125
MATH 31 LESSONS PreCalculus 3. Simplifying Rational Expressions Rationalization

MATH 31 LESSONS PreCalculus 3. Simplifying Rational Expressions Rationalization

Embed Size (px)

Citation preview

MATH 31 LESSONS

PreCalculus

3. Simplifying Rational Expressions

Rationalization

A. Rational Expressions

To simplify a rational expression:

Factor everything in the numerator and denominator

Cancel any shared factor between the top and the bottom

Leave the answer in factored form

e.g. Simplifyxxx

xx

54

20923

2

xxx

xx

54

20923

2

54

452

xxx

xxFactor the top and the bottom

xxx

xx

54

20923

2

54

452

xxx

xx

15

45

xxx

xxBe certain they are fully factored

xxx

xx

54

20923

2

54

452

xxx

xx

1

4

xx

xCancel any shared factor between the top and bottom

15

45

xxx

xx

Multiplying Rational Expressions

Let’s start by reviewing how to multiply fractions.

Try multiplying4

3

7

5

4

3

7

5

47

35

When you multiply fractions, you multiply:

top top

bottom bottom

4

3

7

5

47

35

28

15

Now we will try multiplying rational expressions.

Multiply and simplify

4

2

4

162

23

4

2

x

xx

xx

x

4

2

4

162

23

34

2

x

xx

xx

x

22

2

4

44 2

3

xx

xx

xx

xx

Fully factor all expressions

4

2

4

162

23

34

2

x

xx

xx

x

22

2

4

44 2

3

xx

xx

xx

xx

422

4423

2

xxxx

xxxx

Multiply: top top, bottom bottom

Note: This is an optional step.You don’t have to do it.

4

2

4

162

23

34

2

x

xx

xx

x

22

2

4

44 2

3

xx

xx

xx

xx

422

4423

2

xxxx

xxxx

2

4

xx

x

Cancel any shared factors between the top and bottom

Dividing Rational Expressions

Let’s start by reviewing how to divide fractions.

Try dividing5

11

3

7

5

11

3

7

11

5

3

7

When you divide a fraction, you “invert and multiply”

5

11

3

7

11

5

3

7

33

35 When you multiply fractions, it is:

top topbottom bottom

Now we will try dividing rational expressions.

Divide and simplify

aa

aa

aa

aa

63

44

78

1452

2

2

2

aa

aa

aa

aa

63

44

78

1452

2

2

2

44

63

78

1452

2

2

2

aa

aa

aa

aa

When you divide a fraction, you “invert and multiply”

aa

aa

aa

aa

63

44

78

1452

2

2

2

44

63

78

1452

2

2

2

aa

aa

aa

aa

22

23

17

27

aa

aa

aa

aa

Fully factor all expressions

aa

aa

aa

aa

63

44

78

1452

2

2

2

44

63

78

1452

2

2

2

aa

aa

aa

aa

22

23

17

27

aa

aa

aa

aa

1

3

a

aThere is no need to multiply them.

Simply cancel any shared factors on the top and bottom.

Adding and Subtracting Rational Expressions

Let’s start by reviewing how to add and subtract fractions.

Try simplifying4

5

2

1

3

7

4

5

2

1

3

7

3

3

4

5

6

6

2

1

4

4

3

7

LCD: 12

Multiply the top and bottom of each fraction by the number which will make the LCD

4

5

2

1

3

7

3

3

4

5

6

6

2

1

4

4

3

7

12

15

12

6

12

28

4

5

2

1

3

7

3

3

4

5

6

6

2

1

4

4

3

7

12

15

12

6

12

28

12

15628 When they have the same

denominator, you add / subtract the numerators (while keeping the denominator the same)

4

5

2

1

3

7

3

3

4

5

6

6

2

1

4

4

3

7

12

15

12

6

12

28

12

15628

12

19

Adding and Subtracting Rational Expressions

For rational expressions, use the following procedure:

Find the LCD

- you may need to factor the denominators first

- the LCD of the variables is the largest power

For each fraction, multiply the top and bottom with

the “missing factor” to create the LCD

Add or subtract the numerator, while leaving the

denominator the same

e.g. 1 Simplify xyx 8

5

6

12

xyx 8

5

6

12

x

x

xyy

y

x 3

3

8

5

4

4

6

12

LCD: 24x2y

Multiply the top and bottom of each fraction with what’s needed to make the LCD

xyx 8

5

6

12

x

x

xyy

y

x 3

3

8

5

4

4

6

12

yx

x

yx

y22 24

15

24

4

xyx 8

5

6

12

x

x

xyy

y

x 3

3

8

5

4

4

6

12

yx

x

yx

y22 24

15

24

4

yx

xy224

154

When the denominator is the same, you can add the numerators (while leaving the denominator the same)

e.g. 2 Simplify 32

2

3

522

xx

x

xx

x

32

2

3

522

xx

x

xx

x

13

2

3

5

xx

x

xx

x

Factor the denominators

32

2

3

522

xx

x

xx

x

13

2

3

5

xx

x

xx

x

xx

xx

x

x

x

xx

x

13

2

1

1

3

5

LCD: x (x - 3) (x + 1

Multiply the top and bottom of each fraction with the “missing factors”

32

2

3

522

xx

x

xx

x

13

2

3

5

xx

x

xx

x

xx

xx

x

x

x

xx

x

13

2

1

1

3

5

13

215

xxx

xxxx Since the denominators are the same, you can subtract the numerators (and keep the denominator the same)

13

215

xxx

xxxx

13

256 22

xxx

xxxx

Simplify the numerator

13

215

xxx

xxxx

13

256 22

xxx

xxxx

13

58

xxx

x

Keep the denominator factored

Ex. 1 Simplify 12

20

16

1242

2

2

2

xx

x

x

xx

Try this example on your own first.Then, check out the solution.

12

20

16

1242

2

2

2

xx

x

x

xx

2

2

2

2

20

12

16

124

x

xx

x

xx

When you divide a fraction, invert and multiply.

Also, put the polynomials in the same order (x’s first, constant last)

12

20

16

1242

2

2

2

xx

x

x

xx

2

2

2

2

20

12

16

124

x

xx

x

xx

22 20

34

16

34

x

xx

x

xx

Factor all expressions

12

20

16

1242

2

2

2

xx

x

x

xx

2

2

2

2

20

12

16

124

x

xx

x

xx

22 20

34

16

34

x

xx

x

xx

220

34

44

34

x

xx

xx

xx

220

34

44

34

x

xx

xx

xx

Cancel any shared factors between the numerator and the denominator

420

342

2

xx

xx

220

34

44

34

x

xx

xx

xx

420

342

2

xx

xx

45

3 2

xx

x

12

20

16

1242

2

2

2

xx

x

x

xx

2

2

2

2

20

12

16

124

x

xx

x

xx

22 20

34

16

34

x

xx

x

xx

220

34

44

34

x

xx

xx

xx

45

3 2

xx

x

Cancel any shared factors between the numerator and the denominator

Ex. 2 Simplify xxxx 10

2

5015

122

Try this example on your own first.Then, check out the solution.

xxxx 10

2

5015

122

10

2

510

1

xxxx

Factor the denominators

xxxx 10

2

5015

122

10

2

510

1

xxxx

5

5

10

2

510

1

x

x

xxx

x

xx

LCD: x (x - 10) (x - 5)

Multiply the top and bottom of the fractions with the “missing factors”

xxxx 10

2

5015

122

10

2

510

1

xxxx

5

5

10

2

510

1

x

x

xxx

x

xx

510

52

xxx

xxWhen the denominators are the same, simply subtract the numerators (leaving the denominator the same)

510

52

xxx

xx

510

102

xxx

xx

Simplify the numerator, but leave the denominator factored

510

52

xxx

xx

510

102

xxx

xx

510

10

xxx

x

Don’t stop yet.

What else can be done?

510

52

xxx

xx

510

102

xxx

xx

510

10

xxx

x

510

10

xxx

x

510

52

xxx

xx

510

102

xxx

xx

510

10

xxx

x

510

10

xxx

x 5

1

xx

Ex. 3 Simplify

14

4

13

32

xx

xx

x

Try this example on your own first.Then, check out the solution.

14

4

13

32

xx

xx

x

14

11

14

13

11

13 2

xxxx

xx

xxx

Bring the fractions together (using LCD) on top and bottom

14

4

13

32

xx

xx

x

14

11

14

13

11

13 2

xxxx

xx

xxx

1

4141

313 2

xxxx

xxx

1

4141

313 2

xxxx

xxx

414

1

1

313 2

xx

x

x

xxx

When you divide by a fraction, invert and multiply

1

4141

313 2

xxxx

xxx

414

1

1

313 2

xx

x

x

xxx

445

3322

22

xx

xxx

1

4141

313 2

xxxx

xxx

414

1

1

313 2

xx

x

x

xxx

445

3322

22

xx

xxx

xx

xx

5

6222

2

xx

xx

5

6222

2

5

32 2

xx

xx

After factoring, there are no shared factors. It cannot be simplified further.

B. Rationalizing Radical Expressions

B1. Radical Arithmetic

If a > 0,

?2 a

If a > 0,

aa 2

Squaring and square-rooting are “opposites” (inverses), and so, they cancel each other out

e.g. Express as a simplified mixed radical

725

725

2365 Factor out the largest perfect square in the radicand

725

2365

Separate the radicals2365

725

2365

2365

265

725

2365

2365

265

230

Radical Arithmetic

If c > 0,

? cbca

If c > 0,

cbacbca

If they are like radicals, you can add (or subtract) the coefficients. The radical stays the same.

e.g. Simplify 3611538117

3611538117

3638115117

3611538117

3638115117

321112

Radical Arithmetic

If a, b > 0,

? ba

If a, b > 0,

abba

When you multiply radicals, you simply multiply the radicands (the numbers inside the radical)

If a, b > 0,

Similarly,

abba

b

a

b

a bdacdcba

e.g. Simplify 21

423765

21

423765

21

421835

21

423765

21

421835

22335

21

423765

21

421835

22335

22105

21

423765

21

421835

22335

22105 2106

Ex. 4 Simplify 26534

Try this example on your own first.Then, check out the solution.

26534

65346534

It is recommended that you write it out twice.

Remember: (a + b)2 ≠ a2 + b2

26534

65346534

22653465346534

Use FOIL to expand.

26534

65346534

22653465346534

362518201820916

26534

65346534

22653465346534

362518201820916

1840625316 Bring together like radicals

1840625316

234015048

1840625316

234015048

2120198

B2. Rationalizing Denominators

When you rationalize a denominator, you are removing all radicals from the denominator.

We will consider two cases:

1. Monomial denominators

2. Binomial denominators

Case 1: Monomial denominators

Use the following procedure:

Simplify the radicals as much as possible

- no perfect squares in the radicand

Multiply the top and bottom by the radical in

the denominator

e.g. Rationalize the denominator for

20

35

20

35

52

35

Simplify all radicals first

20

35

52

35

5

5

52

35

Multiply the top and bottom by the radical in the denominator.

No need to multiply by the coefficient, since it is already rational

20

35

52

35

5

5

52

35

252

155

If rationalization is done properly, the radical becomes squared

20

35

52

35

5

5

52

35

252

155

52

155

Now, there are no radicals in

the denominator. It has been rationalized.

20

35

52

35

5

5

52

35

252

155

52

155

2

15

Case 2: Binomial denominators

Use the following procedure:

Multiply the top and bottom by the “conjugate” of the

denominator

“a + b” and “a b” are called conjugates

This should result in a difference of squares (a2 - b2),

which removes the radicals

e.g. 1 Rationalize the denominator for

25

6

25

6

25

25

25

6

Multiply the top and bottom by the “conjugate” of the denominator.

If the denominator is of the form “a - b”, then the conjugate is “a + b”

25

6

25

25

25

6

22

25

256

If done properly, each of the radicals in the denominator will be squared.

(a + b) (a - b) = a2 - b2

25

6

25

25

25

6

22

25

256

25

1230

Now, there are no radicals in the denominator. It has been rationalized.

25

6

25

25

25

6

22

25

256

25

1230

3

3230

e.g. 2 Rationalize the denominator for

xx 4

122

xx 4

122

xx

xx

xx

4

4

4

122

2

2

Multiply the top and bottom by the conjugate of the denominator.

If the denominator is of the form “a + b”, then the conjugate is “a - b”

xx 4

122

xx

xx

xx

4

4

4

122

2

2

2

22

2

4

412

xx

xx

This results in the radical being squared.

(a + b) (a - b) = a2 - b2

xx 4

122

xx

xx

xx

4

4

4

122

2

2

2

22

2

4

412

xx

xx

22

2

4

412

xx

xx

There are no radicals in the denominator. It has been rationalized.

22

2

4

412

xx

xx

4

412 2

xx

Simplify the denominator, but leave the numerator factored. There may be an opportunity to simplify.

22

2

4

412

xx

xx

4

412 2

xx

xx 43 2

Ex. 5 Rationalize the denominator for

153

12

Try this example on your own first.Then, check out the solution.

153

12

153

153

153

12

Multiply the top and bottom by the conjugate.

If the denominator is of the form “a + b”, then the conjugate is “a - b”

153

12

153

153

153

12

22

153

15312

The radical in the denominator should become squared.

(a + b) (a - b) = a2 - b2

153

12

153

153

153

12

22

153

15312

159

15312

There are no radicals in the denominator. It has been rationalized.

159

15312

44

15312

Leave the top factored. There may be an opportunity to simplify.

159

15312

44

15312

11

1533

Ex. 5 Rationalize the numerator for

3

32 2

x

xxx

Try this example on your own first.Then, check out the solution.

3

32 2

x

xxx

xxx

xxx

x

xxx

32

32

3

322

22

Multiply the top and bottom by the conjugate of the numerator.

If the numerator is of the form “a - b”, then the conjugate is “a + b”

3

32 2

x

xxx

xxx

xxx

x

xxx

32

32

3

322

22

xxxx

xxx

323

322

22

2

If done properly, the radical in the numerator will be squared.

(a - b) (a + b) = a2 - b2

3

32 2

x

xxx

xxx

xxx

x

xxx

32

32

3

322

22

xxxx

xxx

323

322

22

2

xxxx

xxx

323

322

22 Do not simplify the denominator. There may be an opportunity to simplify.

xxxx

xxx

323

322

22

xxxx

xx

323

32

2

xxxx

xxx

323

322

22

xxxx

xx

323

32

2

xxxx

xx

323

32

xxxx

xxx

323

322

22

xxxx

xx

323

32

2

xxx

x

32 2

xxxx

xx

323

32

Ex. 6 Rationalize the numerator for

h

xhx 12122

Try this example on your own first.Then, check out the solution.

h

xhx 12122

12122

1212212122

xhx

xhx

h

xhx

Multiply the top and bottom by the conjugate of the numerator.

If the numerator is of the form “a - b”, then the conjugate is “a + b”

h

xhx 12122

12122

1212212122

xhx

xhx

h

xhx

12122

1212222

xhxh

xhx

If done properly, the radicals will become squared.

(a - b) (a + b) = a2 - b2

h

xhx 12122

12122

1212212122

xhx

xhx

h

xhx

12122

1212222

xhxh

xhx

12122

12122

xhxh

xhxThe numerator no longer has a radical. It has been rationalized.

12122

12122

xhxh

xhx

12122

12122

xhxh

xhx

Do not simplify the denominator. There may be an opportunity to cancel.

12122

12122

xhxh

xhx

12122

12122

xhxh

xhx

12122

2

xhxh

h

12122

12122

xhxh

xhx

12122

12122

xhxh

xhx

12122

2

xhxh

h

12122

2

xhx