60
Connection Variables in General Relativity Mauricio Bustamante Londo˜ no Instituto de Matem´ aticas UNAM Morelia 28/06/2008 Mauricio Bustamante Londo˜ no (UNAM) Connection Variables in General Relativity 28/06/2008 1 / 20

Mauricio Bustamante London˜o - CCM UNAMrobert/sem/20080428_MBustamante.pdf · Mauricio Bustamante London˜o (UNAM) Connection Variables in General Relativity 28/06/2008 4 / 20. The

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Mauricio Bustamante London˜o - CCM UNAMrobert/sem/20080428_MBustamante.pdf · Mauricio Bustamante London˜o (UNAM) Connection Variables in General Relativity 28/06/2008 4 / 20. The

Connection Variables in General Relativity

Mauricio Bustamante Londono

Instituto de MatematicasUNAM Morelia

28/06/2008

Mauricio Bustamante Londono (UNAM) Connection Variables in General Relativity 28/06/2008 1 / 20

Page 2: Mauricio Bustamante London˜o - CCM UNAMrobert/sem/20080428_MBustamante.pdf · Mauricio Bustamante London˜o (UNAM) Connection Variables in General Relativity 28/06/2008 4 / 20. The

Contents

1 Motivation

2 The frame fields

3 Palatini’s Action

4 Self-dual formalism

5 Constraints in terms of the new variables

Mauricio Bustamante Londono (UNAM) Connection Variables in General Relativity 28/06/2008 2 / 20

Page 3: Mauricio Bustamante London˜o - CCM UNAMrobert/sem/20080428_MBustamante.pdf · Mauricio Bustamante London˜o (UNAM) Connection Variables in General Relativity 28/06/2008 4 / 20. The

Motivation

Motivation

Mauricio Bustamante Londono (UNAM) Connection Variables in General Relativity 28/06/2008 3 / 20

Page 4: Mauricio Bustamante London˜o - CCM UNAMrobert/sem/20080428_MBustamante.pdf · Mauricio Bustamante London˜o (UNAM) Connection Variables in General Relativity 28/06/2008 4 / 20. The

Motivation

Motivation

Hamiltonian formulation of general relativity in terms of the ADMvariables give us a very complicated system of constraints and ainfinite-dimensional configuration space which does not seems ameasureable space.

Mauricio Bustamante Londono (UNAM) Connection Variables in General Relativity 28/06/2008 3 / 20

Page 5: Mauricio Bustamante London˜o - CCM UNAMrobert/sem/20080428_MBustamante.pdf · Mauricio Bustamante London˜o (UNAM) Connection Variables in General Relativity 28/06/2008 4 / 20. The

Motivation

Motivation

Hamiltonian formulation of general relativity in terms of the ADMvariables give us a very complicated system of constraints and ainfinite-dimensional configuration space which does not seems ameasureable space.

We can think the connection as an object which give us informationabout curvature (by mean of the parallel transport), it suggests tolook for a formulation of general relativity, not in metric variables, butin connection variables.

Mauricio Bustamante Londono (UNAM) Connection Variables in General Relativity 28/06/2008 3 / 20

Page 6: Mauricio Bustamante London˜o - CCM UNAMrobert/sem/20080428_MBustamante.pdf · Mauricio Bustamante London˜o (UNAM) Connection Variables in General Relativity 28/06/2008 4 / 20. The

Motivation

Motivation

Hamiltonian formulation of general relativity in terms of the ADMvariables give us a very complicated system of constraints and ainfinite-dimensional configuration space which does not seems ameasureable space.

We can think the connection as an object which give us informationabout curvature (by mean of the parallel transport), it suggests tolook for a formulation of general relativity, not in metric variables, butin connection variables.

Connection variables are fundamentals variables in the gauge theories.Maybe we could take some tools of gauge theories in understandinggeneral relativity. As we will see, it will happen.

Mauricio Bustamante Londono (UNAM) Connection Variables in General Relativity 28/06/2008 3 / 20

Page 7: Mauricio Bustamante London˜o - CCM UNAMrobert/sem/20080428_MBustamante.pdf · Mauricio Bustamante London˜o (UNAM) Connection Variables in General Relativity 28/06/2008 4 / 20. The

The frame fields

The frame fields

Mauricio Bustamante Londono (UNAM) Connection Variables in General Relativity 28/06/2008 4 / 20

Page 8: Mauricio Bustamante London˜o - CCM UNAMrobert/sem/20080428_MBustamante.pdf · Mauricio Bustamante London˜o (UNAM) Connection Variables in General Relativity 28/06/2008 4 / 20. The

The frame fields

The frame fields

On the tangent space in a point x of the spacetime M we can choose ausual basis of partial derivatives {(∂µ)x} and an orthonormal basis oftetrads {eI (x)} such that eI (x) = e

µI (x)∂µ and e

µI eν

J gµν = ηIJ .

Mauricio Bustamante Londono (UNAM) Connection Variables in General Relativity 28/06/2008 4 / 20

Page 9: Mauricio Bustamante London˜o - CCM UNAMrobert/sem/20080428_MBustamante.pdf · Mauricio Bustamante London˜o (UNAM) Connection Variables in General Relativity 28/06/2008 4 / 20. The

The frame fields

The frame fields

On the tangent space in a point x of the spacetime M we can choose ausual basis of partial derivatives {(∂µ)x} and an orthonormal basis oftetrads {eI (x)} such that eI (x) = e

µI (x)∂µ and e

µI eν

J gµν = ηIJ .On the cotangent space we have a set of one-forms with values in aMinkowski space: e I (x) = e I

µ(x)dxµ, and by the orthonormality conditionit will be interpreted as the gravitational field.

Mauricio Bustamante Londono (UNAM) Connection Variables in General Relativity 28/06/2008 4 / 20

Page 10: Mauricio Bustamante London˜o - CCM UNAMrobert/sem/20080428_MBustamante.pdf · Mauricio Bustamante London˜o (UNAM) Connection Variables in General Relativity 28/06/2008 4 / 20. The

The frame fields

The frame fields

On the tangent space in a point x of the spacetime M we can choose ausual basis of partial derivatives {(∂µ)x} and an orthonormal basis oftetrads {eI (x)} such that eI (x) = e

µI (x)∂µ and e

µI eν

J gµν = ηIJ .On the cotangent space we have a set of one-forms with values in aMinkowski space: e I (x) = e I

µ(x)dxµ, and by the orthonormality conditionit will be interpreted as the gravitational field.It is easy to check that the frame fields (tetrads) transforms, locally, underthe Lorentz group, that is to say, the symmetry of such vectors is SO(4)(Euclidean case).

Mauricio Bustamante Londono (UNAM) Connection Variables in General Relativity 28/06/2008 4 / 20

Page 11: Mauricio Bustamante London˜o - CCM UNAMrobert/sem/20080428_MBustamante.pdf · Mauricio Bustamante London˜o (UNAM) Connection Variables in General Relativity 28/06/2008 4 / 20. The

The frame fields

Note that more technically we are dealing with the frame bundle on Mwith structure group SO(4) and then we can define an one-formconncetion ω as:

ωIJ(x) = ωI

J(x) ∈ so(4)

Mauricio Bustamante Londono (UNAM) Connection Variables in General Relativity 28/06/2008 5 / 20

Page 12: Mauricio Bustamante London˜o - CCM UNAMrobert/sem/20080428_MBustamante.pdf · Mauricio Bustamante London˜o (UNAM) Connection Variables in General Relativity 28/06/2008 4 / 20. The

The frame fields

Note that more technically we are dealing with the frame bundle on Mwith structure group SO(4) and then we can define an one-formconncetion ω as:

ωIJ(x) = ωI

J(x) ∈ so(4)

and the two-form curvature as

R IJ [ω] = dωIJ + ωIK ∧ ωKJ

Mauricio Bustamante Londono (UNAM) Connection Variables in General Relativity 28/06/2008 5 / 20

Page 13: Mauricio Bustamante London˜o - CCM UNAMrobert/sem/20080428_MBustamante.pdf · Mauricio Bustamante London˜o (UNAM) Connection Variables in General Relativity 28/06/2008 4 / 20. The

The frame fields

Note that more technically we are dealing with the frame bundle on Mwith structure group SO(4) and then we can define an one-formconncetion ω as:

ωIJ(x) = ωI

J(x) ∈ so(4)

and the two-form curvature as

R IJ [ω] = dωIJ + ωIK ∧ ωKJ

A volume element can be written as ǫIJKLeI ∧ eJ ∧ eK ∧ eL where ǫIJKL is a

totally antisymmetric symbol with ǫ0123 = 1.

Mauricio Bustamante Londono (UNAM) Connection Variables in General Relativity 28/06/2008 5 / 20

Page 14: Mauricio Bustamante London˜o - CCM UNAMrobert/sem/20080428_MBustamante.pdf · Mauricio Bustamante London˜o (UNAM) Connection Variables in General Relativity 28/06/2008 4 / 20. The

Palatini’s Action

Palatini’s action

Mauricio Bustamante Londono (UNAM) Connection Variables in General Relativity 28/06/2008 6 / 20

Page 15: Mauricio Bustamante London˜o - CCM UNAMrobert/sem/20080428_MBustamante.pdf · Mauricio Bustamante London˜o (UNAM) Connection Variables in General Relativity 28/06/2008 4 / 20. The

Palatini’s Action

Palatini’s action

Now we have all the elements needed to write the Hilbert-Einstein actionin terms of frame fields. A simple calculation gives us

S [g ] =

d4x√

gR −→ S [e, ω] =1

2

ǫIJKLeI ∧ eJ ∧ R[ω]KL

This is the Palatini’s action.

Mauricio Bustamante Londono (UNAM) Connection Variables in General Relativity 28/06/2008 6 / 20

Page 16: Mauricio Bustamante London˜o - CCM UNAMrobert/sem/20080428_MBustamante.pdf · Mauricio Bustamante London˜o (UNAM) Connection Variables in General Relativity 28/06/2008 4 / 20. The

Palatini’s Action

Palatini’s action

Now we have all the elements needed to write the Hilbert-Einstein actionin terms of frame fields. A simple calculation gives us

S [g ] =

d4x√

gR −→ S [e, ω] =1

2

ǫIJKLeI ∧ eJ ∧ R[ω]KL

This is the Palatini’s action.By taking variations of the action we obtain the equations of motion:

ǫIJKLeJ ∧ eK ∧ RKL = 0 −→ Eisntein’s equations

D(e I ∧ eJ) = 0 −→ Free torsion

Mauricio Bustamante Londono (UNAM) Connection Variables in General Relativity 28/06/2008 6 / 20

Page 17: Mauricio Bustamante London˜o - CCM UNAMrobert/sem/20080428_MBustamante.pdf · Mauricio Bustamante London˜o (UNAM) Connection Variables in General Relativity 28/06/2008 4 / 20. The

Palatini’s Action

Some comments about Palatini’s action

Mauricio Bustamante Londono (UNAM) Connection Variables in General Relativity 28/06/2008 7 / 20

Page 18: Mauricio Bustamante London˜o - CCM UNAMrobert/sem/20080428_MBustamante.pdf · Mauricio Bustamante London˜o (UNAM) Connection Variables in General Relativity 28/06/2008 4 / 20. The

Palatini’s Action

Some comments about Palatini’s action

This action splits the degrees of freedom contained in the H-E actionin two sets, the frame fields and the connection!.

Mauricio Bustamante Londono (UNAM) Connection Variables in General Relativity 28/06/2008 7 / 20

Page 19: Mauricio Bustamante London˜o - CCM UNAMrobert/sem/20080428_MBustamante.pdf · Mauricio Bustamante London˜o (UNAM) Connection Variables in General Relativity 28/06/2008 4 / 20. The

Palatini’s Action

Some comments about Palatini’s action

This action splits the degrees of freedom contained in the H-E actionin two sets, the frame fields and the connection!.

The Palatini’s formalism is a first order formalism.

Mauricio Bustamante Londono (UNAM) Connection Variables in General Relativity 28/06/2008 7 / 20

Page 20: Mauricio Bustamante London˜o - CCM UNAMrobert/sem/20080428_MBustamante.pdf · Mauricio Bustamante London˜o (UNAM) Connection Variables in General Relativity 28/06/2008 4 / 20. The

Palatini’s Action

Some comments about Palatini’s action

This action splits the degrees of freedom contained in the H-E actionin two sets, the frame fields and the connection!.

The Palatini’s formalism is a first order formalism.

We can recover the usual Einstein’s equation.

Mauricio Bustamante Londono (UNAM) Connection Variables in General Relativity 28/06/2008 7 / 20

Page 21: Mauricio Bustamante London˜o - CCM UNAMrobert/sem/20080428_MBustamante.pdf · Mauricio Bustamante London˜o (UNAM) Connection Variables in General Relativity 28/06/2008 4 / 20. The

Palatini’s Action

Some comments about Palatini’s action

This action splits the degrees of freedom contained in the H-E actionin two sets, the frame fields and the connection!.

The Palatini’s formalism is a first order formalism.

We can recover the usual Einstein’s equation.

As the torsion is defined as T I = De I is easy to check that thesecond equation is equivalent to the free torsion condition.

Mauricio Bustamante Londono (UNAM) Connection Variables in General Relativity 28/06/2008 7 / 20

Page 22: Mauricio Bustamante London˜o - CCM UNAMrobert/sem/20080428_MBustamante.pdf · Mauricio Bustamante London˜o (UNAM) Connection Variables in General Relativity 28/06/2008 4 / 20. The

Self-dual formalism

Self-dual formalism

Mauricio Bustamante Londono (UNAM) Connection Variables in General Relativity 28/06/2008 8 / 20

Page 23: Mauricio Bustamante London˜o - CCM UNAMrobert/sem/20080428_MBustamante.pdf · Mauricio Bustamante London˜o (UNAM) Connection Variables in General Relativity 28/06/2008 4 / 20. The

Self-dual formalism

Self-dual formalism

A little bit of SO(4): The dual operator

Mauricio Bustamante Londono (UNAM) Connection Variables in General Relativity 28/06/2008 8 / 20

Page 24: Mauricio Bustamante London˜o - CCM UNAMrobert/sem/20080428_MBustamante.pdf · Mauricio Bustamante London˜o (UNAM) Connection Variables in General Relativity 28/06/2008 4 / 20. The

Self-dual formalism

Self-dual formalism

A little bit of SO(4): The dual operator

Over a four dimensional manifold we define the dual operator ⋆ by actingon antisymmetric tensors Tµν as

⋆Tµν = ǫ ρσµν Tρσ

Mauricio Bustamante Londono (UNAM) Connection Variables in General Relativity 28/06/2008 8 / 20

Page 25: Mauricio Bustamante London˜o - CCM UNAMrobert/sem/20080428_MBustamante.pdf · Mauricio Bustamante London˜o (UNAM) Connection Variables in General Relativity 28/06/2008 4 / 20. The

Self-dual formalism

Self-dual formalism

A little bit of SO(4): The dual operator

Over a four dimensional manifold we define the dual operator ⋆ by actingon antisymmetric tensors Tµν as

⋆Tµν = ǫ ρσµν Tρσ

If we note that ⋆2 = 1 then the eigenvectors of such operator are:

T+µν =

1

2(Tµν + ⋆Tµν)

︸ ︷︷ ︸

self −dual

and T−µν =

1

2(Tµν − ⋆Tµν)

︸ ︷︷ ︸

antiself −dual

Mauricio Bustamante Londono (UNAM) Connection Variables in General Relativity 28/06/2008 8 / 20

Page 26: Mauricio Bustamante London˜o - CCM UNAMrobert/sem/20080428_MBustamante.pdf · Mauricio Bustamante London˜o (UNAM) Connection Variables in General Relativity 28/06/2008 4 / 20. The

Self-dual formalism

Now define Ti = 12 (T0i + ⋆T0i ), i = 1, 2, 3 and note that

Mauricio Bustamante Londono (UNAM) Connection Variables in General Relativity 28/06/2008 9 / 20

Page 27: Mauricio Bustamante London˜o - CCM UNAMrobert/sem/20080428_MBustamante.pdf · Mauricio Bustamante London˜o (UNAM) Connection Variables in General Relativity 28/06/2008 4 / 20. The

Self-dual formalism

Now define Ti = 12 (T0i + ⋆T0i ), i = 1, 2, 3 and note that

[

T+i , T+

j

]

=3∑

i=1

ǫijkT+k

[

T−i , T−

j

]

=3∑

i=1

ǫijkT−k

[

T+i , T−

j

]

= 0.

Mauricio Bustamante Londono (UNAM) Connection Variables in General Relativity 28/06/2008 9 / 20

Page 28: Mauricio Bustamante London˜o - CCM UNAMrobert/sem/20080428_MBustamante.pdf · Mauricio Bustamante London˜o (UNAM) Connection Variables in General Relativity 28/06/2008 4 / 20. The

Self-dual formalism

Now define Ti = 12 (T0i + ⋆T0i ), i = 1, 2, 3 and note that

[

T+i , T+

j

]

=3∑

i=1

ǫijkT+k

[

T−i , T−

j

]

=3∑

i=1

ǫijkT−k

[

T+i , T−

j

]

= 0.

But the generators of the Lie algebra of SO(4) are precisely antisymmetricmatrices, then all that means, in this context, that

so(4) ∼= so(3) ⊕ so(3)

Mauricio Bustamante Londono (UNAM) Connection Variables in General Relativity 28/06/2008 9 / 20

Page 29: Mauricio Bustamante London˜o - CCM UNAMrobert/sem/20080428_MBustamante.pdf · Mauricio Bustamante London˜o (UNAM) Connection Variables in General Relativity 28/06/2008 4 / 20. The

Self-dual formalism

The last fact let us to write the connection as

ωIJ(x)

︸ ︷︷ ︸

∈so(4)

= ω+IJ (x)

︸ ︷︷ ︸

∈so(3)

+ ω−IJ (x)

︸ ︷︷ ︸

∈so(3)

.

Mauricio Bustamante Londono (UNAM) Connection Variables in General Relativity 28/06/2008 10 / 20

Page 30: Mauricio Bustamante London˜o - CCM UNAMrobert/sem/20080428_MBustamante.pdf · Mauricio Bustamante London˜o (UNAM) Connection Variables in General Relativity 28/06/2008 4 / 20. The

Self-dual formalism

The last fact let us to write the connection as

ωIJ(x)

︸ ︷︷ ︸

∈so(4)

= ω+IJ (x)

︸ ︷︷ ︸

∈so(3)

+ ω−IJ (x)

︸ ︷︷ ︸

∈so(3)

.

And then one prove that

R IJ [ω] = R IJ [ω+ + ω−] = R IJ [ω+] + R IJ [ω−],

Mauricio Bustamante Londono (UNAM) Connection Variables in General Relativity 28/06/2008 10 / 20

Page 31: Mauricio Bustamante London˜o - CCM UNAMrobert/sem/20080428_MBustamante.pdf · Mauricio Bustamante London˜o (UNAM) Connection Variables in General Relativity 28/06/2008 4 / 20. The

Self-dual formalism

The last fact let us to write the connection as

ωIJ(x)

︸ ︷︷ ︸

∈so(4)

= ω+IJ (x)

︸ ︷︷ ︸

∈so(3)

+ ω−IJ (x)

︸ ︷︷ ︸

∈so(3)

.

And then one prove that

R IJ [ω] = R IJ [ω+ + ω−] = R IJ [ω+] + R IJ [ω−],

hence,S [e, ω] = S [e, ω+]

︸ ︷︷ ︸

S+

+ S [e, ω−]︸ ︷︷ ︸

S−

.

Mauricio Bustamante Londono (UNAM) Connection Variables in General Relativity 28/06/2008 10 / 20

Page 32: Mauricio Bustamante London˜o - CCM UNAMrobert/sem/20080428_MBustamante.pdf · Mauricio Bustamante London˜o (UNAM) Connection Variables in General Relativity 28/06/2008 4 / 20. The

Self-dual formalism

The main result: The stationary values of S and S+ are over the sameframe fields.

Mauricio Bustamante Londono (UNAM) Connection Variables in General Relativity 28/06/2008 11 / 20

Page 33: Mauricio Bustamante London˜o - CCM UNAMrobert/sem/20080428_MBustamante.pdf · Mauricio Bustamante London˜o (UNAM) Connection Variables in General Relativity 28/06/2008 4 / 20. The

Self-dual formalism

The main result: The stationary values of S and S+ are over the sameframe fields.That means that the equations of motion obtained with S are the samethat the obtained with S+, in other words, we just need the informationcontained in the half of the Palatini’s action to describe the dynamics ofthe gravitational field!.

Mauricio Bustamante Londono (UNAM) Connection Variables in General Relativity 28/06/2008 11 / 20

Page 34: Mauricio Bustamante London˜o - CCM UNAMrobert/sem/20080428_MBustamante.pdf · Mauricio Bustamante London˜o (UNAM) Connection Variables in General Relativity 28/06/2008 4 / 20. The

Self-dual formalism

The self-dual action

As in ADM formalism, consider a foliation of spacetime M given by thediffeomorphism R × Σ, where Σ is a compact, orientable 3-manifold.

St

t+dtS Ndt

e0

e i

MT(X)

Mauricio Bustamante Londono (UNAM) Connection Variables in General Relativity 28/06/2008 12 / 20

Page 35: Mauricio Bustamante London˜o - CCM UNAMrobert/sem/20080428_MBustamante.pdf · Mauricio Bustamante London˜o (UNAM) Connection Variables in General Relativity 28/06/2008 4 / 20. The

Self-dual formalism

The self-dual action

As in ADM formalism, consider a foliation of spacetime M given by thediffeomorphism R × Σ, where Σ is a compact, orientable 3-manifold.

St

t+dtS Ndt

e0

e i

MT(X)

The foliation vector T (X ) can be written in terms of the shift vector andlapse function as Ne0 + N iei .Before to write the action in terms of N and N i it is better for ourproposes to take into account the following relations:

Mauricio Bustamante Londono (UNAM) Connection Variables in General Relativity 28/06/2008 12 / 20

Page 36: Mauricio Bustamante London˜o - CCM UNAMrobert/sem/20080428_MBustamante.pdf · Mauricio Bustamante London˜o (UNAM) Connection Variables in General Relativity 28/06/2008 4 / 20. The

Self-dual formalism

If qab = δijeiae

jb is the induced metric on Σ then is easy to see that√−g = N

√q.

Mauricio Bustamante Londono (UNAM) Connection Variables in General Relativity 28/06/2008 13 / 20

Page 37: Mauricio Bustamante London˜o - CCM UNAMrobert/sem/20080428_MBustamante.pdf · Mauricio Bustamante London˜o (UNAM) Connection Variables in General Relativity 28/06/2008 4 / 20. The

Self-dual formalism

If qab = δijeiae

jb is the induced metric on Σ then is easy to see that√−g = N

√q.

Define EµI =

√qe

µI .

Mauricio Bustamante Londono (UNAM) Connection Variables in General Relativity 28/06/2008 13 / 20

Page 38: Mauricio Bustamante London˜o - CCM UNAMrobert/sem/20080428_MBustamante.pdf · Mauricio Bustamante London˜o (UNAM) Connection Variables in General Relativity 28/06/2008 4 / 20. The

Self-dual formalism

If qab = δijeiae

jb is the induced metric on Σ then is easy to see that√−g = N

√q.

Define EµI =

√qe

µI .

Define N = N/√

q.

Mauricio Bustamante Londono (UNAM) Connection Variables in General Relativity 28/06/2008 13 / 20

Page 39: Mauricio Bustamante London˜o - CCM UNAMrobert/sem/20080428_MBustamante.pdf · Mauricio Bustamante London˜o (UNAM) Connection Variables in General Relativity 28/06/2008 4 / 20. The

Self-dual formalism

If qab = δijeiae

jb is the induced metric on Σ then is easy to see that√−g = N

√q.

Define EµI =

√qe

µI .

Define N = N/√

q.

Putting all together in the Palatini’s action we get:

S =

dx0

d3xNR IJµνE

µI E ν

J ,

Mauricio Bustamante Londono (UNAM) Connection Variables in General Relativity 28/06/2008 13 / 20

Page 40: Mauricio Bustamante London˜o - CCM UNAMrobert/sem/20080428_MBustamante.pdf · Mauricio Bustamante London˜o (UNAM) Connection Variables in General Relativity 28/06/2008 4 / 20. The

Self-dual formalism

If qab = δijeiae

jb is the induced metric on Σ then is easy to see that√−g = N

√q.

Define EµI =

√qe

µI .

Define N = N/√

q.

Putting all together in the Palatini’s action we get:

S =

dx0

d3xNR IJµνE

µI E ν

J ,

or

S =

dx0

d3x(

NRij

abEai Eb

j − 2NaR0iabE

bi + 2R0i

0aEai

)

Mauricio Bustamante Londono (UNAM) Connection Variables in General Relativity 28/06/2008 13 / 20

Page 41: Mauricio Bustamante London˜o - CCM UNAMrobert/sem/20080428_MBustamante.pdf · Mauricio Bustamante London˜o (UNAM) Connection Variables in General Relativity 28/06/2008 4 / 20. The

Self-dual formalism

We have two options: Going on as in the ADM formalism (calculatingmomenta and all that), or using what we know about self-duality.Obviously we choose the second.

Mauricio Bustamante Londono (UNAM) Connection Variables in General Relativity 28/06/2008 14 / 20

Page 42: Mauricio Bustamante London˜o - CCM UNAMrobert/sem/20080428_MBustamante.pdf · Mauricio Bustamante London˜o (UNAM) Connection Variables in General Relativity 28/06/2008 4 / 20. The

Self-dual formalism

We have two options: Going on as in the ADM formalism (calculatingmomenta and all that), or using what we know about self-duality.Obviously we choose the second. Since 1

2ǫi jkR+jk = R+0k , the last actionbecomes (without tildes and plus signs)

S =

dx0

d3x(

NRij

abEai Eb

j − 2NaR0iabE

bi + 2R0i

0aEai

)

,

Mauricio Bustamante Londono (UNAM) Connection Variables in General Relativity 28/06/2008 14 / 20

Page 43: Mauricio Bustamante London˜o - CCM UNAMrobert/sem/20080428_MBustamante.pdf · Mauricio Bustamante London˜o (UNAM) Connection Variables in General Relativity 28/06/2008 4 / 20. The

Self-dual formalism

We have two options: Going on as in the ADM formalism (calculatingmomenta and all that), or using what we know about self-duality.Obviously we choose the second. Since 1

2ǫi jkR+jk = R+0k , the last actionbecomes (without tildes and plus signs)

S =

dx0

d3x(

NRij

abEai Eb

j − 2NaR0iabE

bi + 2R0i

0aEai

)

,

and let’s “make-up” her a little:Define a su(2)- valued one form connection as Ai

a = 2ωia and note that the

two-form curvature associated with this connection is

F iab =

(dAi

)

ab+ [A, A]iab = 2R0i

ab

Mauricio Bustamante Londono (UNAM) Connection Variables in General Relativity 28/06/2008 14 / 20

Page 44: Mauricio Bustamante London˜o - CCM UNAMrobert/sem/20080428_MBustamante.pdf · Mauricio Bustamante London˜o (UNAM) Connection Variables in General Relativity 28/06/2008 4 / 20. The

Self-dual formalism

We have two options: Going on as in the ADM formalism (calculatingmomenta and all that), or using what we know about self-duality.Obviously we choose the second. Since 1

2ǫi jkR+jk = R+0k , the last actionbecomes (without tildes and plus signs)

S =

dx0

d3x(

NRij

abEai Eb

j − 2NaR0iabE

bi + 2R0i

0aEai

)

,

and let’s “make-up” her a little:Define a su(2)- valued one form connection as Ai

a = 2ωia and note that the

two-form curvature associated with this connection is

F iab =

(dAi

)

ab+ [A, A]iab = 2R0i

ab

Also 2R0i0a = ∂0A

ia + Daλ

i , where λi = −2ωi0.

Mauricio Bustamante Londono (UNAM) Connection Variables in General Relativity 28/06/2008 14 / 20

Page 45: Mauricio Bustamante London˜o - CCM UNAMrobert/sem/20080428_MBustamante.pdf · Mauricio Bustamante London˜o (UNAM) Connection Variables in General Relativity 28/06/2008 4 / 20. The

Self-dual formalism

Finally, the action for general general relativity in terms of connectionvariables or Ashtekar variables is

S =

dt

d3x

[(∂0A

ia

)E a

i −(

NaF kabE

bk + λiDaE

ai − 1

2NF

ijabE

ai Eb

j

)]

.

Mauricio Bustamante Londono (UNAM) Connection Variables in General Relativity 28/06/2008 15 / 20

Page 46: Mauricio Bustamante London˜o - CCM UNAMrobert/sem/20080428_MBustamante.pdf · Mauricio Bustamante London˜o (UNAM) Connection Variables in General Relativity 28/06/2008 4 / 20. The

Self-dual formalism

Finally, the action for general general relativity in terms of connectionvariables or Ashtekar variables is

S =

dt

d3x

[(∂0A

ia

)E a

i −(

NaF kabE

bk + λiDaE

ai − 1

2NF

ijabE

ai Eb

j

)]

.

and the Hamiltonian of the theory is

H =

Σd3x

NaF i

abEbi

︸ ︷︷ ︸

D[Na]

+ λiDaEai

︸ ︷︷ ︸

G[λi ]

−1

2NF

ijabE

ai Eb

j︸ ︷︷ ︸

S[N]

Mauricio Bustamante Londono (UNAM) Connection Variables in General Relativity 28/06/2008 15 / 20

Page 47: Mauricio Bustamante London˜o - CCM UNAMrobert/sem/20080428_MBustamante.pdf · Mauricio Bustamante London˜o (UNAM) Connection Variables in General Relativity 28/06/2008 4 / 20. The

Constraints in terms of the new variables

Gauss constraint

Variations on λ produce the Gauss constraint

DaEai = 0.

Mauricio Bustamante Londono (UNAM) Connection Variables in General Relativity 28/06/2008 16 / 20

Page 48: Mauricio Bustamante London˜o - CCM UNAMrobert/sem/20080428_MBustamante.pdf · Mauricio Bustamante London˜o (UNAM) Connection Variables in General Relativity 28/06/2008 4 / 20. The

Constraints in terms of the new variables

Gauss constraint

Variations on λ produce the Gauss constraint

DaEai = 0.

Following the Dirac’s prespription to deal with constraints systems, wemay interpret the Gauss constraint in terms of gauge symmetries. To dothat we calculate the Poisson brackets of the constraint with each one ofthe phase space variables (Ai

a, Eai ):

Mauricio Bustamante Londono (UNAM) Connection Variables in General Relativity 28/06/2008 16 / 20

Page 49: Mauricio Bustamante London˜o - CCM UNAMrobert/sem/20080428_MBustamante.pdf · Mauricio Bustamante London˜o (UNAM) Connection Variables in General Relativity 28/06/2008 4 / 20. The

Constraints in terms of the new variables

Gauss constraint

Variations on λ produce the Gauss constraint

DaEai = 0.

Following the Dirac’s prespription to deal with constraints systems, wemay interpret the Gauss constraint in terms of gauge symmetries. To dothat we calculate the Poisson brackets of the constraint with each one ofthe phase space variables (Ai

a, Eai ):

Taking into account that{

Aia(x), Eb

j (y)}

= δijδ

ba δ3(x , y) we have

{Ai

a(x),G[λj ]}

= −Daλi

{E a

i (x),G[λj ]}

= ǫ kij λj(x)E a

k (x)

Mauricio Bustamante Londono (UNAM) Connection Variables in General Relativity 28/06/2008 16 / 20

Page 50: Mauricio Bustamante London˜o - CCM UNAMrobert/sem/20080428_MBustamante.pdf · Mauricio Bustamante London˜o (UNAM) Connection Variables in General Relativity 28/06/2008 4 / 20. The

Constraints in terms of the new variables

Gauss constraint

Variations on λ produce the Gauss constraint

DaEai = 0.

Following the Dirac’s prespription to deal with constraints systems, wemay interpret the Gauss constraint in terms of gauge symmetries. To dothat we calculate the Poisson brackets of the constraint with each one ofthe phase space variables (Ai

a, Eai ):

Taking into account that{

Aia(x), Eb

j (y)}

= δijδ

ba δ3(x , y) we have

{Ai

a(x),G[λj ]}

= −Daλi

{E a

i (x),G[λj ]}

= ǫ kij λj(x)E a

k (x)

Gauss constraint generate SU(2) gauge transformations. General relativitylooks like a Yang-Mills theory!.

Mauricio Bustamante Londono (UNAM) Connection Variables in General Relativity 28/06/2008 16 / 20

Page 51: Mauricio Bustamante London˜o - CCM UNAMrobert/sem/20080428_MBustamante.pdf · Mauricio Bustamante London˜o (UNAM) Connection Variables in General Relativity 28/06/2008 4 / 20. The

Constraints in terms of the new variables

Diffeomorphisms constraint

Variations on Na produce the diffeomorphisms constraint

F iabE

bi = 0.

Defining D[Nb] = D[Nb] − G[NbAjb], we find

{

Aia, D[Nb]

}

= LNbAia

{

E ai , D[Nb]

}

= LNbE ai

Mauricio Bustamante Londono (UNAM) Connection Variables in General Relativity 28/06/2008 17 / 20

Page 52: Mauricio Bustamante London˜o - CCM UNAMrobert/sem/20080428_MBustamante.pdf · Mauricio Bustamante London˜o (UNAM) Connection Variables in General Relativity 28/06/2008 4 / 20. The

Constraints in terms of the new variables

Diffeomorphisms constraint

Variations on Na produce the diffeomorphisms constraint

F iabE

bi = 0.

Defining D[Nb] = D[Nb] − G[NbAjb], we find

{

Aia, D[Nb]

}

= LNbAia

{

E ai , D[Nb]

}

= LNbE ai

This constraint generate the diffeomorphisms on the 3-manifold Σ.

Mauricio Bustamante Londono (UNAM) Connection Variables in General Relativity 28/06/2008 17 / 20

Page 53: Mauricio Bustamante London˜o - CCM UNAMrobert/sem/20080428_MBustamante.pdf · Mauricio Bustamante London˜o (UNAM) Connection Variables in General Relativity 28/06/2008 4 / 20. The

Constraints in terms of the new variables

Scalar constraint

Variations on N produce the Scalar constraint

NFijabE

ai Eb

j = 0.

Its Poisson brackets with the phase space variables is:

{Ai

a(x),S[N]}

= Nǫij kF kab(x)Eb

j (x)

{E ai (x),S[N]} = Db

(

NǫjkiEbj E a

k

)

.

Mauricio Bustamante Londono (UNAM) Connection Variables in General Relativity 28/06/2008 18 / 20

Page 54: Mauricio Bustamante London˜o - CCM UNAMrobert/sem/20080428_MBustamante.pdf · Mauricio Bustamante London˜o (UNAM) Connection Variables in General Relativity 28/06/2008 4 / 20. The

Constraints in terms of the new variables

Scalar constraint

Variations on N produce the Scalar constraint

NFijabE

ai Eb

j = 0.

Its Poisson brackets with the phase space variables is:

{Ai

a(x),S[N]}

= Nǫij kF kab(x)Eb

j (x)

{E ai (x),S[N]} = Db

(

NǫjkiEbj E a

k

)

.

Although is not evident, this constraint generate transverse moves of Σand together with the last constraint we obtain the diffeomorphisms on M.

Mauricio Bustamante Londono (UNAM) Connection Variables in General Relativity 28/06/2008 18 / 20

Page 55: Mauricio Bustamante London˜o - CCM UNAMrobert/sem/20080428_MBustamante.pdf · Mauricio Bustamante London˜o (UNAM) Connection Variables in General Relativity 28/06/2008 4 / 20. The

Constraints in terms of the new variables

Some comments about constraints

Mauricio Bustamante Londono (UNAM) Connection Variables in General Relativity 28/06/2008 19 / 20

Page 56: Mauricio Bustamante London˜o - CCM UNAMrobert/sem/20080428_MBustamante.pdf · Mauricio Bustamante London˜o (UNAM) Connection Variables in General Relativity 28/06/2008 4 / 20. The

Constraints in terms of the new variables

Some comments about constraints

The phase space of general relativity is now coordinated by theconnection A and the gravitational field E .

Mauricio Bustamante Londono (UNAM) Connection Variables in General Relativity 28/06/2008 19 / 20

Page 57: Mauricio Bustamante London˜o - CCM UNAMrobert/sem/20080428_MBustamante.pdf · Mauricio Bustamante London˜o (UNAM) Connection Variables in General Relativity 28/06/2008 4 / 20. The

Constraints in terms of the new variables

Some comments about constraints

The phase space of general relativity is now coordinated by theconnection A and the gravitational field E .

The constraints are in polynomial form.

Mauricio Bustamante Londono (UNAM) Connection Variables in General Relativity 28/06/2008 19 / 20

Page 58: Mauricio Bustamante London˜o - CCM UNAMrobert/sem/20080428_MBustamante.pdf · Mauricio Bustamante London˜o (UNAM) Connection Variables in General Relativity 28/06/2008 4 / 20. The

Constraints in terms of the new variables

Some comments about constraints

The phase space of general relativity is now coordinated by theconnection A and the gravitational field E .

The constraints are in polynomial form.

In the Dirac’s terminology the set of constraints is a set of first classconstraints (I will not prove it here).

Mauricio Bustamante Londono (UNAM) Connection Variables in General Relativity 28/06/2008 19 / 20

Page 59: Mauricio Bustamante London˜o - CCM UNAMrobert/sem/20080428_MBustamante.pdf · Mauricio Bustamante London˜o (UNAM) Connection Variables in General Relativity 28/06/2008 4 / 20. The

Constraints in terms of the new variables

Some comments about constraints

The phase space of general relativity is now coordinated by theconnection A and the gravitational field E .

The constraints are in polynomial form.

In the Dirac’s terminology the set of constraints is a set of first classconstraints (I will not prove it here).

Now let’s go to the quantization...

Mauricio Bustamante Londono (UNAM) Connection Variables in General Relativity 28/06/2008 19 / 20

Page 60: Mauricio Bustamante London˜o - CCM UNAMrobert/sem/20080428_MBustamante.pdf · Mauricio Bustamante London˜o (UNAM) Connection Variables in General Relativity 28/06/2008 4 / 20. The

References

References

J.Baez, Spin networks in gauge theory, Advances in Mathematics 117,253-272, 1996.

J.Baez, Spin networks in non perturbative quantum gravity,arXiv:gr-qc/9504036.

A.Perez, Introduction to loop quantum gravity and spin foams,arXiv:gr-qc/0409061.

C.Rovelli, Quantum Gravity, Cambridge University Press, 2004.

Jose Antonio Zapata’s and Robert Oeckl’s comments.

Mauricio Bustamante Londono (UNAM) Connection Variables in General Relativity 28/06/2008 20 / 20