;'!-'0~..'

Time

I -.-. -- -,

20

-;'!-en..;.,-;'!-N,,;.'

% of full scale,j

\% of measured value.,

10

-;'!-

~I •.... ~N .mN _

• •

.--.Lll,-

kg/s

500.

I~_ ..

400.f

--I .E-I 5 300-

(-', M- <H

tll'--1 tll:;::.", (Ij~ 200-:::, .

;';""

--1 100 -

:../

...- o -'/ a

Fig. 2 Break mass flow ~ with error band (experim~nt D16/CASP2)

Page 199: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

'500

kJ/kg

.....'"N

1

~.

1....::.. '";...

.-.....~04

--<._.- --~;;. -. --~.. '";-- ~ =' _..

C1'l.. Ol M -H'T 0" d.... 1 'Ln ........~.. M r---+ + N".

..~-.1

'".

N

% o-fmeosured value

Fig. 3 S~ecific enthalpy h of the ~scaping fluidwith error band (experim~nt D1G/CASP2)

5

~--r---r---r--r----r-~T---,r---rl --TI -~'Ti--~I~_--~i I •r--- ,--- I Ii, 2',50)5

o -o

Time

Page 200: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

3000

kJ/kg

2500

.2000.

"c:.....'".c~""u".'f) 1500

rJ: ;;t.

r f "., r:?

100D~MN

.~

500

- 13 -

.ti~~ .. ~~~ ~. . ~I -. ~ I_ N 0 _

N +. ("P) N+ rrj -~- .M-'

'/. of measured value

"'.""I

/~l

oo 10 20

Time

30 40 5 50

Fig. 4: Specif~c enthalpy h of the escaping fluidwith error band (experiment ri16jCASP2)

; ; '. I. ~ I 1 " ~ T ! I \. T F. ~. r :-.: '\ >~!.: i" ! : F~ ; , ,.,'\. ",; :'.~ .\ I ~'.

Page 201: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

.teel plate(ceiling of H4)

!3-2.

IJ'\C'JI

0'....

Ii'

R '-1

1400

(23b6fu2) without load acting on ceiling of R4

Bcale 1 :10

19 mm

25 mm (292cm2) maximum gap (load 30~kN)

.)

Shape (view from A)---.-gap

A = 2 J(i to '). )292 em""

~I)

<)

:> :l

'1 -t,,-<~

0

'.l')

D

a. ~

Fig.. 5: Gap .between compartments R4 and R9 after partialfailure of a se~ling (m~a~ureB in mm)

<6

o

o

oo

o&

p

o

"

o

o 0

" 0 0 0 l"o 0 •

o I;) 0

~

o

- f, 10

.:.1050~

R4

Q[f~

o.o

0 4- /-\0

<> 900.. =--jof) v

~ liJ ,::l*0

0

Cl0

l'0

. b <!).

\~~---~--

.~

6--:.190

0 0 a

o

o

Position

/.

--1

~<,

-.1

/.

;'-,

>

>.

scale 1 : 50

, .

Page 202: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

- 15 -

Table 5: Initial temperatures in containment

Noninsulation of and some leakage from the high pressure pipe within the

containment caused some preheating of the containment. The lowest/highest

measured temperatures within the compartments were:

TR4 = 18,6/26! 2°C

T R5 = 21,6/27;8°C

T R7 = 21,6/24,2°C

T R8 = 22,O°C

TR9 = 25,2/32,9°C

T R9a = 18,2/29,7°C

T R6 = 26,6°C

Page 203: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

2ND CONTAINMENT STHI\~I]r-:lf~~Dr~HDBl_E~"1 (CASP2)

'j

I'J

['J

fJ

I E X PER R0 R (!: 25m b a rlo LJ'. (.;1 ... \1';1)1'1,.' .... J

(J PRECALC.li"IH'.'I:<+ PRECALC .11 ';\-1-111 t~!::. U.:,HJ:H- PRECALC.

,0'1

,' __ E

2."12.22.01.8I •[)I,';t ,._I

t ; (I

1 I NFLUENCE OF B _ __- -[J-- ..

GAP ON EXP. ,.-L '-•.-iJ- '.. -'- ~ .__ . . . -8-

,/, .../

/'

I(I,U(J .6

. I----T--'.),? LJ 0.1

TIME. (l:;)

FIG. 6 : PRE SSUR E HIS T0 ft~ IN COM PA R 1M E N T R 4

U.U

c[.~

1 I NFL UEN CE // /l i ------~--OF GAP ON EXP /. /" -,~ -, '- ... ft A'''/1' >' <' ,/t 1\ ,\ '. .._~- /

/'/' ~'--o ~__ _ /' JJ III '1,1_'I~J:~0,',A .\ I~\\ ----- - tr------ ---~-~

1" II ./ h.'- ,,'.'~/i Yl-'\, ,'I /-' f .-' - . It~(\! ,1'\, I ". ,,_,. .,' "W'" .. 1 ./ •• 1,' / {I,,- lJI!~~""l,1 i'/lA I

, .. . ., ...... It.\, , , ./ I I"~'. "', •• f'I1""I';I!.~ ._. I' f !Ii.\",,~\"(!~-,,-",I -\,k"

/

'

,1", I , )11 ,rl' ,\ i' I C I 1fI"I""""fi!~f"1'I~IM't"ll;,'v.III,~'AAM#t~r.""\'"'I'l('_ f // II \ V. d"'" \~'!-;~. <

(j) ~/ ,/ .'././~'. ~'..... _/' .(j) ,lr, ,/ ,J, . . -f-- •. -'- -

w r Ii (.'\ .'cr: ~ ,. tIlt!.. '0.. ,- d ii' .-

'." 1

~

~.'r'l,I' "_, II r: il\ (1"'" I

C'! -111[1/,,',(1',I ,II, ... ,,,1-1)/1j i!~, ''Iil.ill'

-,:\i~'~ 'v"

c n,~

([Q-w

LO 0) ...I -~

C'

Page 204: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

2 NO CO NTAIN ME NT s'-r_£~,~~2~,r'\uf~JI-\CJ[]LJ]\'I'( GASP 2)- 1-----.'

f.J

-'--J

IEXP,E~ROR, (:!: 20mbarl;) E)'I'. ('II)!n~:;'19'ICI~ILl PRECALC'I'l<l/t,n){+, PREC,ALC;::/H H111'Jt!. cor~LUll-'f'RE;CAL~.i I NFLUENCE OF

GAp ON E; Xp

----

Cl

G

lO

0'

... I NFLUENCEEXP ," '-"-1'1 _

~ OFGAP ON _c ,/ ~ "'" •

'1II,;;ill,J\I'!i:I'llvl~\~,,'. -,- . --~~=~ii~~f'~1<)fli(:\SW;1\\~~,i,~i~';;\~'\!il~I~~,(J\J'\lll~~--. ~'Ir! . - "h-

I

\ '((:---'" - f'IT . --m-nIIJ;~fJ:lFr"'/

1

".1~~I"q ~'-'l'\'t--I <!J;',\, 1\1".-- ---r. -'I-;~~ 1-\.,,/,,1 . ' C. """ '~~\I,I\\il\lilli!I.I'jliIll11i ~i,Wilil'i:ij~~~iii:i.lVjIV:,t'!iMII!\q.,\hl.~.I':l\J'I' :d':I,I',~i,I~\V.,!r!tIJ.'r:~II',~V\11lW~)1\1jll\\-II,i\i'M''\i!,I!:!o',II/',,!,

f !/:;. ~ .-----""\I/".N\'[cc",Ij,t'i,VI;)'I" ' . ""',1 I 1",- 'i ";J"ili"'!I~n!,j'\,' rl

ll

.--'-'- 1.J'C~~ f~' _il_! " Ilill

'

(.I.'-- ."', - . .. 'I , . I(

[, .~ .i /1'

q~ l I i."! I.r (11 j /11:1,

l~) '=;"\ ;f/\1

1

1i1(\' __ .___ ~ ~_,o ~il''I)Ir _, __ " .. ,_~- iif1' ".. .._11 ~ __ , _w c; ..H~ ,_-'----_

D::?:Jt./)If)

l1J (Tl~.Cl..?

iIl

oI

o

~~: I . ..I -1--.T----r-.-r--T--.-r--I--1---T-.-T--T----r ...-..-I-~--T---1-~r-__r_.-1-.--r.-'.r_'-T- ..-T'-.-.--I-r--

U . 0 0 . 2 0 .'1 () . () () . 13 I. • () l . 2 l . '1 l •6 1 •[j :2 . 0 2 .2 2 .'1

TIME (~3)

FI G. 7: H'STORY 0 F PRESSlJRE 0 I FFER ENCE R 4 - R9

Page 205: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

. 2ND CONTAINMENTSTF~I',J[Jr~Ii'\D f=Jr~~Urjl_..Ei"'1 (CASP 2)~.r.-~-.-_._-"""---'-----_._-----' ~-"-"-.-------------- -------.---~---,--------. :.:::::....-===::...--:::=:::::::=:---==...:...=....:..-----.- ,---------

-~..-{'J

"I...N

I E:XP. ERROR. (:!: 25 mbar)o [\1". (S11"'U03f'139L1 . .[I PRECALC.I'1+H"{]X+ .PRECALC ,"'I'IH1/ hiL~ CQr.-U')l,l- PRECAL(,: •

CJ

('J

CXJ~.-.A.

..--~

R.9PRE S S. U R ~ HIS r=~yFIG. 8

----8~ ,...----6-~--- .--~~ ~~-------..- ----8 ' ~..- ~- If

/ .. .__.....--tr' . . .---' I~V~ A~-~ + ------- -(',rJ-W"l/," ~/ ~ C .. ...------ ..!"h.h)\JV\(~

.----' ~ j ........-- '" •.v.~V\tJ.)"n(J'(' ....____ '! J' 11)". h' , ./~." ._- _'- !,,"All' ~',..' ,I, . r J

. -.-'~ """---;-LA niM\qW',fl• .1 iU •/./ .~~ _..-- -it'\.r'{lY'~~ •___" .~~ . -,.\llh/\N\iYvll

/./ riltFf'r"r"~l','. .. O' ....-----~- -.,.", fi'IV\"I'// ~/-/- ./.1.~/Y'rl~~'1~ .

/ // . 'iJlfi\1~f\/' ,/ 1 •,r'i'I'V~' .

.. ,/~"I1 t"'fIJf'['J I ...---~ ._.-"C ../!,,-\,[\1 ;./ ,,~

~ :lrfj;il:FN')\ r', . I,.t..A.f'I'rM '

I k~ld'~\.rl:~!'f'1J" .

/• ,I, "."tV vo \ ~ ljlt,' .....j'

..qIJ',i\'l\ t~I!1.!lfJ\ ' .T'-""'r I I I I I --r--r'--'~I--I---I'~--'--I~-r---I--r--r--T--T--I--r--l~~r--T--0.0 0.2 0.'1 0.6 ll.B 'l.(J !.2 !.4 1.6, 1.8 2.0 .2.2 2.<1

TIME (S)

IN COMPARTMENT

ill0:::: '-';:::> .,(J)(J)W-0:::0..'1'

(C[f01.1.;~

If) CI!.I -

o

Page 206: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

2ND CONTAINMENT STAr\JDARO PROBLEM ( ~A~P 2) .

m"f

-J

'!J

48.044.040.0

. .

I EX p.: .£ RR0 ~ . (~ ? ~ m bar Io EXP.: (9PU03'139LI"-o POSTCALCs':'O .95M1+ POSTCALc.s" 1 .21"lM{; POSTCALC.S=O .7Mf1X .P.QSTCA~CS: 0.95 MM;+ H ,H, T;-V, AW

5 = coating thickness

36:032.0

R9

II I I I .~.4.0 8.0 12.0 16.0 20.0 . 24.0 28.0

TIME (s)

FIG 9: PRFSSURF HISTORY It'-,! COHPARTMFNT

0.0

o"f

o[\1_

"f

(\J

"f

"f

W r~O:::m:Jtf)tf)Wa::~0.. (\J

cr:CL"*

.lD ~I (T1

o

Page 207: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

- 20 -

3. RESULTS OF THE PARTICIPANTS

Table 6 summarizes the main results of some important characteristic pa-

rameters obtained for the time intervals -0-2.5 sand 0-50 s. Calculated-

pressure built-up in compartment R4 (where the energy discharge oc-

curred), for the main compartment R9, and pressure differences R4-R9

andR4-R5 in the vicinity of the energy discharge are listed with respect

to its absolute maximum. Additionally the time of maximum is compared

with the corresponding experimental observation. The error-band of the

measurements and the possible effect of the unspecified gap are given aswell.

More details can be found in the following figures. Figs. 10-15 represent

plots of all results obtained for pressure built-up versus time within the

- specified 6 compartments R4, R5, R6, R7, R8 and R9. Figs. 10 and 11

indiCate in magnitudes the possible effect of the gap on the measured

pressure-maxima if the gap had not existed. The magnitude of the esti-

mated general error -bands of the pressure measurements :t25 mbaris indi-

cated as magnitude on each plot.

_I

Page 208: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

T' ITime Interval o - 2.5 s me Inter.yal

Computero - 50 s

" .Country Code PR4 PR9 llPR4-R9 llPR4-R5 Pmax

1st Max. 2nd Max, t=2.5s 1st. Max. 2nd Max. 1st Max. 2nd Max.P(bar)t(s) P(bar)t(s) P(bar) P(bar)t(s) P(bar)t(s) P(bar)t(s) P(bar)t(s) P(bar) t(s)

-

Belgium { TRAP-SC0 1.54 0.35 1.76 1.05 1.68 0.46 0.35 0.48 0.95 0.18 0.15 0.16 0.95 - -TRAP-C0N - - - - - - - - . - - - - - 3.77 33.5

Fi n1 and {RELAP4/MOD6 1.50 0.47 1.74 1.15 1.62 0.42 0.35 0.47 1.05 0.14 '0.10 0.02 0.95 - -

CONTEMPT- - - - - - - - - - - - - - 4.53 40.0LT/026

Finland* RELAP4/MOD6 1.60 0.35 1.88 1.10 1.61 0.54 0.35 0.63 1.00 0.25 0.15 0.20 0.95 - -

France GRUVER 1.53 0.35 1. 76 1.05 1.63 0.45 0.35 0.49 1.00 0.16 ,0.15 0.20 0.95 3.81 '33.5

Neth~r- ZOCO V 1.52 0.35 1.74 1.10 1.63 0.41 0.35 0.40 1.00 0.14 0.10 0.14 0.95 4.14 36.0lands (modif. )

United CLAPTRAP II 1.62 0.35 2.02 1.10 1.53 0.57 0.35 0.80 1.00 0.29 0.15 0.19 0.95 4.20 37.5KingdomUnited ,

BEACON/MOD3 1.76 0.35 2.01 1.00 2.02 0.62 0.30 0.59 0.95 0.35 0.15 0.37 0.95 - -StatesExperiment D16/CASP2 1.63 0.35 1.81 0.97 1.55 0.59 0.3 0.62 1.0 0.33 0.17 0.23 1.02 3.95 . 33.0

+ Error iO.025 :to.025 to.025 +0.02 iO.02. +0.018 -to.018 to.025+ Influence of Gap +0.03 +0.061 -0.01 +0.02 +0;036 +0.0 +0.007 -

N--'

I •

Table 6: Important characteristic variables * calculation revised March 20,1980

Page 209: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

2ND CONTAINMENT STANDARD PROBLEM (CASP2l~N

NN

2.4

llNFLUENCE OF GAPON EXP.

I. I I .r--I-~ I Io .B [ .0 1 .:? 1•<1 1.6 1 ,B 2 .0 2 .2

TIME (S)Pf :SSURE H I STORY I N CO=-=JARTMENT R4

0.4 0.6

FIG. 10

IEXP ERROR (:!: 25 mbar Io EXP. 14PLOOOA27Io BELG[Ur1+ F[NLANJ6 F [~~LAI\[),*.x FRF1r'-l:Eo t'-E:Tf-£RLAI'JOS<8> . LN I TED K 1NGOOM~ U~ I TED STATES

0.20.0

NN

INFL ,.J7'~':-:--~1..

0

UENCE OF GA ,/ " -- ---,---- ... -, ,N EXP P t '- --<>-- -,-,---'-'. / '_',__ ,_,-,-a------

, --- ~ ~----, /' --- ---~ --,----------

/\ /,/ ~- ~---- ------,,/ ' • // / ,fl. I ~ ---/ \ ' ,// "" - -" ' ", //'__ //;, ~~i#.t. __.~ -.- __ ..._ ----4lJ-

I JI!;!i ~ _/ ~/ t#;V/.o-::--- ~C~ -

l

~ ~ ~-...;:""~'~dJ.Y' /:+-", . --....:...-.:-.- I - --tr--;;::.~-=--- --------I " " ".-./ ,,- - ---------~ ~-----

,/ ~ ,rr" ,/ -,--,~---I '/ ..... _... ~'_ /' ' ,-' - ' ,_>.-<0<--'/7 ,'0----:-- ,/ /' ' ,- - '

f f/>/-~:C"":"'~~;/',/1; ,~

/(/:",'" .'ij .'ili\~t'1

'I,"o 1Jr

N

~o

.--i

W[(ill=:J'-:(f)'(f)Wrr:0...'\

erN[L

"*If)IOil!

Page 210: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

2ND CONTAINMENT STANDARD PROBLEM (CASP2l<rN

NN

I EXP.ERROR(~25mbarlo EXP . (5PL255A I 7L )oBELG[UM

. -t F[NLAND6 F[NLANO;I<-x FRAI\CE

<) r-.JETI-£RLAi'[)So LN I TED K 1NGDOt"1r&1 LN I TED STRTES

.8/.r'

NW

2.'"1

/--./',r, .....

~ /-./

/ '. !/'-~I ' .

1INFLUENCE OF GAPON EXP.

---r I I I I I 'D.?' 0.4 0.6 O.B 1.0 l.~~ 1.4 1.6 1.8 2.0 2.2

TH/iE (S j

FIG,11 PRESSI ..JRF HISTORY \ r f\.1 CC!MPARTME~,IT RS

~.------/ ~... 'NFLUENCE . / ----- -_./ONE XP OF GA!./ 0 •~~~.=-.:o- -------- _a-------/-- -""-- --

/' -/ ----- - - ----- ..-/ /' .v :/..--~ - ----'-==---1>== - - - --/.-/./__;;;:/:)f'~=-==-=~==~---~=;:'--,;Y4;~~-;;>---===::-~~ ---~~--=-=-"

fr'>:;:~==~;:'------;>/ .

I ~_/----"'-_::=--_/-/-I ~ .

,I); .IfII'

I,f

II

l ..j1..

0.0

o

[\J

W0:::\0::J"-:(j)(f)W0:::[L<r

........,

~o([Nll_..-

I])IaU!

Page 211: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

- 24 -

N.--

z.".......

N

o

'1)

o

o

N

ill

NN

lo.L'~~,0

I I I0';:; a'I g'[ v'l

(8d*s_OIl 38nSS38d;:;'2

OO+<I."'<>0~

C\J0-enCLU

LW--.-Jrnorr:0-

ocrCLoZCLf-enf-LLLJ '):

Z'~CIf-ZoUoZC\J

Page 212: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

N0.-mCLu-.;:--L-W

. I

-:l

rno.cr,0.-1

ocrCLozCLf-eD If-LWLz

~ILI01u'oz(\J I

~-lif)(\J 2:a:: om[;j m8l::!o oza:.~ ~o a: ;L tr;QJL:OO --.J-::J2Z 1..:..1 [(00,-a::a::uwww.O-l-lZIi-l-(L-lzza::l---XW--D:WZZWCDl.Ll.Li.LZ::J::J

oO+<JX000

- 25 -

I I0-2' B- [

( l::Jd* s - 0 I )

Ig- .[ fT' I

3dnSS3(jeJ

I2" I

IIJ

"/7

LLQ~

L

Page 213: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

-.26 -

OJcr:I-ZWL::l-cerTnIII IoU7

<:)

<:)

cDC)

-....:r--+

C)

LL

m

<:)

N

NN

0'12'. II

g" I IT. I

3t:JnSS3t:Jd

\

~\\\\\\\\

\\

\\.. ~

\\

\\

\

0"2' 8" I

(l:jd* s- 0 I 1

\

I2~Z

HOO+<JxO@0

LW~CDo0:::0.-

o0:::([oZ'([.~(j)

f---,-

LfJI~I>--<

([~ZoUO.ZlN

N0.-(f)([U

Page 214: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

- 27 -

I

u.'[(

L

(I'eJ:wct.Il

.0

CD

CD

o

N

NN

2:" Ii I

0"2: B"[ g"[ ~'l

(8d* s- 0 [.j 3ClnSS38d

\

~\\\\\

\\\\\\\

~\

'.\

\\\

\\\\

~

C\J0.-(J)([u

ozC\J

ocr:([oz([f-(J)

.~ ..

ZWLZl(1=1"-L

1f-I~,LoU

Page 215: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

- 28 -

Figs.16-22 give a comparison of. measured pressure-differences between

assoCiated compartments and corresponding calculated results of the

participants. The magnitude of the possible gap influence on the maximum

values of measured pressure differences (if the gap had not occurred) IS. .

indicated in Figs. 16, 17, 18 and 19. Possible error bands of pressure

differences measurements are given by the Battelle-f nstitute to be of amagnitude of :18 mbar as given on the plots.

Page 216: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

;2[\10 C(J~'.~TAI~~ME~.JT~)TA",JDARDPR[JBLEl"1 (CASP2)--------------------_._-----_._------_.- ._----._._---------------------_.'------

(\J

Q1

o

I EXP. ERROR,(! 18 mbarlo DJJ. 15f"[)390416~1)o 6ELG[Ur1+ ,F[I,Lr:IIIO1:> F [~'JLr:lhl[) }!(.

x FRFf~~CE(/ ~ETHEF\I.H.!OS<8> LJi'J I TED ~: 1r\jGOO~1121 LN I TED STRTES

N\.0

INFLUENCE OF GAP..A.ON EXP. '

.,~~.

/il!til--,. . __.--_/ /~A"---n,~I~0:-'\f\jl(\~'A/~~'". '-'-'~-~. ~~tpJ4Jr~,::?MA~~fl~~~'~'~-'-.~--' ~ ~-~': -, _........,'-::' ._' __-0. - --"- -~_. :.:-' , , .d';,/Jr ,.''-~'~"""'~:Y'~"""" -~- -:-~'-":'.~ ''<,;: .• - --<)- --}~I::~~:j,; "-~- "- "1-' ~,,,,,,~\.QL;"'=-~~~8,f~..,~,,~.~~~., :..~~~~ "~::-""":~;"'~,=,,.?~

'/ ,/.;...< - ..•. -;-. • , ..~~ ' -- ", ~ %"" ~.'I>'.~.;~;¥.} v.::-. ~.... ,... =-=-=1JLJI

ll",;;, " - - - - - - i:':': ;I.i!N~e\/VV\N'ilii.Jv\;, ..._rr.- 0:'1;';/ ~'~--~----- +---- ...- _.. _ -+--~ ...__.. '...... ,". _~,. __ .~~~~ ...,' .

(j) I

(f)Wa:CL~

oI

~LOC[0

fl.'Ji.

lfJI enc) ,-

Cl...-.

LO

oI

IJ

enOJI '-,--.I-.-I---I--f---I---T--I~--T.---r---\-----r--__r__---T"---T-' .I-----r--I~- j I r--i-r-' ~'---'-,

i),O 0.2 0.'1 0,6 0.8 l.D 1.,2 l.<l 1.6 1.8 2.0 2.2 2.'1

'r I ~1[ (Ci~[....:- r r~:: 16 H I c: 'l-Jl r=r\/ (I [="' FJR 1=- (:-,:;c~I IP I=- rl I r:::- F F F~F ~\!r" I-'" pLj - R 5

Page 217: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

21\J D CDr\~TF~I f\J~/I[~JT STANDARDPROBl_EM( C~iSP2 )---~----

(\I

wo

I EXP. ERROR 1:!:20mbarlo EXP. 14FD3549461,..1)o -BELG I Ll'1+ FIN-AN:J.1 rr N...RN:J *x FRR'JCEo ~ETHERLfl\IOS~ LNITED K1NGOOM181 \.J\I I TED STRTES

1INFLUENCE OF GAP

_ ON EXP.(Jl

o

-l

._, lO I

.QlI~~---_._--- -,-. INFLUENCE OF GAP . //. ,.. ... __ .~_A. P '.-. _

O

N EX . ---- _ '~,\,+iJfY1~ _. _ _~_---.../ '''"I ~ _"_! ' ..~-- .'fr1.1. I'~----I~"---- . _~ __I~~~~~\\\",,-~rr~r:~("r.Jf~~<~~=7'~~~~~\~~,~wr~!r.J~f:l~!I~~#;.lJ.J~g.~!II~~~

Y 1'l'", '\\&'\Fi\N"'lw\j\l\'Il~1/- - <;- -. -. ""'~._ J;:c 'II'~!!""INjj!'!jl ~ ~1(~jlJ!l-_.= = ~ ~ J!!1r~'5':'-~~~,: ..::--~>:'::.:.---_.- .---. :::.-:,,:c,,~~~"-.::.:_._ ~"';;""'~"~:-"~'7:"'~ .~.11~1!"'J;1

11,\_ ,#)/\1

W ,J,prr c:j~, _-)0en I

U)LLJcr: (nfl.

oI

LOoI

(Jl

oI -i I -r---r--:-'--i'.---I-.----T----:'-r---r"---"l-- -, r--r--r":-~~I--~ I I r---T" I I

0.0 0.2 0.'1 O.60.f3 1.0 1.2 1.41.6 1.8 2.0 2.2-r' 1 1'"1[ (S ~

r.::' Ie. 1.7 1"-1r i:JlOF(( -,CJF i )P[S~:;L.JF~[0 I F I +l-F~[f\"IC[ ~~Llc... R9

---r2.4

Page 218: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

- 31 -

/ .i'-- '

LL.

CTC(i .

IfCLLL

. I

~~

r~INr~[ r~

II

[~~~ .. ~~ ,'C.I LL~

_ .. n~.'" > LJ.......- -

.......... -~....:.....! (I) (.f~ ~ (j-

I~

rJ W r'y-:I --= 2: III ~ <-..L .

I I

~ r-LLI.' CI~~L-

'L'~ 2:=ucI -'.1 CD er

r- .Ie

LIIL!~10

L!

I ~ C1- '.toIf-ii C'J1-.10

Ii-I

1°;.::;)

co 0-Ig-O-

II

I Ig- 0 . CO

(t:Jd*s_OI.)

wuzwe.:::> x,.....JWU.z~O

a..~c.::>u.o

0...«c.::>LLowu~ 0..'::>X..JWLLZ~O

.q

I5-0Z- 1

LI

C'JCLena::u

LW

-.J I'CIl0,.Lr I'CL

01rr:1rI'01~lr-I

. (r) "v"

~I,.zl,~l~1~IL- j

°1Ui') iL...:IZI(\J I

II

Page 219: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

2ND CONTRINMENT STANDARD PROBLEM (CASP2l(\J

WN

I EXP.ERROR (:!: 18 mbar 1o EXP. 18PO148729 Io BELGILJf'1+ F[t'-LAI'D 0

c, 0 F I N....AMJ JI(

x FRANCEo 0 ~ETHERLFf'DS~ UNITED KINGDOM181 UN I TED STATES

.!.. INFLUENCE OF GAPo ONEXP.

(J1

o

_ A INFLUENCE OF GAP~ l~ ON EXPrr ------~'-L 0 ...--0 -' . - -----o ---- ------i-- ------- "&------_,'-4'r' -- --- - 00-=-- - -- ----

If) J--"'''tt1:-A!-J'''!,,(.,(;.'-'\' _-dl.------- - - - ---:::.----- - ---.I )/(/\l';:-' I!i-. ~~ '/"/~A --.-_ ..- -, , :::---. -,

(1', "r,;:/f.::---'-' :->-,'. £i'!I "W~-.:--- ,J~t""lv"",,,,~' - - - --,-- ----------o • " f?-" ..'- - -----;;--:-:'=-:-.', ""l"'''Y''>1/'""'II\f'v-N-M-J.rr-f'.f. .. ' _ -". .....MN'~ - - - - ~. ~--~ 0 ,!%,,::C::- - - - - __ -.:;- --'::'==-~'~~C,="", ..~~=~--"'~--,-=~= ~----1' j,k" '-------.----~---- 0----__. ~'::::-:::::.--....--:---,;;''9-''"''''~o '~::-:.--::--:----_::_zt. [email protected]

P- .-<:...'"='.=.c--~~'V<r:.--- ~--o:-:.--::.'c:.~ '

~~L' ----..,.::..::c.:::--c:.:::,;::~~~~ 0-- ~ ~ d/=__._-:=-:.::::;:::..-:.:..:. ...~~.::-~~;-

m' -el)w ~I[ten[L.

oI

lD

oI

n

I I I I I2.2 2.-4

r2.0r--T--l

1.8,--r-----r---r- I -roo....""1-1- .. ooo-T-i

L).6 CJ.8 l.O l.2 l,.1 1.6

T i i"'1E (S!H I JTLJFf{ OF- ~:JFiES~.~E 0 1'1-- =F~ENCE R7 --R8F-"I'''' 19lJ. ,

I I - r0.4f

0:2

enoI ......_--r

lLO

Page 220: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

- 33 -

I I........-

LL(r- ' ..

LL

('J

N

rf

I- .=:I C'J

~Iice

l~I ('J

;

i (J) C

[ ~~.('J LLJ U_

i ...:. > !lI ~

I :r .-~:.~.: >-

I CLL CI ~I Co (j'r-,sI[

iI-IiI 'D1- .I D.

!II-

i;t:IIINr~I~ .10

.1:::;I

5"0-;

9"0-\

6"0

OO+<Jx<>G~

I2" 1

ocr0=oZLLf-el)

f-I~I~lL

I~,[

([I, Ir-i7'°l!U

~IC\J I

I1

Page 221: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

2~,JD CDf\.rrr=ir f\j/".'l[~n- STAN[)f~F\D PROJ]LEM (CASP2)---------------------------------_ .._--_._----_.

l'J

(Ji

o.

~'_ LD

(Ie::0_+.

if)Ir-) rt;.;:'0

I EXP ERROR I:!: 18 mbarlo EXf) . (5PD 1807 19 )o 8ELGILM+ F [ I\Lf=ltJJ6 . F [ f\LAr-JOx FF.H'.lCEo NETHERLA'OS'8> LN I TED K J I'IGOOM181 UN I TED STATES

w"'"

LLI t~ ~ _ -...,JJ..().,lv"Yf',r; 6 d~5'~ rJ.{;;.j~A/'/\.A!\!J\[;I.\ ,(~~ ,,' ~d:f:..VV'-\;\J\0J"-v-~..r-G-/"~!\..-~ ~v.I\/\A~cn 7 J 'IJ " -- .... - .. ~~ ..... m~_:; ..........,,..;.~_::~~~-~::~~~:=~':.:.:::-.:::=;fJ~~~~'"~.~..-_::;: :----;;::-::;:~. --~~ ...:. . ... ..-:::

(f)LJr:r n)0....

oI

l()

oI

01C)

I -j-~T I I I r--r11.0 0.2 0.<1 0.;:'

F'IG.21

T~--T--' T--r--I------ I I ~--r I .T----r---'---T-o .8 l .0 . l .2 I ,4 I .5 I ,82 .0 2 ,2

T I ~1E (S)HI -ORY OF PRESSUREDIF~~RENCE R5-R7

2,"1

Page 222: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

- 35 -

:' i-~

, ,i-L_

crrr:i

o i'rN er_

r' ,

LL- Lr'~ ~

i!

tLL

-~tI~

~. ~.I "J"- CLI-- 0-I ~--I (n (J

r; --Gr-L

I N LlJ CC_I"': L (l

I ~,f- - u.I C10r...: ).--i n.t- ~L~ uie

~i

Ll~1°f-I~":! :~!!It~I- r-

!I '-i8I

6"0-!

g"O-

I

I :g" 0 EO 0

( 8d-¥ S - 0 I l

I6"0

;

c" I

C\J0.-c.n0:::U

Page 223: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

- 36 -

Figs. 23-36 give a variety of comparisons of measured temperature-time-

histories with corresponding calculated curves for the time interval 0-2.5s

for all 6 compartments. As temperature distribution within compartments is

quite heterogeneous compared to measured pressure distributions within

each compartment care must be given when measured and calculated tempe-

ratures are compared. The results of calculations strongly depend on theapplied nodalisation scheme.

Page 224: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

2~r\J[j COI\fTFI rr\J["/lE[\JT STRi,JDARO PR[JBI__E~1 (CASP2)...~_._.__ ...~... -~_.__ .__ ._-_ ..__ ._._---------_ .._-_ ..- ._-- .._-_._--_._---------_._--.....,.-._-_._' ----- -

c.:'ell ...r,1T

Cl I!

W--.J

. I.

I EXP. ERROR (-2.5/+1.4K)o E:XF'. 14TSOC'6A13)o BEL.GI LJ1+ F[~LRi'JDl; F 1I'.LflND 1ft;x f'-RANCEo NETHERU1',!DS

<8> UN I TED f( 1I',IGOOl1o LN I TED STATES .o

(1)

a'1"

. ,I

__ .~_" - - Io I .-' --~-~-"'" ---- -- -. r-- ----.<j- --

\l ~.. // --:;-.;~~;7:"2':=$J'3~,;:..;SZ.~~~i;;~;;::;;~;?3..?::--\-A=:=;-~'=.=- - ";:=r-=::=:"'- '>~R' -~/f~trr-~--~-'~\..T;~~~.~_::;.;;;71;:;A,-;'rr'.t'l'-.~~~~i;.-c;':I.,.,t'-;;';;';;:;~~ ;c••;,n~-;.;.;'~'- ,~.:J_ ,11 '",,"'~;--~ -"T' , .--'- --.-,,-.----.----- --@- .--.!..\~ .. --- ._._:..::.:.::::::..'7~-=-:---'-".."' ..-~-.-"':r~;~"'-~=::....~~t~;:,~ '

, -;-- ~ _.-/ .1/ I ~/ );~\--.,.~. ._.~.r-.r--

II /, . \ ~)-.-.---; , / '

LLJ ~ fl(' /u:: III I" ;'=)~ I ;'f--: 'I "\ j \r~\\Q _ I! I \ ~.A[C '~. \ . . ,\'~ /. V\L)..I ~. I,~ ;' ,II' /~<t-!yJ;J,f\\~~ IY,\> ~\LL. '1" r \ \...,.:> (TI I I '\W I i \f.,.. I /

11I1 'a I J !rn ~ I 'I I(\J ) .(1'] 1/,

i'I

I

a "

• I Irn -' ,a '(11

T 1\1 CJll'1r=1(::-jr=<TI"1F"[\IT f=<423F- T (:~

rnru -1-...:T-j----]-------r------,- ...:-r-----r-.----T-----r---T---."I---I---I-.---r~----:.T--T I r--r--T-I~--T--'

o . 0 0 . 2 (j • '1 [) .6 CJ ,0 1 • [) 1 .2 l . 4 1 .6 1 .0 2 . (] .~~,;" ;::'.-4-r' .r 1\.1E- i r:::; \I ... \ ,_ I

l-r---j\ 1P~---r--'("l-:-1 11'-"11- f j -r C'-r ~'f-~I\ I,- / ._' ---r-' 1_) r"l r- --"1 I 1--\ (.•.. _ I'. _ l '.' I. '.. .

Page 225: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

~~r\jO --CDI\JTr=:jI r\J~/lENT STHi\JDAflD PROBL_EM (CASP2),._._-----_ ..._.--_ ..__ ..._----------------------

c[11

f\J'T

c:i

w(Xl

I EXP. ERROR (- 2.5/+1.4 K Ia EXP. I <1 TSOOOA28Io BELGIUM+ Flf\.ILANOt:. __-- FIHLANO 71<>( FRAI\JCE

--0 ~~ETHERI_A\IOSo UN I TED K ] f.JG[)Orvl

__f81 UN I TED STRTES

'w~~~.~ ...-~ ..,.,/

I ,----T----i-----r----r----.T--i- --i---r--r-----'T-----,--'-----r--r I ,----,-- I r----I -,--r---0.2 0.4 O.C C1.G 1.0 1.2 1.4 -- l.b 1.8 Z.O 2.2 2.'1

-1-:I ME- ( i~:-\--______,..) I

F I C; , 2 4TEr.,'- _:J-={I:--ITlJRE HIS ITJI~\Y J f\j . c.:::_ 1"1FJRI~T[v'I[I\Jr r~~Lf

o(T)[[Jl\J -+--.. ---I'

U.O

I'l~--o"_ ,,'~ : /"/ /" /._ .-:-'-', _ 0>.-. O' •• "- .-.- .-'- -". ' •• --00-. -'- .•. -. ~.- '_. _ .. _. _ .

. ; ('1-1--' n'''~:2''J»i'''.~,.\.,,--. ~_-----,--.re=-.--~i!ll-"--=:---- ----.-f!1.---------,--~ I ")l"" ~ ~_~,A""'--.-.,...~~ ...-="'------ - - - --- - - - -- - -- .f-R li~ 1/~~-"""---¥.,-~---~......--."......:L.~ ......::- .--=:=---:-.---.~.----..".I ., ~-=-~_.--LLi a ! !.'f . ~-=.=-==-..~,

[(.-~ ! 1W/:J ~ !r j' /f- I I

IT: - i If[( IL1J~ i,/0... rn '"

..--" IL ('1 i ILLJ '1--- !

I !o .. I

(TI •

f\J I;('1 i

,,"

~ -i:'Clrn

Page 226: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

~~r\1[J CJJr".jTF~1I ~.JI'-;"lEf\IT. STANDAF~D PF~1]8LE~1 (CASP2 )--,•..--.- •...-.-.----.-.-- ....", ..--'--.-- ....-.-0--....---.--.- .•-- ..-- ..-.--- ..-9------.---------. .-' -...,-&--_ ...----------.-----B

c:(TI -'[,I'<f

a

I

W\.D

I~,I r'(l~./lpr-=,~~TMFI\IT 1=74'IY25~-=-. i (-~.!

o EXP. I-4TSOOO~1551o BEL.GI U~1+ F [ f\ILR~,JDl; F [ r'U-it,ID.>Kx FRANCEo f-£THERLFNDSo IJ-.JI TED K I NGOOM

-T--.-.I-----,----r------."I"...--r---r- ..---r------r--i ..---I------ _"r-T __ r~--~~::EO_::~rE~'1 I -r--~0.4 0.6 D,B l,O 1.2 .1 1.6 1.8 ;:~,O 2.2 2."1

T I jvlE~ (~~;,Tr~:-rvll~"JF::-Rr:.::-~TIIF~?F- I~!1,:::::;'1"1'"

1O .~'.~

Cl

(TI-a,,-

orr,CD[.J-i----r-

0,0

(TI --

~ fR

/".'}I--" -"-. . . . ..:......f.:»<U"=-~-=-==.:. -:..:..:::.,..:.......,.~-"'""'-~:~~.-,--~- -=:..:.'=-:'=-=-=~~-== -=-....:. - - -' - - _ .. -' - -- - - - -lEI. -, .

,--I_I_.-R ~A....' __ • ~'--' .--.";:--~:> ... -'-~'"~.~ ..=-,;:;.~0--::.-"-~="""=:'==~~'~~"':::=.:::::::::.':~~';;:;;:;;;--~~I=I".~ -~- - ~-- ~===-<=~. J~-" ---==-.:,.,.-.---~~ _~.~V'~~'_-~.. .. . . .. ./ \ ....,..;-'~~~~~.:1t,~J ...."',f;f_.a..:-,....:I~~-- - . .I ~., "/ ~..-' ,-0' - . .; .i~>'>-- . . .

LLi " /.14 ~,' .rY [11 'n"}=s ~ / fr- ' /1cr ... .iffEra #I.d. 1/[L ~- f~: I. ~

[1;" !J(\1 I'(TI I

°il~/(1; 1/~ '11\'

Page 227: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

2ND CONTAfNMFNT STANOARD PROBLEM (CASP2)._------_._-----------"._._.--_ .._---._----_._------_._--_._. ~.__ ._._-_ .._-----_ ..-

Ci

It'[\J'T

CJ

[n --o'r

~o

I EXP. ERROR (-2.5/+1,l.1< Ia-tiP: '15Ts3f::iFiTIT"-o BELGI LJ~1of FI~LA~JDt> F I Nl_RHO '*x FRANCE

<> t'ETHERLA\OS~ LJI'J I TEii ! "J ~~r:DiJMo L~ITEU STATES

Cl

a

o //. '--"'-N'~'-':-oK-.....H.__'__.._'_"-' -....;,-_.-',:;i''';- .~j&.~'::' - - - . - ",::~.::-":-=.-, '''''i:...............

.' ,,'\ co~~ . ~~~".~. -. ~-,-,_.--._.-"--_._.-.~.--"".-

I ' . \ .•.- .r" ~, -' ,--- ~'/" \Y~.~;£~1' ....__-==-==-=~IF=.~~ 'M,y.. .---.-..-4. ..,,-c'o . ~. ....=-- ..' 0 '(;ft:.~-'

I

/=~,,~ . ...#9<'. ./._ .,.;;3'" . . . ., r'/ ..",,~~_.' .. ,,'/ ..-"~/ ., '/ .~/ ./ .

i ';11 .,.-.-B'....,//..-, /1 ./' .A~/! I //I /./' /! //; /I ,off /i ,i/. /I JI

.en-4 i,~fi /[\}.I ' , /(I) II I .

j ".I, II~' /

('!.I'10

1i II~J, .. //'en'.j ...~ i"j"f:%,'r"'"

('1 -~rn

llJ C;rJ:: [n

::::J V~f--crIT:lJJ C;D_ ~')- en

. llj1--

enCD . .r\J -t'--:-I--r' I -~--I---'--T---r- --.-T----r-.---,--T-.

(J.O 0.2 0.'1 0.6 0.8 l.O

FI -:' 26l_J . l-[--~.'-"r----R':rl Jr'•. _ 1,. J ..

...- --_.' \ ... _,

-r " '--"-r--'--'- I I----r---,-- I r--r----r---l1.2 I .'I . \ .0 1•B 2 .0 2 .2 2 ,"1 .'

i' IMI'- (C;,I .1-11 __. ....._, I

:.~ I-.j; ':-;Trii'!Y J ~.!.. c ~)~1f=:)AF-~Tf\1Ef\JTR5

Page 228: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

- 41 -

/

'--

CLir

I,,-(]-~,-Y'-lL('1_'~-L._

! ,LJ.._

f-

l~1 (\J

IIr-

L0~lNL(.--......LL

! [_.ir,-j L

ILL.~I L.i ,

r-I

\1]]r...:

~~L.I~~! >-

.j "':J 1"-""'"r' U.I -~C: ('l'I '..1.;--r - ,.-! ~ J

! ~: 'i; i\JL.!...J'Tr...:~-I I_ \_.1

~:~ .'~,

... :

}--Lo 0 + ~x 00~

\\

rbII

O.EBSO'EOIT

f--Z.W).

L

(\J

o

C\JII(j)CI:IUI

ii

I

~IOJilJI(.Y~ iIII. I. '. I

QIU-tIo~I!-:-(J)

Page 229: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

2NOCONTRINMENTSTRNDRRD PROBLEM (CASP2lcrn-['\J

'"orno'1'

.I::>N

I ,EXP~~ROR 1-2.5!+1~~I<Jo EXP. 15TS21-4A121o BELGIUM+ F [ I\JL.AI'JD6 F I r'LAND X-x FRA'\ICEo ~ETHERLFNJS~ UN I TED I( J I'JGDOMrgj 11;JI TED STATES

o

o

Cl

("1 --[\J(n

!' /_-" ___ -__- _~;;;~~.,;;;::;;;:; ~;;:;,"ll;-=-:::-~T..=-=~~=-=-- ----------,,-,I ?": ."":-:;?" ~ ( ==-------------I .------•.?'.>--. . ,. •...i ./ . >/-t ",,'i /./ .....-;:///J\\/~ ~~~~~/~/\! '>fAt. r~~-- ~

;/" ~,II/C>.t,'/ ~I//.;/ ~ =_-"-"~~=,,,-=-,,o 0:':-"-'""';; :;:::-:::t-::~~= --= ~~~~~------- .

/I. ,./,l.--- /-0. -------> . ~~r.~ .... ~-.1"/ --<>_ . / -4-- ------------------<>---"'"... •.

I

" "-. ---~ - ~-------'",/'. --_/" -..-

I If: '~~ 'I' ~l,j ,rn A'"J(J . I

(n ,J~'ft.t. ~.,w~.,"',~,~

rn-~mwo

~m--f-C[-'[(IJJ c:;[l.~i")- ('1

Wf- -,

((~

CDr,/ -1------,--- I i---r----T-----T'..-'.----T---r-----;,----r ;'--"1--

U ,0 0 .2 . 0 ••1 0 , f, [t .8 1 . iJ 1 .?-'--',--r I I -r----r---r--'-r--T---r--

1.6 1.8 2.0 2.2 2."1

1=-'1 (-::; , 28. _. 1

I 11"1[, (S IT[Jv'-==F\(:lrl_W~t:_ i-j I ~::;TC.)i~Y 1 [\1 'C_ 1"lf~FIF~T~1Er'~TF\S

Page 230: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

43

if

~-....,;

LL

L....:. .~'-

-1

I-I

~,~1°

-:=>

r!~(~

l-I

o

l.I ~JI

IL

!ii "\Jr \\jIr-io~-

.1 c'J

i~i! -

CDr~IrII([)r--,:I

i~I!-"=

.....s,o~'" .-

H:o 0 'l- <; "O<:9~i '

iO' E:2E

-----------------,--,- "\

I'cJ

LI 'I

LJ.J

-,-~,'

/~,'-

IC\J I0-1U) Ir-T Iul

\I

2=:1wi, I~J 'mc!rY""U-IT-

L-,I

Page 231: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

2ND CONTAINMENT STANDARD PROBLEM (CASP2)--------------------_._----_._-_ ...._._-------_._._-_.----_._-- -.._- ._-_ ..

o(11I'J'f

o(no

"

.p,.

.p,.

I EXP ERROR [- 2.5 1+1). K ).'6 l-=XP. IlTS089I.(2i , .o GELG IlJl'1+ FIN_FiND/), Flf'LRNO *'Ii FRA~,JCEo ~,II:':THERLFNIJSo lJ',J I TED 1<J I'lmOM~ U\I I TED STFHESCJ

_" -;:<",lliJ',~-=-=-:-..::.--......--:-:-~~.-.-<4...-&.-;;:;~ '-.-:;'::;;,,";:;-,-;rl' ,,:::o-:-1I'J';;'" --,-~.=:.-:-" --~:.::: "-, ~. -' - 0-.

_._'_'_ ._ -e-- .(I, 1''''~~_'J ..~_ ..fi''t''=~-- """,,,,, - - .. - ~ -W~_ •.,.,...,,~ .-,1-' '_ .."._;;.:.;:::/;:;>::::/;;;;:=;;""'=="~.._.,.iit"._.======~..ll,=-=.=~~":".,,

t ,.;;lrP 4~::FT' .....

t' - 0/ - """'~<1' /--~,/ ..~~ ~~

I ",,/,/ #-¥,(!:5q~~:;:"t1rvr! " / "..,,'.£.!::_' '1,,' "V

I ,/./ --1':'-'1'/

' ." ,'0

/' ,;//' //~/'~ '/. /', ~/;;':/ . /,,' {/ ..1'

,'.11// /"".r

;;' I". '/' ',/, j

" /1, /1lit' II ." .IfIt ,//~'1/

/~/)/

/IIo .J. ; ') .

~{:</ /".::~..~" ...,,.~

o(n "

r'J(11

o1"'1 ,.~m

LJJ 0[r: rr;--'dRf--([0-LJJ ~CL (n

)- ~GJ~-

rn'TJ(\! --.

D.Ll 0.2T----~ I'--r-.-'--r---,----I-I~'.-. ,--r--- ..-'T----r I r- T

0.4 0.6 O.B 1.01.2 1.4 I K 1.8 2,r 2.2T I ivl[ (S).

F:-1[; , 3a T[j'- ~:::F~F~Tl-F(r:.c~.,IIS-IT)r~t{ I ['.,1 . 1_ ~1'(11=-JFiF<TI'1t~l\jT R7

'1--'-? 1,;1

Page 232: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

2~,JD CC)~'.JTr~-lI 1\j["'1Ef\JT STANor1'~O ~:)ROEil_EM ( CF1~;FJ2)----------------------"----_ .._-----_.~ ._---_._-_. __ .~._ .._----'---- --_...,.--_._~---_..~._-_._----------_._---'--_.__.-_.+--------

CJ

p,r\J<r

CJ

.l:>-Ul

31_ ,-' r ( ....I ,,'

o

o

I EXPERROR 1-2.5/+1.t.KI0' EXF-;:--'I 7TSi 4L1FI12i -o B!::LGI U1vJ+ r:- ( ~.JLR"IOl:> Flt'LAH07K" FRf-lr'ICEo r,IETHERU-'lhIDS

.0 Ut-JITEO,f-;JM1JOt'1 I'IZl Uhll TED STATES -

&l j " '- - - -', , I{'-J -- i---------r'--i-'---r---r---l -'-'--l---'r-----T---,---j---------r----r---T------r----r-:--l--r,.---r----r-----r---r---r--I-----r--~--J

o ,f 0 •c~ (),4 D ,6 0 ,U I. • (I ! .;~ t ':'1 t . C 1 •D . ~.~; iJ 2 .2 2 ,"1

T I ~1[ (S)l'I--:- ~,/1_1:~)r.::-[=IC~I--_l--i le)!:::- I-,JI c-:----r I_'-l[)\/ T 1\ I (~'II"',1[:)(.:x-)-:r--I'v1~_=--[\ IT r=~7

r I I I' ! : '. , . I' I I I "1 \:.' I I I 1..! , . I'

r" --(\J(n

Cj

{Ii .-o"1'

o

I~-,.,...~-~.. -121-~-- \_. _._. \1' . .-._._...._.-!l:._ .. _._ .._._._._._._._ .._.~_.

l-'-'---'-~._= ,-'------,' _ _ _/ _-...::~-'ii?jfj/"::0~::d['\lt;;;~:~;;:;.:;;;:;~f.~'~c"~--'.:ifllio~;t:":c:::,cc,,~~,,~~.1t;:'["''"_~~'i •..•.. /~/ ..."",~-:':::~='= '.Z,"'-' .v- ~ 'V"\ 'V' J--- -"lf~--~U- -=-~\I-""'"'1iJT~'~"Il-J-!-It'~ • _~ __ ' • ", .,"_ "".-f

J

.... .--

I ' --/i'-?-j<"'-' v~.-,3Y . '

; ..'.~'"'(" >.'~i 1\'-"'" "~:~~;-;-:;/ (, ~;:-:::y/

_ .>1\ f\ 'j -.,/) / ' ,,',/--'\," ()<~';:,;~'i ,__.--iIl Vi t,- -/),?"", _.'/ // ~, :::~."';V~

! // / ,)(y,::'/

I I / "Ji.:"-'" -/,:,,'I /' / ,'//il / /;(/J /"/,/

, 1/

//(11;: 1,/,I;l~

/' it', ,.,rn1 l"-/'::J _ {/?/~' '......',...,.""""(n .?,;I.J'.' .

.......__••,fli' . .

(11-

Y: ~~

I.J.J 0

O~ «~--=--'j !\1f---IIC(LLl c.;C) r'l-)=- ~;W-f--

Page 233: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

- 46 -

! ;-'"

i .:.~

,-

OJ,'---L..L

-,.L

I1-

N.(Y') "

UJ::Ll.-;

i-(",I~CL

\\\

I IO' E9t O'Er.:E

3tjrl JJ=JcLjdhJ31." O'ESE:

(~" II

O' EOb'

HO[J+<l"<>0~

",-"I~

(\j

o

C\JCLU)CIUlQI

Page 234: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

~IC'J I0-'ef) I([ I'u

,

LW_IOJorr:CL

01[(IcTl°1/,"'--I([If-IUj IU/' !

f-ILIWi~I:2:1

I>--' 1

eLl, Ir- 1

71L-. ;

r~!(~ i;1'7

(\JI

I Hco+<:Jx000

,,'O"EOt:--

!O"E&::

I '.Jl/1

- 47 -

j ! !O"ESE O"E~E O.E2E-=1Hnl.l:jd3d~~-\1.

IO"EOE

IT[[

L..I

[Lr.-,-L0.

CIL

,-..,~.LLLL".LL~-,! !t--

( r'--

! ,L.!.._

Page 235: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

48 -

2::::W_IOJoa::('LL

i-

jo

!I-il~;- .!CJi

~'

L('~1°IiI-II~.c

i,,_' (J) :~~ ,"-i U)

I"J L ~r- -: =-!! ~LJi [fiI!-';~., -iI-I

Lee:IeiI1

j !~

I'r;~1- Nr- .! N UJI crII !-

,~~

./W

~2:::,r-

~s~---I_I'Il-'-.

LCL=-_f

I I ;'I ,_.'f-~I - ,.I ' L.-

If-

'~

IO"ES::::

iO.EGE.

i !G- ES'€ O.EH~

3dr~UJ=:;Jt:E3dirJ3l.

\\

~\\l\,

\,\\\\

, \

\i¥I

\\\

\,

\\\

\\\I\\\\\~

\

\

I.\

O-ES::

()j

HOD-t-<!x<)00

:.C.E2!o--

C\J0.-(J)0:::1

ulII

I

Ir-"I I I

eel0:::10'Zl0:::1f-IeJ) if-iLlWi2::::1--::;- I-,' I

i

~I."'/ i

O,iC__)!

~I,~ I

III

Page 236: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

- 49 -

f:--'."<.

U..

c

/

IT.

(T'-'.-...,. .., IL-

f--

- ..'Ti..;'

t-u(1-

iI"it :"L;

lei

i~iI!j-IIi ,----.f-~1----i,I-

1mr- .j'-'!

1iI1IIL,I! ..~jr C.jI~,I"

. t ,..:;

,.O~EGE

\

\"

IO-EvE

\

\\

\ .

\\~

\\\

\

\\\\

\\\

\

\

\

~\\

\

\

~/\

IO-E;€:~\ ',~.'UCJ' 'I ,-' I

---;>--11 : i ~ J I -;dIA' -: .-...I.---.Jr ._"- _ .- "' __

\\\\\

~I\I

IO'~tt

J "d\ /1

iiJ" EOi7

1--\0 C + <I x 00~

1

O'E2~

L-W=ZoI '.l--J

I.

./

1~

(\.1 IeLlen I'(...-\...LU

o7

LlLt-(n

Page 237: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

[ "..-'LL .

LJ!l

or iI I

CDCC

L

,-r

I >-I "T~(1--: --:-rJL (jj r=i (j)

i (\1 w7r --:.L -'

Ll

~ llJCC

I ~L~ 1-I

I

l-IIleDi- .I .:=;

!

I~r- .jO

~~iC

~r~L! .

l~II ('J'- .iNLIIje

~'I

~~

I

I ,0

'-

sI r'-0.<:_52

IO-E2E

\\

\

IO' r::: b-E

\

\\\

\

\\

\.

\

. . ~~\\\\\

IO-ES:::

( )1I

a-EOiT

H.oo+<lx(>00'

~I

N'(l Ien .([I~Iwi

I I---' 'rr- .LL.Urr:i(L )1

0,0::1eL01zleLlt-I(j') Ife--IL.

~I~IIIZ'Ul( ~ I-J' i°1Z!(\J I

- --------------------------

Page 238: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

- Sl -

Figs. 37-40 show for the time interval 0-50 s a comparison between

measured pressure':'time histories within compartments R4, R5, R7 and R9

and the results of the calculations of the participants. Note that the

ordinate of all plots start at 2.0 bar (suppressing the initial part of the

pressurisation)! This method has been chosen to facilitate the comparison

of achievable. overall accuracy of calculations for the 2nd Containment-SPwith the result of the 1st Containment-SP.. .

The cooresponding. comparisons of meas.ured with calculated temperature

curves for the time interval 0-50 s are shown in the Figs. 41 :--46.

Page 239: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

- 52 -

.r-."!_I-:').....L

~o( .,'-.-/

l-I~LI, !-' '-'

">,rr.-, I'--'-~

li-[I

:,' '\, , ,'-' I(1

! .'.'~[(

l~l"I10~~

I'"~Ii10II~i

r\0ru:i1

m

r-I10f-(\JlinI

r--;

, ,-L~~~:-i.. o, .,-~iN!

'f-.III

10! •

i;o. -i!

"O€>

a..: .(')x~dwwm,

I----lO 0

f!Ii

/t

C\J

f-Z

o

I!

(\J ICLIen !eLlUI~ILJ~I, I_,I

OJi°1(L.n I'-' '- I

01

0:::a::oza::r-eI)

o

>.----1-----'-----1 ----~I-----I -,__-_1--_-_, ___,__--8

a" i7 iT"!T O' po 9'E Z:'E S'z:?-'z: O"G

(8d*s-OI ~~nSS~Hd

Page 240: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

- S3 -

~.

"-J'

.- ,I ',--,I

U)ce.

; , iL.:.....:..,,-.~.~

o

!. a!

,;

i-

ib--I

10.1, ..

-iI!eI~~IjoI-u:)101Ir-10L-l~i;i"...i

XO~00

o--"L..

C\J iII\

II

ii>-I-~----------,----~I-----I------~--~,------

8'~ .v';,. O'~ g-E: Z"E:8"Z \7"Z 0"2

(8d*s_O[) 3dnSS3dd

~! i~f-

I,(f),i

f-l.'Z;i~IL..-:-lL1

.>---' Iir.,-

'..L-i-~'jL- !

"'--JU

oCL(InZ

Page 241: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

';.)N 0~-- CONTAINMENT STANDARD PROBLEM ( CF=JSP2 )

-"r,.' r-.-.----------.----- ..-. ._ •..~-_._--"-_..__ ..... _---- ..-.._-_._-_._-...-..,..----~~..- ..__ .._-----_ .."....--- -"--------_.~----_._--------_._--

III...."l'

't

'If

V1.t::>

~.. ~~..". "8 ' ..

Q . EXP. 17F-L090R1! Io 8ELGIUI'1

l( FRR'\ICEo N::TI.ERLRNJS

. 181 U'j I TED k' 11~GDOr1

--'-1--"1--"1---" .--i ...--.l----T---j-----r-I"" ...-,-r----r--2£1.0. j"U 36.0 "W.O +1.0 'IEJ,a

(SlrCJ!-~~Y I ~'J (..,'...J:,/lr-"'lRTi"'l[f\JT Hi!

T I i I

f"'Jf-' -'C"l Jf""I'-'- I 11'-.. ...;J) "'J'\ ... --.\ ' .. ,...... l.

....'--T- .._..l--......-r--._.I16.0 20,0 2,12,0

[.:'"}[, ,39

__ -00- ;:::'$:;' ."....~- ",-..=-=:- - ---_--- ~~ ----0/~/// . ---,,--~-

// ..../ ~ -------,/ / ,-"""'~~~er- . . --'--'- - - - --/ / ~ ..' ~ ---- .-...,

,/" / "..r....- ----- -.- ....~- -- '.. - ~ - - --r r // .---,- .... 0...................... -- ~. -

1 r/' j /.-- ~ ....'."'" '" "'''",, -" • -----

J //.'f-..?/ jii'T r .,,'/ ~/ // .

/r ~r::!-:;/"'"/ / ;:Y 1;:('

// AI'''-. ' /'./(,J.", .r'/ ....

/#~j;::'(""" ./ ~'../ .. '

/ /..." ...../ ,/~.(."

,. ,,0..'/ / ..,r<-'I , //.

1/"'". r;;" pl";,,/1/.,/

.1/ i'.:;l~.I"",,_~_/I '.o (') r rr::::r--.j.-._.-_ ... • 4 o' .r.o

••••

• EJ • Ci

"\N

_~0

L1JD: [\I=:J (~~cnU)LlJrrCl. IT! __

(\J

a- 'I'

[L=,tInIo Lq __~I rn

d

Page 242: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

<I

.......:,.

55

\.-'.

. .~:",

, ,~ . '-'- -

....o

.DE-Lf)=

N+I~;;;

--;

a....::t

Page 243: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

,)[,j L)(. CUI"'.JTH I~,J1"'II::J\rr ~:;Tf'lr\j[)F~IH[Jr::l'~OFjl f=:~~1 ( Cf1SF=:J2 )

." [:1 , •..••• -(:1- ..

'';1" •_ ....~."

.0'" .

_ 0'~:::s!~:::::",,:~::"'-:"'-'::!'7~~i~;;::;~;;;;;~-;';;;:;;=;;:;;~~:-'.-----.......--~,,_-;:.: ~;:;:"~.'~r'\.,""')r.Q.. . 1""'1'\ A r'"Vr,J\J\' ....---~-.-,~-- ---, •..••-- .r---.J _=-_ _ ~ V',. .""'''' V _. __ .-.-!,,","'~"V . . --- .._~•• - ..~=-~~~=~="',..'~-..~ .............. ,","--- ..~-..,

o.~~ (11"~m

[I)"[\1'1-

Cl

1") ..CJ",

L,lJ ~l~ m-f--([a::LLl ~(}

(T\ .',.- '1-L::fT1lJ,1f-

.[1'

V10'1

C>

I. EXP. ERROR (-2.5/+1.l.K Io .'. EXf) , (L}TSO[)O(-t~iJ l ... ",q BEL_GlUM

T'l i'.::" ( ;:) :-IT,[,'I.I} i ii;' i'~r:lllIF\[- :: i ~:.;rl

II) ...

(\Jrn

o(1\"o(T1

o(I)

11l)LfJ.(J

--f''''-' I'""'i ,(I

I.. ( ..

11,(1

I (~';. 4 1

l:':.llr r-'-"-'r-:' 'I .--- r'--' I

iei,n ;'ILO"f ..... -.- 1-

oJ

\/, I

>( FR(lf'ICEo ~.cn.ltJll.R'.[I~'318> l.N I TF-D I( 1~,lc;[)Olvl

._.r----I--,.---c' ..'-r...---'l---.T-- ...T.----T---''j Jf:..() - "10.0 "14.0 .1IJ.O

! ~i C)lr"F~f:II::rn/I[]\.rr 1'\,1,

Page 244: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

~.~f\j [l cu",rr H I I\J~'1L~J~JT S T r=]NDf~1r~D1.:)RCJEl._.E~1 ( C'Fi(':::-FJ":-) ),J ,.) L

u(11.-(',J"'f

o(11CJ<r

rn ..CJrn

Cl

",_~, , ,__,,'~"'~'_'_'_. ,__.__..'._'__~' _~ .__. _._._ ,_M._~_~_.__. ._.~.. ._'__. ._~__. . . _

o E>(P. !5TS27 () I 12 Iq BEL.GIUM

x FRANCE<> f\IETI-IF:'RLFi\IDS'l8> UN I TED ~~J l\lGfJO~1

l]l

--J

(n

RIIi .fJ

. I . 1-- 'r"'-I ,',J [;) • (j I ;,':, ()

11I~; 42

.. 1.---.-.--.1..-----'T'-" _._,...--T -..__.----,.. ----1----1" :.r._.-.-r- .---r------T-.---- ..r'" - -- .r----.-r.------l-- .-1---- .lb. 0 ,;~n,1I::;>'1, (J 2FJ.O.:Q ,0 36. I) ,10.0 'j'L 0 "llJ, ()

T I ~/I[~ {Ci j-1--1'::I\/IC)I'.'I:)I~::I"l-lll::-(I.'." 1.....1 .[. c.; 1--[-)1:.'\'1\/. .[. I\.,J l":()I"v'lf-:::JC)I'.:)'--I"I\/'l[~'[\.) T 1:/-).'..... r .~. \ ..... .__.. ""..'.J I. ... ,.J r"1 \ .....0 I .."..

Page 245: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

58 -

; ,"

".--"

-:-..

,~--i

i~.'i ,-..,..

Lu'7~

".=:'.-""'_'J

i1je-t- .jgj ...

O"E2Z. j

O'E:OE

-::-q-

~'.(\1 :--'"..,..,

L: ~0

01 nGJ c:r)C) L_a DZ c(fl tr;;L /f-

.'~'::; ,wEe ,L....:-iu~W ~-0 ~; ~ L-

0...--1 1EF=~ ;

XEEj [EwZ; ;

W L...~ i .."""7.-

I ;

0 tl0 0 x <>~ IlD i...--L

1m 0-,

'=-I .L-->- ~

I.~( ~

c .~ ...

L! ''\1

(ri ~-

IO'EZE:

S2 sac --=

O'E:7€I

0" Ese.O"[BE()j

I'-. -LI I~. '-'

::LZ

_/,..--- ..--J~ -.~;

cZ~~\J

1

IIII

I(\11'rlCD 1

QIuj

II>1wiiOJ!

r--, i(i!r;

Page 246: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

59

.' 0-,.

, ,--'-

-' -'-

L~

'''-:.-

,~:. (

c.

o

o

...;;

10

l-,,

Ie:r,D1('11

L

:\\\q\

- ,", \", \

\,

IO'~~. Co=.

()i

" \, ,.', ~

\\

\

i\\

: I

: t\ \',1

J-~i

\ \:', \0\

" \

\,\,\ \': \

.\

II\

Id:, \l?\

ii,i

\1:'

\\

\\

\

iO'EQ~

,I-

I1III

i~

~--.t

'+-If)-N-I N L

G

0:::8 n{JiG

OS; CZQ 0:::'" E:=O:::b'" ;

~ W-~ wE'D0.: -C) S;4l~X~Q a:i=:""

¥ WLL!ffi fE~~Hb 0 x O@

"

Q'EZ;.-

-;7",-',-,-

f-(,'1-.../ /

z

~-

r,-L....:-c::c,,-...,'-'~'

, '

!--

(\jn~(J)iT'--,--

j

--'Q]orin'-'-

u

CL

Page 247: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

60

:T.-.~

.'/"

LJ.~

.~"..... " ..,-',.,-"

.. ,",...... '

." ,-,,~;; ._-

.. ..1

:."..:

L..;.. "

'-i.,10I-,:'-JI ;n

c>r.-i .,1~

H'oGO~

O-E:2E0",...=c.~~, .....Jl/I

I

~

O"EQ\;-

; ; ;-.-

--,./-'-.~.

'.-.i

WI

Lo

Page 248: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

?I~[) CC)l'~'rHr NM[~.,rr STAI~DF~F~Dr=)I=~Of~JLEr\ll' (CASF)2). . .~._~."....- ... _~..-._._-------""'-_.""--_._--~'--"---_._-'---'------------

Cl

('1 -

r'J'f

I

m.......

x FRfiNCEo ~,II:::TIHLRI\I[lS<9 UN I TEll I::::11'JGDOf'1

I EXP.ERRORI-2.5/+1.4KIo DJJ. Icr-::;;DOI"I;21 Ip BELGIU'"

D

CJ

m.-CJ'f

rrl-~lm

..n.....>:;:;;;;::;::;:::'::.:.:.:.:.:::::.;.;:.::~:1~/~::=C~~~~=~:.:::"". ~~ . . / ""'~.,~...........,...'/' f .... v"~ . " ....II.! c . /' ..' . ~ .. ,-~--~-- ~~.~ .

cr ,'. .~r ;/(' . (-J' ",..,,I /. .--~---_. e e-"'--<>-'-"--- "---.."".)' fri ... / J' .. v if __ '" _---\kD.._. m .... / .' ..-'< <I'I..... ... / ~ ",,1\. ,.AO ,-' _ ••-' _ ... -' _ • .., .. --- ••G~ :: / ./' \ i"T -~/,-- -'-'-'-'-

8'.- : / I V' ---, . - ~. I' ,,," -~

.__j c' I .' /" .--""J ... -' f'i' ,,/'~ -----"'. ' . ,/'/ ._--n... " '{ . I J" ' .-.; '" . ' , . / / -(.

[J ! / ."'/. /'r'" :; J./ r-/:/ ;~

o / .' /'/'

M- ./ /.--)' "/,,,/rn I' . /

... 1;1 / //: I /c~ Ii!;' ! /~!;.I/.I /"r1 ri~~/'

r:l

Il; 46

(Tl

l\l('.1.

(J,O

r .. "'1" ..._-I ... If.- ........f.'..r .....-r ......T- ..--.r---.'-I ...-.-Tc.- ...T-----l--.--- ..I---'.- ..r ..... T------r-.~ ..-..---r---..,'i,(J (I,i) L',rj 1.0 ,::'(1.0 210 aJ,O J2,O 3(-).0 "10,0 "H.O 'IrJ.()

. 'T I 1'11.:: (S)r 1:1'/11 '. : '1"<I'rr L II' <; [.'. II 1 ~) rex:(( I 1\,] CJJ ilf:':] r:::n:rTl'1 [']\rr I ;,f)

Page 249: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

- 62 -

Long term pressure- and temperature-time histories of this experiment are

of interest with respect to fluid-structure heat exchange processes in

particular. The results of calculations. compared to the measured. pressure

are shown in Fig. 47. For the time interval 0-1000 s one should keep in

mind that the leak tightness of the model containment at elevated pressures

is not good, probably amplifying the pressure decay in the first 300-400 s.

Fig. 48 shows two temperature measurements in comparison with calculated

terT;erature curves. Note the considerable differences in both measured

curves! Finally predictions of water masses versus time were requested

from the analysiststo. be compared with rough measurements taken at 5

distinct times during the experiment. The results are compared in Fig. 49,

where a large experimental error band .associated with this type of meas-ur,=:,lents is indicated.

Page 250: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

- 63 -

;-

, ,'--'-

L1-

."'.'

~.~! 0I

....I ~;-L (I) r-i

I 0',1~~~ 1_:; 1

I ~:: -! l-;;!r ce:I'~~ eni:; CDI LJ~ ITI ~ CL(-0! r,lI :'f;\!

j-II ~ !:'j-O -..:r1'7.'"I r-J

,i10I •1-0

I<D0)

ro~~iffi

~L~IgLI10

~~I~irjIe! .• "

jJ. I.

IJ

I

~~~-=-J-jI I I i

c'2 9' 1 O"!,

EJ'2I I

.0' ~ jr"E:

(t:Jd*s-OI

x<>(SI

f 'll[f,f

/ Iii I')ill i

( Ji!! I/i if /ii!

JI ill (,:

II J:'II j:i(i~~!1 );!f IiI I!~: (:

/ i (!tb 11:/ ,~I:/ '~:; {'

/ . /11/,I t'P l,/1 I:

1 n ~I 11 r

/ /1 f/ /// /'I III':

q:; Iff <tJ! It! j

/ illII flI j I .

,I I .I I .; .I /1 I j:.' I .

;' // I :T/

1//:1.' /; // /1 / .7

/ II; J'/ / :;

! // lI ,//.,/ / "'.;/

9Si /'£ /" .;-~/ /// I /

I ',~ /,.1I -f' " ./// ///

//ft /~ .

Jc/l g"/~ ...

0'-. <'.-..!r<,'---- :~ ~_.

Hoo.ij

0---- iLC\J i

iiI

I

III

Ii \

2'5

L::LJ-JCIJiellCC!0.-- i'

01cr''IIql.Ll([I, Ir-I([1 ', If-- I'

7wi=1/1

!I

iT!I~!'-I// I

°1'(,.-.-J I

I

II

i. ~\J I

L..- I.U) Ia::u

Page 251: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

- 64 ....:

.Z

'-i7(~

L_

-- :--.

;-,-I~~"'J ~ r-r-

,,-

I '~i~i!I

I1-

'.::;

Co".D

j. bL.,-.to:-s-

.-'''~

o

r".i. ~!-ol(j!

IIi .::.'I •'-~!COiC)

~I!~lC'imjCD!i-Ii ,~

~"='1 0

JQJI ,

rII

: 0': ,i- ..,

iNI i'--I

LI

10f-~"l3ir- >-

". j r'-)-"1 '2 : i

I' .~'

i-~- f-('! CI)

-----.--- -----------'J)-~--~-~~~--?, I 'I! 1, II

r ,I I ~

J II II / I j

J I I

} I I Ii i i Ii I ! I.:vrp ~-:f i I (~. I ~

! II i '(I j ;I, f #

,/j If Iiil,

Iii) I ')l I IiiI I IIIj. 11/! i Ij I

l/ti"1i ! J!

I I /1 I, .III : II,

! i ii/:I: if: ci/j if!'

I, I"~ Ii IIII

1 i J//';': j II:

.+4 !~'f

/,'{// 'i'!1;/ !

I; ,..f 11":,!I !~ I,:!JJ /1 ./. "

r)! ! i i,If 1 '

! I // l ~J I

I;' ////! 1/ I :''/ II / :

/1 ,) /:/,'! ) ,./ '.

)/7//J,! ;',:i t./ /'j. ~'..:.> I [j

1;7' /:'h '.'7 I:'~ ['II r'"

/i-\ 1/'"(;' '=-;-:. ,'~l..,' .... ~

~~

H'o G C "fi 'x <) <81

'.""--Z

~LLJJ

Lee~I

U)

,fj E.2~

'~

i I- I i

O'E9E O'E~E O'E2E--1bnlJ=1b -idl,..J31.

Page 252: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification
Page 253: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

APPENDIX 2

A~di.tional Information of Partj.cipants

Follow~ng a suggestion on the workshop the participantsBelcium, France, Italy (CNEN/Pisa) end Sweden sentsupplementary information on their submitted results

•(subdivision or walls, heat transfer coefficients, heatflux to walls) and partly results of parametric studies(condensate draininq, heat transfer coefficient phenomena)

They are in above- ~ti0ned order content of the appendix.

'.

Page 254: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

Belgium (Tractionel) i\ . .\..

::3,J. inC .i t'. ~ l~tt \.1 2. :: 3. .""1 II. d C 0 C..e 0 p t i 0 ~....S -3. S :-. C.I c q i) e (\ c L~]. c u 13. t ion s <..1 0 c a-

the

con cj C :-'. :2 :"1 :-. e d :r- Z:1 i n i n g ..

The S~::..:'\PCON cod e s i Tl1 J 1~~t ~S a 11 con t ct i 11 1:"1e n t s U DC 0 :n par t lii i:~n t s a s 1

reg i c r-~ 2. nd the SUIT':. pas a s (~con c?t r e \~j ion '.~1"'1 i 'C 11 i s not i 1'1. the rm 0 -

dyna~i2 equilibrium witll the ~itmosp~1ere region.The S~~~ coll~ct5 hot water from differer1t sources

_ br2~~flo~ £J.2shing ir1jects part of the ~reakflu~d direc.tly

inC0n~ensate draining from the c'old walls',spre.y f 10\.,

The ~igu~es illustrate the pressure and temperature transient .f6ra co~~cns~te thickness set at 0.25 mill, assuming that '~hi5 is the.ma-:{i.::"';:i.rn unif9rm repartition of .all liquid in 'the' cDnta.inmerlt i.~lhich

is alla~!~d on the cold ~lal]_~, and any exces~ liquid dr~in~ iQ the

The c"'::lt~:=:.i!~E~~nt pressure a.nd tCInpc:;:::-at,ure m,3.Xirrla are no'c. no'~icebly

:.l if: :2 n t t r 0 fa t f'i ere fer e nee c G- 1c u 1a. t ion (\'i her e t hie k ne s S T,,"; ass e t

,.l.

- ~...., \_.;..:...::J excepc for the liquid inventory in the sump ~ig.

~abls, 1 speci'fies the .spa'tial meS11 s~~es for tl1e containment heat

sin}:s ..

Fig. -1 illustrates the pressure. eve 'ltion of the containr:lent

Fig. ~ illustrates the temperature evolution of the contain~ent

(average temperature) and the .....sump Vla~er.

7he ~~l~ulaced time~leadfor the containment temperature is

c a. U S F: :_: by the 1 ..., 0 1U ill ere p r f2 S e n t a. t i on 0 f the con t ?t i n rn e n i: I vlh i 1e

i~ re~lity, the dome compe.rtmentis located at the end of thech~i~ of comp~rtments~ While' pressure propagate$ with the .speedof sn~~d# the temperature. ho0ev~r has a mucn slower rrapagation

Th~ tC~?8ra.ture stratification recorded at later time cannot 0f

C01.1:C2e, be reproduced by a 1 mode simulation of the contD.inment

Page 255: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

(1' i-: '.""2 ':: - "~~" ~ t t~ C; ~" ~; r d t ur 2 i ill ["l e d .i. d t. e 1y r i s cst -:) a b 0 U t. 1000 C I be in g the

tC~~~~~3t~lre o~ t11c ise11thalpic expaz1sicn oE the bre~kfluid downto 2c~ospheric pressure. (The illitial SUI'? liquid voJ.u~11ewas s£~t

3m ). Tht~ tl~;,!lPcra"~ ur '.:~ as no h ~~a t sin k ~;

.t"l':l. ill u st -:.:~1"-, ,~ s t h~~e or:; 0 1u t:. .i\)n 0 £ the heat transfer coefficient

us in.:; the ~ il. G.~;", _~- USHID D cor.r c 1 :it i 0;: s ( E 10 G,J).

'i 11u s t ::a t -2 S the C G ]. J. \-/a 11 heat flu :-: d nd the he:.::.t. r C ill C val

fro~ t~1e con.tilinment atmosptlcre to th~ SUDIP by condens~te draininqo

Fig. ~ ill~strQtes the repartj.tion of t~'a fluid in tl1e con-tainm~nt'"

co~~a=ed to experinlental data. This figure 5110w5 also ~11e liqu",din'le"tory i;1 the sump for 3 differ .:,t condensate film

Ccnc~:..::' ~ns '=G;;'CQ"t-n_inq this parti-cular exercise

r:icknesses.

1. ~t~augh the use of. tl1e semi-empiric21 TA(;A~lI-UCHIDA corre121tion~he c C:~:.? 1e x e 1:. e 2 t. t:r- a. n s £ e ~r Tne c h (l n 1.. SillS du r i n ~1

ccsplete .tranSie!l~ is ques,tio!1able, it none-theless reprod1lcestbe press'qre prof"ile quite well over a range of lOGO S (fig 1)T~e pressur2 peak depends als ..~ ~t~ongly ,on SllCh parameters as.9':..i :-:"t ch 2_ ~ act E' r i s tic s, b rea k:= _ :.; f l a. s h i ng, e t c . . .

2. ?iner modalisation is reauired to reproduce the te~?eraturestratification in the containm.~t atmosphere, and sump waterh~at sinks should be modelled to reproduce the sump waterc:. ~ :'iP e y a t u r e (f i 9 2). T his par a m 'cot c, rho we v e r. i ~3 not Soy e 1 e If ant:s~ ~tru2tural integrity evaluation.

) ?arametric studies on condensate draining did net affect thepeak 9ressure very much ~or this test, but aff2ct the depies-~urisation rate after 100 s. A best fit with the water inven-

I

~mp was obtained for an overall homogeneous con-

c':':=nS.:itc film t~hicr:;;ess of 0.75 rnm (il'] 5).

Page 256: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

U)H~,-r

>-:J;:;.f-'.I~p,

(f)r;f'\H',~:JnCD

I U)

\ ;-~I,:III ~~

18

lu'I ;.~()

:j

I""i

1

1 ;::

f~

~. I:e-<::;; i--(

i'..~. r'1J.'., I;J

total thick-n2S:~ (mm)

~'L0Ul

oI'J

CD

\.0

o

'n '':')() :.11::1 t .•.n "Il [1'(\) m(T n,CD

....L0i.)l

lD

)-,..0'\~J

,.~-.I .

,,:'

f-JPJi<

I~ I ,... nmr.J)er c,Y: I I ~

...... ....._ ......._ ' Ul LJl I S L'!:) La.y ( , :3 I- ._----_._~------~-_ .. , ....__._---_._-_._~--_ .._._----_._---_._--_._---_._--_ ...-

\

,:]':Jk

I r,;.

1I I"

I I ;..~-- ..------:r.~-..-...., -.- ---~~-- ....I --.------:~-.- .---::---- .. --~.~-.-_~.-----.-.-I-------.. ~" f1 rr PJ 111 •• terla -- I ".oJI~ fD ill I~' I ,.J [--I

Ii) ID (0::J I I ,...--..-----~:-- .._..--..-.--.-~._.--.-'-.-~~~..,.------~~---t-------------- ~ 1 ~

tota.l tl.1:lCk-. II-~ ".p,ness (lUlll) I,~

Ii);~

N>-.

111ctcofDf-'

,.~._------_., ..._-_ ..._~---,-'"._-.,--.I,._ ..,_.~~._--- ..--~....--I-----.--.--,~._-_.-.-.__.

('..Jo

w

U1("1'CllCDf-'

o

LJl..~

,1:.

,........

~j P'f-" I-~

C ~:3 ::1.f"I

(:~'1

I--J

n 1;' I ;:i {n ::J L~ .1:" ,.' (n () ~'j

j0 (,'J

0 1-' ([) 1'1 /\ (D ct- /\ fD IT [Ii f1 () rr

!J :.:-t III C', ~l (l) :J m -. 'j ;~l ,., m<.j

i ' ;1\./ rr I1j (l IT< 0, ,-I' liJ I" () <D

U I.." Ul 1-' /'. Ul i-,l ./\ (,1 ;._, ":-'1 (f, I'" I'; 1-"

:J :J /\. ([)

(Ii ".I. >-., n ..... n 0 !) " 0:J (~ Vl () I'..) 0 Gi ',j .;::.. 0 ro ()

n :J " El ,:1 J <:r.:.(,] I',') I{j In 'n ()

0 0 0 0 "j

I I I I ([I

0,

______ .•. _:.J .... :........ ._ .....~ ..I I .... c,-.....---------

~(l I IJl \' ~) I ~1\::':" N

;') >~ Inumb8::':- 0.£ I I [. 0 N s\Jbla~'G[s I ,. !r-------- I-,:;-;;--I--;;--,:,---I---------L.- - I

;c g I' ~ g I molt-elL:J. \ \

_____ .. __ , , .1 r---------.-.,----.-:~-~.--....-~~-- 'I (11 I ~i . -- ~~~~~hicl~.-I ~ I ~I ,~..... nes~; (mrn) I ?: -:1

_'__ ".--f--- ..----'--- .....-----.,.----------- ...."r----- ..-----_ ...-- ...-~-- .. -.-~ ..--- .-.....------------- i f-~ I gj, J1urnber of l!~ I ~

t-'" r.....t. (tl I_. . -; ..... __ . .______ I 0 0 I s....JbJ.a'ler.s '"!jI -1----' -..--------.r-----------.-.-----. ----+--..-.---------1--;-----1 I ~

I(') n () 0 ! t .':\ 0 '1 0 I ma ',:;Y'la.L 'I1J ::J (') ::Jrr I r' I Im' (D----_ .._._--- ------ --- -- -_.__ ..._ ..,._----

".'--"-1-'-'---"'--i •__...L_. .._. _, ._..._

.. _ _. , .. _. __ .. _. • __ ..•. _.... .. .. _ .. __ , .. .. __ . __ .. _ •. _- -----.- __ . J _ --- - .. -.1----------- ---.-..-- ---- --.----.

\. -:-. J ._ ..,._. _

L.J

o-.l

,-:}

c;

...:l()

o

..-".01

1[':"

(Jl

o

oo

Page 257: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

; !

i I,I

ili I• J, ', I

IIIIIi11\ :d11jiI;

I!. ~ j

H

IIIII';1

III'I!IiI!III!ilI!

11j1

i i! i, I

,.--.:, .\.....--! I

-Z;lo:i,. - L;--... ;.;....:._: :

N

C

(\J

, i• I I I

- ~-..~- ---- ------- -_..~....----- -~--,---,

II Ir-'-i~

! II

==L= /.LLJ__ .i- '-~:~! --.- ..--<'r--.'-:~:------ I ~------, ---j' -'--J- ' ,_/ _----- ! ! t //:_--; '}- j~----~i. ~ I !--j'----------:---r 1/, ., I, ,/!--~---l--'-~r__i-1 ! i z;,' T1 i i / I i

I ,I I L,~f'! II ! -1/ 'j !I, I I I AY j--tJ in-t/ i !

----+-I---+-,( -i --r-I I /;7 III /1 I !! l~ --; I I ;~/ ~--J __I _---1---1--,-77"-i/-""'- I : I /) ii' I

,I ",/' :. /1" I: ~/ I ~/i I I I

! /-Y'/'/ ! I I CLr I . ! II, ' ,----~,' 7>" i// t" ;~Ii. ' -j !~_ -_-=--_~t_- _' __ ~=-=-=-=-=-:-=---_-_-,;-~;-~-'< ~---------,-, _, -~-----'---~~- . /' ." /'"1 "---1---"- -'-- __ ~ __ __+__----<>/ 7 I I______ .~ _:~t> I... ----JI',

;.;~ /1 !! , ---f--_--;-

"-- /, I I./~~_ i \ ! \---. -/~- ----, --~,----, --[~ i ! ! i i i j. 1

" ---~- ~---L-----~-____;______1------1--i --,-i, ":~~ i l'-,.' ; i Ii i i I i

I ';<-...::-. i ' I, I' "-~,;~, I I, \ I' i'---1--:--.........7~J, I I i="'---.J ,I _ J\ I \' ;- ~ :Ii! ! ~I ~,J I' NC::j \ i 'I' I lei

-....::::;" ,',"-..\' I \ : t i I _ ~j i

L=t~j=--bi--'-J~::i~M~~~F=-c-}:::-':r-----:--r ii' i l"'~~ \ i ; ",i t-; l--,-'-- i ,i~, i i ~' i"\., u.. ji ----- ! - ~---:....----. --.' -,:: . i\,----I -:~ Ice;

j ~j', I ", '

I~--i--l-----~--l\"~:\ 'I\I---! :!i :! i I \ t, ! \ I '\; i t- ii-~--:--T-I ; 11 ;:.~(~\\ : \~?:--1

1

--\1 '~! I Ii \ \1 \' i 1, I CJ~-~~-~~~'=;~~~~J3~18__J~~-~~~-t---

.~-"':"-_-_-':""_--' : II' ! 1\\ \j i.. ii \.I ' " I , 'I !' ,: -,--' _. __ r .. - ~"-, ----!-r~-;----'----i -r---r-...~I---r--I---l - i ! I \'\ \ III

. , ! i !! ; f f \; j: I ! ,------- ...:-.-.----.---.-, ,__ ll~__ '_._--' -~.:-~-:..t'----:--~,'~---t--i:-..~,',.---_._-- l I iil

1 \\, I I '\ '. r t 1, \

I \ \ •--_:..... ..-~--~,,~ •.._.. ._.:.- ..,.__ ._---_ ....., '

-------------CI<--::J illv;Vl l-

~ QJ :J,L. '-'1

:J D_ l~

<0 L'1 (J) (OJ.I.- 1-..

(iJ:J :1 c~L.0 U) 0.

"'D VI c'~ l-

C(J <lJ C d-+-' '--- ;>

0 d Q..E ----' t:i G:J'--- L). ......(J 0'--'- L.. l-

X V ..... cJ 0uJ U n D.... 0...i-

II

..... > a'0... t..:.... G-.

.-1

'~

/"

, IJ-.J

':::...-

...~._1._

...~

-..., ,,~,

,", __ I

r,--.: f .. -'

:-;i i •..

Page 258: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

I

IIII

I,.

'III1\

\!\.\1Iii

IIIII\!

II.1iI

I

R9cd roof of

d'( bottom of R9

cthnosphe.re temperature

"i' r-- [''1 r'. I""" r'" 'T J J \"\ r:-. I" .,,' ,... ..( i 'I ._( i'"~.~! . L_.. 1-1 I 1.... I L.(-...(-'),.....!'-~' (.'"r'l' J 'r " 'r' I' I ~ ..' roo :, I. T/.. -., .. _-t-. 0, ] I' , ..\ \J 1\'1('" , ''.J I '-.. _.. Q ',~' '... '. I r .. I. . 1 _. : '.J

1"- .,. / .... ...,.- I I ....I].] c_~~

\:

.1

'1,:;

:~. ': ' .... \ _. "\ i - !'-1 T \lr-""- --T" .... ""T"l -.\ T \l r'- _. "'T" ....\ ".. -"'l"[1T - - -r -]-ITI rill!: ;----J- -I -i-I- i ::I!- -- --1- -- --1-1 + i \1-- -- -- -1- ---\i -'1 ---- -- - -. -,-II'!

I I I I II I' \ ~ i \ I \ J I..1 .- .-- .. -1-- ...1 . J ....:;'.r:J.\J -- - -'" - -' -1..- '-1-- .1 -_ ..•• _-- Experirnent 0 16.' .,.- ' .", - "'-1"" -- . : ' - - - - - -"\ -, /"1 ., ~ll'r \'\': __ .., 1 1 I \ I . I '1", ... ,;' 1 '1' I ..-._- '-.. 2r I : ' I !! ~j .... J 111 r-J ' 1/ . ~, ~ 1 ........'....... -- ~~ '-- -- ,. -. -~; I ' ,I I i I I '>~<.':~__../1 ._ .,. J 1':1. ' ,,__'::-~.•. . ~ _' _ .. " -.--- .. c(tlc\Jld~d, \ -Joo _-\ \ \.j \ - .-- --\ - .-. - - --1-]-\ \.\;;. '?'.. {, \. J \'" "-. I

.' , I [. I /."'1' .r ....., I'" " .

.". . '\ I ' I' i I ..-' I ~." 1 I l ' \ /1/ 11 Ie 0 n t ,> JI I • I . 'I ,I ...--- /1 ""i I . • t ,~- ... I '.~I (J " • i I L_.... I . __ 11. _' ._l .. -' __ ." _' 1'.. ,._.":::' - _.""',- -., .._ .... -,~.. " : _.. :'. ' ",..... ,.... i ,.' .. ! I •• -'- .... \ ...... ; oo-. ,-'17 ... I 1 .-:. ') I \ ' ' ,(') .. I. ,- I, I 1 ,,', lic') /1 . '" .

: :'~! \ I \ \ III II __ I_JJ_J-\.\.\~:iJ,.-J I_\-~, __ "'- j':j.\ -(c)\JlI~p:Sl\mp h~mperGtllre! ;'.~ \._._ ...... ;._._ .. 1.--\-- _., -'\ .. - \ )'..-'.\ i \ I I\! // I I I! \ '\ "'!"UP

, I ~:\ i \ I III! II _ _"/.1 I-. _J ,1.1 11/_L " J_,.I. " , -- ,- -)~ - - '\- --, 1-1 Tlo: ,leGsu," dtemporatu r'

;"[- ~;-rr-I-III r ~,:0/1 1 _ i JJ [/l-- 111_ - __ -~,:,-- -'~',: ;.! .(.. - ._---...1---- _.\ - \.... --1-\' H,"7 ,-" - .-- ....-- --I'~II,'j 1/ \ t I I ""l \ l\r \;: ,': <") I 1 I \ 1/ I] 'j",,, '[up , I ',I. ,., ,.~ \1 i \ \ \ \)\ __ ... J__J .....J ! :/11 !/L.,:.._ .._.._,__ ._~-....l.-- ..... 1-. .. ,. _ .. ... \._ ---'-~'I-"'r--t"TJI.i 1 Tup; HeC1sured temperature:! ,.":; f:: i-'--'---' i--" ..1'-, :~Fr'/Iri- r I: ,!/: \ \ I \ [ ", .,1 II:,; ! I I! J/ iJ1J. .._. "._ ...' '__J --I.J "I'/J IJr.I_- _.. --' - _,1 __ ... _ --\, ... r' _.. -- -I"-- -_.--...l'[''"''':I'':! :-. ~... - oo-.. \"- )'/T"\ I \ I I.f'>/ \ i II I \ l I' ''\T\o.! • : ..,/o" \ 1._\--' _ .\ .\' '1 • - .. "J~(I 1-'1-.1-1.\.- "-' .- ..-- - --I .\..., - I 1\ ... -- "-1"-" - ._- - " .11

, ..- ._. _"1'_' _., I 'I ' I I' I \.' I/'I I .' 'I1 i./ I r' I I /f;..... I: '\ -: -=.\1--_-'.1_. I ..~I~ 'i"II'; !~~-".~".-.-(':'''''~ I '1.1 .. J ..- - - .-.. ----1-- \ _ ..\ : ..- _.. -"\1- - -- ---1-' .> .. ,-

': ... - .. - - .. --- --I -' .-' - IT -; -- .- ---- - _.--- -I I Ii i ;:' I I '!! :;:- -1- i_, 11-1 1- -- - -- - - -\11 -- -- - -- - .I -1- - -- - - -- - - r'I : I \ L I. \ i " _ i_J...._._1.-.L. LuJ_ ._. .. I..--["j'- ..L ..- .L.._ .._-' ----' -- ,- --Ii ,,_.-

1 • -- --- - ."- ,.' '-'- - • 1 I ~ (I l \ \'\ 'j. '-~---"\-----\! \ \ \'1 \ \ \ \ \ \..1 ,\ .. 1.,..__ - -_ ... _1_.\, .11------ ... --.- .... -- ...... - ...i .. 1t .. r.j .., .~:. _..,_.....;_. 1.1.h'.I--- ....., .._-.I-." ...,', 1111 I I 1 I I I 3

.'. .,,0 ,,-,1 102 1(), ": (. 1 1 U . i. ') .

.. J " - F-- ~ r. ['j "'.,I) I'" n ,,' " 0;:' ': c. I',' '., ("') IIY , ..' •.•. '---I j'" 1'" I ,'"T I 11 c. RIl.l l, i.l '_. , I \ \.:J L. L -" • J. . ._.__.__ .... .... ---- --.---,---- ---- ----- ----,---.-- ..-i I I I I I: I . -_._'/:- 1- .. 1-- "j"'i'-((i i..,,:: ..~::.:.::: ..~ -r::-:I .. \i.::tTYTr:.::::::-.---.::-r::::- (""".("ll'.'.lIT. _." . " - _ 'if.

Page 259: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

"L~f~ ~10

j -I 7~ g! ,i ...,1----" ~l i~I I ! I

I I G-r- I I 1I , I :Ii I i -1.; I

I,! I LJ-----I---j Ii '. - f II ! 'l 10I. : 5 :J 0

./ I ~

/ ~.

I1.

I!

II

~II

I

I<f.tor--.- !-t~ ;U)i~;

¥~iJ

I

.J

LL 7""LJ O'o !_U <r.

.-1r_ ii.Ju_

cz<:

0::olL

(o.J C ..L... (".ui .'\-,"'-1

j.- .~

<::L-.L

Li ~-~::-'- <,'

1-. C)

lJ~<.[/-.,.

0LJl

.-.:~ -~0 r-r--' ~),,=} ,:...

~. l. :0'- --.Ld -,

(\";

~:::L

~-----_._-------:

:._} C) -",

'-::J';J '-.'f""; t,=:: (:~.: 0

..c .- ....~., ( ...... (~'-'C"',-! .. ~-:

Page 260: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

'-.. ' '-' • ,.1'

~ I.. • 1': '::~

cont.aln 1,,\ ed

worer ccltf'c\'".r;.

-_.__ ._------------_ .•._-_._ .. --_. _.__ ._----_._._-_ .._--_._---

pnidrneter j :cOI,densC1{(~ thickne~;s

WCl(N ccnde!lsed on wdls

V./ertel' colleet",d in sumr') and

V/utcr c.olle:etc.d in ~;urnp

._ ..__ ._,:L:. ..Q!~~~~--....-,._--_.,------"-_"_'_----

•.-'..9'--'::"'_"- TC\~al wClhr invedory in

___ ,_ ... ~ __ ..,. E~(pcrim!;r1t DH.i

-------_ ......

r"_._.~-~.:.?,._.....-.._-

If'-'_, •. J

~~,~.

'01ul.... 10..:

..t ~~,

y:;:\

[1~I::J

11'1"-.\

- --_ ...-.... ~

-- -_ ..__._- - -r.----.-- ._-----.---- .-._.--..__._-'.'--- - - ---- ..--- -._.,---" --_..- ..__ _-n ~'" 1 .. '". r"'-'" 1; __ '- --- - -_.-- - ---- - ._~- .... - .•••••• _. __ •__ .-

! \H\ (2:, \'C" •.J ,., , -"'--

",.;--_ ..---'

..~..,

-r--- _.-'''---T'' --.~.,. h __ .. J _ - ., -. _ _ ~ _ r- .._ __..~.----r .--'--'-''''-~ . ,_.._.__..,.__w __ 't ..~••_~~ _ ..•. -_ I- :._.~~.___.. -'.I- --- ---.;-, ----" ,~~;.~:.•••,.

2eU 3UG 1"'I(j SOU liUO 'i'UD \::,00 ~:()U 1(;UI) t. ... ts) ....

... 1-'""

_ .....

",.......;,..

Ie.)

r---"'" . ~- ~_ _-_ .._..

.ur

"II :<T .

'.:': • .J I.\-.' t. ~--~7z~~r~E==:==-=~::-~~;:o~~~:-:1

/' 0

II

f

I/

/

II

.I/;/I/II

/'1.;"

/I

/i'II

III /_.--'"

11/

f

IIII

i!IIIj'

-IiIIi, I

: I! iI II:; :

'J Io.J ~-1

It;i:,

./ i~~1t

.' ~

.... \.' 'f\ ~.

/1 1./ I I \1 ~\

Page 261: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

- ----------------------------------------------._-----.---------------1 ~.

G..-:L:::>x If) <lI

:J ......<- 0<l! l';

..- -- cc Vl <11C) C -0.c 0 c

L- a O'lu C

'J

3: D E c-"D CJ 0 d

I L-aL) -0

G;

-1 -J

f"-V

L..:, ••

Lc.

c

.1I

r-------:, ,

l-------~-.-----------_1-----' ----+---------,i----:---'~!---1.---~----_.--- -~;--~'-------.;~-------:. --!===~==============--.~ T-" ~:~~

____ .~_i ~_--_-_-_-_~_l~.~~~~--r--_' . 1 1-!~----- I Iii

1./ i'f'I 1+-ill !

! ! l II--~--:-7~:1III :/ I ,;I ~ i "t J i ~.

L-----j--. --,::::~:.~.=._=__=_-_--_-,-=--=-=--=--=--=--=-~~-=--=--=.-.::-----!_. :---,~ . _.~ ~__ . : ~:_,~=~!_.J ./-~!l t 1 ; I ._______________ _ -;_----.--.-Lt-_..;._

-----~--~.---r----:..:----:----]----;----.-==i=-;t:=~~--==~t--;l-==-i----------- I I ./ ~----~--7'-r---r--------------!--.--~-: ----!----i-----~-~-----~-"-r~ -----V.-i"---i-

l~'-t----r-: ----'---:.--/-:-- -r----i-I /'1- i Ii! ._~__1, L1,'~--J---\-

------(--- I " . . 1 I 1 'I

i I' I • • I 'y"

I ~. ! . ! c! i I I I""; ; ! i I ! I l" __~_~_.:: ~

b,-~~:_I~ _~~~,'.=~s=~;~_J...~-~~_i!~p,~~~---~i- '::=:1"=I i --._ I !__. i -_:.L___ )- I."

l-;__--.;.-_-_-__-_-_-~-_~__-_-_-ri~~~_--.;.----.-'-._-:--:-r'~~~J---'--..-------1 --_.!._--.L:-; " i i I' Ii: I l'_~' ~ I. ! :-

1 . ~l".L I '--------------1.---- ---. -----r-:~[" ---111

.--;- 2 ,-

I . I. ,I i 1 '~<.-:~~=:===-:;;~~~-~----!-:]::::~==- F:J +-- (~i:-::. ------1----- -----------:-,--~\-::---.:------.-

;--~T -:_ j-:~~i ::=~---1 -I.: _:",_ :,'I~--'I' _> "l,.,---Ij- -.---r----r--r---i----~~--~:--,..-.~..J.

i .! \. ... c. I_:__ ,_.__ ._J_. ~_.: _. ._.. ~ .----.

.j

.i. i, \ i

- -' --._.:.- --_._---. . .

: - :\ ~)

Page 262: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

Canada Cz-,.ECL)~'------~---7--'---._----'------- -----jjI\

:..-';

...._-~--,

cD,:-::.:~

,(lJ

-.l...; [~

C

.> )

! .1--,/~-

(lJ

-~

,

v-...J

, ,I

~'s:.

~..~ ~~

"--

l.'c

L..:

()

i_

n)rl~..;

- ~

0r:~

----c

U

.~

,.-:-

- --- -- -- ------- -------------~--_._-.::_--_., -~-;

.~. ,.-"

Page 263: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

France (CEA)

The heat t~ansfer correlation (H) used in short term and mediun: term calcula-tions (when steam condenses on walls) proceeds from ECOTRA tests. It was etatlishedtor .steel c02~ed or nat. We assume that it is also va1id for coated concrete.

CurVES 1, 2, 3, 4, show the cor~e1ation val~es for concrete and steel in each

In the correlation, the temperature diff2rence (6T) bet'lleen 92,s and surface is

at. a n2.gaclVe p{J',.;er (1.:~;s "thJ.nl).!\s the sUiface temperatw'2 of concrete incr~ases mOre

quickly than thE one of unccatedsteel, H increases more quickly teo. It reaches amaximu!n value of about 20000 w/mcok whereas the peak value for tagami correlation

, d ' '. . .;, ~{"\f' I ? 0 kvlOU i. nG.\,'.~ been :3bout lLUU \A/j niL.- I. ..

The heat flux is nevertheless smaller- for concrete than for steel (cunes 5,6,becau:e, in the flux formula, ~T arises at a positive power.

fv1ESH SIZING

.T~)2 descr"i.ption aT the \:!all mesh SIZ~~'; us~d In GRUYER cOrDouter code is

available in the append-! x 1 of (1). A copy of appendix is attached to this letter

KINETIC 'ENE2G'{

In each subcomportment the mixture is considered to be in equilibrium and instatic condition. So the last colomn of table 7 in (2) should be modified (Ek = 0.).

~~ Containrr:ent StdJldard Problem n02 -a pi~e break ~ ~rench short repcf't PreSSJre Distribution l,'Jithin ~..he con: __~, :;jiient Fo

A. fi1ATTEI, D. F~OY, I~. SONrJE-~ (URE/STF~E:/LHTA/80O'd ng29

~) CGilipatlsc:"'1 '('~.?~;o:t on OECD-CSf,~I Containn~2nt Stance,cd Re:Jcrt n02.by U.L. f~GU'!'EN~.may 1981~

Page 264: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

\:.:..:

u:z

j

~

"" • ..-.:.IO~;'~~:..;";";~~

c)C'

a

a

VJ

LLJ c.,- T

L:..r-

aLJ, ,

r.':":u

Page 265: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

w

<L'_

~"r:-,'--

~--............. ~~.~~~f!lC "" ... £.. .:~' ...;

.~:~~~~~.~~.

,.::; C)

0 C)0 c-c-....; --'

(/)

N

LJ..J .:z 0)

~ LL

«[Y

f-auw

wwr.-(f)

0...U)

<U

o.

Page 266: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

0-1

UJUZ<n::::LL

r/L._

LJ r--->- .V

-,

'""- 1..0-'-<..')

o

(II,

1

c.o..=:J

f .t.1! I

Sf (Y)

ii 0 u..!q- :;;: O'l

Ir>--<~ LL

s :I',I"I:

I!

j>.

LUt--WCl:::U:z:0

.-' <'.J

n..V)<:U

o

Page 267: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

t.....:

0 0c ,~

-, 0 0,-~ 0

''';-1 .-i

oCY)

oN

o

o

w

f--

t-OUL<J

wWI--Vl

if)

-<

LL

Page 268: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

L.:..J

.c_«e::::L..

-:

I1~q

w

CL(J')

~- 0 ..,c ,-.c"~

Page 269: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

'-c.

o(....Jl.Ll

-lWL!.J<-V)

Page 270: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

5.1.- O. to 2.5 s - o. to 5Q. s

N,~:-.",~

;-.D ,''':''

?76.03 :,,'-

Intern2.1 c::;nta.ct air - water m~xtjre :-,-"'-1..' ;

~~ter~al h2~t tr.ansfef coefficient ECOTRA CORRELATION'

E>~'t2inal t ra liS -Fe r' cDeffi c; ent....- ,10 -J

Oescrirticn of susc2ssiv2 layers

[). "=0 .~. 5 .,~

1

3

r: l. __ ..

V _ '.J .j,.;. .;--_. -- --- ---

'2

conCieteconCr ..~t2

- ,0.7 10 ~

6 x 10

0.119

2

11

"--- ._--,------ ---------------

COJ.tlng r: -,.J. /

- ,10 - 2

..

'-,L

concrrte . IO 1

.,"_ •• -1

11

Page 271: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

r. \.._"""1: :.;.:.t

nbsteet

2

8.94 m2

....f Tic: ie nt

21r - water mixtJ}-e of ccmpa~tm2nt R5

ECOTRn. COP.PELATIDN

-to 2. 5- .S

1

t), to' 50.~'.- -- - -- .-- - - - -

ste21

nu",bev- ofr:xi2s

.30

1

naturr:~ thickness

0.01908

i..JT

10

r".- ....-lD':::,'\' "".---'

Page 272: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

3

concrete \~ithin CGmpart~2n~

ECOTRf\ CC~:~ -, ~T ~Jj--i

,.... -. ....., - '-. ,.... ...L.vl; !.,..:::"_ l.

C2scripticn G'~ SUCCeS31~!e layers

o~ --,~2.3 ,-

-? ?i r, ~ ""' - c C.•• J ;',; m •

1

0"

....~

.. 1:: '..' 2;- n::

1

cos.ting

cor;::rete

concrete

"nat,

co'

ec:

-?! r"':. .....,;,.'....J

-~6 x 10

0,1

0.021

2

11

n:.1fr;cr-:-rof nodes

2

cone. .';le 0.101

Page 273: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

Exteri121 ~22t transfer coefficient

4

2?5e: ;\1

ECOTRA CGRRELA:~QN

[COTRA C0RRE~ATIO~j

0_. tr) 2 S s

..:' 1 0200 20

O. t~-=; s.o. s------------

,1.

..L 'SL-ee! O~02[iD

"

nur;:Der of f:od-::s

10

Page 274: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

,no

(' -, r -

It', ,.....LlJ !....

10

t_"i...:':

eGa .J 2

2

fi2.tur2

- ,6 )( ~.~....J

o .11S

34

--_._--_._-_._--- ------ ------- ---_._-----------

concrete

0.7 :<

0.024 .0.101. .,

':"1.

Page 275: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

Heat conducting system nb 6Na::;e

AreaInternal contact

Internal heat transfer coefficientExternal contactExtern~l heat transfer coefficientDescription of successive layers

o .to 2.5 s

steel within comoartment R78 6L1 2•. m

air - water mixture of compartment R7ECOTRA CORRELATION

air - water mi~ture of compartment R7ECOTRA CORRELATION..

I

I

1oyer nb

1

laY2, no

1

nature

. stee 1

nature

steel

thickness (1:1)

0.01436

thi ckness (m)

0.01436

numbe, of nodes

30

number of nodes

w

Page 276: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

Heat conducting S}'stem nb 7Name

AreaInternal contact

Internal heat transfer coefficientExternal contactExternal he~t transfer coefficientDescription of successive layers

O. to 2.5 s-----------

concrete within compartment R3. 2

91.67 mair - water mixture of co~partment

F8 (0 - 2.5)R9 (0 - 50.1ECOTRA CORRELAIION

lODe

.10-3 ~!/m2. DC.

1ayer nb

....1

2

3

O. to SO. s

.... 1a)'er nb

1

2

3

ncture

coati ng

concrete.concrete

nature

coatingconcreteconcrete

thickness (::1)

0.119

thi chess (r;:) .

0.0240.101

number of nodes

2

34

11

number of nodes

2

34

11

Page 277: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

Heat conducting system nb 8Nar.12

AreaInternal contact

. Internal heat transfer coefficientExternal contact

Exte:-r:alheat transfer coeffi cientDescription of successive layers

steel within compartment R8

2.69 m2air - water mixture of comDartment

R8 (0. to 2.5)R9 (0. to 50.)

ECOTRA CORRELATIONair - water mixture of compartmentR8 (0. to 2.5) R9 (0. to 50.)

ECOTRA CORRELATION.

1ayer nb

1

. O. to 50. s-----------".layer.nb

1

na ture

steel

nature

. ste~l .

thickness (8)

.0.01618

thickness (m)

0.01518

nUi1,ber.of nodes.

30

.number of nodes

10

Page 278: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

Heat conducting system nb .9

Name concrete within compartment R9. Area. 645.82 m2 .

Internal contact 21r - water mixture of compartment R9Internal heat transfer coefficient ECOTRA CORRELATIONExternal contact

External heat transfer coefficientDescription of successlve layers

O. to 2.5 S

10°C

10-3 \-11m2. 0"'c

1ayer nb

1

2

3

O. to 50. s

. '.1 ayer nb.

1

2

3

naturecoatingconcreteconcrete

nature

coatingconcreteconcrete

thickness (8)

-')6 x 10 -J

0.119

thi ckness (fJ)

0.0240.101

number of nodes

2

34

11

. number of nodes

2

34

11

Page 279: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

He2t conducting system nb10

AreaInternal contact

Internal heat transfer coefficientExternal contact

External heat transfer coefficientDescription of successive layers

steel within compartment R9

.air - water mixture of compartment R9ECOTRA CORREL!HION

air - water mixture of compartment R9ECOTRA CORRELATION

layer nb

1

O. to 50. s-----------

.. 1 ayer nb

1

nature

stee.l

nature

steel .

thickness (m)

0.01353

thickness (m)

.0.01353

n0mber of nodes.

30

number of nodes

10

Page 280: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

Hect conducting system nb 11Name concrete within compartment R5

Q.:_!~L~Q.:_~

.-.1ayer .nb nature thickness (8) . nUiT.ber of nodes1 coating 0.7 10-3 22 concrete 0.024 343 concrete 0.101 11

2

34

11

90.12 m2

wac10-3 !'!/m2. DC

ECOTRA CORRELATION

number of nodes

air - water mixture of compart~2nt R9

-~6xlQv

0.710-3.

0.119

th ickness (",)nature

coa ti ngconcreteconcrete3

1

2

Internal heat transfer coefficientExternal contact

Internal contact

External heat transfer coefficientDescription of successive layers

Page 281: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

Heat conductir.g syst2rn

~,t~"""J'1'.; .. :-.....

Area

Internal contact

nb 12

steel within cbmpartment R62.97 m~

air - water mixture of comOart~2~t R9

Internal heat transfer coefficientExternal ~ontactExternal heat transfer coefficientD2scription of successive layers

O. to 2.5 s

ECOTRA CORRELATIONair - water mixture of compartment R9

ECOTRA CORRELATION

1ayer nb

.1

O. to 50 .. s

.1 ayer nb

1

nature

steel

nature

o stee 1

.thickness (m)

0,017

.0 thickness (iT!)

0.017 0

number of nodes

30

number of nodes

10

Page 282: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

5.2 - O. to 1000. s

P.eat cc~ducting system

Area

nb 1

internal cc~crete20~ 2-,I rn

Internal contactInternal heat transfer coefficient

Extern~l centact

External heat transfer coefficient

Description of successive layers

alr - water mixture within containment1300 W/m2.oc (0. to 50. s)Uchida (after SO. s)

air - water nixture within containment. 2

1300 W/m .DC (0. to 50. s}Uchida (after 50. s)

1ayel~ nb nature thickness ( r.: ) number of nodes_?1 coating 0.7 x 10 ..J 2

2 concrete 0.075 153 concrete 0.17 114 concrete 0.075 155 concrete 0.7 x 10-3 2

"

Page 283: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

Heat conducting systemName

AreaInterna 1 contact

nb 2

walls, dome, floor2418.74 m

air - water mixture within containmentInternal heat transfer coefficient

External contactExternal heat transfer c6efficientDescription of successive layers

layer nb nature thickness (m)

1 coating 0.7 x 10-3

2 concrete 0.16.3 .concrete 0.29

1300 W/m2.DC (0. to 50. s)Uchida (after 50. s)

goe

10-3 ~'!/m2. DC

number of nodes

2

40

5

Heat conducting system

NameAera

nb 3

internal steel56 18" 2.~ m.

Internal contact

Internal heat transfer coefficient

External contactExternal heat transfer coefficient

Description of Successive lay~rs

air - water mixture within containment1300 W/m2.o[",0. to 50. s)1.5 '~T)1/3 (after 50. s)

air - water mixture within containment1300 W/m2.oC (0. to 50. s)1.5 (lIT)1/3 (after 50. s)

1 aye!' nG

1

nature

steel

thiCKness (1:1)

"0.00753

nUlDber of nodes

5

Page 284: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

Italy (CNEN/Pisa)

Amendments to our Report onCASP2 /25/:

a new version of pages 5 and 9 of the Report withmodifications to the considerations about the choiceof heat transfer coefficients in short and mediumterm calculations;

the final version of table A1~2 (page 51 of the Report)with the indication of mesh used for the different

.heat ?labs;

a new Addendum, which presents the work we made onthe light of Edward's benchmark problem.

Page 285: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

- 5 -

3. ~tODELL ISG

3.1 - Short and medium term calculationsThe experimental facility (Fig.I) has been subdivided into

4 control volumes (Fig. II) .The volumes R9,R6 and R8 have been joined toghether. In fact,

R6 can be considered as an appendix of R9 compartment (R6 is con-nected only with R9 ; besides, the flow area between R9 and R8is about four times greater than that between R7 and RS.

33 heat structures with slab .geometry have been modelled asspecified below (Fig. II).- 16 steel structures;- 13 concrete structures wiih" coating;

4 alu~inum structures.The gap betweenR4 andR9 bas been t~ken into accont as a

time dependent junction area.The values of the most important parameters are summari:ed in

Appendix 1.The loss coefficients at the junctions were obtained from

Idel'chik formulas/?/.An energy dependent correlation has been used, following an

approach similar to that of J. Marshall /S/,for heat transf~rcoefficient for R4,RS and R7 volumes (which are directly interestedby the blow down).

The correlation is based on the proportionality between heattransfer coefficient and blow down energy rate (Fig. III); that is;

HoH = E (1)Eo

As reference value of the heat transfer coefficient the valueHo 10 the knee cf the blew Ce'rffi f1ow~rate(24 see) has been= 900- W/m- K at

Page 286: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

- 9 -

chosen, because the initial turbo lent Dhase is finishin? andconditions are settlin~. Obviously to is the blow-down powerinlet at the same time.

Reqardin~ the heat transfer coefficient in compartme~t R91

the val~e about blow-down end (30 see) has been evaluated on thebasis of air/steam ratio. A linear trend has been assumed 10 theprevious time interval, accbrdin? to the increasing of the steam.ratio (Fig.III) and a behaviour similar to that in the up-streamcompartments after 30 seconds.

3.2 - Long t~rm calculation

The containment is modelled with two nodes containing allthe heat structures (fig. IV).

The first nodetonsists of R4, RS and R7 volumes (the R4-R7and R4-R5 flow areas are twice greater than the RS-Rg and R7-R9 ones) .

The flow area between the two nodes is a "penetration" leakage (ideal gas flow through orifice).

Up to the end of blow down (40 s~c) the same he~t tran~f~r ..coefficients as in the short and medium term ca12ulations havebeen used. After this period, turbulence diminishes and freeconvection prevails, with a lower h~at transfer; so, fat both.,volumes, a value of 20 ~/m~oK at 1000 sec has been adopted. Alinear behaviour has been assumed in the time interval 40-1000see (Fig. V).

Page 287: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

MATERIAL COARSE ~IESH IMPROVED !-IESHem) em)

Coating 2. 5 . 10-4 2.5 . 10-5

Concrete 35.0 . 10-3 5-:-6 . 10-3

Stee 1 1.5 . 10-3 0.8 . 10-3

A11uminium 1.5 . 10-3 0.8 . 10-3

Table 1'1.1.2Interval lenghts used in the finitedifference calculations for the heatconduction structures.

Page 288: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

ADDENDUM . 3===============

PARAMETRIC ANALYSIS OF HEAT TRANSFER PHENOMENA

Page 289: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

- 90 -

A3.l Introduction

On the basis of the experience achieved taking part to the"CSNI NUCLEAR BE:.JCHMARK PROBLEM ON CONTAINMEN'l CODES", a ne" setof calculations has been executed for C\SP2 with an improved meshfor the heat slabs (Table AI.:::)

Both medium and long term transient have been analized.The results show that we should acquire more knowledge about

the influence of h~at transfer coefficient and coatinpD thermalcharacteristics on the thermohydraulic transient inside the con-tainment system.

A3.2 Calculatiorts bY,ARIANNA Code

In calculatibns with improved mesh, the heat transferredfrom a compartment to the related structures is reduced if compa-red with the results obtained in coarse mesh calculations. Sotemperatures and pressures in the containment are overestimatedincompatisDn with the experimental data and this difference in-creases with the time; an example is sho~n in Fig. AD3.1 case b)for the pressure behaviour in R4 comDartment,calculated by ARIAN-NA Code.

To hav~ again a good matching of the experimental data (Fig.AD3~l case c), the heat transfer coefficients were increased byabout 25% in comparison with the cases a) and b) (see Fig.AD3.2)

A3~3 Calculations by CONTEMPT LT-26 Code

The long term transient was calculated by CONTEMPT Code,usi~S as input data the same heat transfer coefficient (Fig.AD3.2,case c) and also the same mesh of the last ARIANNA calculation.

The results show first an overestimation of the pressure peak(Fig. AD3.3 case c), but after 400 sec they agree to the experimen-tal data very satisfactorily.

Page 290: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

- 91 -

The difference between the peak values calculated by ARIAN-NA and CONTE~WT Codes is due to the different thermohydraulicmodels: in ARIANNA Code an homogeneous volume is assumed,whileCONTDIPT Code adopts a two phase model. More precisely, in thislast case each node includes a vapor region and a liquid region;evaporation, condensation and pool boiling process are modelled.

As a result, more energy remalns in the vapor region thanln the homogeneous mixture case.

The homogeneous model simulates well the physical phanomenaln the compartments in the short and medium term transient, dueto the strong turbolerit flow of blow-down. After the blow7downphase the initial turbolence decreases and the separation betweenthe liquid and the vapor reglon (CONTHIPT model) approximates bet-ter the real situation .

.On the basis of the above said experience, some attempts havebeen made to improve the agreement with the experimental data andalso to understand better the influence of the various parameterson the phenomena with the aim of establishing a strat~gy for thechoice of values of these parameters.

The most ~ignificant results can be seen ln Fig. AD1.3 cases.d) and e).

In case d) the heat transfer coefficient h in the first nodeis proportional to the blow-down energy till 24 sec (at that timethe blow-down energy decreases abruptly) while after 50 sec h isgiven by Uchida correlation; also the value~ of the heat transfercoefficient at 24 and 50 sec are calculated by Uchida correlations

2 7( hO = 1600 Wlm oK at 24 sec and h1=600 W/m-oK at 50 sec) and alinear behaviour has been assumed between 24 and SO sec(Fig.AD3.2case d).

In the external compartment, h has been calculated by theUchida correlation, after the blow-down phase (t > SO se~),while a linear increase has been assumed during the biow-dowi pha-se, starting from the value of 20 W/m20K at 0 sec (S~2 Fig.AD3.4case d).

Page 291: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

- 92 -

All the other parameters (thickness and thermal conductivityof the coating.mesh, ecc) are the same as in the previous case.

In case e), we use heat transfer coefficients similar tocase d)

(x) but the coating thickness has been t:iplicated; allthe other input data are the same as in the previous case.

As shown in Fig. AD3.3, in case d) the pressure peak is esti-mated well, owing to the increasing of heat transfer in the exter-nal compartment, which compensates the effect of CONTE~IPT phaseseparation model; later the pressure drops downcurve.

the experimental•

In case ~), the pressure peak is littl~ overestimated, due~othe effect of coating thickness, but from 100 sec~ on the agreementwith the experiment~l data is quite satisfactorily~

(x) In the external compartment the Uchida correlation has beenused also in the interval 0-50 secs (see Fig. AD3.4 case e)

Page 292: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

o. :12

(). 46

'0vl

( im pro v e J me s!l ; . h j n ere i:l sed)

( imp r 0 v e d me s h; h init i a 1 )

(coarse IIIe s 11; h j n it j al )

case c)

ca~e h)

c a 1 ClII ;1t cd

calculated

cdlcuJalcll case a)

., ....

----Q--

-'-+-

. .'. ~+--+ + ..-.b)~' ~ .... ~/.~.~ ..~ ••"""......,.....,.. •.~'" .' ... N.~ .- .... -

,. . ;::;;::--- '. .' ""a)")y~. ". . -~

~

;L~.C)' . . . .'

4,//'/~; . ..'

, ... ,,/;/,/, . ~"""....- ex' ,,,1F'" ., pc r Imen tal

;:T«F'ff.',t'"

I",.J';1:7~'.JO. 1 (1

().22

0.40

I,

1".

.~.' O. ?> ,I1,:,,1, /:.',.:~JI;)

u)IIIC(. 0.28;:'...

O. IU()

I l I,~ ~1 j 2

-1,1(, !b---~-:t ' ~' ./~ ...~Il'----!rlll i;l-'---hr~'-'

T I 1,11:, ( ~; )

"le. /\ILLI l'rcsSllrc ill [(11 compartment (AiHi\NNA 1 calclIl;lt inns)

Page 293: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

,...-.,~o

N

8..........~~'--'

f--<7-W~HUH

>.t..,>.t..,~oup.;~w~t/).--;;

~[-<

f--<<t:~;:I:;

,,5.01...j ,,,4. 51 ,_L_

--,.L 51 I

I,\I,..... .... .... .....

' ......2.51 I "

2 • l

l.l

o.

..........

cases a), b)

case c)

cases cl), c)

' ...... ,

' .......' .......

..........................

................ --..... -

'"'"""--""'--... ........-- ---- ---" .. . ..

..................... _----

1O.j.:.

l) 1~' ~b 'll~ tT rl----.-.~ll~.--.-.-...

rr G. 1\D 3.

'.

tjj31',nttransfer cocfficiertt in mediu.m term traJlsicnt. .~!II •T I HE (S)

Page 294: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

• •

'-D .In

. I

' ..

: .'.

0.51- -0- case <1) (co<lrsc lIlesh, h initial, s initia1)

I

Ic) (improved mesh. h increased, initial)...... cnc:(' S

O. 4 (J -- - case d) (improved mesh, h final, s initial)

Ai .. .. case e) (improved mesh, h final; s increased)

O.4(

..0. If,

O. '". ~-

,---"

.cr:~. o. 3~',L,

'--'

t.:-:lp::;::JrJJ

~ 0.28~p...

O. 1()Lo 480 6,10 720 8()() HIl 0 ~60

fJ G. AU:;.3 Pressure in .R9 compartment (C01HEMPT LT26 calculations) T nlL (S)

Page 295: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

80

..

----

6._---- C ~l sc S (l) , 11)

......... case c)

--- case d)

..-.- case c)

~\\\,

\

\

. 0,7

0,6

,.--....~.

o .('.J

0,:'E.........~::.:::'--'

!-<ZW-l

0) 4......u......w..u..u.l0 0,3u

.~

u.lu..

-l/)

~ 0.2!-<

~-.-r:W-l:r:

0, 1

T I ~fE (S)

FIG. /\])3.4 Ileat transfer coefficient in-R9 compartment

••

Page 296: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

•I..

Sweden (Studsvik)

OECD-CSNI Containment Standard Problem No. 2

Supplementary information for the comparison report for theruns made in Sweden with COPTA-6. The program does notprint all those data; so some have been estimated manually.

Coating: 0.95/3=0.32 (3 nodes for 0.95 rnrn)Concrete: 0.076, 0.114, 0.171, 0.257, 0.386 etc.

(17 nodes for 150 rnrn,..increasing with factor 1.5)Steel, typically: 0.29, 0.43, 0.65, 0.97, 1.46, 2.19

(6 nodes. for 6 rnrn,increasing with factor 1.5)

For the concrete the modesizes

Time(s) 50s case 1000s caseI1 i 34. 1 28.6I

2 J 35.7 29.85 I 32.0 27.710 28.3 25.420 24.2 22. 150 14.0 13.4100 8. 1200 4.8.. 500 1.91000 0.74,-

The difference between the 50s case and the 1000s case isdue to t~o factors

a)4-room model in 50s case, l-room model in 1000scaseb) higher heat transfer to dome compartment in 50s case

Page 297: May 1982 - Nuclear Energy Agency · halpy-flow, water transport, heat transfer mechanism) to reduce future margins of interpretation of experimental results. Extended quantification

Time(s)

125

102050

100200500

1000

coated concrete

28.924. 120.519.818. 713. 1

7.04.41.80.7

metal

140-30066-30021-29511-286

5-295

stee 1, 6mm

250250170

85.32

Comment: The heat soakage into steel depends on severalfactors.

a) Thicknessb) Temperature and heat transfer at back sidec) MOdelling (e.g. meshsizes)

This makes listing of heat flux to metal less meaningfulafter some 10 seconds.

I.,.J

Time(s) Concrete Steel . I

R4 R9 R4 R9

1 48.9 2.6 560 1302 30.7 8. 1 440 210..c5 24.6 13.2 345 17010 -I 22.6 16.4 317 95