10
REVIEW ARTICLE Mathematical analysis of the Generalized Benjamin and Burger-Kdv Equations via the Extended Trial Equation Method Fethi Bin Muhammad Belgacem a , Hasan Bulut b, * , Haci Mehmet Baskonus c , Tolga Akturk b a Department of Mathematics, Faculty of Basic Education, PAAET, Shaamyia, Kuwait b Department of Mathematics, Faculty of Science, Firat University, 23100 Elazig, Turkey c Department of Computer Engineering, Faculty of Engineering, University of Tunceli, 62100 Tunceli, Turkey Received 27 May 2013; revised 11 July 2013; accepted 30 July 2013 KEYWORDS Extended Trial Equation Method; Generalized Benjamin Equa- tion; Generalized Burger-Kdv Equation Abstract In this paper, using the Extended Trial Equation (ETEM), we get new traveling wave solutions of the Generalized Benjamin, the Generalized Burger-Kdv Equations (GBE, GBKE). The obtained solutions not only constitute a novel analytical viewpoint in nonlinear complex phe- nomena, but they also form a new stand alone basis from which physical applications in this arena can be comprehended further, and moreover investigated. Furthermore, to concretely enrich this research production, we provide illustrative, Mathematica Release 7 based, 3D graphics of the got- ten solutions, with well chosen, yet structure revealing parameters. ª 2013 Production and hosting by Elsevier B.V. on behalf of University of Bahrain. 1. Introduction Nonlinear partial differential equations are widely used to de- scribe complex phenomena in many fields of applied sciences, such as chemistry, physics, and the engineering disciplines. Over the last few decades, seeking new traveling wave solutions of nonlinear partial differential equations, became a mandatory task, to significantly comprehend and describe complex phe- nomena. Well designed mathematical models accurately describing studied phenomena, can only enhance the chances of achieving analytical solutions, thereby yielding a better phys- ical understanding of the phenomena. In the last decade, several techniques, such as sumudu transform method (Belgacem, 2006, 2010; Belgacem and Hussain, 2007; Katatbeh and Belgacem, 2011; Chaurasia et al., 2012; Gupta et al., 2011; Bulut et al., 2012), ansatz method, mapping method, three-wave method, the adomian decomposition method, soliton perturbation the- ory (Antonova and Biswas, 2009), Euler–Lagrange operator (Kara et al., 2013) He’s variational principle (Girgis and Biswas, 2011) have been carried out for solving these differential equa- tions (Mittal and Nigam, 2008; Achouri and Omrani, 2009) in * Corresponding author. Tel.: +90 4242370000 3671. E-mail addresses: [email protected] (F.B.M. Belgacem), hbulut@firat.edu.tr (H. Bulut), [email protected] (H.M. Bas- konus), [email protected] (T. Akturk). Peer review under responsibility of University of Bahrain. Production and hosting by Elsevier Journal of the Association of Arab Universities for Basic and Applied Sciences (2013) xxx, xxxxxx University of Bahrain Journal of the Association of Arab Universities for Basic and Applied Sciences www.elsevier.com/locate/jaaubas www.sciencedirect.com 1815-3852 ª 2013 Production and hosting by Elsevier B.V. on behalf of University of Bahrain. http://dx.doi.org/10.1016/j.jaubas.2013.07.005 Please cite this article in press as: Belgacem, F.B.M. et al., Mathematical analysis of the Generalized Benjamin and Burger-Kdv Equations via the Extended Trial Equation Method. Journal of the Association of Arab Universities for Basic and Applied Sciences (2013), http://dx.doi.org/10.1016/j.jaubas.2013.07.005

Mathematical analysis of the Generalized Benjamin and Burger-Kdv Equations via the Extended Trial Equation Method

  • Upload
    tolga

  • View
    215

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Mathematical analysis of the Generalized Benjamin and Burger-Kdv Equations via the Extended Trial Equation Method

Journal of the Association of Arab Universities for Basic and Applied Sciences (2013) xxx, xxx–xxx

University of Bahrain

Journal of the Association of Arab Universities for

Basic and Applied Scienceswww.elsevier.com/locate/jaaubas

www.sciencedirect.com

REVIEW ARTICLE

Mathematical analysis of the Generalized Benjamin

and Burger-Kdv Equations via the Extended Trial

Equation Method

Fethi Bin Muhammad Belgacema, Hasan Bulut

b,*, Haci Mehmet Baskonusc,

Tolga Akturk b

a Department of Mathematics, Faculty of Basic Education, PAAET, Shaamyia, Kuwaitb Department of Mathematics, Faculty of Science, Firat University, 23100 Elazig, Turkeyc Department of Computer Engineering, Faculty of Engineering, University of Tunceli, 62100 Tunceli, Turkey

Received 27 May 2013; revised 11 July 2013; accepted 30 July 2013

*

E

hb

ko

Pe

18

ht

P

E

KEYWORDS

Extended Trial Equation

Method;

Generalized Benjamin Equa-

tion;

Generalized Burger-Kdv

Equation

Corresponding author. Tel.

-mail addresses: fbmbelga

[email protected] (H. Bulut)

nus), [email protected]

er review under responsibilit

Production an

15-3852 ª 2013 Production

tp://dx.doi.org/10.1016/j.jaub

lease cite this article in press as:

quation Method. Journal of the

: +90 42

cem@gm

, hmbask

om (T. A

y of Univ

d hostin

and hosti

as.2013.0

Belgacem,

Associatio

Abstract In this paper, using the Extended Trial Equation (ETEM), we get new traveling wave

solutions of the Generalized Benjamin, the Generalized Burger-Kdv Equations (GBE, GBKE).

The obtained solutions not only constitute a novel analytical viewpoint in nonlinear complex phe-

nomena, but they also form a new stand alone basis from which physical applications in this arena

can be comprehended further, and moreover investigated. Furthermore, to concretely enrich this

research production, we provide illustrative, Mathematica Release 7 based, 3D graphics of the got-

ten solutions, with well chosen, yet structure revealing parameters.ª 2013 Production and hosting by Elsevier B.V. on behalf of University of Bahrain.

1. Introduction

Nonlinear partial differential equations are widely used to de-

scribe complex phenomena in many fields of applied sciences,such as chemistry, physics, and the engineering disciplines. Overthe last few decades, seeking new traveling wave solutions of

42370000 3671.

ail.com (F.B.M. Belgacem),

[email protected] (H.M. Bas-

kturk).

ersity of Bahrain.

g by Elsevier

ng by Elsevier B.V. on behalf of U

7.005

F.B.M. et al., Mathematical analysis o

n of Arab Universities for Basic and A

nonlinear partial differential equations, became a mandatorytask, to significantly comprehend and describe complex phe-nomena. Well designed mathematical models accurately

describing studied phenomena, can only enhance the chancesof achieving analytical solutions, thereby yielding a better phys-ical understanding of the phenomena. In the last decade, several

techniques, such as sumudu transformmethod (Belgacem, 2006,2010; Belgacem and Hussain, 2007; Katatbeh and Belgacem,2011; Chaurasia et al., 2012; Gupta et al., 2011; Bulut et al.,

2012), ansatz method, mapping method, three-wave method,the adomian decomposition method, soliton perturbation the-ory (Antonova and Biswas, 2009), Euler–Lagrange operator

(Kara et al., 2013) He’s variational principle (Girgis and Biswas,2011) have been carried out for solving these differential equa-tions (Mittal and Nigam, 2008; Achouri and Omrani, 2009) in

niversity of Bahrain.

f the Generalized Benjamin and Burger-Kdv Equations via the Extended Trial

pplied Sciences (2013), http://dx.doi.org/10.1016/j.jaubas.2013.07.005

Page 2: Mathematical analysis of the Generalized Benjamin and Burger-Kdv Equations via the Extended Trial Equation Method

2 F.B.M. Belgacem et al.

terms of singular and soliton solutions (Razborova et al., 2013;Song et al., 2013; Ahmed and Biswas, 2013; Biswas, 2012).

In 2005, Liu (2005, 2006, 2010) initiated a different ap-

proach, which is now recognized as the Trial Equation Meth-od, as an alternative. Recently, Gurefe et al. (Pandir et al.,2012, 2013a,b; Gurefe and Misirli, 2010; Gurefe et al., 2011,

2013) used the trial equation method and its extended version,to obtain new exact solutions of some generalized evolutionequations. This was an important step towards the modelling

of nonlinear complex phenomena.In this study, we aim to provide elliptic functions and Jaco-

bi elliptic functions solutions of the Generalized BenjaminEquation (GBE), and Generalized Burger-Kdv Equation

(GBKE), as an application of the Extended Trial EquationMethod (ETEM).

In Section 2, of this paper, we give the description of the

ETEM, while in Section 3, pursuing suggestions and usingthe setup in Taghizadeh et al. (2012), we show how to get someexact solutions to the GBE,

utt þ a upuxð Þx þ buxxxx ¼ 0; ð1Þ

and the GBKE (Zhang et al., 2002),

ut þ aupux þ bu2pux þ duxxx ¼ 0; ð2Þ

where a; b; b; d and p are arbitrary constants. In the dis-cussion, we propose an even more generalized version of

ETEM, and we will label it GETEM, for future reference.

2. The Extended Trial Equation Method

In this part of the manuscript, the Extended Trial EquationMethod will be given. In order to apply this method to theGBE, we consider the following steps.

Step 1. We consider the Generalized Benjamin Equations(GBE), with dependent variable, u,

Pðut; utt; ux; uxx; uxxx; . . .Þ ¼ 0; ð3Þ

on which we apply the wave transformation, for k–0;

uðx; tÞ ¼ uðgÞ; g ¼ kx� kt; ð4Þ

to get a nonlinear ordinary differential equation,

N u; u0; u00; u000; . . .ð Þ ¼ 0: ð5Þ

Step 2. Then, we take the trial equation,

u ¼Xd

i¼0siC

i; ð6Þ

where, we have the rational polynomial setup, in UðCÞ andWðCÞ

ðC’Þ2 ¼ ^ðCÞ ¼ UðCÞWðCÞ ¼

Xh

i¼0niC

i

Xe

j¼0fjC

j

¼ n0 þ n1Cþ � � � þ nhCh

f0 þ f1Cþ � � � þ feCe : ð7Þ

Consequently, we get,

u0 ¼

ffiffiffiffiffiffiffiffiffiffiffiUðCÞWðCÞ

s Xd

i¼0isiC

i�1

!and ðu’Þ2 ¼ UðCÞ

WðCÞXd

i¼0isiC

i�1

!2

;

ð8Þ

Please cite this article in press as: Belgacem, F.B.M. et al., Mathematical analysis o

Equation Method. Journal of the Association of Arab Universities for Basic and A

and,

u00 ¼ U0ðCÞWðCÞ � UðCÞW0ðCÞ2W2ðCÞ

Xd

i¼0isiC

i�1

!

þ UðCÞWðCÞ

Xd

i¼0iði� 1ÞsiCi�2

!; ð9Þ

Substituting the relations Eqs. (7)–(9) into Eq. (5), yields poly-nomial equation in C,

XðCÞ ¼ qsCs þ � � � þ q1Cþ q0 ¼ 0: ð10Þ

According to the balance principle, we can then compute some

values of h; e and d.Step 3. Letting the coefficients of XðCÞ be all null, yields a

system of algebraic equations,

qi ¼ 0; i ¼ 0; . . . ; s: ð11Þ

Solving the algebraic system, helps specify the values ofn0; n1; . . . ; nh and f0; f1; . . . ; fe.

Step 4. Reducing Eq. (11) to the elementary integral form,

we get,

�ðg� g0Þ ¼Z

1ffiffiffiffiffiffiffiffiffiffiffi^ðCÞ

p dC ¼Z ffiffiffiffiffiffiffiffiffiffiffi

WðCÞUðCÞ

sdC: ð12Þ

Using a complete discrimination system for polynomial toclassify the roots of UðCÞ, we solve Eq. (12), with the help of

Mathematica Release 7, and classify the exact solutions toEq. (5). In addition, we can write the exact traveling wave solu-tions to Eq. (3), respectively.

3. Applications

In this section, we seek the exact solution of the GBE and

GKDE by using ETEM. Subsequently, we drew 3D surfacesof the analytical solutions obtained by using ETEM.

Example 1. We consider the GBE, suggested in (Gurefe et al.,2011), given in Eq. (1). Many researchers have tried to get the

approximate solutions of this equation by using a variety ofmethods. Let us consider the travelling wave solutions of Eq.(1), and we perform the transformation uðx; tÞ ¼ uðgÞ, and

g ¼ kx� kt, where k and k are constants. Hence, integratingthis equation with respect to g, and setting the integrationconstant to zero, we get,

k2k2ðpþ 1Þv2 þ akp2v3 þ bk4ð1� p2Þðv’Þ2 þ bk4pð1þ pÞvv’’¼ 0: ð13Þ

Substituting, Eqs. (7)–(9) into Eq. (13), and using balance prin-ciple yields,

h ¼ eþ dþ 2: ð14Þ

When this resolution procedure is applied, we get the following

cases.

Case 1. If we take e ¼ 0; d ¼ 1, and h ¼ 3, then, accordingto Eqs. (7)–(9), with, f0–0. we get,

f the Generalized Benjamin and Burger-Kdv Equations via the Extended Trial

pplied Sciences (2013), http://dx.doi.org/10.1016/j.jaubas.2013.07.005

Page 3: Mathematical analysis of the Generalized Benjamin and Burger-Kdv Equations via the Extended Trial Equation Method

Mathematical analysis of the Generalized Benjamin and Burger-Kdv Equations via the Extended Trial 3

v0 ¼ n0 þ n1Cf0

; ð15Þ

v00 ¼s1 n1 þ 2n2Cþ 3n3C

2� �

2f0; ð16Þ

ðv0Þ2 ¼s21 n0 þ n1Cþ n2C

2 þ n3C3

� �f0

: ð17Þ

Therefore, we have a system of algebraic equations from thecoefficients of polynomial of C. After we substitute Eqs.

(15)–(17) into Eq. (13), we get an algebraic equation system.When we solve this system by using Mathematica Release 7,we obtain the following relations;

n0 ¼ �s0ðn2s0 � 2n1s1Þ

3s21; n1 ¼ n1; n2 ¼ n2; n3

¼ s1ð2n2s0 � n1s1Þ3s20

; ð18Þ

f0 ¼ �k3bðp2 þ 3pþ 2Þð2n2s0 � n1s1Þ

6p2as20; ð19Þ

k ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi6as0ðn2s0 � n1s1Þ

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffikðp2 þ 3pþ 2Þðn1s1 � 2n2s0Þ

p : ð20Þ

Substituting these coefficients into Eqs. (7) and (12), we have,

�ðg� g0Þ ¼ A

Z1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Bþ CCþDC2 þ EC3p dC ð21Þ

where the coefficients, B;C;D and E are defined by,

A ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffik3bs21ðp2 þ 3pþ 2Þðn1s1 � 2n2s0Þ

2p2a

s; B

¼ s30ð2n1s1 � n2s0Þ; C ¼ 3s21s20n1; D

¼ s213s20n2; E ¼ s31ð2n2s0 � n1s1Þ: ð22Þ

Integrating Eq. (21), we obtain the following equations ,

�ðg� g0Þ ¼ �A

v� a1

; ð23Þ

�ðg� g0Þ ¼Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a1 � a2

p ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiv� a2

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffia1 � a2

pffiffiffiffiffiffiffiffiffiffiffiffiffiv� a2

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffia1 � a2

p����

����; a2 > a1; ð24Þ

�ðg� g0Þ ¼�2Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffia2 � a1

p Fðm; nÞ; a3 > a2 > a1; ð25Þ

where, m ¼ arc sinffiffiffiffiffiffiffiffiffia2�a1v�a1

q� �, n ¼ a1�a3

a1�a2and Fðm; nÞ is the ellip-

tic function.Furthermore, the values, a1; a2 and a3 are the

roots of the polynomial equation,

Bþ CCþDC2 þ EC3 ¼ 0: ð26Þ

Therefore, we find the solutions,

uðx; tÞ ¼ a1 þ4A2

ðkx� kt� g0Þ2

" #1=p; ð27Þ

uðx; tÞ ¼ a1 þ ða2 � a1Þ sec2ðg� g0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffia2 � a1

p

2A

� �� 1=p; ð28Þ

Please cite this article in press as: Belgacem, F.B.M. et al., Mathematical analysis o

Equation Method. Journal of the Association of Arab Universities for Basic and A

uðx; tÞ ¼ a3 þ ða2 � a3Þsn2ð�gþ g0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffia1 � a3

p

2A;a2 � a3

a1 � a3

� �� 1=p;

ð29Þ

where, k, is then given by,

k ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi6as0ðn2s0 � n1s1Þ

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffikðp2 þ 3pþ 2Þðn1s1 � 2n2s0Þ

p : ð30Þ

For simplicity, ifwe takeg0 ¼ 0, then the solutions,Eqs. (27)–(29),are reduced to the rational and single kink solution, respectively,

uðx; tÞ ¼ a1 þ 4A2ðkx� ktÞ�2h i1=p

; ð31Þ

uðx; tÞ ¼ a1 þ ða2 � a1Þ sec2 0:5ðkx� ktÞA�1 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffia2 � a1

p� � �1=p;

ð32Þ

uðx; tÞ ¼ a3 þ ða2 � a3Þfðr; sÞ½ �1=p; ð33Þ

where, we have, r ¼ �ffiffiffiffiffiffiffiffiffia1�a3p

2A; s ¼ a2�a3

a1�a3and fðr; sÞ ¼

sn2ðrðkx� ktÞ; sÞ:

Remark 1. The solutions Eqs. (31)–(33) were obtained byusing the Extended Trial Equation Method for Eq. (1), have

been checked by Mathematica Release 7. To our knowledge,the rational function solution and single kink solution that wefind in this paper, are new, and are not shown in the published

literature. Consequently, we believe these results are newJacobi-elliptic function solutions of Eq. (1).

Case 2. If we take e ¼ 0; d ¼ 2, and h ¼ 4, then, accordingto Eqs. (7)–(9), we get the following,

v ¼ s0 þ s1Cþ s2C2; ð34Þ

v00 ¼ ðs1 þ s2CÞn1 þ 2n2Cþ 3n3C

2 þ 4n4C3

2f0þ 2s2

� n0 þ n1Cþ n2C2 þ n3C

3 þ n4C4

f0; ð35Þ

ðv0Þ2 ¼ ðs1 þ s2CÞ2n0 þ n1Cþ n2C

2 þ n3C3 þ n4C

4

f0; ð36Þ

where f0–0. Therefore, we have a system of algebraic equa-tions from the coefficients of polynomial of C. Solving thealgebraic equation system Eqs. (34)–(36) by using Mathemati-

ca Release 7, yields the following relations,

n0 ¼ �ap2f0s20

2k3ð2þ 3pþ p2Þbs2; n1

¼ � ap2f0s1k3ð2þ 3pþ p2Þbs2

; n2

¼ � ap2f0s22k3ð2þ 3pþ p2Þb

; n3

¼ � ap2f0s1k3ð2þ 3pþ p2Þb

; n4

¼ � ap2f0s22k3ð2þ 3pþ p2Þb

; k

¼ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaðs21 � 4s0s2Þ

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi2ks2ðp2 þ 3pþ 2Þ

p : ð37Þ

f the Generalized Benjamin and Burger-Kdv Equations via the Extended Trial

pplied Sciences (2013), http://dx.doi.org/10.1016/j.jaubas.2013.07.005

Page 4: Mathematical analysis of the Generalized Benjamin and Burger-Kdv Equations via the Extended Trial Equation Method

4 F.B.M. Belgacem et al.

Substituting these coefficients into Eqs. (34)–(36), we have,

�ðg� g0Þ ¼Z

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiAþ BCþ CC2 þDC3 þ EC4

p dC; ð38Þ

where the coefficients, A; B; C; D and E, are definedby,

A ¼ � ap2s202k3ð2þ 3pþ p2Þbs2

; B

¼ � ap2f0s1k3ð2þ 3pþ p2Þbs2

; C

¼ � ap2s22k3ð2þ 3pþ p2Þb

; D

¼ � ap2s1k3ð2þ 3pþ p2Þb

; E ¼ � ap2s22k3ð2þ 3pþ p2Þb

: ð39Þ

Integrating Eq. (38), we obtain the solutions to the Eq. (1), asfollows,

�ðg� g0Þ ¼1

a1 � v; ð40Þ

�ðg� g0Þ ¼1

a1 � a2

logv� a1

v� a2

��������; a1 > a2; ð41Þ

�ðg� g0Þ ¼2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ða1 � a4Þða2 � a3Þp Fðm; nÞ; a1 > a2 > a3

> a4; ð42Þ

where, m ¼ arc sinffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðv�a2Þða1�a4Þðv�a1Þða2�a4Þ

q� , n ¼ ða1�a3Þða2�a4Þ

ða2�a3Þða1�a4Þ and Fðm; nÞis elliptic function.Furthermore, a1; a2; a3 and a4 are theroots of the polynomial equation,

Aþ BCþ CC2 þDC3 þ EC4 ¼ 0: ð43Þ

In consequence, we find the solutions,

uðx; tÞ ¼ a1 �1

g� g0

� 1=p; ð44Þ

uðx; tÞ ¼ a2 �a2 � a1

�1þ eða1�a2Þðg�g0Þ

� 1=p; ð45Þ

uðx; tÞ ¼ �a2a4sn2ðr; sÞ þ a1a2ðsn2ðr; sÞ � 1Þ þ a4

�a2 þ ða1 � a4Þsn2ðr; sÞ þ a4

� 1=p; ð46Þ

where, we have,

g ¼ kx� kt; k ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi6as0ðn2s0 � n1s1Þ

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffikðp2 þ 3pþ 2Þðn1s1 � 2n2s0Þ

p ; s

¼ ða2 � a3Þða1 � a4Þða1 � a3Þða2 � a4Þ

; and;

r ¼ �ðg� g0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiða1 � a3Þða2 � a4Þ

p2

:

For simplicity’s sake, if we take g0 ¼ 0, solutions to Eqs. (44)–(46) are reduced to rational and single kink solutions,respectively;

uðx; tÞ ¼ a1 �1

kx� kt

� 1=p; ð47Þ

Please cite this article in press as: Belgacem, F.B.M. et al., Mathematical analysis o

Equation Method. Journal of the Association of Arab Universities for Basic and A

uðx; tÞ ¼ a2 �a2 � a1

�1þ egða1�a2Þ

� 1=p; ð48Þ

uðx; tÞ ¼ �a2a4sn2ðr; sÞ þ a1a2ðsn2ðr; sÞ � 1Þ þ a4

�a2 þ ða1 � a4Þsn2ðr; sÞ þ a4

� 1=p: ð49Þ

The graphs that follow illustrate the solutions in Eqs. (47)–

(49), with well chosen parameters to reveal the salient struc-tures of each. It is feasible that other choices would revealother views, and other features, and we invite the reader to

delve into this dual analytical experimental approach corrobo-rating one another. Should there be any interesting discoverieswe hereby invite the interested readers to communicate andcollaborate with us, towards hopefully, an even cumulative

and better understanding of complex nonlinear phenomena.

Remark 2. The solutions to Eqs. (47)–(49) obtained by usingthe ETEM for Eq. (1), have been checked by Mathematica,

Release 7. To our knowledge, the rational function solutionand single kink solution that we find in this paper, are notfound in the published literature to date, and hence make fornew elliptic function solutions for Eq. (1).

Example 2. In this application of the ETEM, we take into con-sideration the GBKE (Zhang et al., 2002). Let us consider thetravelling wave solutions of Eq. (2) and we perform the trans-

formation uðx; tÞ ¼ uðgÞ, and g ¼ kx� kt, where k and k areconstants. Then, integrating this equation with respect to g,and setting the integration constant to zero, we get the follow-

ing equation,

�kv2 þ ak

pþ 1v3 þ bk

2pþ 1v4 þ dk3ð1� pÞ

p2ðv0Þ2 þ dk3

pvv00

¼ 0: ð50Þ

Substituting, Eqs. (7)–(9), into Eq. (50) and using the balanceprinciple, yields for Eq. (50) h ¼ eþ 2dþ 2:. Applying this res-

olution procedure, we design the following cases.

Case 1. If we take e ¼ 0; d ¼ 2, and h ¼ 6, then, accordingto Eqs. (7)–(9), we get,

v0 ¼ s1 þ 2s2Cffiffiffiffif0p

�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffin0 þ n1Cþ n2C

2 þ n3C3 þ n4C

4 þ n5C5 þ n6C

6

q; ð51Þ

v00 ¼ ðn1 þ 2n2Cþ 3n3C2 þ 4n4C

3 þ 5n5C4 þ 6n6C

5Þ2f0

ðs1

þ s2CÞ þ s2

� ðn0 þ n1Cþ n2C2 þ n3C

3 þ n4C4 þ n5C

5 þ n6C6Þ

2f0; ð52Þ

ðv0Þ2 ¼ ðn1 þ 2n2Cþ 3n3C2 þ 4n4C

3 þ 5n5C4 þ 6n6C

5Þf0

ðs1 þ s2CÞ2;

ð53Þ

where s1; s2; f0–0. Thus, we have a system of algebraicequations from the coefficients of the C polynomial. Solving

f the Generalized Benjamin and Burger-Kdv Equations via the Extended Trial

pplied Sciences (2013), http://dx.doi.org/10.1016/j.jaubas.2013.07.005

Page 5: Mathematical analysis of the Generalized Benjamin and Burger-Kdv Equations via the Extended Trial Equation Method

Mathematical analysis of the Generalized Benjamin and Burger-Kdv Equations via the Extended Trial 5

the algebraic equation system via Mathematica Release 7,

yields the following relations,

n0 ¼18n3n

35n

26 � n5

5 � 1296n1n5n46

15552n56

; n1 ¼ n1; n2

¼ n3n5

6n6

� n45

162n36

þ 3n1n6

n5

; n3 ¼ n3; n4

¼ 5n25

18n6

þ 3n3n6

2n5

; n5 ¼ n5; n6 ¼ n6; ð54Þ

f0 ¼ �bB2ð1þ pÞð2þ pÞ2dð5n3

5 � 54n3n26Þ

2

1296a2p2ð1þ 2pÞn25n

36

; ð55Þ

s0 ¼ 2að1þ2pÞn35bð2þpÞ �5n35þ54n3n

26ð Þ ; s1 ¼ 24að1þ2pÞn25n6

bð2þpÞ �5n35þ54n3n26ð Þ ; s2 ¼ 72að1þ2pÞn5n26

bð2þpÞ 5n35�54n3n26ð Þ ;

ð56Þ

k ¼ �4ka2ð1þ 2pÞn5 7n5

5 � 108n3n25n

26 þ 3888n1n

46

� �bð1þ pÞð2þ pÞ2 5n3

5 � 54n3n26

� �2 : ð57Þ

Substituting these coefficients into Eqs. (7) and (12), we have

�ðg�g0Þ¼Z

AffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiBþ n1

n6CþCC2þ n3

n6C3þDC4þ n5

n6C5þC6

q dC;

ð58Þ

where B; C and D are defined by

A ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibk2ð�1� pÞð2þ pÞ2dð5n3

5 � 54n3n26Þ

2

1296a2p2ð1þ 2pÞn25n

46

vuut ; B

¼ 18n3n35n

26 � n5

5 � 1296n1n5n46

15552n66

; C

¼ n3n5

6n26

� n45

162n46

þ 3n1n6

n5n6

; D ¼ 5n25

18n26

þ 3n3n6

2n5n6

: ð59Þ

Integrating Eq. (58), we obtain the following solutions to Eq.

(2),

�ðg� g0Þ ¼ �A

ðv� a1Þ2; ð60Þ

�ðg� g0Þ ¼Að4v� 2a1 � 2a2Þ

ða1 � a2Þ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðv� a1Þðv� a2Þ

p ; a1 > a2; ð61Þ

where a1 and a2 are the roots of the polynomial equation,

Bþ n1Cþ CC2 þ n3C3 þDC4 þ n5C

5 þ n6C6 ¼ 0: ð62Þ

Therefore, the solutions of Eq. (2) are given by,

uðx; tÞ ¼ a1 �ffiffiffiffiApffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðg� g0Þp

" #1=p; ð63Þ

uðx; tÞ ¼ ða1 þ a2ÞE� ða1 � a2Þ3ðg� g0ÞF32A2 � 2ða1 � a2Þ4ðg� g0Þ

2

" #1=p; ð64Þ

where is E ¼ 16A2 � ða2 � a1Þ4ðg� g0Þ2;

F ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiða1 � a2Þ4ðg� g0Þ

2 � 16A2

q, and g ¼ kx� kt: For sim-

Please cite this article in press as: Belgacem, F.B.M. et al., Mathematical analysis o

Equation Method. Journal of the Association of Arab Universities for Basic and A

plicity, if we take g0 ¼ 0, the solutions in Eqs. (63) and (64) re-

duce to the rational and single kink solutions, respectively;

uðx; tÞ ¼ a1 �ffiffiffiffiApffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðkx� ktÞp

" #1=p; ð65Þ

uðx; tÞ ¼ ða1 þ a2ÞEþ gða1 � a2Þ3F32A2 � 2g2ða1 � a2Þ4

" #1=p; ð66Þ

where is E ¼ 16A2 � g2ða2 � a1Þ4, and

F ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiða1 � a2Þ4g2 � 16A2

q:

Remark 3. The solutions to Eqs. (65) and (66) computed in

Case1, were checked by means of Mathematica Release 7. We,once more, vouch that, in our current state of knowledge of theread literature, the gotten solutions are new traveling wave

solutions of the GBKE in Eq. (2).

Case 2. If we take, e ¼ 0; d ¼ 1, h ¼ 4, with, s1; f0–0, forEqs. (7)–(9), we get the relations,

v0 ¼ s1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffin0 þ n1Cþ n2C

2 þ n3C3 þ n4C

4p

ffiffiffiffif0p ; ð67Þ

v00 ¼ s1n1 þ 2n2Cþ 3n3C

2 þ 4n4C3

2f0; ð68Þ

ðv0Þ2 ¼ s21n0 þ n1Cþ n2C

2 þ n3C3 þ n4C

4

f0; ð69Þ

where s1; f0–0. Thus, we have a system of algebraic equa-tions from the coefficients of polynomial of C. Solving thealgebraic equation system Eqs. (12)–(14) by using Mathemati-

ca Release 7 yields the following,

n0 ¼ n0; n1

¼ 2n4s20ðaþ 2apþ bð2þ pÞs0Þbð2þ pÞs31

þ 2n0s1s0

; n2

¼ n4s0ð4að1þ 2pÞ þ 5bð2þ pÞs0Þbð2þ pÞs11

þ n0s21s20

; n3

¼ 2n4ðaþ 2apþ 2bð2þ pÞs0Þbð2þ pÞs1

; n4 ¼ n4; ð70Þ

f0 ¼ �B2ð1þ pÞð1þ 2pÞdn4

bp2s21; s0 ¼ s0; s1 ¼ s1; ð71Þ

k¼ 6kn3s0ðaþ2apþbð2þpÞs0Þþn2s1ðaþ2apþ2bð2þpÞs0Þð2þ7pþ7p2þ2p3Þn3

:

ð72Þ

Substituting these coefficients into Eqs. (7) and (12), we have,

�ðg� g0Þ ¼ A

Z1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C4 þ BC3 þ CC2 þDCþ Ep dC; ð73Þ

where, B; C; D and E are defined by,

f the Generalized Benjamin and Burger-Kdv Equations via the Extended Trial

pplied Sciences (2013), http://dx.doi.org/10.1016/j.jaubas.2013.07.005

Page 6: Mathematical analysis of the Generalized Benjamin and Burger-Kdv Equations via the Extended Trial Equation Method

Figure 1 The 3D surfaces of the solution Eq. (31) corresponding to the values p= �3, p= �4, p= �5, from left to right, when

n1 ¼ n2 ¼ s0 ¼ s1 ¼ a ¼ k ¼ a1 ¼ b ¼ 0:2; �10 < x < 10 and 0 < t < 1.

Figure 2 The 3D surfaces of the solution Eq. (32) corresponding to the values p= �3, p= �4, p= �5, from left to right, when

n1 ¼ n2 ¼ a ¼ k ¼ a1 ¼ b ¼ 2; s0 ¼ s1 ¼ 3; a2 ¼ 0:3; �5 < x < 5 and 0 < t < 1.

Figure 3 The 3D surfaces solutions for Eq. (33) corresponding to the values, p= �3, p= �4, p= �5, from left to right,

n1 ¼ n2 ¼ a ¼ k ¼ b ¼ 2; s0 ¼ s1 ¼ 3; a1 ¼ 0:1; a2 ¼ 0:2; a3 ¼ 0:3; �100 < x < 100; and 0 < t < 1.

Figure 4 The 3D surfaces of the solution Eq. (47) corresponding to the values p= �3, p= �4, p= �5, from left to right, when

n1 ¼ n2 ¼ s0 ¼ s1 ¼ a ¼ k ¼ b ¼ 0:2; a1 ¼ �1; 0 < x < 5; and 0 < t < 1.

6 F.B.M. Belgacem et al.

Please cite this article in press as: Belgacem, F.B.M. et al., Mathematical analysis of the Generalized Benjamin and Burger-Kdv Equations via the Extended Trial

Equation Method. Journal of the Association of Arab Universities for Basic and Applied Sciences (2013), http://dx.doi.org/10.1016/j.jaubas.2013.07.005

Page 7: Mathematical analysis of the Generalized Benjamin and Burger-Kdv Equations via the Extended Trial Equation Method

Figure 5 The 3D surfaces of the solution Eq. (48) corresponding to the values p= �3, p= �4, p= �5, from left to right, when

n1 ¼ n2 ¼ a ¼ k ¼ a1 ¼ b ¼ 2; s0 ¼ s1 ¼ 3; a2 ¼ 0:3; �5 < x < 5 and 0 < t < 1.

Figure 6 The 3D surfaces solution for Eq. (49) with values, p= �3, p= �4, p= �5, from left to right,

n1 ¼ n2 ¼ a ¼ k ¼ b ¼ 2; s0 ¼ s1 ¼ 3; a1 ¼ 0:1; a2 ¼ 0:2; a3 ¼ 0:3; a4 ¼ 0:4; �10 < x < 10; and 0 < t < 1.

Figure 7 The 3D surfaces of the solution Eq. (65) with values p= 3, p= 4, p= 5, from left to right, when

n1 ¼ n2 ¼ a ¼ k ¼ b ¼ 2; s0 ¼ s1 ¼ 3; a1 ¼ 0:1; a2 ¼ 0:2; d ¼ �3; a3 ¼ 0:3; a4 ¼ 0:4; 0 < x < 10; and 0 < t < 1.

Figure 8 The 3D surfaces solution to Eq. (66) with values p= �3, p= �4, p= �5, from left to right, when n1 ¼ 1; n2 ¼ 2; n3 ¼ 3;

n4 ¼ 4; n5 ¼ 5; n6 ¼ 6; a ¼ b ¼ k ¼ b ¼ d ¼ 0:2; a1 ¼ 1; a2 ¼ 3; �10 < x < 0; and 0 < t < 1.

Mathematical analysis of the Generalized Benjamin and Burger-Kdv Equations via the Extended Trial 7

Please cite this article in press as: Belgacem, F.B.M. et al., Mathematical analysis of the Generalized Benjamin and Burger-Kdv Equations via the Extended Trial

Equation Method. Journal of the Association of Arab Universities for Basic and Applied Sciences (2013), http://dx.doi.org/10.1016/j.jaubas.2013.07.005

Page 8: Mathematical analysis of the Generalized Benjamin and Burger-Kdv Equations via the Extended Trial Equation Method

Figure 9 The 3D surfaces solution Eq. (82) with values p= �3, p= �4, p= �5, from left to right, for n0 ¼ 0:1; n1 ¼ 13:0889; n2 ¼166:767; n3 ¼ 16:88; n4 ¼ 2; s0 ¼ s1 ¼ a ¼ k ¼ b ¼ b ¼ 3; a1 ¼ 1:12; d ¼ �3; �20 < x < 20; and 0 < t < 1.

Figure 10 The 3D surfaces of the solution Eq. (83) corresponding to the valuesp= �3, p= �4, p= �5, from left to right, when

n0 ¼ 0:1; n1 ¼ 13:0889; n2 ¼ 166:767; n3 ¼ 16:88; n4 ¼ 2; s0 ¼ s1 ¼ a ¼ k ¼ b ¼ b ¼ 3; a1 ¼ 1:12; a2 ¼ 0:8; d ¼ �3; �20 <x < 20; and 0 < t < 1.

8 F.B.M. Belgacem et al.

A ¼ 1ffiffiffiffiffin4

p ; B ¼ 2ðaþ 2apþ 2bð2þ pÞs0Þbð2þ pÞs1

; C

¼ s0ð4að1þ 2pÞ þ 5bð2þ pÞs0Þbð2þ pÞs11

þ n0s21n4s20

; D

¼ 2s20ðaþ 2apþ bð2þ pÞs0Þbð2þ pÞs31

þ 2n0s1n4s0

; E ¼ n0

n4

: ð74Þ

Integrating Eq. (73), we obtain the following solutions to Eq.(2),

�ðg� g0Þ ¼2A

a1 � v; a1 ¼ a2 ¼ a3 ¼ a4; ð75Þ

�ðg� g0Þ ¼4A

a1 � a3

ffiffiffiffiffiffiffiffiffiffiffiffiffiv� a1

v� a3

r; a1 > a2 ¼ a3 ¼ a4; ð76Þ

�ðg� g0Þ ¼2Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ða1 � a2Þða1 � a3Þp� log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðv� a2Þða1 � a3Þ

p�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðv� a3Þða1 � a2Þ

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðv� a2Þða1 � a3Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðv� a3Þða1 � a2Þ

p !

;

ð77Þ

where a1 and a2 are the roots of the polynomial equation,

C4 þ BC3 þ CC2 þDCþ E ¼ 0: ð78Þ

Therefore, we find the following solutions for Eq. (2),

uðx; tÞ ¼ a1 �2A

g� g0

� 1=p; ð79Þ

Please cite this article in press as: Belgacem, F.B.M. et al., Mathematical analysis o

Equation Method. Journal of the Association of Arab Universities for Basic and A

uðx; tÞ ¼ 16A2a2 � a1ða1 � a2Þ2ðg� g0Þ2

16A2 � ða1 � a2Þ2ðg� g0Þ2

" #1=p; ð80Þ

uðx; tÞ ¼ a1 �2ða1 � a2Þða1 � a3Þ

2a1 � a2 � a3 þ cos hgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiða1�a2Þða1�a3Þp

2A

� �ða3 � a2Þ

;

ð81Þ

where, g ¼ kx� kt: For the case, g0 ¼ 0, the solutions to Eqs.(79)–(81), are reduced to the rational and single kink solutions,respectively;

uðx; tÞ ¼ a1 �2A

g

� 1=p; ð82Þ

uðx; tÞ ¼ 16A2a2 � a1ða1 � a2Þ2g2

16A2 � ða1 � a2Þ2g2

" #1=p; ð83Þ

uðx; tÞ ¼ a1 �2ða1 � a2Þða1 � a3Þ

2a1 � a2 � a3 þ ða3 � a2Þ cos hgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiða1�a2Þða1�a3Þp

2A

� � :ð84Þ

Remark 4. The new rational and hyperbolic function solutionsfor Eq. (2), via Eqs. (82)–(84) with respect to Case 2., have

been checked by Mathematica Release 7. We believe that thesesolutions have not appeared in the published literature.

f the Generalized Benjamin and Burger-Kdv Equations via the Extended Trial

pplied Sciences (2013), http://dx.doi.org/10.1016/j.jaubas.2013.07.005

Page 9: Mathematical analysis of the Generalized Benjamin and Burger-Kdv Equations via the Extended Trial Equation Method

Figure 11 The 3D surfaces of the solution Eq. (84) corresponding to the values p= �3, p= �4, p= �5, from left to right, when

n0 ¼ 0:1; n1 ¼ 13:0889; n2 ¼ 166:767; n3 ¼ 16:88; n4 ¼ 2; s0 ¼ s1 ¼ a ¼ k ¼ b ¼ b ¼ 3; a1 ¼ 1:12; a2 ¼ 0:8; a3 ¼ 2; d ¼�3; �20 < x < 20 and 0 < t < 1.

Mathematical analysis of the Generalized Benjamin and Burger-Kdv Equations via the Extended Trial 9

4. Conclusions

In this paper, the ETEM has been applied to the equation pair

Generalized Benjamin Equation and Generalized Burger-KdvEquation (GBE, GBKE), in a respective manner, only to ob-tain new analytical solutions. The new solutions are found in

terms of logaritmic functions, rational, elliptic and Jacobi ellip-tic functions. Moreover, when we consider all Figs. 1–11, andMathematica Release 7, checked computaions, we concludethat our method is reliable, and yields an effective approach

for finding solutions of nonlinear equations, arising in appliedphysics and engineering.

To our current state of knowledge, we do believe that the

obtained analytical solutions are new and have not appearedin the literature previously. Therefore, they can be used toserve and enhance our state of knowledge, in the realm of non-

linear complex phenomena.Furthermore, the ideas introduced in this paper, and the

applications provided, may well serve as a guide to us and toresearch scholars treading the path of nonlinear differential

equations.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed equally to the manuscript and read

and approved of the final draft.

References

Achouri, T., Omrani, K., 2009. Numerical solutions for the damped

generalized regularized long-wave equation with a variable coeffi-

cient by Adomian decomposition method. Communications in

Nonlinear Science and Numerical Simulation 14, 2025–2033.

Ahmed, B., Biswas, A., 2013. Solitons, kinks and singular solitons of

coupled Korteweg-de Vries Equation. Proceedings of the Roma-

nian Academy, Series A 14 (2), 111–120.

Antonova, M., Biswas, A., 2009. Adiabatic parameter dynamics of

perturbed solitary waves. Communications in Nonlinear Science

and Numerical Simulation 14 (3), 734–748.

Belgacem, F.B.M., 2006. Introducing and analysing deeper Sumudu

properties. Nonlinear Studies 13 (1), 23–41.

Please cite this article in press as: Belgacem, F.B.M. et al., Mathematical analysis o

Equation Method. Journal of the Association of Arab Universities for Basic and A

Belgacem, F.B.M., 2010. Sumudu transform applications to Bessel

functions and equations. Applied Mathematical Sciences 4 (74),

3665–3686.

Belgacem, F.B.M., Hussain, M.G.M., 2007. Transient solutions of

Maxwell’s equations based on Sumudu transform. Progress in

Electromagnetics Research, PIER 74, 273–289.

Biswas, A., 2012. Soliton solutions of the perturbed resonant nonlinear

Schrodinger’s equation with full nonlinearity by semi-inverse

variational principle. Quantum Physics Letters 1 (2), 79–84.

Bulut, H., Baskonus, H.M., Tuluce, S., 2012. The solutions of partial

differential equations with variable coefficient by Sumudu trans-

form method. American Institute of Physics 1493 (91). http://

dx.doi.org/10.1063/1.4765475.

Chaurasia, V.B.L., Dubey, R.S., Belgacem, F.B.M., 2012. Fractional

radial diffusion equation analytical solution via Hankel and

Sumudu transforms. Mathematics in Engineering, Science and

Aerospace, (MESA) 3 (2), 179–188.

Girgis, L., Biswas, A., 2011. A study of solitary waves by he’s semi-

inverse variational principle. Waves in Random and Complex

Media 21 (1), 96–104.

Gupta, V.G., Sharma, B., Belgacem, F.B.M., 2011. On the solutions of

generalized fractional kinetic equations. Applied Mathematical

Sciences 5 (19), 899–910.

Gurefe, Y., Misirli, E., 2010. Exact solutions of the Drinfel’d–

Sokolov–Wilson equation using the exp-function method. Applied

Mathematics and Computation 216 (9), 2623–2627.

Gurefe, Y., Sonmezoglu, Abdullah, Misirli, E., 2011. Application of

the trial equation method for solving some nonlinear evolution

equations arising in mathematical physics. Pramana Journal of

Physics 77 (6), 1023–1029.

Gurefe, Y., Misirli, E., Sonmezoglu, A., Ekici, M., 2013. Extended

trial equation method to generalized nonlinear partial differential

equations. Applied Mathematics and Computation 219, 5253–

5260.

Kara, A.H., Triki, H., Biswas, A., 2013. Conservation laws of the

Bretherton equation. Applied Mathematics and Information Sci-

ences 7 (3), 877–879.

Katatbeh, Q.D., Belgacem, F.B.M., 2011. Applications of the Sumudu

transform to fractional differential equations. Nonlinear Studies 18

(1), 99–112.

Liu, C.S., 2005. Trial equation method and its applications to

nonlinear evolution equations. Acta Physica Sinica 54, 2505–2509.

Liu, C.S., 2006. A new trial equation method and its applications.

Communications in Theoretical Physics 45, 395–397.

Liu, C.S., 2010. Applications of complete discrimination system for

polynomial for classifications of traveling wave solutions to

nonlinear differential equations. Computer Physics Communica-

tions 181, 317–324.

Mittal, R.C., Nigam, R., 2008. Solution of fractional integro-differ-

ential equations by Adomian decomposition method. The Interna-

tional Journal of Applied Mathematics and Mechanics 4 (2), 87–94.

f the Generalized Benjamin and Burger-Kdv Equations via the Extended Trial

pplied Sciences (2013), http://dx.doi.org/10.1016/j.jaubas.2013.07.005

Page 10: Mathematical analysis of the Generalized Benjamin and Burger-Kdv Equations via the Extended Trial Equation Method

10 F.B.M. Belgacem et al.

Pandir, Y., Gurefe, Y., Kadak, U., Misirli, E., 2012. Classifications of

exact solutions for some nonlinear partial differential equations

with generalized evolution. Abstract and Applied Analysis 2012

(2012), 16. Article ID 478531.

Pandir, Y., Gurefe, Y., Misirli, E., 2013a. Classification of exact

solutions to the generalized Kadomtsev–Petviashvili equation.

Physica Scripta 87, 1–12.

Pandir, Y., Gurefe, Y., Misirli, E., 2013b. The extended trial equation

method for some time fractional differential equations. Discrete

Dynamics in Nature and Society 2013, 13. Article ID 491359.

Razborova, P., Triki, H., Biswas, A., 2013. Perturbation of dispersive

shallowwater waves. Ocean Engineering 63, 1–7.

Please cite this article in press as: Belgacem, F.B.M. et al., Mathematical analysis o

Equation Method. Journal of the Association of Arab Universities for Basic and A

Song, M., Liu, Z., Zerrad, E., Biswas, A., 2013. Singular solitons and

bifurcation analysis of quadratic nonlinear Klein–Gordon equation.

Applied Mathematics and Information Sciences 7 (4), 1333–1340.

Taghizadeh, N., Mirzazadeh, M., Noori, S.R.M., 2012. Exact

solutions of the generalized Benjamin equation and (3 + 1)

dimensional Gkp Equation by the extended Tanh method. Appli-

cations and Applied Mathematics: An International Journal

(AAM) 7 (1), 175–187.

Zhang, W., Chang, Q., Jiang, B., 2002. Explicit exact solitary-wave

solutions for compound Kdv-type and compound Kdv-Burgers-

type equations with nonlinear terms of any order. Chaos Solitons

and Fractals 13, 311–319.

f the Generalized Benjamin and Burger-Kdv Equations via the Extended Trial

pplied Sciences (2013), http://dx.doi.org/10.1016/j.jaubas.2013.07.005