19
Mechanical Processing in Hydrogen Storage R&D Materials Design on Nano & Molecular Scale www.sigma-aldrich.com Viktor P. Balema Aldrich Materials Science 2009 MRS Fall, Boston, MA

Materials Design on Nano Molecular Scale

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Materials Design on Nano Molecular Scale

Mechanical Processing in Hydrogen Storage R&DMaterials Design on Nano & Molecular Scale

www.sigma-aldrich.com

Viktor P. BalemaAldrich Materials Science2009 MRS Fall, Boston, MA

Page 2: Materials Design on Nano Molecular Scale

2

For millennia, the human race has been using mechanical energy for processing different types of solids by grinding, millingand forging.

In the early 1960s, INCO started industrial production of metal alloys and composite materials by ball-milling. The developed method, called “mechanical alloying”, brought a new life to the ancient technique …

Mechanical Processing

Mechanochemistry - chemical conversion of solids facilitated by mechanical processing, i.e.milling or grinding.

Page 3: Materials Design on Nano Molecular Scale

3

Alloys & Intermetallics

MH-Ni Battery Materials Metastable Phases

Ceramics &Composites Nanomaterials

Complex Hydrides

Mechanochemistry(Mechanical alloying)

Page 4: Materials Design on Nano Molecular Scale

4

Milling and Grinding

Spex 8000 Shaker Mill

Attritor Mill

Ball Mill

Planetary Mill

Mortar & Pestle

Page 5: Materials Design on Nano Molecular Scale

5 Spex 8000 shaker mill

Mechanochemical ExperimentsAn example

• Solid reactants are ball-milled in a vial sealed under inert gas using a Spex 8000 shaker mill

• The powders are analyzed by solid-state NMR, x-ray powder diffraction, DTA/TGA etc. prior to any further treatment

• Temperature in the material during milling (in Spex 8000): < 60oC

Page 6: Materials Design on Nano Molecular Scale

6

Milling & grindingMilling & grinding

Structuralchanges

Mechanosynthesis

Mechanical

Pulverizing

Alloying

Page 7: Materials Design on Nano Molecular Scale

7

Electrochemical discharge

Hydrogen Storage Materials Modification

Ball-milling reduces the total capacity of Ir3Ti from 280 mAh/g to 105 mAh/g but its electrochemical capacity triples. Material’s structure changes from Cr3Si (A-15) to CsCl.

Ball-milling reduces decomposition temperature of pure LiAlH4 and Li3AlH6by 20 oC.

LiAlH4 ,DTA

First step, LiAlH4 Second step, Li3AlH4

V. P. Balema et J. Alloys Compd., 307, 184 (2000) V. P. Balema et al J. Alloys Compd., 313, 69 (2000)

Page 8: Materials Design on Nano Molecular Scale

8

+TiClx x LiAlH4

ball-milling

xLiCl xAl+ + +Ti/TiH2 2xH2

3AlTi + Al3Ti

2LiAlH4

ball-milling Al3Ti/TiH2

2Al ++2LiH 3H2 Li3AlH6

LiAlH4

[AlH4]-

[AlH6]3-

5.2wt.% H2

“The major breakthrough in the field of hydrogen storage.”W. Grochala, P.P. Edwards, Chem. Rev., 104, 1283 (2004)

V. P. Balema et al.Chem. Commun.1665, 2000; J. Alloys Compd., 313, 69 (2001); Phys.Chem.Chem.Phys. 7, 1310 (2005)

Hydrogen Storage

Li3AlH6

Bragg angle, 2Θ/deg.20 30 40 50 60 70 80

Inte

nsity

, arb

. uni

ts

LiAlH4 + 3 mol % TiCl4ball-milled for 5 min

LiClAl

Li3AlH6

Bragg angle, 2Θ/deg.20 30 40 50 60 70 80

Inte

nsity

, arb

. uni

ts

LiAlH4 + 3 mol % TiCl4ball-milled for 5 min

LiClAl

Bragg angle, 2Θ/deg.20 30 40 50 60 70 80

Inte

nsity

, arb

. uni

ts

4LiAlH4 + TiCl4ball-milled for 10 min

LiClAl

Al3Ti, as preparedI 4/mmm (D022)

Bragg angle, 2Θ/deg.20 30 40 50 60 70 80

Inte

nsity

, arb

. uni

ts

4LiAlH4 + TiCl4ball-milled for 10 min

LiClAl

Al3Ti, as preparedI 4/mmm (D022)

Page 9: Materials Design on Nano Molecular Scale

9

Hydrogen StorageMaterials Modification

Page 10: Materials Design on Nano Molecular Scale

10

Hydrogen Storage Mechanosynthesis

Li3AlH6Cu Kα radiation

Bragg angle, 2Θ (deg.)20 30 40 50 60 70 80

Inte

nsity

, I (a

rb. u

nits

)

0

200

400

600

800

1000

P21/c

R3mC2/m

2 Θ, degr.10 20 30 40 50 60

Inte

nsity

, arb

.uni

ts

-200

-150

-100

-50

0

50

100

150

200

250

300

350

400

LiMg(AlH4)3 (b)

LiCl (c)

LiMg(AlH4)3 (a)

Page 11: Materials Design on Nano Molecular Scale

11

Contact time: 30 μsPressure: 3.3 GPa

MechanosynthesisPossible Scenarios

Page 12: Materials Design on Nano Molecular Scale

12

MechanosynthesisPossible Scenarios

Page 13: Materials Design on Nano Molecular Scale

13

In fact, it occurs in a liquid eutectic, which remains hidden behind solid reactants and the reaction product.

Low melting eutectics also form when triphenylphosphine is ball-milled with 4 –bromobenzophenone as well as in many other cases.

The reaction of o-vanillin (oV) and p-toluidine (pT) upon grinding at 0 °C and a slow warm up to room temperature appears to proceed in solid state.

MechanosynthesisPossible Scenarios

V.P. Balema et al. Chem. Commun. 724 (2002); New J. Chem. 2009, ASAP article

Page 14: Materials Design on Nano Molecular Scale

14

Bridgeman’s anvil

Material: diamond, boron nitride, ball-bearing steel.Pressure: up to10 GPa

MechanosynthesisPossible Scenarios

Page 15: Materials Design on Nano Molecular Scale

15

Conclusions

• Mechanical processing is an extremely useful tool for nano-scale design of novel materials including hydrogen storage materials.

• Most likely, a majority of mechanically-induced transformations proceed through similar stages.

• Mechanical processing enhances interactions between different solids, provides mass transfer and energy required for physicochemical and/or chemical transformations.

• The knowledge acquired in one area of mechanochemistry helps better understand other mechanically-induced processes in solids.

Page 16: Materials Design on Nano Molecular Scale

16

Acknowledgment

Experiments: Dr. Alexander DolotkoKevin Dennis Keita Hosokawa

Solid-state NMR: Dr. Jerzy W. WienchDr. Marek Pruski

Special thanks: Dr. Shashi JastyDr. Vitalij K. Pecharsky Dr. Karl A. Gschneidner

Page 17: Materials Design on Nano Molecular Scale

17

AppendixAdditional Slides

Page 18: Materials Design on Nano Molecular Scale

18

Temperature Co50 100 150 200 250

ball-milled for 20h

(NH4)2CO3

DTA

TGA

as is

endo

exo

Δ m = 50% as is

ball-milled for 20h

100

NH2(NH4)CO2

200 150

ball-milled for 20h

(NH4)2CO313C MAS NMR

CO2

as is

ppm

(NH4)2CO3 2NH3 + H2O + CO260oC

• Ball-milling: Spex 8000 mill/Helium• DTA/TGA: 10oC/min, Argon• 13C MAS NMR room temperature

Milling Temperature

V. P. Balema et al. Phys.Chem.Chem.Phys. 7, 1310 (2005)

Page 19: Materials Design on Nano Molecular Scale

19

2 Ph3P PtCl2

K2CO3- KCl

cis-(Ph3P)2PtCl2

cis-(Ph3P)2PtCO3

K2CO3- KCl

+

ball-millingno solvent

Yield 70 %

Yield 98 %

V. P. Balema et al. Chem. Commun. 1606 (2002)

V. P. Balema et al. J. Am. Chem. Soc. 124, 6244 (2002)

V. P. Balema et al., Chem. Commun. 724 (2002)

Other Mechanically Induced Processes

V. Balema et al., New J. Chem. 2009, ASAP articles

Br R1+

Br

(C6H5)3P

(C6H5)3P-R1

CH2CH2CH2-

CH(C6H5)C(O)C6H5(2)R1: CH2C(O)C6H5(1)

(C6H5)3PCH2-

Br

ball-milling

no solvent

Yields 90-99%

1-4

(4)

(3)

XPh3P-CH2-R1 CH2Br++Ph3P

Br

CHO

K2CO3

K2CO3Ph3P=CH-R1- Ph3P(O)

C=OR2

R3- Ph3P(O)

C=C

Br

H HR1

C=CH

R2

R3

R3:

Br

ball-millingno solvent

R1: C6H5, H, CH3 R2: H, CH3 X = Cl, Br

ball-millingno solvent

trans > cis mechanochemically: trans : cis = 3.5 : 1in a solution: trans : cis = 1 : 2.4

Yield 93 %Yields 70 - 92 %