47
1 Materials in high-temperature superconducting cables Dag Willén nkt cables Autonomous University of Barcelona 16 April 2008

Materials in high-temperature superconducting … in high-temperature superconducting cables Dag Willén nkt cables Autonomous University of Barcelona 16 April 2008 2 Contents •

  • Upload
    lamthu

  • View
    216

  • Download
    0

Embed Size (px)

Citation preview

1

Materials in high-temperaturesuperconducting cables

Dag Willénnkt cables

Autonomous University of Barcelona16 April 2008

2

Contents• Background on superconductivity• Materials in HTS cables• Cost – an industrial estimation• Example: The HTS Triax™ Energy Cable• Applications of HTS cables

3

Background on superconductivity

4

Discovery• In the year 1911, by Kammerlingh Onnes• Mercury lost its resistance as Helium was liquified• Nobel price in Physics 1913

Nb3SnV3Si (17,5 K)Nb3Ge (23 K)

Material Tc

Al 1,2 K

Hg 4,2 K

Nb 9,26 K

Pb 7,2 K

Sn 3,7 K

Ti 0,39 K

5

Development

K r i t i s k t e m p e r a t u r ( K e lv i n )

N b 3 SnN bH g

B i - 2 2 2 3

Y B C O

T l B a C a C u O

0

2 5

5 0

7 5

1 0 0

1 2 5

1 5 0

1 9 0 0 1 9 2 0 1 9 4 0 1 9 6 0 1 9 8 0 2 0 0 0Å rs ta l

HgBaCaCuO (133 K)

K r i t i s k t e m p e r a t u r ( K e lv i n )

N b 3 SnN bH g

B i - 2 2 2 3

Y B C O

T l B a C a C u O

0

2 5

5 0

7 5

1 0 0

1 2 5

1 5 0

1 9 0 0 1 9 2 0 1 9 4 0 1 9 6 0 1 9 8 0 2 0 0 0Å rs ta l

HgBaCaCuO (133 K)

year

Critical temperature[K]

J. Georg Bednorz and K. Alexander Müeller, IBM Zürich, La-Cu-Oxide, HTS ~30 K, 1986, Nobel price physics 1987

Paul Chu, Univ. Houston, YBCO, 1987, ~90 K

6

February 1995…

7

Materials in HTS cables

8

materials in HTS cables

SC

ceramics metalssynthesis

buffer layers HTS layersGrain boundaries

mech. strength

chem. protection

stabilizer

large currents

epitaxy

AC loss

jointsthermal modelling

cryogenic temperatures

thermal shrinkage

brittleness

cooling tech

wearsolid state cooling?

vacuum insulation

welding

getter materials

super-insulation fluid dynamics

spacers

pressureregulations

safety

high voltageBD strength

creep length

ageing/PD

9

Synthesis – 1G HTS

0.3 mm

4.5 mm

10

Properties of 1G HTSASC tape (warm-up)

0.0E+00

5.0E-09

1.0E-08

1.5E-08

2.0E-08

2.5E-08

3.0E-08

50 100 150 200 250 300

T [K]

ρ [ Ω

m]

ρ

0

0.5

1

1.5

2

2.5

3

3.5

40 50 60 70 80 90 100 110

Temperature dependence of BSCCO

Young data @ 0-TYoung data @ 0.1 TGrabovicki data of NSTGrabovickic data @ 0-Ty = 7.16 - 0.115T + 0.000455T 2

I c (T) /

I c (77

K)

T (K)

Ic(77K) = 200 A

Tc = 110 K

11

Synthesis – 2G HTS

Pilot HTS – SuperPower Inc.

Example:

HTS Layer by Metal Organic Chemical Vapor Deposition (MOCVD)

Example:

Buffer Layer by Ion Beam Assisted Deposition (IBAD)

12

Suppliers

PLDIBADFujikura

PLDRabits®SEI

Thermal evaporationISDTheva

PLDIBADEAS/EHTS

MODRabits®AMSC

MOCVDIBADSuperPower Inc.

HTS layerBuffer layerCompany:

Rabits = Rolling-Assisted BI-axially Textured Substrate (cold-rolled and annealed Ni-W alloy)MOD = Metal Organic Deposition(slot-die coating of trifluoroacetate-based precursors)ISD = Inclined Substrate Deposition

13

Status, 2G

10 100 1000Length (meters)

100

1000

Crit

ical

cur

rent

s.f.

77K

(A/c

m-w

idth

)

Shortsamples

10,000 A-m

50,000

500,000

100,000

1,000,000

2006 GoalDOE

Target

10 100 1000Length (meters)

100

1000

Crit

ical

cur

rent

s.f.

77K

(A/c

m-w

idth

)

Shortsamples

10 100 1000Length (meters)

100

1000

Crit

ical

cur

rent

s.f.

77K

(A/c

m-w

idth

)

Shortsamples

10,000 A-m

50,000

500,000

100,000

1,000,000

2006 GoalDOE

TargetHTS cablereq.

14

Cost –an industrial estimation

15

Materials costs

Examples from 2005, USD

USD/kg

0

0,5

1

1,5

2

2,5

3

3,5

PE Pb Al Cu

USD/kg

16

Conductor cost - copper

Examples from 2005, USD

0

10

20

30

40

50

60

70

80

500 1000 1500 2000 2500

Ampacity [A]

Cos

t [$/

kAm

]Single core [A]

Segmented core [A]

A

L = 1 m

A

Segmented core

Singlecore

17

1G cost

Examples from 2005, USD

Brass (Cu + Zn)

Solder (Sn + Pb)Sheath (Ag-alloy) Matrix (Ag)

HTS filaments (BSCCO)

18

1G materials cost

Examples from 2005, USD*Spot prices at LME, Comex and other sources

USD/kg

0,1

1

10

100

1000

PP PE Fe Zn Sn Ni Ag HTS

19

1G tape cost

Examples from 2005, USD

• BSCCO in Ag tube• Brass reinforcement• 0.38 mm x 4.3 mm• HTS fill factor 0.43• Jc=40 000 A/cm2

• Ic=152 A/tape• Je=92 A/mm2

• Ag cost 226 $/kg

The raw materials cost at 5% scrap is 11 USD/kAm(1.7 USD/m)

Silver73,9%

Solder0,4%Brass

1,0%

HTS24,7%

20

1G factory cost

Examples from 2005, USD

• ”Small-scale”– Capacity 600 km/yr x 100 A– 8 M$ investment/20 yrs

• Bluecollar– 10 people x 40 k$/yr salary– 50% operation cost

• Whitecollar– 1 Manager– 1 sales force– 4 R&D– 6 x 83 k$/yr + 25% expenses

• Overhead– 1 administration– 1 x 40 k$/yr + 25% expenses

• Cost– 28 $/kAm @ 100% utilization

• ”Large-scale production”– Capacity 10000 km/yr x 150 A– 50 M$ investment/20 yrs

• Bluecollar– 15 people x 25 k$/yr salary– 50% operation cost

• Whitecollar– 3 Manager– 4 sales force– 5 R&D– 12x100 k$/yr + 25% expenses

• Overhead– 2 administration– 2 x 25 k$/yr + 25 % expenses

• Cost– 3 $/kAm @ 100% utilization

21

1G tape cost (utilization & scrap)

90%60%

30%5%

10%

30%

50%

70%

90%

110%

0

30

60

90

120

150

180

210

240

Cost [$/kAm]

Scrap

Utilization

210-240180-210150-180120-15090-12060-9030-600-30

Price level spring 2005

Examples from 2005, USD

2008

22

2G cost

Brass (Cu + Zn)

Solder (Sn + Pb)Protection layer (Ag)

Substrate (Ni + 5-10% W)

HTS layer (YBCO)

Examples from 2005, USD

23

2G tape cost

Examples from 2005, USD

• YBCO on 50 µm Ni substrate• 70 µm brass reinforcement• 10 µm Ag protection layer• 0.18 mm x 4.3 mm• HTS fill factor 0.12• Jc=350 000 A/cm2

• Ic=151 A/tape• Je=193 A/mm2

The materials cost at 5% scrap is 2.27 USD/kAm(0.36 USD/m)

Silver62%

HTS26%

Ni8%

Brass2%

Solder2%

24

90%60%

30%5%

10%30%

50%70%

90%110%

0

30

60

90

120

150

180

210

240

Cost [$/kAm]

Scrap

Utilization

210-240180-210150-180120-15090-12060-9030-600-30

2G tape cost (utilization & scrap)

Examples from 2005, USD

Announced entry-level pricing 2008-2009

25

HTS cost projectionIV Supra, 2008

26

Example: The HTS Triax™ Energy Cable

27

New technology? nkt cables has9 years of operation experience!

Copenhagen, Denmark30 m, 30 kV, 104 MW2 years operation 2001 - 2003Supplied 50,000 users

• Carrollton, GA, U.S.A– 30 m, 12.5 kV, 27 MW– 6 years operation 2000 – 2006– Supplied energy to Southwire’s cable factories

• Columbus, OH, U.S.A.Type tested 2005– 200 m, 13 kV, 69 MW – Installed and commissioned 2006– Operating since 8 Aug 2006

Σ = 9 years

28

New: HTS Triax™ Energy Cable

CryostatFormer

Phase 2 HTS Phase 3 HTS

Dielectric Dielectric Dielectric

Phase 1 HTS Copper Neutral

LN

LN

• Suitable for medium voltages (10-72 kV)

29

Terminations

• Three-phase terminations• Vertical insulators

Neutral Connection

3 Phase Connections

30

Splice in underground vault

• Cable was cut in two pieces• Three-phase splice

31

Cooling system• Cooling machines have become 1/3 of the size

compared to that of 5 years ago

9 m7 m

4 m

32

Type tested• XLPE standards

– IEC-60840– IEEE 400.2 – ICEA S-94-649-2000

• Fluid-filled standards– IEC-141-1, 141-4– AEIC CS-1-90

• Accessories– IEC-61462– IEEE-48-1996

• Applicable parts (HV testing, load testing, pressure)• Additional tests (Cryogenic)

33

Applications of HTS Energy Cables

34

Applications & Benefits

MV HTS Triax™ Energy Cable

Improved performance

and functionality

Long-distanceHV transmission

Commercial now!

Reference:200 m in Columbus, OH

Reference:1.7 km in New Orleans

~1 year

Reference:300 m in New York

Feasibility study:6 km in Amsterdam

4-5 years

Feasibility study:1 GW @ 150 kV100-300 km

35

• Energized: 8 Aug 2006• Date: 8 Aug 2007 • Time since start: 8756 h/365 d• Time in operation: 8752 h/365 d• Cable outings: 1

– Service outings: 0– Scheduled outings: 1– Failures: 0

• Availability: 99.95%• Min Power: 18 MW• Max Power: 58 MW• Ave Power: 30 MW• Transmitted energy: 264 GWh

Reference: 200 m Columbus, OH

36

LabarreHV substation

230 kV XLPE

MetaireHV substation

Reference: 1.7 km New Orleans• 13 kV HTS Triax™• 64 MVA• Replaces a 220 kV line

and the HV section of a transformer substation

HTS Triax™Energy Cable

LabarreHV substation

Metaire MV substation

Cable systemLabarre stationMetaire stationContigency

230 kV system HTS Triax™ system

37

Applications & Benefits

MV HTS Triax™ Energy Cable

Improved performance

and functionality

Long-distanceHV transmission

Commercial now!

Reference:200 m in Columbus, OH

Reference:1.7 km in New Orleans

~1 years

Reference:300 m in New York

Feasibility study:6 km in Amsterdam

4-5 years

Feasibility study:1 GW @ 150 kV100-300 km

38

unlimited fault current

Reference: 300 m New York City• New functionality: HTS cables have the

inherent ability to limit fault currents

Zero voltage

Nominalvoltage

Critical current

Current [kA]

Voltage [kV]

limited fault current

nominal current

39

Reference: 300 m New York City

Station-to-station tie on low side of Transformers• Can carry full station load at MV• Share transformer redundancy

between distribution stations• Increase transformer asset

utilization

HV

110-230 kV

HV

110-230 kV

HTS Triax™HTS FCL Cable

Increased reliability and resilience

MV distribution

10-20 kV

MV distribution

10-20 kV

40

Feasibility: 6 km in AmsterdamGas Pressure Cable

HTS Triax™ Energy Cable

41

Feasibility: 6 km in Amsterdam

Power to city center• Retrofit – save digging cost• Low impedance – stable voltage• Low losses – power through HTS• Limited fault current• N+2 redundancy

Low-impedancetransformer

HK 50 kV200 MVA

NDK

2 xXLPE

200 MVA

1 xHTS Triax™FCL Cable250 MVA

150 kV

50 kV

42

Applications & Benefits

MV HTS Triax™ Energy Cable

Improved performance

and functionality

Long-distanceHV transmission

Commercial now!

Reference:200 m in Columbus, OH

Reference:1.7 km in New Orleans

~1 years

Reference:300 m in New York

Feasibility study:6 km in Amsterdam

4-5 years

Feasibility study:1 GW @ 150 kV100-300 km

43

HTS Coax High-Voltage Cables• Same materials and machinery • Suitable for higher voltages, 50 - 150 kV

Ph1Ph2

Ph3

Dielectric Neutral

44

Transmission length

[MW]

[MVAr]

HTS Coax CableCu

-500

500

1000

Energy to customer

Reactivepower

HTS Triax™ Distance

[km]30020050

• HTS cables resemble OH lines electrically

400 kV XLPE

50 kV Triax

Active power

150 kV HTS

Reactive power

45

Example 4: 150 km, 2 GVA• Alt 1: 400 kV OH + UG

– Reactive power– Stability– Visibility

AC/DC DC/AC

• Alt 3: HV HTS Energy Cable– Invisible & efficient– Serves the local communities– SUPER GREEN

• Alt 2: HVDC– Expensive converters– Difficult to connect underway– Need parallel AC system

Load center

UG CableHTS cable

OH line

46

Conclusion1. Materials

• Many interesting aspects

2. Cost • comes down with increasing maturity

3. Applications:• First commercial product available• Imroved properties (reduced loss) and functionality (FCL)• Great potential in transmission

47

Thank you!