Mathematical thinking Solution Manual IV

  • Upload
    sushik

  • View
    236

  • Download
    2

Embed Size (px)

Citation preview

  • 8/18/2019 Mathematical thinking Solution Manual IV

    1/36

  • 8/18/2019 Mathematical thinking Solution Manual IV

    2/36

  • 8/18/2019 Mathematical thinking Solution Manual IV

    3/36

  • 8/18/2019 Mathematical thinking Solution Manual IV

    4/36

  • 8/18/2019 Mathematical thinking Solution Manual IV

    5/36

  • 8/18/2019 Mathematical thinking Solution Manual IV

    6/36

  • 8/18/2019 Mathematical thinking Solution Manual IV

    7/36

  • 8/18/2019 Mathematical thinking Solution Manual IV

    8/36

  • 8/18/2019 Mathematical thinking Solution Manual IV

    9/36

  • 8/18/2019 Mathematical thinking Solution Manual IV

    10/36

  • 8/18/2019 Mathematical thinking Solution Manual IV

    11/36

  • 8/18/2019 Mathematical thinking Solution Manual IV

    12/36

  • 8/18/2019 Mathematical thinking Solution Manual IV

    13/36

  • 8/18/2019 Mathematical thinking Solution Manual IV

    14/36

  • 8/18/2019 Mathematical thinking Solution Manual IV

    15/36

  • 8/18/2019 Mathematical thinking Solution Manual IV

    16/36

  • 8/18/2019 Mathematical thinking Solution Manual IV

    17/36

  • 8/18/2019 Mathematical thinking Solution Manual IV

    18/36

  • 8/18/2019 Mathematical thinking Solution Manual IV

    19/36

  • 8/18/2019 Mathematical thinking Solution Manual IV

    20/36

  • 8/18/2019 Mathematical thinking Solution Manual IV

    21/36

  • 8/18/2019 Mathematical thinking Solution Manual IV

    22/36

  • 8/18/2019 Mathematical thinking Solution Manual IV

    23/36

  • 8/18/2019 Mathematical thinking Solution Manual IV

    24/36

  • 8/18/2019 Mathematical thinking Solution Manual IV

    25/36

    233 Ch 16 Diff i i 234

  • 8/18/2019 Mathematical thinking Solution Manual IV

    26/36

    233 Chapter 16: Differentiation 234

    The home run hitters (probability  p/4) score exactly k  runs if and only

    if there are exactly  k  home runs before the third out. This has probabilityak  =

    k +22

    ( p/4)k (1−  p/4)3. The expectation is

    ∞k =0

    kak  = ∞k =0

    12

    (k + 2)(k + 1)k (  p4

    )k (1−  p4

    )3 = 3 p4−  p .

    Here we have used

    ∞k =0

    (k + 2)(k + 1)kx k  =  x (∞k =0

     x k ) = x ( 11−  x )

     = 6 x (1−  x )−4.

    The singles hitters score exactly   k   >   0 runs if and only if there are

    exactly   k  +  2 singles before the third out. This has probability   bk   =k +42

     pk +2(1−  p)3. The expectation is

    ∞k =1

    kbk  =1

    2 p2(1−  p)3

    ∞k =1

    (k + 4)(k + 3)kpk .

    To sum the series, we use  (k +4)(k +3)k  = (k +3)(k +2)(k +1)+ (k +2)(k +1)− 2(k + 1)− 6 to obtain∞k =1

    (k +4)(k +3)kx k  =∞k =0

    (k +4)(k +3)kx k  = ( 11−  x )

    +( 11−  x )

    −2( 11−  x )

    −6   11−  x 

    = 6(1−  x )4 +

    2

    (1−  x )3 −2

    (1−  x )2 −6

    1−  x Setting  x  =   p and inserting this into the formula for the expectation yields p2(   3

    1− p + 1− (1−  p)− 3(1−  p)2).

     As   p  approaches 1, the home run hitters score about   .75 runs per in-ning, while the expectation for the singles hitters grows without bound.

    When   p   is very small, the home run hitters expect about 3 p/4 runs per

    inning, while the singles hitters expect only about 10 p3. When   p   > .279

    (approximately), the singles hitters do better.

    16.66.n

    k =0 k x k  is a ratio of two polynomials in  x .  We compute

    n

    k =0

    kx k  =  x n

    k =0

    kx k −1 =  x  d dx 

    (

    n

    k =0

     x k )

    =  x  d dx 

    (1−  x n+1

    1−  x  ) = x (nn+1 x    − (n + 1) x n + 1)

    (1−  x )2   .

    16.67.   If q is a polynomial, then∞

    k =0 q(k ) x k  is the ratio of two polynomials

    in  x   (for | x |  0 and that the claim holds

    for m − 1. We compute

    ∞k =0

    k m x k  =  x  d dx 

     ∞k =0

    k m−1 x k =  x 

      d 

    dx  pm−1( x )(1−  x )m

    =  x mpm−1( x )+ (1−  x ) pm−1( x )(1−  x )m+1   =

     pm( x )

    (1−  x )m+1 ,

    where   pm( x ) =   x [mpm−1( x ) + (1 −  x ) pm−1( x )]. Since   pm−1  is a polynomial,also   pm  is a polynomial.

    Proof 2 (generating functions). It suffices to prove that the statement

    holds when q(k ) = k m

    , because every polynomial is a finite sum of multi-

    ples of such binomial coefficients (see Solution 5.29). By Theorem 12.35,

    ∞k =

    0 k m x k  =  x m/(1−  x )m+1.

    16.68.   The random variable   X    defined for nonnegative integer   n   by

    Prob ( X  = n) =   p(1−  p)n , where 0  <   p  <  1.a) The probability generating function φ  for  X  is given by  φ (t ) =   p[1−

    (1−  p)t ]−1.  By definition, φ (t ) =∞n=0 Prob ( X  = n)t n. Using the geometricseries, we compute   φ(t ) =  p(1 −   p)nt n =   p/(1 − (1 −   p)t ). Since   φ(1)sums all the probability, we have  φ (1) =   p/(1− (1−  p)) = 1, as desired.

    b)  E ( X ) = (1−  p)/ p.  We compute

     E ( x ) =

    nProb ( X  = n) = φ(1) =  p(1−  p)(1− (1−  p)t )−2

    t =1= 1−  p

     p.

    c) Prob ( X  ≤ 20) = 1− (1−  p)21.  We compute

    Prob ( X  ≤ 20) =   p20n=0

    (1−  p)n =   p1− (1−  p)21

    1− (1−  p) = 1− (1−  p)21.

    16.69.   Curvature of  y( x ) =  x n , where n ≥ 2.

  • 8/18/2019 Mathematical thinking Solution Manual IV

    27/36

  • 8/18/2019 Mathematical thinking Solution Manual IV

    28/36

  • 8/18/2019 Mathematical thinking Solution Manual IV

    29/36

  • 8/18/2019 Mathematical thinking Solution Manual IV

    30/36

  • 8/18/2019 Mathematical thinking Solution Manual IV

    31/36

  • 8/18/2019 Mathematical thinking Solution Manual IV

    32/36

  • 8/18/2019 Mathematical thinking Solution Manual IV

    33/36

  • 8/18/2019 Mathematical thinking Solution Manual IV

    34/36

  • 8/18/2019 Mathematical thinking Solution Manual IV

    35/36

  • 8/18/2019 Mathematical thinking Solution Manual IV

    36/36