38
One-Health approach of Antimicrobial Resistance May 17, Brussels, SsID seminar Dik Mevius

May 17, Brussels, SsID seminar Dik Mevius · High acquisition rate after animal contact Van Cleef et al. JCM 2011; 49: 1030-3 No evidence of transmission through the food chain EFSA

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

  • One-Health approach of Antimicrobial Resistance

    May 17, Brussels, SsID seminar

    Dik Mevius

  • Tales of the unexpected in resistance epidemiology: convenient and inconvenient truths

    Roald Dahl (writer, not microbiologist)

  • Antibiotic use in animals and humans

  • The “obvious” pathway of antibiotic resistance Antibiotic use in

    animals

    Antibiotic resistance in animals

    Antibiotic resistance in healthy humans

    Infections

    Livestock-Associated MRSA ESBL CRE/CPE

  • What would make LA-MRSA a public health threat?

    High acquisition rate after animal contact High transmission rate through the food chain High transmission rate among humans (in community and/or

    health care settings ● High transmission and short duration of carriage ● Low transmission but long duration of carriage

    High virulence Few (if any) treatment options

  • LA-MRSA: after 10 years of research:

    High acquisition rate after animal contact Van Cleef et al. JCM 2011; 49: 1030-3 No evidence of transmission through the food chain EFSA nov. 2009 Low transmission rate among humans (in community and/or

    health care settings

    ● Low transmission and short duration of carriage Van Cleef et al. PLoS One 2010; e9385; Van Cleef et al. JCM 2011; 49: 1030-3 Graveland et al. PLoS One 2011; e16830 ;

    Wassenberg et al. CMI 2011; 17: 316-9; Hetem et al. EID 2013; 19: 1797-1802

    Virulence, not different from other S. aureus Multiple treatment options remaining 0 of the last 40 reported healthcare-associated MRSA-outbreaks in

    the Netherlands were caused by LA-MRSA

  • New variants emerging?

    LA-MRSA CC9/CC398 displaying spa type t899 ● Backbone CC398 ● CC9 region with spa-

    gene

    Infections not associated to livestock Poultry products?

  • Enzymes that are able to hydrolyze the β-lactam ring

    • Narrow-spectrum β-lactamases (TEM-1, SHV-1)

    Hydrolyse: amoxicillin, 1st generation cephalosporins

    • Extended-spectrum β-lactamases (= ESBLs: predominantly CTX-M)

    Hydrolyse: amoxicillin, cephalosporins and aztreonam

    • Carbapenemases (= CPs: KPC, OXA-48, NDM, VIM)

    Hydrolyse: amoxicillin, cephalosporins and carbapenems

    β-lactamases

  • Plasmids? • Extrachromosomal DNA

    – Toolboxes for bacteria to rapidly adapt to environmental circumstances, such as:

    • Antibiotics • Disinfectants • Heavy metals

    • Horizontal transfer from E. coli -> E. coli, but also from E. coli -> Salmonella or Klebsiella

    • No limitations in the possibilities to spread (compared to e.g. MRSA)

    – Contact, environment, food

    • ESBL > Food safety problem!!

  • 27 Replicon (plasmid) types in Enterobacteriaceae (?? Additional small untypeable plasmids)

    CTX-M-15

    CTX-M-1

    CMY-2

  • SafefoodERA-project: The Role of Commensal Microflora in the transmission of ESBLs CVI: Dik Mevius; Alieda van Essen, Cindy Dierikx HPA: John Wain, Neil Woodford, Michaela Williams AHVLA: Martin Woodard, Nick Coldham, Guanghui Wu BfR: Beatriz Guerra, Irene Rodriguez, Janine Beutlich, Reiner Helmuth FLI: Stefan Schwarz, Kristina Kadlec, Anne-Kathrin Schink

    Figure 1. Minimum Spanning trees of MLST STs of 294 isolates in which ESBL/AmpC genes and plasmids were identified . A. ESBL. Green: CTX-M-1, red: CTX-M-15 B: replicon-type. Green: incI1, red: multi-F, yellow: incK, blue: incN

    CTX-M-15: clonally distributed CTX-M-1: distribution is plasmid mediated

    A B

  • Use of 3rd and 4th gen cephalosporins in animals until 2011 in the Netherlands

    • Ceftiofur: – As spray and sc/in ovo injection in hatcheries – Preventive use of Naxcel on day 1 (and 8) to young

    piglets – Treatment of (endo)metritis in dairy cows and

    administration for eg mastitis because of 0 withdrawal period for milk

    • Use of cefquinome for dry cow treatment • Use of Convenia (cefovecin) for infections in cats

  • ESBL-producing E. coli (MARAN-reports)

    Cefotaxime R% in E. coli

    0

    5

    10

    15

    20

    25

    1998 1999 2001 2002 2003 2004 2005 2006 2007 2008 2009

    R%

    Dairy cattleVeal calvesPigsBroiler chickens

    kip

    AmoxicillinCefotaximImipenemGentamicinNeomycinTetracyclineSulphamethoxazoleTrimethoprimCiprofloxacinNalidixic acidChloramphenicolFlorfenicolN

    1998 (303)199838.92.605.655.436.043.643.95.00.7303

    1999 (318)199935.50.603.564.244.036.039.66.30.3318

    2001 (318)200151.61.603.59.158.851.941.241.210.70.0318.0

    2002 (164)200251.87.303.011.659.158.545.145.116.51.8164.0

    2003 (165)200349.73.00.03.013.960.046.135.837.015.80.0165.0

    2004 (300)200464.39.705.313.366.772.762.745.246.323.02.0300.0

    2005 (304)200563.514.10.03.911.260.971.663.250.852.018.11.0304.0

    2006 (153)200665.615.67.816.252.670.861.750.050.018.80.6153.0

    2007 (43)200760.520.92.355.862.848.848.848.816.32.343.0

    440200865.515.014.514.558.270.960.060.961.825.24.860.021.60.0

    200917.917.5

    varken

    AmoxicillinCefotaximImipenemGentamicinNeomycinTetracyclineSulphamethoxazoleTrimethoprimCiprofloxacinNalidixic acidChloramphenicolFlorfenicol

    1998 (302)19981710048330180

    1999 (318)199914002534022120

    2001 (318)200119000347331150

    2002 (149)200226103140441190

    2003 (155)200328102469450081

    2004 (296)200426101264534332121

    2005 (299)20053010146251410090

    2006 (79)20063400347053471183

    2007 (169)200736.71.25.34.572.855.050.93.02.412.40.651.94.90

    296200835112685749121015670

    200944

    0123456789

    199851%25%19%3%2%0%0%0%0%0%

    199947%29%15%8%2%0%0%0%0%0%

    200153%22%17%8%1%0%0%0%0%0%

    200238%23%22%14%3%0%1%0%0%0%

    200326%26%21%23%3%1%0%0%0%0%

    200426%19%15%15%17%6%1%0%0%0%

    200528%17%14%17%18%5%0%0%0%0%

    200628%17%14%17%18%5%0%0%0%0%

    kalf

    AmoxicillinCefotaximCeftazidimeGentamicinNeomycinTetracyclineSulphamethoxazoleTrimethorpimCiprofloxacinNalidixic acidChloramphenicolFlorfenicol

    1996 (166)33.74.84.81.252.453.616.318.130.71.2

    1998 (38)199831.60.00.00.068.463.215.810.526.30.0

    2005 (165)1999

    2006 (152)2001

    2007 (175)2002

    2003

    2004

    200548.53.00.612.727.382.454.544.225.526.133.318.2

    200648.02.02.611.225.072.454.644.118.418.421.715.8

    200746.94.62.96.922.069.751.441.712.616.028.09.7

    200840.52.02.012.467.345.142.520.320.319.012.4

    20091.82.3

    Grafiekamp

    1998199819981998

    1999199919991999

    2001200120012001

    2002200220022002

    2003200320032003

    2004200420042004

    2005200520052005

    2006200620062006

    2007200720072007

    Dairy

    Veal

    Pig

    Broiler

    R%

    Ampicillin R% in commensal E. coli

    31.5789473684

    16.5562913907

    38.9438943894

    13.8364779874

    35.534591195

    18.8679245283

    51.572327044

    25.5033557047

    51.8292682927

    27.7419354839

    49.696969697

    26.0135135135

    64.3333333333

    0

    48.4848484848

    30.4347826087

    63.4868421053

    2.3622047244

    48.0263157895

    34.1772151899

    65.5844155844

    5.2631578947

    46.8571428571

    36.6863905325

    60.4651162791

    koe

    AmoxicillinCefotaximeCeftazidimeGentamicinNeomycinTetracyclineSulphamethoxazoleTrimethorpimCiprofloxacinNalidixic acidChloramphenicolFlorfenicol

    2005 (139)1998

    2006 (127)1999

    2007 (152)2001

    2002

    2003

    2004

    20050.00.00.00.70.00.70.70.70.00.00.00.0

    20062.40.80.80.00.83.13.93.10.00.80.80.8

    20075.30.00.00.71.26.65.95.30.00.71.31.3

    14820089.51.41.43.413.510.16.14.75.44.12.710.16.80.0

    20091.51.5

    20052006

    099%94%

    11%2%

    20%2%

    31%0%

    40%2%

    50%0%

    60%0%

    70%0%

    80%0%

    90%0%

    Grafiek1 fot

    1998199819981998

    1999199919991999

    2001200120012001

    2002200220022002

    2003200320032003

    2004200420042004

    2005200520052005

    2006200620062006

    2007200720072007

    2008200820082008

    2009200920092009

    Dairy cattle

    Veal calves

    Pigs

    Broiler chickens

    R%

    Cefotaxime R% in E. coli

    0

    0.6622516556

    2.6402640264

    0.3154574132

    0.6289308176

    0.3144654088

    1.572327044

    1.3422818792

    7.3170731707

    0.6451612903

    3.0303030303

    0.6756756757

    9.6666666667

    0

    3.0303030303

    0.6688963211

    14.1447368421

    0.7874015748

    1.9736842105

    0

    15.5844155844

    0

    4.5714285714

    1.1834319527

    20.9302325581

    1.3513513514

    1.9607843137

    1.0135135135

    15

    1.5

    1.8

    4

    17.9

  • Prevalence of ESBLs in broilers

    0 10 20 30 40 50 60 70 80 90 100

    ABCDEFGHI

    JKL

    MNOPQRSTUVWXYZ

    Percentage ESBL positive isolates per farm (n=26)

    • All farms ESBL-positive

  • ESBL-genes and plasmids in Broiler isolates (Dierikx et al. 2010)

    0

    2

    4

    6

    8

    10

    12

    14

    16

    18

    CTXM-1 TEM-52 CMY-2 TEM-20 CTXM-2 ACC-1 SHV-2

    S. enterica (n=21)

    E. coli (n=23)

    IncI1 IncHI2/P IncK IncI1 Nt IncK IncI1

    + nt

    Predominant in humans:

    CTX-M-15, 14, 9, 3, SHV-12

  • Which types of ESBLs in humans in NL?

    Voets GM, Platteel TN, Fluit AC, Scharringa J, Schapendonk CM, et al. (2012) Population Distribution of Beta-Lactamase Conferring Resistance to Third-Generation Cephalosporins in Human Clinical Enterobacteriaceae in The Netherlands. PLoS ONE 7(12): e52102. doi:10.1371/journal.pone.0052102 http://journals.plos.org/plosone/article?id=info:doi/10.1371/journal.pone.0052102

    “Poultry Associated

    genes”:

    25.5%

    Voets et al. 2013:

    4.6%

    CMY-2 pos E. coli

    “Human associated

    genes”:

    45.5%

    http://journals.plos.org/plosone/article?id=info:doi/10.1371/journal.pone.0052102

  • Association with humans

    CMI, 2011

  • Conclusion: ● Yes an animal attribution is apparent ● Poultry meat was considered to be the most likely source

    84 – 100% of poultry meat positive for ESBLs Pork/beef incidentally positive

  • Prevalences in the Netherlands

    > 50% in (herds) animals Broilers Layers Veal calves Fattening pigs Turkeys Dogs Cattle 41%

    Environment Soil Surface water

    Knapp, Dolfing et al. 2009

    13% birds (waders)

    ESBLpositive

    Is poultry the source or part of the problem??

  • ESBL-attribution analysis (ESBLAT) 2013 - 2018

    Veilig voedsel produceren

    Determine the contribution of all ESBL-reservoirs to carriership and infections in humans

    Determine the transmissieroutes from these reservoirs to humans.

    Contact Food Water Air

  • Major output

  • Humans

    Water

    Meat

    Animals

  • Prev

    alen

    ces

    Humans

    Water

    Meat

    Animals

  • Genetic associations

    Humans

    Water

    Meat

    Animals

  • Quantified as Proportional Similarity index (PSI)

    Humans

    Water

    Meat

    Animals

  • PCA

    27

  • QMRA analysis

    For consumers (RIVM) (Evers et al, PLoS One. 2017 Feb 24;12)

    Environment: ● Swimmers

    (IRAS/RIVM) ● Residents (IRAS:

    resistance genes in farm dust (PM10))

    Consumption of meat and swimming will lead to exposure to ESBLs People living close to

    farms are permanently exposed to ESBLs

    Independent of the prevalence the quantitative exposure of humans is low (except for farmers) and it does `not` contribute to carriership

  • Conclusion

    ESBLs epidemiology has a real One-Health character ● ESBLs found in all reservoirs and exchange between

    reservoirs

    Everything is everywhere

    Dorado-Garca et al, 2018)

  • Sources for and routes to man

    ● Humans are the most important source for humans

    ● 4.5% prevalence in community comparable to Sweden (S. Ny et al, JAC 2017)

    ● Meat (large population consumers) and water (limited population recreational swimmers) provide limited exposure of humans

    ● Farmers at risk to be carrier (via dust and direct contact)

    ● Residents are relatively low exposed, but no enhanced risk to be carrier (via dust in air, or environment)

  • From: Fecal Colonization With Extended-spectrum Beta-lactamase–Producing Enterobacteriaceae and Risk Factors Among Healthy Individuals: A Systematic Review and Metaanalysis Clin Infect Dis. 2016;63(3):310-318. doi:10.1093/cid/ciw283 Clin Infect Dis | © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail [email protected] .

  • Current models do not adequately describe the complex

    epidemiology of ESBLs and need adjustment

    Humans are host and source

  • Carbapenemases in Animals

    Dec 2016!!

  • Current questions in NL

    Are we prepared for the next generation of transferable AMR-genes of Public Health concern?

    Is current reduction of antibiotic use sufficient?? What type of surveillance is required for early warning? What are the intervention options and which are

    effective?

    Or...... do we let it get out of control as occurred for LA-MRSA and the ESBLs??

  • Effect of reductions in AMU in NL (Source MARAN, SDa 2016)

    Stop use of ceftiofur at hatcheries

  • AB-Use Germany/Belgium/Netherlands

    ESVAC, 2017

  • Veilig voedsel produceren

    Met dank aan ESBLAT http://www.1health4food.nl/esblat

    WBVR: Kees Veldman, Alieda van Essen, Arie Kant, Apostolos Liakopoulos, Yvon Geurts

    RIVM: Engeline van Duijkeren, Wilfrid van Pelt, Lapo Mughini Gras, Heike Schmitt, Cindy Dierikx, Angela van Hoek, Eric Evers, Annemaria de Roda Husman, Hetty Blaak, Jaap van Dissel

    IRAS: Joost Smid, Wietske Dohmen, Alejandro Dorado-Garcia, Heike Schmitt, Arie Havelaar, Dick Heederik

    I&I:, Joost Hordijk, Jaap Wagenaar

    UMCU: Ad Fluit, Gerrita van den Bunt, Marc Bonten

    GD: Annet Velthuis, Annet Heuvelink, Rianne Buter, Maaike Gonggrijp, Inge Santman-Berends, Theo Lam

    VionFood Group: Bert Urlings, Lourens Heres, Martijn Bouwknecht

    Van Drie Group: Jacques de Groot, Meindert Nieland

  • Acknowledgements

    SafefoodERA (WBVR, PH-England, APHA, FLI, BfR) Marc Bonten

    One-Health approach of Antimicrobial ResistanceTales of the unexpected in resistance epidemiology: convenient and inconvenient truths�Antibiotic use in animals and humansThe “obvious” pathway of antibiotic resistanceSlide Number 5What would make LA-MRSA a public health threat?LA-MRSA: after 10 years of research:New variants emerging?Slide Number 9Plasmids?27 Replicon (plasmid) types in Enterobacteriaceae�(?? Additional small untypeable plasmids)Slide Number 12Use of 3rd and 4th gen cephalosporins in animals until 2011 in the NetherlandsESBL-producing E. coli (MARAN-reports)Prevalence of ESBLs in broilersESBL-genes and plasmids in Broiler isolates (Dierikx et al. 2010)Which types of ESBLs in humans in NL?Association with humansSlide Number 19Prevalences in the NetherlandsSlide Number 21Major outputSlide Number 23Slide Number 24Genetic associationsQuantified as Proportional Similarity index (PSI)PCAQMRA analysisConclusionSources for and routes to manSlide Number 31Current models do not adequately describe the complex epidemiology of ESBLs and need adjustmentCarbapenemases in AnimalsCurrent questions in NLEffect of reductions in AMU in NL (Source MARAN, SDa 2016)AB-Use Germany/Belgium/NetherlandsSlide Number 37Acknowledgements