16
The MAterials Simulation Toolkit for Defect and Diffusion Calculations Tam Mayeshiba, Henry Wu, Zhewen Song, Ben Afflerbach, Professor Dane Morgan University of Wisconsin-Madison NIST/CHiMaD Data Workshop, Evanston, IL May 2, 2016 http://pythonhosted.org/MAST

Materials Simulation Toolkit (MAST)

Embed Size (px)

Citation preview

Page 1: Materials Simulation Toolkit (MAST)

The MAterials Simulation Toolkit for Defect and Diffusion Calculations

Tam Mayeshiba, Henry Wu, Zhewen Song, Ben Afflerbach, Professor Dane Morgan

University of Wisconsin-Madison

NIST/CHiMaD Data Workshop, Evanston, ILMay 2, 2016

http://pythonhosted.org/MAST

Page 2: Materials Simulation Toolkit (MAST)

MAST’s role in the Materials Genome Initiative

2MGI image retouched from https://www.whitehouse.gov/mgi

Solid oxide fuel cell server, bloomenergy.com

TRISO fuel particle, US DOE

Reactor pressure vessel, US DOE

ComputationalTools

ExperimentalTools

DigitalData

MaterialsInnovationInfrastructure

Page 3: Materials Simulation Toolkit (MAST)

What is MAST?

3

MAterials Simulation Toolkit

Motivated by materials science: defects and

diffusion

Created for simulations (materials calculations)

Workflow manager and post-processor

A"

D"C"

E"

B"

D = Aexp −QkT"

#$

%

&'

Page 4: Materials Simulation Toolkit (MAST)

Outline: Advantages of MAST• Automatically manage workflows

– MAST workflow management overview– Setting up a simple defect and diffusion workflow– Actual diffusion workflow schematic– Modify a workflow at any time– Manage workflows on various clusters

• Iterate easily over calculation system features• Store and share workflow knowledge (VASP, diffusion,

defects)• Produce highly organized, consistently calculated data

– Dilute solute diffusion– Scale examples of MAST-generated data– Storing MAST-generated data

4

Page 5: Materials Simulation Toolkit (MAST)

MAST workflow management overview

5

Crontab or user command

Jobs on queue

Workflow directories with input files and

metadata

New jobs to queue

Finished workflows to archive

Evaluate workflow logic

Page 6: Materials Simulation Toolkit (MAST)

perfect_A

transition_D

defect_B defect_C

Setting up a simple defect and diffusion workflow

6

Directed Acyclic Graph (DAG) structure

MAST locates and creates defects

MAST pairs up defects and sets up the path

perfect_Adefect_Bdefect_C

defect_B, defect_Ctransition_D

How the DAG appears in the MAST input file:

A

C

D

B

Page 7: Materials Simulation Toolkit (MAST)

Actual diffusion workflow schematic

7

• 32 steps (not all steps are shown)• Managing one case by hand is time-consuming and error prone• Managing many workflows for many host-solute combinations by

hand would be even worse => use MAST instead

Page 8: Materials Simulation Toolkit (MAST)

Modify a workflow at any timeMissed a step? Add branches to workflows mid-completion and rerun

A

C

D

B E

F

8

Example: Forgot the solute hop! Add a new branch with a defect calculation and a path calculation.

Page 9: Materials Simulation Toolkit (MAST)

Manage workflows on various clusters

9

• Low headnode load• Process-independent job monitor– Does not require a continuous process– Monitor gets information from text files: stable– Rebuilt each time: can be interrupted or fail

without severe consequences• Install and run without root access

Externalcluster

Localcluster

Externalcluster

Externalcluster

PBS/Torque

Page 10: Materials Simulation Toolkit (MAST)

54

Figure'S7.3'LaCrO3'and'La0.75Sr0.25CrO3'migration'barrier'versus'strain,'in:plane'hop' Figure S7.3 LaCrO3 and La0.75Sr0.25CrO3 migration barrier versus strain, in-plane hop from oxygen position o31 to o30 (see Figure S2.1). Cross-body diagonal dopant positions are a1 and a8. Cross-face diagonal dopant positions are a2 and a8. In-line dopant positions are a4 and a8.

−4 −2 0 2 40.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

Percent biaxial strain

Mig

ratio

n ba

rrier

(eV)

cross bodycross facein lineno dopants

0.0#

0.2#

0.4#

0.6#

0.8#

1.0#

1.2#

1.4#

1.6#

1.8#

)2# )1# 0# 1# 2#

Migra&o

n)ba

rrier)(eV

))

Biaxial)strain)(%))

Sc#Ti#V#Cr#Mn#Fe#Co#Ni#Ga#

Iterate easily over calculation system features

10

Same perovskite oxygen migration barrier workflow applied to different chemical systems, strain states, and dopant positions

Mayeshiba, T. & Morgan, D. PCCP 17, 2715 (2015).

Page 11: Materials Simulation Toolkit (MAST)

Store and share workflow knowledge

11

Extensive out-of-the-box functionality• Full diffusion coefficient

workflow– Phonons– Multiple hops– Frequency models for

diffusion• Full defect formation energy

workflow– Charged defects– Finite size scaling– Potential alignment

Save custom workflows for future use

– Input file saved with data– Reproduce results

0.0 0.4 0.8 1.20.4

1.3

2.2

3.1

4.0

EF*−*EVBM*(eV)

Formation*energy*(eV)

VAs$GaAs$

VGa$BiAs$

BiGa$

AsGa$

Page 12: Materials Simulation Toolkit (MAST)

Produce highly-organized, consistently-calculated data

12

1.0

1.5

2.0

2.5

3.0

Dif

fusi

on

Bar

rier

[eV

]

Sc YLa

Ti ZrHf

V NbTa

Cr MoW

Mn TcRe

Fe RuOs

Co RhIr

Ni PdPt

Cu AgAu

Zn CdHg

Ga InTl

Ge SnPb

As SbBi

Ca SrBa

K RbCs

1.0

1.5

2.0

2.5

3.0

Dif

fusi

on

Bar

rier

[eV

]

Sc YLa

Ti ZrHf

V NbTa

Cr MoW

Mn TcRe

Fe RuOs

Co RhIr

Ni PdPt

Cu AgAu

Zn CdHg

Ga InTl

Ge SnPb

As SbBi

1.0

1.5

2.0

2.5

3.0

Dif

fusi

on

Bar

rier

[eV

]

Sc YLa

Ti ZrHf

V NbTa

Cr MoW

Mn TcRe

Fe RuOs

Co RhIr

Ni PdPt

Cu AgAu

Zn CdHg

Ga InTl

Ge SnPb

As SbBi

2.0

2.5

3.0

3.5

4.0

Dif

fusi

on

Bar

rier

[eV

]

Sc YLa

Ti ZrHf

V NbTa

Cr MoW

Mn TcRe

Fe RuOs

Co RhIr

Ni PdPt

Cu AgAu

Zn CdHg

Ga InTl

Ge SnPb

As SbBi

2.0

2.5

3.0

3.5

4.0

Dif

fusi

on

Bar

rier

[eV

]

Sc YLa

Ti ZrHf

V NbTa

Cr MoW

Mn TcRe

Fe RuOs

Co RhIr

Ni PdPt

Cu AgAu

Zn CdHg

2.0

2.5

3.0

3.5

4.0

Dif

fusi

on

Bar

rier

[eV

]

Sc YLa

Ti ZrHf

V NbTa

Cr MoW

Mn TcRe

Fe RuOs

Co RhIr

Ni PdPt

Cu AgAu

Zn CdHg

Mg Al

Cu Ni

Pd Ptdiffusiondata.materialshub.org; H. Wu et al., Scientific Data (2016, accepted).

ω2 ω1

ω4

ω0

ω1ω3ω3

ω0ω3

ωbωc ωX

ωa

solvent solute vacancy

Basal

C-a

xis

ω'bω'c

ω'Xω'a

a) FCC five-frequency

b) HCP eight-frequency7 hosts (5 FCC, 1 HCP, 1 BCC)

> 230 host-solute combinations10-21 10-18 10-15 10-12 10-9 10-6

Experiment Diffusion Coefficient [cm2 / s]

10-21

10-18

10-15

10-12

10-9

10-6

Theo

ry D

iffus

ion

Coe

ffic

ient

[cm

2/ s

] AgAuBiCdCoCrFeGaGeHgInIrMnNbNiPbPdPtRhRuSSbSiSnTlZn

Cu

10×

0.1×1×

10-15 10-12 10-9 10-6

Experiment Diffusion Coefficient [cm2 / s]

10-15

10-12

10-9

10-6

Theo

ry D

iffus

ion

Coe

ffic

ient

[cm

2/ s

]

AgAlBeCdCeFeGaInLaNdNiSbSnZn

Mg

10×

0.1×1×

10-18 10-15 10-12 10-9 10-6

Experiment Diffusion Coefficient [cm2 / s]

10-18

10-15

10-12

10-9

10-6

Theo

ry D

iffus

ion

Coe

ffic

ient

[cm

2/ s

]

AgAlAuCoCrCuFeGeInPtSSbSnV

Ni

10×

0.1×1×

Example: Dilute solute diffusion

Page 13: Materials Simulation Toolkit (MAST)

1.0

1.5

2.0

2.5

3.0

Dif

fusi

on

Bar

rier

[eV

]

Sc YLa

Ti ZrHf

V NbTa

Cr MoW

Mn TcRe

Fe RuOs

Co RhIr

Ni PdPt

Cu AgAu

Zn CdHg

Ga InTl

Ge SnPb

As SbBi

Ca SrBa

K RbCs

1.0

1.5

2.0

2.5

3.0

Dif

fusi

on

Bar

rier

[eV

]

Sc YLa

Ti ZrHf

V NbTa

Cr MoW

Mn TcRe

Fe RuOs

Co RhIr

Ni PdPt

Cu AgAu

Zn CdHg

Ga InTl

Ge SnPb

As SbBi

1.0

1.5

2.0

2.5

3.0

Dif

fusi

on

Bar

rier

[eV

]

Sc YLa

Ti ZrHf

V NbTa

Cr MoW

Mn TcRe

Fe RuOs

Co RhIr

Ni PdPt

Cu AgAu

Zn CdHg

Ga InTl

Ge SnPb

As SbBi

2.0

2.5

3.0

3.5

4.0

Dif

fusi

on

Bar

rier

[eV

]

Sc YLa

Ti ZrHf

V NbTa

Cr MoW

Mn TcRe

Fe RuOs

Co RhIr

Ni PdPt

Cu AgAu

Zn CdHg

Ga InTl

Ge SnPb

As SbBi

2.0

2.5

3.0

3.5

4.0

Dif

fusi

on

Bar

rier

[eV

]

Sc YLa

Ti ZrHf

V NbTa

Cr MoW

Mn TcRe

Fe RuOs

Co RhIr

Ni PdPt

Cu AgAu

Zn CdHg

2.0

2.5

3.0

3.5

4.0

Dif

fusi

on

Bar

rier

[eV

]

Sc YLa

Ti ZrHf

V NbTa

Cr MoW

Mn TcRe

Fe RuOs

Co RhIr

Ni PdPt

Cu AgAu

Zn CdHg

Mg Al

Cu Ni

Pd Pt

Scale examples of MAST-generated data

13

• Solute diffusion1: 20-30 steps per workflow x 230+ host-solute systems => over 6000 calculations

• Perovskite oxygen migration, with and without strain2,3: 15-25 steps per workflow x 200+ workflows and 392 steps per workflow x 4 systems => over 5000 calculations

• Surface exchange coefficient descriptor in perovskites4: 3 steps per workflow x 1850+ compositions => over 5500 calculations

MAST is good for handling complex workflows and for copying workflows over many systems.

[3] T. Mayeshiba & D. Morgan, in preparation[4] R. Jacobs et al., in preparation

[1] H. Wu et al., Scientific Data (2016, accepted)[2] T. Mayeshiba & D. Morgan, PCCP 17, 2715 (2015)

Page 14: Materials Simulation Toolkit (MAST)

Storing MAST-generated data

14

Archived data• NIST Data repository

– http://hdl.handle.net/11256/102– http://hdl.handle.net/11256/76

• Figshare– https://dx.doi.org/10.6084/m9.figs

hare.1546772.v2• Zenodo

– https://dx.doi.org/10.5281/zenodo.48656

• Materials Data Facility/Globus?

Workflow management of

calculations

Data acquisition and processing Data repository

Interactive data• Own dilute solute diffusion

database websitehttp://diffusiondata.materialshub.org

• Materials Project dataset: MPContribs (in progress)

• Citrine/Citrination?

Consolidation strategies?

3-30 steps per workflow 200-1850 workflows per data set

5000-6000 calculations per data set, 5-30 GB

Page 15: Materials Simulation Toolkit (MAST)

Summary

15

MAST was built to:• Automatically manage workflows• Iterate easily over calculation

system features– Composition, strain, defects

• Store and share workflow knowledge– Included workflows emphasize

diffusion and defect calculations– Almost all VASP calculations can be

automated using MAST

• Produce highly organized, consistently calculated data

ω2 ω1

ω4

ω0

ω1ω3ω3

ω0ω3

ωbωc ωX

ωa

solvent solute vacancy

Basal

C-a

xis

ω'bω'c

ω'Xω'a

a) FCC five-frequency

b) HCP eight-frequency

1.0

1.5

2.0

2.5

3.0

Dif

fusi

on B

arri

er [

eV]

Sc YLa

Ti ZrHf

V NbTa

Cr MoW

Mn TcRe

Fe RuOs

Co RhIr

Ni PdPt

Cu AgAu

Zn CdHg

Ga InTl

Ge SnPb

As SbBi

Ca SrBa

K RbCs

1.0

1.5

2.0

2.5

3.0

Dif

fusi

on B

arri

er [

eV]

Sc YLa

Ti ZrHf

V NbTa

Cr MoW

Mn TcRe

Fe RuOs

Co RhIr

Ni PdPt

Cu AgAu

Zn CdHg

Ga InTl

Ge SnPb

As SbBi

1.0

1.5

2.0

2.5

3.0

Dif

fusi

on B

arri

er [

eV]

Sc YLa

Ti ZrHf

V NbTa

Cr MoW

Mn TcRe

Fe RuOs

Co RhIr

Ni PdPt

Cu AgAu

Zn CdHg

Ga InTl

Ge SnPb

As SbBi

2.0

2.5

3.0

3.5

4.0

Dif

fusi

on B

arri

er [

eV]

Sc YLa

Ti ZrHf

V NbTa

Cr MoW

Mn TcRe

Fe RuOs

Co RhIr

Ni PdPt

Cu AgAu

Zn CdHg

Ga InTl

Ge SnPb

As SbBi

2.0

2.5

3.0

3.5

4.0

Dif

fusi

on B

arri

er [

eV]

Sc YLa

Ti ZrHf

V NbTa

Cr MoW

Mn TcRe

Fe RuOs

Co RhIr

Ni PdPt

Cu AgAu

Zn CdHg

2.0

2.5

3.0

3.5

4.0

Dif

fusi

on B

arri

er [

eV]

Sc YLa

Ti ZrHf

V NbTa

Cr MoW

Mn TcRe

Fe RuOs

Co RhIr

Ni PdPt

Cu AgAu

Zn CdHg

Mg Al

Cu Ni

Pd Pt

Github repository: http://github.com/uw-cmg/MASTDocumentation: http://www.pythonhosted.org/MASTPython Package Index: http://pypi.python.org/pypi/MAST

A

C

D

B

Page 16: Materials Simulation Toolkit (MAST)

AcknowledgementsCOMPUTATIONAL MATERIALS GROUP

Faculty* Izabela Szlufarska * Dane Morgan

Postdocs* Georgios Bokas * Guangfu Luo * Henry Wu * Jia-Hong Ke* Mahmood Mamivand * Ryan Jacobs * Shipeng Shu * Wei Xie* Yueh-Lin Lee

Graduate Students* Amy Kaczmarowski * Ao Li* Austin Way * Benjamin Afflerbach* Chaiyapat Tangpatjaroen * Cheng Liu* Franklin Hobbs * Hao Jiang * Huibin Ke * Hyunseok Ko* Jie Feng * Lei Zhao* Mehrdad Arjmand * Shenzhen Xu * Shuxiang Zhou * Tam Mayeshiba* Xing Wang * Yipeng Cao * Zhewen Song

Visiting and Undergraduate Students* Aren Lorenson * Benjamin Anderson * Haotian Wu * Jason Maldonis* Josh Perry * Jui-Shen Chang * Liam Witteman * Tom Vandenberg* Zachary Jensen

T.Mayeshiba:NSFGRFPDGE-0718123,UW-MadisonGERSH.Wu,Z.Song,B.Afflerbach:NSFSI2-SSI1148011Calculations:UW-MadisonCenterforHighThroughputComputing;UniversityofKentuckyLipscombCenter;NERSCDE-AC02-05CH11231

16