79
1 Ceramics: Introduction Material Science I Ceramic Materials F. Filser & L.J. Gauckler ETH-Zürich, Departement Materials [email protected] WS 2006-07

Material Science I Ceramic Materials - ETH Z¼rich

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

1Ceramics: Introduction

Material Science I

Ceramic Materials

F. Filser & L.J. GaucklerETH-Zürich, Departement Materials

[email protected]

WS 2006-07

2Ceramics: Introduction

Material Science I

Persons in Charge of this Lecture

• I. Akartuna,HCI G 538, phone 36842, [email protected]. KraussHCI G 538, phone 3 68 34, [email protected]

• Dr. F. Filser, HCI G 529, phone 26435, [email protected]

• Prof. Dr. L.J. GaucklerHCI G 535, phone 25646, [email protected]

• Dipl.-Ing. J. KüblerEMPA Dübendorf, phone 044 823 4223, [email protected]

3Ceramics: Introduction

Material Science I

Overview & preliminary schedule

Jan 8, 07 Introduction on ceramic materials, technology, applications

Jan 15, 07 Crystal structures of ceramic materials

Jan 22, 07 Potential well of bonding and physical properties &Examples of Structural ceramic materials

Jan 29, 07 Examples of structural ceramic materials

Feb 2, 07 term finish

4Ceramics: Introduction

Material Science I

Overview & preliminary schedule

Mar 19, 07 term starts

Mar 20, 07 Glass

Mar 27, 07 Toughness (JK)

Apr 03, 07 Strength & Weibull statistics (JK)

Apr 10, 07 Subcritical crack growth, SPT-Diagrams (JK)

Apr 17, 07 Proof-testing, creep, thermical properties (JK)

Apr 24, 07 polymer part (Prof. D. Schlüter)

Jun 22, 07 term finish

5Ceramics: Introduction

Material Science I

Documentation

http://ceramics.ethz.ch-> education-> courses-> Materialwissenschaft I und II

Visit our homepage @

6Ceramics: Introduction

Material Science I

Sources of Information - ETH Bib -NEBIS

http://www.ethbib.ethz.ch/

http://www.nebis.ch/

7Ceramics: Introduction

Material Science I

Recommended Reading

• Askeland & Phulé: Science and Engineering of Materials, 2003

• Barsoum MW: Fundamentals of Ceramics. IoP Publishing, 2003

• diverse CEN ISO Standards (look at slides)• Y.-M. Chiang, D. Birnie, D. Kingery, Physical Ceramics,

Principles für Ceramic Science and Engineering, Wiley, 1997.

• G. Kostorz (ed), High-Tech Ceramics: Viewpoints and Perspectives. Academic Press, 1989. (Chapter 5, 59-101).

8Ceramics: Introduction

Material Science I

Recommended Reading

• Munz, D., Fett, T.: Ceramics, Mechanical Properties, Failure Behaviour, Materials Selection, Springer, 1999.

• David Richerson, Modern Ceramic Engineering, Ed. 2, Dekker, 1992.

• Saito Shinroku, Fine Ceramics, Elsevier, 1988.• Verband der Keramischen Industrie e.V, Brevieral Technical

Ceramics, ISBN 3-924158-77-0, Fahner Verlag, 2004. (partly on the internet available)

• Ichinose Wataru, Introduction to Fine Ceramics, Wiley, 1987.

9Ceramics: Introduction

Material Science IRecommended Reading

Chapter IV: Examples of Structural Ceramic Materials

• Bevieral Technical Ceramics, • Silicon-Based Structural Ceramics (Ceramic Transactions),

Stephen C. Danforth (Editor), Brian W. Sheldon, American Ceramic Society, 2003,

• Silicon Nitride-1, Shigeyuki Somiya (Editor), M. Mitomo(Editor), M. Yoshimura (Editor), Kluwer Academic Publishers, 1990

• Zirconia and Zirconia Ceramics. Second Edition, Stevens, R, Magnesium Elektron Ltd., 1986, pp. 51, 1986

• Stabilization of the tetragonal structure in zirconiamicrocrystals, RC Garvie - The Journal of Physical Chemistry, 1978

10Ceramics: Introduction

Material Science IRecommended Reading

Chapter IV: Examples of Structural Ceramics Materials

• Phase relationships in the zirconia-yttria system, HGM Scott - Journal of Materials Science, 1975 - Springer

• Thommy Ekström and Mats Nygren, SiAION Ceramics J Am Cer Soc Volume 75 Page 259 - February 1992

• "Formation of beta -Si3N4 solid solutions in the system Si, Al, O, N by reaction sintering--sintering of an Si3N4 , AlN, Al2O3 mixture" Boskovic, L J; Gauckler, L J, La Ceramica(Florence). Vol. 33, no. N-2, pp. 18-22. 1980.

• Alumina: Processing, Properties, and Applications, Dorre, E; Hubner, H, SpringerVerlag, 1984, pp. 329, 1984 9.

11Ceramics: Introduction

Material Science I

Sources of Information – Journals (in general )

• Journal of the American Ceramic Society (J. Am. Ceram. Soc.)

• Bulletin of the American Ceramic Society (Bull. Am. Ceram. Soc.)

• Journal of the European Ceramic Society(J. Eur. Ceram. Soc.)

• Journal of Materials Science (J. Mat. Sci.)

• Journal of Materials Research (J. Mat. Res.)

12Ceramics: Introduction

Material Science I

Introduction on ceramic materials, technology, applications

13Ceramics: Introduction

Material Science I

Nitrides

Ferrites

Titanates

Oxide ceramics

Silicon Carbide

Steatites

Earthenware (Steingut**)

Fire-proof pottery

Porcelain

Stoneware (Steinzeug*)

Earthenware

-3000 -2000 -1000 0 1700 2000

Ceramic pots (7000 BC)

Potter’swheel

Greek Vases

EuropaenPorcelain

History of ceramic materials

**): porous, low firing temp (900 -1200°C)*): dense, high firing temp (>1200°C)

14Ceramics: Introduction

Material Science I

Ceramic in the Past

Giant beaker, Erle4 000 BC

Closed FurnaceStilt houses in Unteruhldingen, Bodensee

15Ceramics: Introduction

Material Science I

Egyptian wall relief

Rechmuir(1450 BC)ceramic formetallurgy

16Ceramics: Introduction

Material Science I

Greek Vase, red on black decor

17Ceramics: Introduction

Material Science I

Chinese Porcelain

14th century 18th century 19th century

Porcelain imports of the east indian company from china to europe:1600 – 1800: > 3 000 000 piecesanual dividends: up to 750% pa on the invested money

18Ceramics: Introduction

Material Science I

1600 - 1800 AD , in 1000 pieces

Europaen imports of chinese porcelain

19Ceramics: Introduction

Material Science I

Europaen Porcelain

August der Starke (1670 - 1733)

Ehrenfried Walter von Tschirnhaus

(1652 - 1708)

20Ceramics: Introduction

Material Science I

Europaen Porcelain

Feldspar ClayKaolin

Quartz

80

60

40

20

20

40

60

80

20 40 60 80

Dental ceramicsHard porcelain

Steinzeug

techn. porcelain

Steingut

21Ceramics: Introduction

Material Science I

Func

tion

electrical and magnetical

nuclear

technical

thermical

optical

chemical & biological

mechanical

Prop

erty

elektr. insulation piezoelectrical ferroelectrical semiconductor magnetical

temperature resist. n- absorption radiation resist. corrosion resist.

heat - conductor - insulator - storage

translucency controllable refraction index

Surface activity Corrosionresist. compatibility

strength (T) hardness wear resistency

App

licat

ion

substrates sensors condenser / capacitor oscillators igniting elements high-temp. conductor „low-temp.“ PTC cond. superconductors batteries

fuel shielding storage contain.

heat exchanger heat shields insulation heat storage

Na-vapor lamp IR-window Laser material Light switch

Cat-Carriers Filters DeNOx-Cat. Gas-Sensors Elektrods Implantats

Cutting bits bearings seals Engine components

High-performance / hightech Ceramics

22Ceramics: Introduction

Material Science I

Func

tion

electrical & magnetical

nuclear

technical

thermical

optical

chemical & biological

mechanical

Mat

eria

l

Al2O3 AlN BeO BaTiO3 SrTiO3 PZT SiC ZnO-Bi2O3 YBa2Cu3O7 U2O5 TiO2 NiO β - Al2O3 ZrO2 Li3N

UO2 PuO2 C SiC B4C BN Al2O3 Glass

SiO2 MgO Si3N4 Faser SiC Mg2SiO4 3 Al2O3 2SiO2

Al2O3 MgO Mg Al2O3 Y2O3 / ThO2PLZT

Cordierit Al2O3 ZrO2 MgO Mg2SiO4 ZnO Fe2O3 SnO2 MgCr2O4-TiO2 Fe2ZnO4 Fe2NiO4 Titanate

TiB2

SiC ZrO2 B4C BN Al2O3 Si3N4

High-performance / high-tech Ceramics

23Ceramics: Introduction

Material Science I

Funk

tion

Elektrisch &magnetisch

Nuklear-technisch

thermisch optisch Chemisch &biologisch

mechanisch

Eige

nsch

aft

elektr. IsolationpiezoelektrischferroelektrischHalbleiterMagnetisch

Temperaturbest.n-AbsorptionStrahlenbest.Korrosionsbest.

Wärme- leitung- dämmung- speicherung

TransluzenzSteuerbarer Brechungsindex

OberflächenaktivKorrosionsbest.Verträglichkeit

Festigkeit (T)Härteverschleissfest

Anw

endu

ng

SubstrateSensorenKondensatorenOszillatorenZündelementeHeissleiterKaltleiterSupraleiterBatterienBrennstoffzellen

BrennstoffAbschirmungEndlagerung

WärmetauscherHitzeschilderIsolationWärmespeicher

Na-DampflampeIR-FensterLasermaterialLichtschalter

Kat-TrägerFilterDeNOx-Kat.Gas-SensorenElektrodenImplantate

Schneidwerkst.GleitlagerDichtungenMotorenteile

High-performance / high-tech Ceramics

24Ceramics: Introduction

Material Science I

Engineering Ceramics Today:electronics

25Ceramics: Introduction

Material Science I

Property

Requirement at…

… Condition

Heat conductivity (λ)

< 100 W/mK …

…RoomTemperature (RT)

Thermal Expansion Coeff. (α)

3 - 4 x 10-6/K …

…RT – 200°C

Electrical Resistance (ρ)

> 1014 Ωcm …

…RT

Rel. permittivity (εr)

< 4 …

…1Mhz

Dielectric loss (δ)

< 10-3 …

…1Mhz

Bend strength (σ)

> 500 MN/m2 …

…3 P bend strength

Requirements for substrate materials

26Ceramics: Introduction

Material Science I

+ +

- -

++ ++++ ++

- -- - - -- -+ + + +

+ + + +

- - - -- - - -++ ++++ ++

- -- - - -- -

++ ++++ ++++ ++++ ++

- -- - - -- -- -- - - -- -

- big distance- small area- no dielectric

- small distance- large area- no dielectric

- big distance- large area- with dielectric

low low storage capacitystorage capacity

higher higher storage capacitystorage capacity

8080’’000 x higher 000 x higher storage capacitystorage capacity

Electrical Condenser: Principle

27Ceramics: Introduction

Material Science I

fixed capacitor trimming capacitor feedthroughcapacitor

Condenser: prinziple types

28Ceramics: Introduction

Material Science I

Condenser/Capacitor device: buildup

soldering tag

nickel layer

contactelectrode

ceramic dielectric

29Ceramics: Introduction

Material Science I

Capacitor: Production technology

30Ceramics: Introduction

Material Science I

F

F

mechanical →electrical

electrical →mechanical

Piezo ceramics as electro-mechanical transformer

31Ceramics: Introduction

Material Science I

mechanical →electrical

elektrical →mechanical

Piezo ceramics as electro-mechanical transformer

32Ceramics: Introduction

Material Science I

Positioning by piezo-ceramics

http://www.physikinstrumente.de/products/index.php

PZT = PbZrTiO3A B O3

33Ceramics: Introduction

Material Science I

Piezo-ceramics: Applications

34Ceramics: Introduction

Material Science I

OXIDE APPLICATION Metallic

ReO3, RuO, Li2TiO3

electrode, circuits / conductors

Piezo-ceramic Pb (Zr,Ti)O3 sensor, actuator

Pyro-ceramic (Pb,La)(Zr,Ti)O3 sensor

PTC “low temp.” conductors

BaTiO3 + doping

heat element, switch, temperature compensator

NTC “high temp.” conductors

Fe2O3, NiO, FeCr2O4, La, Sr, CoO3

temperature sensors

IOC Ionic conductors

ZrO2(Y2O3), Al2O3

battery, oxygen sensor, ph-meter, solid oxide fuel cell

HTC Super conductors

YBa2Cu3O4

sensor etc.

Applications of oxide ceramic materials

35Ceramics: Introduction

Material Science I

Communication Technology

Piezo - Microphons Optical Fibres

36Ceramics: Introduction

Material Science I

Sensors & sensor‘s integration

37Ceramics: Introduction

Material Science I

Nanoscale & Microscale

0.1 1.0 10 100 1,000 10,000 nm

C-nanotube

atom molecule

quantum dot

transistor

field emitter

ceramicpowder

38Ceramics: Introduction

Material Science I

Filling of Capilaries

Capillary flow of suspension

Cutting edges, plac-ing PDMS on glass substrate and infil-trating capillaries with suspension

Si wafer with photo-resist structures

Pouring with PDMS

Removing of PDMS, sintering.

5 μm

39Ceramics: Introduction

Material Science I

Multi–walled Vanadium Oxide Nanotubes

20 nm50 nm

F. Krumeich, H.-J. Muhr, M. Niederberger, F. Bieri, B. Schnyder, and R. Nesper, J. Am. Chem. Soc., 121 [36] 8324–8331 (1999)

40Ceramics: Introduction

Material Science I

15 μm

1.5 μm

Aligned Vanadium Oxide Nanotubes

41Ceramics: Introduction

Material Science I

Nose

42Ceramics: Introduction

Material Science I

Sensor

„smart“ mikrosensor-arraywith doted CeO2

[Co] [Cu]

• hydrocarbons• COx• NOx...

CeO2

Co/Fe/NiO

„nano“-structures on CeO2ss

1-2 nm

detection of:

storage media

43Ceramics: Introduction

Material Science I

SnO2-4-Point Contact

10μm

44Ceramics: Introduction

Material Science I

H2 Sensor Response

45Ceramics: Introduction

Material Science I

Fuel Cell Principle

Luft

CathodeElectrolyte

Anode

H2 + CO H2O + CO2

46Ceramics: Introduction

Material Science I

Fuel Cell

47Ceramics: Introduction

Material Science I

Fuel Cell: Sulzer HEXISHEXIS = Heat EXchanger Integrated Stack

water

Speicherexhaust

heatingce

ll st

ack

stor

age

air

natural gas

48Ceramics: Introduction

Material Science I

Fault currentLimited currentNormal current

Protection of distributions and transmission systems against overcurrents and -voltages.

Prototype

HT Superalconductor: Current Limiter Device

49Ceramics: Introduction

Material Science I

Bi-2212 Superconductor on Ag substrate

50Ceramics: Introduction

Material Science I

High-performance / high-tech CeramicsFu

nktio

n

Elektrisch &magnetisch

Nuklear-technisch

thermisch optisch Chemisch &biologisch

mechanischEi

gens

chaf

t

elektr. IsolationpiezoelektrischferroelektrischHalbleiterMagnetisch

Temperaturbest.n-AbsorptionStrahlenbest.Korrosionsbest.

Wärme- leitung- dämmung- speicherung

TransluzenzSteuerbarerBrechungsindex

OberflächenaktivKorrosionsbest.Verträglichkeit

Festigkeit (T)Härteverschleissfest

Anw

endu

ng

SubstrateSensorenKondensatorenOszillatorenZündelementeHeissleiterKaltleiterSupraleiterBatterienBrennstoffzellen

BrennstoffAbschirmungEndlagerung

WärmetauscherHitzeschilderIsolationWärmespeicher

Na-DampflampeIR-FensterLasermaterialLichtschalter

Kat-TrägerFilterDeNOx-Kat.Gas-SensorenElektrodenImplantate

Schneidwerkst.GleitlagerDichtungenMotorenteile

51Ceramics: Introduction

Material Science I

Porous Structur: Foamed Ceramic

52Ceramics: Introduction

Material Science I

Hightech Ceramics - Chemical Application:

catalysts

cleanloaded

& filters

53Ceramics: Introduction

Material Science I

Hightech Ceramics: medical appliccation

54Ceramics: Introduction

Material Science I

Hip Joint ImplantsPolymer Abrasion

20 000xhttp://www.swri.org/3pubs/ttoday/fall/implant.htm

55Ceramics: Introduction

Material Science I

Hip Joints Implants

M-P: Metal-PEM-M: Metal-Metal

operating timefric

tion

coef

ficie

nt

0

0.1

0.2

C-CM-P

M-M

natural joint

BioceramicsMaterials-Properties-ApplicationsA. Ravioglioli, A. Krajewski (ed.)chapman & Hall, London, 1992

wea

r in

arbi

tray

units

0

1

2

C-C

M-P

M-M

operating time

K-K: Ceramic-Ceramic

56Ceramics: Introduction

Material Science I

Hüftgelenk-Implantate

acetabulum: polyethylen(socket) or ceramic materialball: metall or ceramic mat.(head)

shaft: metall (coated)

bone cement: polymethylmethacrylate(PMMA)

57Ceramics: Introduction

Material Science I

Hip Joint Implant

metal / polymer ceramic / polymer

ceramic / ceramic

58Ceramics: Introduction

Material Science I

Knee Implants

http://www.totaljoint.com/kneerplc.html

59Ceramics: Introduction

Material Science I

Tooth Crowns and Bridges

metal framework and ceramic veneer

Load Bearing Capacity of Bridges

z

y x

B BB B

pelastic

elastic

A A

61Ceramics: Introduction

Material Science I

Dental ceramics

0 200 400 600 800 10000

2

4

6

8

10

Tou

ghne

ss [M

Pam

1/2 ]

Bendstrength [MPa]

GlassGlass--infiltrated infiltrated AA22OO33

Glass CeramicGlass Ceramic

PorcelainPorcelain

HighHigh--TechTechKeramikKeramik

In-Ceram

In-Ceram

In-Cerammit 30%

ZrO2

(Vita-Celay)Alumina

Dicor MGC

IPS Empress

Omega

MK II

ZirconiaZirconia

Empress2

62Ceramics: Introduction

Material Science I

Clinical Evaluation

Klinische Erprobung

(Courtesy of University of Zurich

64Ceramics: Introduction

Material Science I

HochleistungskeramikFu

nktio

n

Elektrisch &magnetisch

Nuklear-technisch

thermisch optisch Chemisch &biologisch

mechanisch

Eige

nsch

aft

elektr. IsolationpiezoelektrischferroelektrischHalbleiterMagnetisch

Temperaturbest.n-AbsorptionStrahlenbest.Korrosionsbest.

Wärme- leitung- dämmung- speicherung

TransluzenzSteuerbarerBrechungsindex

OberflächenaktivKorrosionsbest.Verträglichkeit

Festigkeit (T)Härteverschleissfest

Anw

endu

ng

SubstrateSensorenKondensatorenOszillatorenZündelementeHeissleiterKaltleiterSupraleiterBatterienBrennstoffzellen

BrennstoffAbschirmungEndlagerung

WärmetauscherHitzeschilderIsolationWärmespeicher

Na-DampflampeIR-FensterLasermaterialLichtschalter

Kat-TrägerFilterDeNOx-Kat.Gas-SensorenElektrodenImplantate

Schneidwerkst.GleitlagerDichtungenMotorenteile

65Ceramics: Introduction

Material Science I

Strength of Ceramic Components

ZrO2

Stre

ngth

(GP

a)

Year19801850 19601950 19701900 1990 2000

0

1

2

3

earthenware/ porcelain

hardmetal

superalloy

Si3N4

fiber composite

SiC

glass ceramic

Al2O3

refractory

High Speed Steel

66Ceramics: Introduction

Material Science I

martensic phase transformation of ZrO2

brittle failure

Crack is stopedbymartensictransformation

67Ceramics: Introduction

Material Science I

Hightech Ceramics:Struktural Applictions

68Ceramics: Introduction

Material Science I

Hardness of ceramic materials

69Ceramics: Introduction

Material Science I

Mechanical properties through hierarchical and nanoscale integration of phases

Ilhan A. Aksay, Princeton University

70Ceramics: Introduction

Material Science I

Cutting Bits

hard

ness

& w

ear r

esis

tanc

e

Bendstrength & Toughness

coated HSS

uncoated HSS

fine-grained hardmetall

coated hardmetalcermets

nitrideceramic

oxideceramic

CBNPKD

uncoated hardmetall

71Ceramics: Introduction

Material Science I

Fibre Composite MaterialsFailure in monolithischem and fibre-reinforced SiC

Crack length (mm)

10 000

7 500

5 000

2 500

0

0 1 2 3 4 5 6

sintered SiC

failureF

Fai

lure

Ene

rgy

(J/m

2 ) Fibre-reinforedSiC

72Ceramics: Introduction

Material Science I

Fabrication of SiC – fibres from polymers

SiC N SiSin

CN NSi Sin

SiC N SiSi

nB

BSi

C N

B

Si

C

N

MonomericUnits

“Single Source

Precursors“

Compoundswith Desired

Elements

Polyborocarbosilazanes

Polycarbosilazanes

after J.Bill, F.Aldinger, Z.Metallk., 87, 1996, 827

73Ceramics: Introduction

Material Science I

SiC fibers: high strength at high temperatures

Rupture strength behavior for various high-performance SiC fibers at 1400 °C in air. SA, Tyranno SA fiber from UBE Industries (polycrystaline SiC fiber with small amount of Aluminium);Hi-Nic. S, Hi-Nicalon Type S fiber from Nippon Carbon.

74Ceramics: Introduction

Material Science I

Ceramic Materials

• high melting temperature• high hardness• high strength

• electrical, magnetical properties• ferroelektrical properties• optical properties• catalytical properties• biological properties

75Ceramics: Introduction

Material Science I

Ceramic materials: their future

• communication technology

• electronic application

• medical application

• energy technology

• machining technology

76Ceramics: Introduction

Material Science I

77Ceramics: Introduction

Material Science I

Ersatz

78Ceramics: Introduction

Material Science I

Classification of Ceramic Materials

79Ceramics: Introduction

Material Science I

Working principle of Me-Oxide Semiconductor - Sensors

Model of inter-grain potential barrier (in the absence of gases)

Model of inter-grain potential barrier (in the presence of gases)