28
MASTER

MASTER - University of North Texas

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: MASTER - University of North Texas

MASTER

Page 2: MASTER - University of North Texas

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Page 3: MASTER - University of North Texas

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

Page 4: MASTER - University of North Texas

BNL 51061 UC-59c

(Heating and Cooling-Research and Development - TID-4500)

A TRNSYS-COMPATIBLE MODEL

OF GROUND-COUPLED STORAGE

September 1979

W o r k Sponsored by t h e SYSTEMS DEVELOPMENT DIVISION

SOLAR APPLICATIONS OFFICE OF ASSISTANT SECRETARY

CONSERVATION AND SOLAR APPLICATIONS U.S. DEPARTMENT OF ENERGY I-

- -- ----__ DISCLAIMER I

This Wok war Dremrm as an acmunt of u a k wosred by an me%-+ of the United Stale Gowrnment. Neilher the United Staler Governmenr mr anv asency thereof. nor any of their employeer. mkerany warranty. exprerr or implied. ar swmer any lcgal liability or rerponlibilily for the ascuracy. mmeletenerr. or usefulnerr o f any informtion. a~wratus. product. or proceu dialorod. or reerwntr thal i ir use vauld mt infringe privately owned rights. Referem herein ro any w ~ i f i c mmmercial Produ". procerr. or service by trade -me. lrademrk. mnufaclurer. or otherwise. do- nal ne-rib mnfiitute or imply its endorsement. remmmendation. or fawrirq by the United Slam Governm'en! or any agency (hereof. The "ism and opinion9 of authors cxpreYed herein do not nKeuorilv nate or reflect $hose of !he United Slsles Governmnc or any agency thereof.

, - - - -- - - - - -

SOLAR TECHNOLOGY GROUP DEPARTMENT OF ENERGY AND ENVIRONMENT

B R O O K H A V E N N A T I O N A L L A B O R A T O R Y U P T O N , N E W Y O R K 1 1 9 7 3

Page 5: MASTER - University of North Texas

DISCLAIMER

Thk book w a ~ prepared R F an arrnlint nf wnrk spnnsnrcrl by an agency of the United States Government. Neither the United Starm Government nor any agency therkot; nor any nf their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial prod- uct, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily consti~ute or il~lply its ~ C I I ~ U I S C I I I C I ~ L , I .CCOIII I I ICII~~~IO~, or tnvorlng by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States

. Government or any agency thereof.

Printed in the United States of America Available from

National Technical Information Service U.S. Department of Commerce

5285 Port Royal Road Springfield, VA 22161

Price: Printed Copy $4.50; Microfiche $3.00

Page 6: MASTER - University of North Texas

ABSTRACT.

The u s e of t h e ground a s a source of heat' and a s a s t o r a g e element f o r low-grade h e a t i n s o l a r a s s i s t e d hea t pump systems is t h e s u b j e c t of an ongoing program of resea rch a t Brookhaven National Laboratory. A s p a r t of t h i s program, a computer model of ground-coupled s t o r - age was developed. Th is r e p o r t d e s c r i b e s t h e i n t e g r a t i o n of t h i s program i n t o t h e t r a n s i e n t s imulat ion computer program TRNSYS t o a l low t h e hour-by-hour s imulat ion of s o l a r hea t ing and cool ing systems which use ground cou- p l ing . The r e p o r t i s intended t o se rve a s a u s e r ' s manual f o r t h e TRNSYS-compatible ground-coupling sub- r o u t i n e s .

ACKNOWLEDGMENTS

The computer program GROCS was designed and w r i t - t e n by D r . P h i l i p Metz, and t h e s e c t i o n of t h i s r e p o r t t i t l e d Design of GROCS, taken from Ref. 8, was w r i t t e n by him.

- iii -

Page 7: MASTER - University of North Texas

CONTENTS

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . In t roduc t ion 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . Design of GROCS 1 . . . . . . . . . . . . . . . . . . . . I n t e g r a t i o n of GROCS w i t h TRNSYS 3 . . . . . . . . . . . . . . . . . . . . . . . . A . Buried Tank Model i 3 . . . . . . . . . . . . . . . . . . . . . . . B . B u r i e d P i p e M o d e l ... 4 . . . . . . . . . . . . . . . ~ e t a i l e d Descr ip t ion of Buried Tank Model 5 A . Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B Approach 6 . . . . . . . . . . . . . . . . . C TRNSYS Component Configurat ion 6 . . . . . . . . . . . . . . . . . . . . . . . . . . D . Program Flow 7 . . . . . . . . . . . . . . . . Detai led Descr ip t ion of Buried P ipe Mode1 9 . . . . . . . . . . . . . . . . . . . . . . A . Nomenclature . . 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . B . Approaeh ' 10 . . . . . . . . . . . . . . . . . . . C Flowing Sheet Appraximation 1 U

........ D . Correct ion f o r t h e Di f fe rence Between A . .. ' . . I2 . . . . . . . . . . . . . . . Blowing Sheet and ail Array of P i p e s . . . . . . . . .

..... i 3 . . . . . . . . . . . . . . . . . E . Two-Vay Flow i n t h e P ipe F i e l d . . . . . . . . . . . . . . . . F . TRNSYS Component Con£ i g u r a t i o n 13 . . . . . . . . . . . . . . . . . . . . . . . . . . G ProgramFlow 14 . . . . . . . . . . . ~ o d i f i c c l t i o n of GROCS f o r I n t e g r a t i o n w i t h TRNSYS 16 . . . . . . . . . . . . . . . . Data S e t f o r a Ground-Coupled Simulation 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . reference^ ; 20

. . . . . . . . . . . . . . . . . . Ground-coupling model schematic 2 Flow c h a r t f o r Lu i l ed tank subrout ine 8 . . . . . . . . . . . . . . . Flowing-sheet approximation t o pipe f i e l d . . . . . . . . . . . . . lo . . . . . . . . . . . . . . Geometry of f lowing s h e e t approximation 10 . . . . . . . . . . . . . Pipe f i e l d embedded i n semi-inf i n i t e mass 12 . . . . . . . . . . . . . Pipe f i e l d embedded between two boundaries 12 . . . . . . . . . . . . . . . PIOW c h a r t t o r bur ied pipe subrout ine 15 Flow c h a r t showing modi f i ca t ions to . . . . . . . . . . . . . . . . . . ground-coupling subrout ine GROCS 17

Page 8: MASTER - University of North Texas

INTRODUCTION

The use of t h e ground as a h e a t source t o a h e a t pump and as a s t o r a g e

element i n s o l a r energy systems has received inc reas ing a t t e n t i o n i n r e c e n t

years. The evident d e s i r a b i l i t y of modeling t h e thermal i n t e r a c t i o n of

t h e ground with h e a t pumps and s o l a r systems has l ed t o t h e development of

a FORTRAN computer model c a l l e d GROCS (GROund Coupled Systems). 7 y 8 This r e -

p o r t d e s c r i b e s t h e i n t e g r a t i o n of t h i s program i n t o t h e t r a n s i e n t s imula t ion

computer program T R N S Y S , ~ developed a t t h e Univers i ty of Wisconsin, so t h a t

hour-by-hour s imulat ions of s o l a r systems us ing ground coupling can be per-

formed. The mot ivat ion, theory, and c u r r e n t s t a t e of t h e a r t of ground cou-

p l ing have been A summary d e s c r i p t i o n of t h e computer model

G R O C S ~ ' ~ is given below. F a m i l i a r i t y wi th TRNSYS is assumed.

DESIGN OF GROCS

The realm of i n t e r e s t i n g underground h e a t f low problems t h a t can be solved

without a l a r g e d i g i t a l computer i s l i m i t e d . Thus, t h e need was seen t o do un-

derground h e a t flow modeling on such a computer. The u s u a l method of numeri-

c a l l y solving d i f f e r e n t i a l equat ions such a s t h e h e a t f low equat ions on a com-

puter i s t o conver t t h e d i f f e r e n t i a l equat ions t o f i n i t e d i f f e r e n c e equat ions

which a r e solved on a "mesh" of equa l ly spaced po in t s . The mesh spacing sets

a s c a l e which determines t h e accuracy of t h e s o l u t i o n . It i s n o t p o s s i b l e f o r

t h e s o l u t i o n t o have meaning over d i s t a n c e s smal ler than t h e mesh spacing. I n

3-dimensional systems, t h e number of mesh p o i n t s grows a s t h e cube of a system

dimension so t h a t mesh-based 3-dimensional programs u s u a l l y r e q u i r e l a r g e

amounts of computer time, and t h i s i s undes i rab le , e s p e c i a l l y because of our

i n t e n t i o n t o i n t e g r a t e GROCS with TRNSYS, t h e ' u n i v e r s i t y of Wisconsin s o l a r sys-

tem s imulat ion program, which is a l ready q u i t e l a r g e .

Therefore, ins tead of mesh po in t s , GROCS s o l v e s t h e h e a t flow f i n i t e d i f -

ference equat ions over a system of "blocks" of e a r t h . Each block i s a volume

of e a r t h whose s i z e and shape a r e determined by a hand-drawn model. One such

model i s i l l u s t r a t e d i n Figure 1.

A block-type model ha3 t h r e e advantages:

1. Useful problems can be solved wi th a s h o r t , s imple, and economical

computer program.

2 . Adequate accuracy can be obta ined. Na tura l ly occurr ing ground in-

homogeneities l i m i t t h e accuracy of any model t h a t r e l i e s on bulk thermal

Page 9: MASTER - University of North Texas

. . r

Figure 1. Ground-coupling model schematic

p r o p e r t i e s t o about 10%. Therefore, i t i s a waste of time and money' t o use

f i n e mesh models more a c c u r a t e than t h i s l i m i t .

3. New ground-coupling conf igura t ions can be s tudied by c r e a t i n g new

hand-drawn models, a process which t a k e s a few hours.

GROCS uses two d i f f e r e n t k inds of b locks , c a l l e d "rigged blocks" and

" f r e e blocks." The rigged blocks surround t h e f r e e blocks ahd provide the

necessa ry s p a t i a l boundary cond i t ions . The temperatures of t h e rigged h1.nr.k~

are dktermined a t each t imestep by a f u n c t i o n subprogram c a l l e d TINTERP which

r e q u i r e s a t a b l e of exper imental ly measured average ground temperatures a t a

llumbcr of d i f f e n e u ~ dep ths sparixiing t he por t ion of t h e ground t o be s imulated, .

f o r each month of t h e year. At every t imestep in.GROCS, t h e subprogram i s

t o l d t h e time of year and t h e dep th of t h e c e n t e r of t h e block whose tempera- . .

Page 10: MASTER - University of North Texas

t u r e i t is t o compute. TINTERP then d e t e r m i n e s ' t h e temperature of t h e block

by l i n e a r l y i n t e r p o l a t i n g wi th r e s p e c t t o time and depth between the r e l e v a n t

t a b l e e n t r i e s .

The f r e e block temperatures a r e i n i t i a l l y determined by spec i fy ing them

as d a t a input o r , i f a d e f a u l t va lue i s s p e c i f i e d (which i s a timesaver) , by

TINTERP a s descr ibed above. A t a l l f u t u r e t imesteps , however, t h e f r e e blocks

have t h e i r temperatures determined by t h e i r thermal i n t e r a c t i o n wi th each o t h e r

and wi th t h e rigged blocks, and by h e a t i n p u t s placed i n them t o s imulate t h e

e f f e c t of a s o l a r heat ing system and load.

A number of phys ica l parameters of t h e model must be s p e c i f i e d f o r inpu t

t o GROCS. These inc lude t h e numbers of f r e e and r igged blocks,. t h e i n i t i a l

temperature o r t h e d e f a u l t temperature, t h e volume and volume h e a t capac i ty

(Cp) f o r each f r e e block, t h e depth of each block a l l nonzero h e a t t r a n s f e r

a r e a s , and center-to-center d i s t a n c e s of ad jo in ing blocks .

INTEGRATION OF GROCS WITH TRNSYS

I n o rder t o merge GROCS s u c c e s s f u l l y i n t o TRNSYS i t was necessary t o make

provis ion f o r t h e s imulat ion processes going on i n each program t o proceed

without i n t e r f e r i n g wi th t h e o t h e r , and y e t t o a l low appropr ia te thermal i n t e r -

a c t i o n s t o occur between them. To make t h i s poss ib le , subrou t ines were wr i t -

t e n i n t h e same format a s o t h e r component TYPE subrou t ines i n TRNSYS, which

model s o l a r components and bu i ld ing l o a d s and i n some c a s e s perform v a r i o u s

a l g e b r a i c manipulations necessary t o a s imulat ion. These subrou t ines , TYPE33

f o r t h e bur ied tank and TYPE32 f o r t h e bur ied p ipe f i e l d , i n t u r n communicate

wi th GROCS. During each s imulat ion t imestep, the TYPE subrou t ines a r e c a l l e d

i n t u r ~ i by a c e n t r a l "command" s u h r n l l t i n e i n TRNSYS c a l l e d EXEC. A s each TYPE

subrout ine i s c a l l e d , i t s i n p u t s a r e ad jus ted t o r e f l e c t t h e ou tpu t s of pre-

v ious ly c a l l e d subrout ines , and a f t e r i t f i n i s h e s process ing, i t s ou tpu t s i n

t u r n a f f e c t t h e inpu t s of subrou t ines t o be c a l l e d l a t e r . After (usua l ly )

s e v e r a l passes through t h e s e t of subrout ines which c o n s t i t u t e t h e system t o

be simulated, t h e i n p u t s and ou tpu t s of a l l t h e subrou t ines converge t o a s e t

nf mutually c o n s i s t e n t va lues .

A. Buried Tank Model

A s t h e s imulat ion of t h e ground-coupled tank i s conceptual ly simpler than

t h a t of the buried c o i l , i t w i l l be considered f i r s t . During t h e course of

simi.lla t.ing a given t imestep, TRNSYS "sees" a mixed tank of a s p e c i f i e d volume

Page 11: MASTER - University of North Texas

w i t h t h e same i n p u t s and o u t p u t s as a convent ional tank. After convergence

. has been obtained f o r t h a t t imestep, however, t h e f lows of h e a t between t h e

t ank and i ts surroundings are c a l c u l a t e d d i f f e r e n t l y . During t h e i t e r a t i v e

process w i t h i n a. t imestep, thermal i n t e r a c t i o n occurs between t h e tank ( t i n

F igure 1 ) and t h e rest of t h e system, he re diagrammed 'schematically a s a co l -

l e c t o r , a n energy t r a n s p o r t module, and a load. At t h e end of t h e t imestep,

t h e h e a t t r a n s f e r r e d between t h e tank a n d ' t h e conceptual blocks of e a r t h (a)

a d j a c e n t t o t h e tank a r e c a l c u l a t e d by TYPE33 and made a v a i l a b l e t o GROCS.

Then GROCS is c a l l e d by TYPE33; i t computes t h e h e a t f lows between a l l p a i r s

of b locks , including both t h e ad jacen t b locks (a ) , t h e surrounding nonadjacent

f r e e blocks ( s ) , and t h e rigged blocks ( r ) . The use fu lness and accuracy nf

t h i s model depend on t h e use of a t imestep s h o r t enough so that t h e change i n

t ank temperature dur ing any t imestep i s much less than t h e mean ternperat~~re.

d i f f e r e n c e between. the t ank and ad jacen t blocks. For s t o r a g e t o c o l l e c t o r 3 2 2 .

a r e a r a t i o s around 0.3 m /m c o l l e c t o r (8 g a l l f t c o l l e c t o r ) , t h e maximum tank

temperature change dur ing a 15-min t imestep wi1.l be around 0 . 3 O ~ ( 0 . 6 ' ~ ) .

S to rage volumes of t h i s s i z e o r l a r g e r a r e normally considered f o r t h i s a p p l i -

c a t i o n .

B. Buried P ipe Model

The s imulat ion of a s e r p e n t i n e a r r a y 06 buried pipe prPqcnts problms

n o t encountered wi th t h e bur ied tank. Most of t h e s e problems a r e r e l a t e d t o

t h e f a c t t h a t t h e t y p i c a l p ipe diameter i s small enough t o r e q u i r e ve ry small

block s i z e s , and t h e r e f o r e t imesteps much s h o r t e r than t h e 15-min t y p i c a l f o r

TRNSYS runs . St ra ightforward modeling of t h e pipe along t h e same l i n e s a s t h e

tank would r e q u i r e i n o r d i n a t e amounts of computer time. For t h i s r eason it

was decided t o model t h e p i p e f i e l d a s a t h i n shee t of water flowing i n t h e

plane of t h e p ipe f i e l d .

The h e a t f low from a s h e e t w i l l no t i n genera l be t h e same a s t h a t from \

a s e t of p ipes . The shee t assumption, a s descr ibed so f a r , does no t t a k e i n t o

account t h e r a d i u s of t h e p ipes o r t h e d i s t a n c e between the^. However, i t i s

p o s s i b l e t o t ake these f a c t o r s approximately i n t o account, a t l e a s t f o r quasi-

s t eady-s ta te h e a t flow, by reducing t h e e f f e c t i v e h e a t t r a n s f e r a r e a between

t h e plane shee t of water and t h e ad jacen t blocks of e a r t h , making it l e s s than

t h e g e o u e t r i c a l s u r f a c e a rea . The determinat ion of t h e c o r r e c t f a c t o r by which

t h e h e a t t r a n s f e r a r e a must be reduced i s discussed below.

Page 12: MASTER - University of North Texas

Because t h e amount of water r e s i d e n t i n a p ipe f i e l d i s g e n e r a l l y one t o

two o r d e r s of magnitude l e s s than t h a t i n a bur ied tank, it i s n o t f e a s i b l e t o . .

d e f e r t h e accounting of temperature changes wi th in t h e p ipes t o t h e end of t h e

timestep: Ins tead , thd '.heat flow from t h e water t o t h e .ground i s c a l c u l a t e d

on she b a s i s of t h e i n l e t water temperature and t h e temperatures of t h e e a r t h

blocks ad jacen t t o t h e p ipe f i e l d . The change i n water temperature along t h e

flow path, as it t r a n s f e r s h e a t t o t h e s o i l , i s accounted f o r t o f i r s t order . '

A s wi th t h e b u r i e d tank model, c a l c u l a t i o n of h e a t t r a n s f e r between b'locks of

e a r t h by GROC'S .is defe r red t o ' t h e end of t h e t imestep. '

. . . .

DETAILED DESCRIPTION OF BURIED TANK MODEL .

A. Nomenclature ,

Symbol D e f i n i t i o n Uni ts S I - English

Area of i t h ad jacen t block of e a r t h m 2

f t 2

Ai

C S p e c i f i c hea t of tank f l u i d kJ/kg-OC Btullb-OF P f

hi Distance from tank edge t o c e n t e r of i t h

ad jacen t block m

k Thermal conduc t iv i ty of t h e ground W/hr-m-°C Btulhr-f t-OF . . . , ,

fib Mass flow r a t e t o o r from h e i t source kg I h r l b / h r

$ Mass f low r a t e t o o r frpm load

Qenv Net r a t e of h e a t l o s s from tank t o e a r t h G / h r Btu/hr

Q i Rate of hea t l o s s from tank t o i t h

ad jacen t block W l h r Btulhr

Qtank Rate a t which energy i s removed t o supply

t h e Inad W l h r Btu/hr

Th ~ A ~ e r a t u r e of f l u i d from 'heat source ' O C OF

Ti Temperature of i t h ad jacen t block of e a r t h "C OF

T~ Temperature of f l u i d re tu rn ing from load O C OF

T t k Tank temperature C OF

Page 13: MASTER - University of North Texas

V Tank Volume . . m 3 3

f t .

~ n t e r n a l energy change of tank kJ Btu

A t TRNSYS s imulat ion t i m e s t e p . . , . h r h r

f ' Tank f l u i d d e n s i t y kg /m3 l b / f t 3

B. Approach

The bur ied t a n k model .is intended t o be i n t e g r a t e d . i n t o t h e TRNSYS program.

Subrout ine TYPE^^ ,". th.e, bur ied t ank subrout i n e , i s designed t o .appear t o TRNSYS

e x a c t l y l i k e a, fully-mixed tank, t h a t is , a TYPE4 tank wi th one DERIVATIVE.

The d i f f e r e n c e l i e s i n t h e f a c t that i n TYPE?? t h ~ heac loooca f r o ~ u Llle ~ ; i l ~ k

a r e c a l c u l a t e d on. t h e b a s i s of t h e h e a t t r a n s f e r t o t h e ad jacen t b locks of ..

e a r t h i n t h e GRDCS model. The r a t e of h e a t l a s s t o each ad jacen t b lock I s

given by

The n e t r a t e of heat l o s s t o a l l ad jacen t b locks is then

where n i s t h e number of b locks ad jacen t t o t h e tank.

C. TRNSYS Component Configuration

PARAMETER NO. DESCRIPTION 1

1 V - Tank volume

2 C - s p e c i f i c h e a t of tank f l u i d P f

3 f

- f l , u i d d e n s i t y

4 Block number of f i r s t ad jacen t block of e a r t h l a GROCS

5 A1 - h e a t t r a n s f e r a r e a t o f i r s t ad jacen t block

6 hl - d i s t a n c e from tank t o cen te r of fi.r.st a d j a ~ u n t bloclc

7, 8, 9 Same a s 4 , 5 , 6 f o r second ad jacen t block

Addi t ional s e t s of 3 parameters f o r each ad jacen t block, up t o 10 blocks.

INPUT No . UESCRIPTPON

1 Th - temperature of f l u i d from h e a t source

2 % - mass flow r a t e from heat source

Page 14: MASTER - University of North Texas

OUTPUT NO.

1

TL - temperature of f l u i d r e t u r n i n g from load

5 - mass f low r a t e from t h e load

DESCRIPTION

Temperature of f l u i d t o hea t source (= Ttk f o r mixed t ank)

$ - mass flow r a t e t o h e a t .., source .. . . , . .

.Temperature of f l u i d t o b a d (= Ttk f o r mixed tank)

- mass f low r a t e t o load

Q m v - r a t e of? energy l o s s t o t h e ground

Qtank - r a t e a t which energy is removed t o supply t h e load

AE - i n t e r n a l energy change of t h e ' t a n k

Q I A t - energy t r a n s f e r r e d t o f i r s t ' adjacent block of e a r t h i n GROCS model

Q i A t - energy t r a n s f e r r e d t o i t h a d j a c e n t block

DERIVATIVE NO. . DESCRIPTION

1 Ttk - t ank temperature

D. Program Flow

A flow c h a r t f o r subrou t ine TYPE33 is given in F igure 2 . The subrou t ine

f i r s t checks f o r consis tency of t h e numbers of INPUTS, PARAMETERS, OUTPUTS,

and DERIVATIVES with those requ i red by t h e subrou t ine . It then asks whether

t h i s i s t h e f i r s t c a l l of t h e subrou t ine f o r t h e c u r r e n t TRNSYS s imulat ion run

(MODE = -1). I f it i s , GROCS is c a l l e d immediately t o read i n t h e d a t a needed

by GROCS t o desc r ibe t h e ground model, and then c o n t r o l i s re turned t o t h e

c a l l i n g subrout ine EXEC in TRNSYS. ' .

I f i t is a l a t e r c a l l than t h e f i r s t , t h e program t a k e s t h e va lues of t h e

INPUTS and PARAMETERS from t h e X I N and PAR a r r a y s and g ives them ind iv idua l

v a r i a b l e names. It then c a l c u l a t e s der ived q u a n t i t i e s : t h e t o t a l heat capac i ty

of t h e tank, t h e hea t c a p a c i t y f low r a t e t o t h e hea t source and t h e l o a d , and

t h e r a t e of heat withdrawal from t h e tank t o s e r v i c e t h e load .

Next t h e h e a t l u s s e s t o t h c ad jacan t b ln rks of e a r t h a r e c a l c u l a t e d , and

added t o ob ta in t h e n e t heat l o s s from t h e tank t o t h e ground. The rate of

change of .tank temperature is c a l c u l a t e d nex t . Th i s w i l l be used by TRNSYS

t o c a l c u l a t e t h e new tank temperature a t t h e end of t h e t imestep, when a l l i t e r -

a t i o n s have been completed. The change in i n t e r n a l energy of t h e t ank from

Page 15: MASTER - University of North Texas

DATA CONSISTENCY

CHECKS

CALCULATE QUANTITIES DERIVCD FROM INPUTS

AND PARAMETERS FROM ARRAYS

CALCULATE HEAT LnSS RATFS t Q BLOCK6 ' ADJACENT TO TANK

CALCULATE RATE OF CHANGE OF TANK

TEMPERATURE

PLACE OUTPUTS IN

CALCULATE HEAT TRANSFERRED TO

ADJACENT BLOCKS AND PLACE IN OUTPUT ARRAY

t YES

IN -RROl.lNU H t A l FLOW

RETURN c3 Flgiire 2. Flow chart for buried tank subroutine '

Page 16: MASTER - University of North Texas

t h e beginning of t h e s imulat ion is c a l c u l a t e d nex t . :.The output v a r i a b l e s a r e

now placed i n t h e output a r r a y .

I f t h e c u r r e n t c a l l t o TYPE33 i s n o t t h e i a i t c a l l of t h e c u r r e n t t imestep,

c o n t r o l i e re tu rned t o EXEC. I f it is (MODE = 2) , then t h e v a l u e s of h e a t

t r a n s f e r r e d t o t h e ad jacen t blocks of e a r t h a r e added, t o t h e a r r a y Q I N , which

is i n COMMON wi th GROCS ,, and then GROCS is c a l l e d t o c a l c u l a t e t h e hea t f lows

among a l l t h e blocks of e a r t h , given t h e thermal i n p u t s from t h e t ank a s c a l - I

cu la ted above. Control i s then re tu rned t o EXEC.

DETAILED DESCRIPTION OF BURIED PIPE MODEL

A. Nomenclature

Symbol D e f i n i t i o n Uni t s S1 - Engl ish

*i Area of i t h ad jacen t block of e a r t h in

t h e GROCS model m 2 f t 2

B1, B Constants used in 'determination of p ipe f l u i d temperature change - -

C Spec i f i c h e a t of p ipe f l u i d k~/kg-OC Btullb-OF P f

hi . Distance from p ipe f i e l d plane t o cen te r

of i t h ad jacen t block m f t

k Thermal conduc t iv i ty of t h e ground kJ/hr-m-OC Btu/hr-ft-OF

L Length of each p ipe i n a p lace p a r a l l e l a r r a y m

. . . . i. Mass ' f low ' r a t e through p ipes ' 'kglhr l b / h r , .. . - . , . . 4 , ' Rate of heat t r a n s f e r from pipe f i e l d t o

: a p a i r of ad jacen t blocks k.J/hr Btu/hr

6, '

' Rate of 'heat t r a n s f e r from 'p ipe f i e l d t o i t h adjace~it block , k J / h r Btu/hr

R , Radius . of p ipe m f t

R* Thermal r e s i s t a n c e of a half-block "C-hr/kJ OF-hr/Btu

s Separat ipn between ad jacen t p ipes m f t

TE Pipe f l u i d temperature af t e r passing between a p a i r of ad jacen t blocks O C OF

Ti Temperature of i t h ad jacen t block O C OF

Tin I n l e t temperature t o p ipe f i e l d O C OF

To Pipe f l u i d temperature be fore passing between a p a i r of ad jacen t blocks "C OF

Tout Out le t temperature from ' 'pipe f i e l d O C F

Page 17: MASTER - University of North Texas

- . Yi . Length,of a . p a i r of ad jacen t blocks i n '

' the d i r e c t i o n of f low m f t

A t TRNSYS s imula t ion t imestep h r h r

r\ Correct ion f a c t o r t o h e a t t r a n s f e r area from p ipe f i e l d t o ad jacen t b locks -

B. Approach

The major approximation made i n t h e TYPE32 bur ied p ipe model i s the ' sub'- '

s t i t u t i o n of a f lowing plane s h e e t of f l u i d f o r t h e bur ied p ipe f i e l d (Figure

3 ) . This approximation was introduced above. The method f o r c o r r e c t i n g t h e

model to t a k e i n t o account t h e p ipe r a d i u s and spacing i s considered i n more

d e t a i l below. The incorpora t ion of t h e £.lowing s h e e t approximation i n t o t h e

model' i s now discussed .. C. Flowing Sheet Approximation

A c r o s s s e c t i o n of the geometry o f t h i s approximation i s shown -irk Figure 4 .

For s i m p l i c i t y , on ly two ad jacen t blocks of e a r t h are shown, al though t h c model

w i l l a l s o accommodate m u l t i p l e p a i r s of ad jacen t blocks. The ad jacen t blocks

. . m u s t be set up i n p a i r s , one on each s i d e of t h e flowing s h e e t , and both mem-

b e r s of a pair must have t h e same leng th YE i n t h e d i r e c t i o n of flow. Di f fe r -

e n t p a i r s may have d i f f e r e n t l eng ths , a s long a s both members of each p a i r are

d i r e c t l y oppos i t e one another and have t h e same length .

ADJACENT BLOCKS

J' 0 F

EARTH

1 FLOWING SHEET

OF FLUID

Figure 4. , Geometry of flowing sheet approximation

Page 18: MASTER - University of North Texas

. . . . .

Knowing t h e temperature T6 a t t h e beginning of t h e f low and . the mass f low

r a t e (which a r e INPUTS t o TpE32)., the.. d i s t a n c e s hl and h and t h e h e a t t r a n s - 2

f e r a r e a A (which a r e PARAMETERS), and t h e block temperatures T and T2 (which 1

a r e obtained from GROCS), one can c a l c u l a t e t h e p ipe f l u i d temperature T E a f t e r t h e f l u i d h a s passed by t h e p a i r of e a r t h blocks , and t h e r a t e s of h e a t

f low i n t o (or from) t h e ad jacen t blocks. A f i r s t - o r d e r assumption is made, . . .

. . . .. . . IT^ - TEl << max(lTo - T ~ I , I T ~ - ~ ~ 1 ) . (3

t h a t is, t h e temperature change of t h e f l u i d is small compared wi th t h e temper-

a t u r e d i f f e r e n c e between t h e f l u i d and t h e ad jacen t blocks. I f t h i s i s so ,

then t h e r a t e of h e a t l o s s from t h e f l u i d is given by

I L

This rate of h e a t l o s s must be accounted f o r by t h e temperature drop i n t h e

f l u i d i t s e l f :

6 = c (T - TE) . pf 0

Equating t h e t w o express ion f o r 4, and def in ing t h e dimensionl&ss c o n s t a n t s B1

and B2:

kA,

one o b t a i n s

T E = To + B1(T1 - To) + R2(T2 - T o ) . (8)

From t h i s express ion t h e h e a t f low r a t e s t o . t h e ad jacen t blocks can now be

ca lcu la ted from Eq. (4) .

I f a second p a i r of adjacent blocks is used, then t h e v a l u e of TE obtained

from t h e f i r s t c a l c u l a t i o n is used a s t h e i n i t i a l temperature T f o r t h e sec- 0

ond. The f i n a l temperature T from t h e l a s t p a i r of blocks i s t h e o u t l e t tem- E

perature from t h e p ipe f i e l d as a whole.

D. Correct ion f o r t h e Difference Between a Flowing Sheet and an Array of P ipes

The approach t o making t h i s c o r r e c t i o n is t o consider t h e thermal resis-

tance of a half-block of e a r t h wi th a cons tan t temperature boundary on one

Page 19: MASTER - University of North Texas

s i d e and a planar a r r a y of p ipes on t h e o t h e r . This r e s i s t a n c e i s compared

wi th t h a t f o r t h e same haif-block of e a r t h wi th t h e same constant-temperature

boundary, b u t now with t h e s h e e t of f l u i d on t h e o ther s i d e i n p l a c e of t h e

p i p e a r r a y . I n genera l , t h e r e s i s t a n c e i n t h e c a s e of t h e plane shee t is t h e

lesser of t h e two. To c o r r e c t f o r t h e d i f f e r e n c e , t h e h e a t t r a n s f e r a r e a from

t h e shee t t o t h e ad jacen t block is reduced by a f a c t o r equal t o t h e r a t i o of

t h e s e r e s i s t a n c e s , so t h a t t h e r e s i s t a n c e f o r t h e flowing shee t case , wi th t h e

reduced h e a t t r a n s f e r area, is t h e same a s f o r t h e a c t u a l p ipe a r r a y .

So lu t ions f o r t h e r e s i s t a n c e of e a r t h around a row of p ipes have been

foundlo f o r two cases of inrerLst. I n ;he f i r s t case , t h e p ipes a r e embedded

in a semi- in f in i t e mass a f i n i t e d i s t a n c e from a cons tan t temperature plane

tiru~lclary (Figure 5) . The thermal r e s i s t a n c e 'in t h i s c a s e , f o r a s i n g l e p ipe ,

i s given by

R* = 1 2rLk ,,I$ .in. (2")] hwere k i s t h e therma1,conduct ivi ty of. t h e s o i l , L is t h e l eng th of t h e p ipes ,

R i s t h e pipe' rad ius , s i s t h e pipe separa t ion , and h is t h e d i s t a n c e from t h e

p ipe f i e l d plane t o t h e constant-temperature boundary. . .

Figure 5. Pipe field embedded in semi- Figure 6. Pipe field embedded infinite mass between two boundaries

I n t h e second case , t h e pipes a r e embedded i n a s l a b of e a r t h , e q u i d i s t a n t

from t h e two plane boundaries both at t h e samc temperature (Figure 6 ) . I n t h i s

' c a s e , t h e thermal r e s i s t a n c e f o r a s i n g l e p ipe i s given by

For our a p p l i c a t i o n , t h e f i r s t s o l u t i o n would be appropr ia te i f t h e temperature

of one ad jacen t block of e a r t h i n theGROCS model were equal t o t h a t of t h e p ipe

f i e l d and t h a t of t h e o ther were d i f f e r e n t . The second s o l u t i o n would b e ap-

p r o p r i a t e i f t h e temperatures of both ad jacen t blocks were equal t o each o ther

but d i f f e r e n t from t h a t of t h e pipe f i e l d . A s o l u t i o n in which t h e 'tempera-

t u r e s of t h e ad jacen t blocks may vary independently would be d e s i r a b l e , bu t i n

- 12 -

Page 20: MASTER - University of North Texas

most s o l u t i o n s t h e average temperatures of t h e two ad jacen t blocks a r e n o t

very d i f f e r e n t , and t h e r e f o r e use of t h e second s o l u t i o n i s recommended.

Since t h e s imulat ion model treats t h e two ad jacen t b locks independently,

w e . t r e a t t h e problem a s one of two r e s i s t a n c e s i n p a r a l l e l , each twice a s g r e a t

a s t h a t given i n Eq. (10):

R* = - En [$ s i n h (%)I . aLk

This r e s i s t a n c e is t o be compared with t h a t of a rec tangu la r s l a b of th ick- . , .

ness h,.. a r e a sL, and conduc t iv i ty k:

The f a c t o r 0 by which t h e h e a t t r a n s f e r a r e a between t h e plane shee t of

f l u i d and t h e ad jacen t blocks must be reduced is then t h e r a t i o of t h e r i g h t -

hand s i d e s of Eqs. (12) and (11) :

Note once again t h a t h is t h e half-width, n o t t h e f u l l width, of an adjacent I

block. E. Two-Way Flow in t h e Pipe F ie ld

Cer ta in a p p l i c a t i o n s , such a s a ground-coupled h e a t pump without s o l a r in-

put , may involve flow of t h e f l u i d wi th in t h e p ipe f i e l d i n one d i r e c t i o n only.

For o ther a p p l i c a t i o n s , such a s t h e depos i t ing of s o l a r h e a t o r a i r -cond i t ion ing

r e j e c t h e a t i n t h e ground, it may be d e s i r a b l e f o r t h e f l u i d t o f low i n one d i -

r e c t i o n a t some times and i n t h e o ther d i r e c t i o n a t o ther times. I n t h i s c a s e

i t is necessray t o s e t up two UNITS, each of which i s TYPE32. The second UNIT

would have t h e same s e t of ad jacen t blocks a s t h e f i r s t but i n r e v e r s e o rder .

The o ther components of t h e s imulat ion a r e then set: up t u c a l l whiehcvcr of

t h e TYPE32 components r e s u l t s in t h e appropr ia te d i r e c t i o n of flow.

F. TRNSYS Component Configuration

PARAMETER NO. DESCRIPTION

1 C - s p e c i f i c heat of f l u i d i n pipes P f

2 Rlnck number of f i r s t adjacent block of e a r t h i n GROCS

3 Y1 - Length of f i r s t adjacent block

4 A1 - Heat t r ans f e r a r e a from p ipe f i e l d t o f i r s t ad jacen t block

5 hl - Distance from p i p e f i e l d p l a n e t o cen te r of f i r s t ad jacen t block

6-9 Same as 2-5 f o r second ad jacen t block

Page 21: MASTER - University of North Texas

Addi t iona l sets of 4 parameters f o r each ad jacen t block, up t o 1 0 blocks.

INPUT NO. DESCRIPTION

1 T i n

- i n l e t temperature t o p ipe f i e l d

2 $ - mass flow r a t e of f l u i d through pipes . . OUTPUT NO. . . DESCRIPTION ' .

- o u t l e t temperature from p ipe f i e l d . Tout

2 $ - mass f low r a t e

3 4 1 ~ t - energy t r a n s f e r r e d t o f i r s t ad jacen t block of e a r t h i n GROCS model .

2 + i Q i A t - energy t r a n s f e r r e d t o i t h ad jacen t block

DERIVATIVE NO. DESCRIPTION

1 A dummy d e r i v a t i v e which is not used in t h e program and which c a ~ have any i n i t l a 1 value. ~ t s presence is required tu cause 'EXEC t o c a l l TYPE32 i n MODE2 a t t h e end of t h e t imestep. Only subrou t ines having DERIVATIVES a r e c a l l e d i n MODEZ.

G. Program Flow

A' f low c h a r t f o r subrou t ine TYPE32 is given in Figure 7. The subrout. ine-.

f i r s t checks f o r consis tency of t h e numbers of INPUTS, PARAMETERS, OUTPUTS, .. r.,

and DERIVATIVES wi th those requ i red by t h e subrout ine . It then asks whether ':

t h i s i s t h e f i r s t c a l l of t h e subrout ine f o r t h e c u r r e n t TRNSYS s imulat ion run

(MODE = -1). I f i t is, GROCS i s c a l l e d immediately t o read i n t h e d a t a needed

by GROCS t o d e s c r i b e t h e ground model, and then c o n t r o l is re tu rned t o EXEC.

I f i t is a l a t e r c a l l than t h e f i r s t , t h e program takes t h e va lues of t h e

INPUTS and PARAMETERS from t h e X I N and PAR a r r a y s and g ives them ind iv idua l

v a r i a b l e names. Up t o t h i s po in t t h e flow c h a r t f o r TYPE32 is t h e same a s t h a t

f o r TYPE33.

The program now checks that both adjarent hlocks of each p a i r f a c i n g each

o t h e r have t h e same l e n g t h i n t h e d i rec t ion a€ fl.nw. Tf nnt, an e r r o r condi-

t i o n i s s igna led and execution terminates . I f t h i s test is passed, t h e program

a s k s whether t h e inpu t mass flow r a t e is zero . I f i t is, t h e h e a t f low r a t e s

t o a l l a d j a c e n t blocks a r e s e t equa l t o zero. The o u t l e t temperature i s set

equa l t o t h e average temperature of t h e ad jacen t blocks. This is important.

I f t h e o u t l e t temperature i s set equal t o t h e i n l e t temperature under these

cond i t ions , i n c o r r e c t c o n t r o l of t h e a c t i v e components of t h e system can re-

s u l t i n t h e s e s imulat ions .

Page 22: MASTER - University of North Texas

DATA YES CALL GROCS L r CONSISTENCY TO READ IN

CHECKS DATA

I

GET INPUTS, PARAMETERS

FROM ARRAYS

FLOW RATE CALCULATE HEAT FLOW RATES TO

I HEAT FLOW RATES I CALCULATE OUTLET

OUTLET TEMPERATURE EQUALS AVERAGE

GROUND TEMPERATURE

CALCULATE HEAT TRANSFERRED TO

ADJACENT BLOCKS AND PLACE IN

OUTPUT ARRAY

TIMESTEP IN-GROUND HEAT FLOW

Figure 7. Flow chart for buried pipe subroutine

Page 23: MASTER - University of North Texas

I f t he i n l e t mass flow r a t e is nonzero, then the o u t l e t temperature and

t h e heat flows t o t h e adjacent blocks a r e calculated i n t h e manner discussed

above.

I f the cur ren t c a l l t o TYPE32 is not t he l a s t c a l l of the cur ren t timestep,

con t ro l i s returned t o EXEC. I f i t is (MODE = 2 ) , then the values of heat

t ransfer red t o the adjacent blocks of e a r t h a r e added t o the a r ray QIN, which

is i n COMMON 'kith GROCS, and then GROCS i s , . c a l l e d t o ca l cu la t e thh heat flows

among' a l l the blocks of ear th , given the thermal inputs from the tank a s ca l -

culated above. cont ro l is then returned t o EXEC. .

A dera i led descr ipt ion of tRe theory and implementation of t he GROCS pro- 7

gram has been given and w i l l no t be repeated here. Certain modif i c a t i s n s t o

the program were necessary i n order t o i n t eg ra t e it i n t o TRNSYS, and these a r e

now described. A flow cha r t showing t h e modifications i s given i n Figure 8.

It is des i rab le t o s t r u c t u r e the GROCS program so that more than one TYPE32

or TYPE33 subroutine could be included i n t he simulation. This may be needed

t o accommodate two-way flow i n the buried pipe f i e l d , a s discussed above.

Tank-coil combinations may a l s o be of i n t e r e s t . On t h e f i r s t c a l l t o each

TYPE32 o r TYPE33 u n i t , GROCS is ca l led t o read in t h e da t a def ining the blocks

of e a r t h i n t h e model. Even though there may be more than one ground-coupled

component, these da t a should be read i n only once. Similar ly, a t t he end of

each timestep, each TYPE32 o r TYPE33 u n i t ca l cu la t e s t he heat t ransfer red t o

t h e adjacent blocks and then c a l l s GROCS t o perform t h e heat flow computations

between blocks. Again, t h i s heat flow computation should be done only once

per timestep.

Accordingly, a va r i ab l e JFLAG i s used t o count t he number of TYPE32 o r

TYPE33 components i n t h e simulation, and a sernnd variabla LCALL counts t he

number of times GROCS has been ca l l ed a t t h e end of each .timestep. These two

varfables are i n i t i a l l y s e t . equa1 t o zero. Each time GROCS is ca l led on the

infrial pass through the component subroutines (MODE = - I ) , JFLAG is increased

by one. Data a r e read i n only on the f i r s t c a l l , where JFLAG = 1. On fu r the r

c a l l s t o GROCS i n MODE = -1, JFLAG becomes grea te r than one, and data a r e no t .

read in again. The value of JFLAG a t t h e end of t h i s f i r s t pass is equal t o

t he number of TYPE32 o r TYPE33 components. MODE is now increased t o 0 (and

subsequently can take on values of 1 and 2 ) , so t h a t no fu r the r incrementing

of JFLAG takes place.

Page 24: MASTER - University of North Texas

ENTER a JFLAG, LCALL SET TO ZERO INITIALLY

RETURN

RETURN

RETURN

LCAL L r; HEAT FLOWS

RETURN

F i g u r e 8. Flow c h a r t showing m o d i f i c a t i o n s t o ground;coupling s u b r o u t i n e GROCS

Page 25: MASTER - University of North Texas

The on ly f u r t h e r c a l l s t o GROCS t a k e p l a c e i n MODE = 2, a t t h e end of a

t imestep. Here it ' i s d e s i r e d t o le t a l l of t h e TYPE32 and TYPE33 components

add t h e i r heat i n p u t s t o t h e i r r e s p e c t i v e ad jacen t b locks , and then le t GROCS

c a l c u l a t e t h e mutual h e a t f lows in t h e ground only once f o r t h a t t imestep. On

each cal l t o GROCS, LCALL is inc reased by one. As long' a s LCALL remains l e s s

than JFLAG, t h e r e a r e s t i l l a d d i t i o n a l TYPE32 o r TYPE33 subrou t ines which have

y e t t o add t h e i r h e a t i n p u t s t o t h e ground. When LCALL equals. JFLAG, a l l t h e s e

subrou t ines have been accounted f o r , and GROCS may now do t h e hea t f low c a l c u l a -

t i o n s . F i r s t , however, LCALL i s r e i n i t i a l i z e d t o ze ro t o start t h e count f o r

t h c nex t t imestep. . .. : . , . , ' . . . .

DATA. SET FOR A CROUNDJ~,COUPLED SIMULATION

The d a t a required bj Lllt: TYPE52 "and T ~ ~ l i . 3 3 s ~ i hrrzi.lt ines in TRNSYS have been

descr ibed above. The d a t a requ i red by GROCS a r e descr ibed here . The GROCS d a t a

c a r d s fo l low t h e TRNSYS s imula t ion c a r d s , i n t h e following order :

TRNSYS c u n t r o l ca rds

SIMULATION card

Opt ional c o n t r o l c a r d s

UNIT-TYPE cards

and assoc ia ted

PARAMETERS,

INPUTS, and

DERIVATIVE3 cdrds

END card

GROCS c o n t r o l c a r d s

GROCS c a r d , .

NDEPS c a r d

DEPTHS card

TABLE c a r d s

START 1ICkI.E card

CONDUCTlVlTY card

NUMBER OF BLOCKS card

FREE BLOCKS c a r d s

RIGGED BLOCKS card^

NUMBER OF INTERFACES card

HEAT TRANSFER c a r d s

PRINT INTERVAL card

Page 26: MASTER - University of North Texas

.CARD ( S)

GROCS

NDEPS

DEPTHS

TABLE

START TIME

CONDUCTIVITY

NUMBER OF BLOCKS

RIGGED FLOCKS.

NUMBER OF INTERFACES

HEAT TRANSFER

DESCRIPTION :. FORMAT

The £ i v e l e t t e r s GROCS i n columns 1-5. A5

The number of depths i n t h e t a b l e s used t o repre- I10 s e n t f ar-f i e l d (undisturbed ground) temperatures . Up t o 8 depths may be used, i n order beginning wi th t h e shal lowest .

The depths f o r which f a r -f i e l d temperatures a r e 8F10.2 given.

Twelve ca rds , one f o r each month. The monthly - - " 8 ~ 1 0 ; 2 average temperature of undisturbed ground is required f o r each of t h e depths given on t h e DEPTHS card, i n o rder of depth beginning wi th t h e shal lowest . These temperatures a r e used t o c a l c u l a t e t h e . r igged block temperatures a t a l l t imes and t h e f 'ree block temperatures a t t h e i n i t i a l time.

The i n i t i a l hour and month of t h e s imulat ion. F10.2, The hour i s measured from t h e beginning of t h e I10 month.

The thermal conduc t iv i ty of t h e ground. F10.2,

The number of f r e e blocks , and t h e number of 2110 rigged blocks.

One ca rd f o r each f r e e block, conta ining: 110, (1) The' block number ' 4F10.2 (2) The i n i t i a l block temperature (3) The depth of t h e c e n t e r of t h e block (4) The volume of t h e block (5) The volume h e a t capac i ty pCp of t h e block

Note: I f t h e i n i t i a l block temperature is s e t equal t o zero , t h e TABLE of undisturbed ground temperatures w i l l be used t o f i n d an i n i t i a l value .

One card for each r igged block conta ining: (1) The block number (2) The depth of t h e cen te r of t h e block

Note: The sequence of block numbers begins wi th 1 f o r both f r e e and r igged blocks.

The number' of hea t t r a n s f e r su r faces between p a i r s of blocks. This includes free-block- to-free-block and f ree-block-to-r igged-block i n t e r f a c e s .

One card f o r each h e a t t r a n s f e r i n t e r f a c e be- tween blocks conta ining:

(1) The block number of t h e f i r s t block (2) The block number of t h e second block

Page 27: MASTER - University of North Texas

Note: The block number f o r a r igged block must have added t o i t t h e number of f r e e blocks . Thus, i f t h e r e a r e 18 f r e e blocks , r igged block number 1 becomes block 19 on t h i s card.

(3) H e a t t r a n s f e r a r e a between t h e i n t e r - f a c i n g blocks

(4) Center-to-center d i s t a n c e between t h e i n t e r f a c i n g blocks

PRINT INTERVAL The t ime i n t e r v a l i n hours between success ive F10.2 p r i n t o u t s from GROCS. A t each such i n t e r v a l , GROCS p r i n t s t h e heading, "THIS I S GROCS SPI3AKINGy1' t o d i f f e r e n t i a t e t h i s output from f hat generated hy TRNSYS , f crllowed by :

(1) The hour, month, and year of t h e simu- l a t ion

(2) The temperature o f each of t h e blocks (3) The n e t heat inpu t t o each f r e e block

from ground c o i l s and t anks (4) The Lutal n e t h e a t input t o a l l f r e e

hlocks

'REFERENCES

1 1. Metz, P. D., Experimental r e s u l t s from t h e s o l a r ground-coupling research f a c i l i t y a t Brookhaven Nat ional Laboratory, i n Proc. 1979 I n t . So la r Energy Soc. Congr:, At lan ta , May 1979, Pergamon Press , t o be published.

2. Bose, J. E. e t a l . , F i e l d t e s t r e s u l t s of s o l a r a s s i s t e d h e a t pumps us ing e a r t h c o i l coupling and s t o r a g e , I b i d .

3 . , Esbeaseu, T. V. and Mj-hhonen, M., A low energy house in Sweden heated by a s o l a r energy system with h e a t pump, I b i d .

4. Metz, P. D . , Design, cons t ruc t ion , and operat ion of t h e s o l a r a s s i s t e d h e a t pump ground-coupled s t o r a g e experiments a t Brookhaven Nati.nna1. Toah- o r a t o r y , presented a t 4 t h Annu. Heat Pump Technol. Conf., Oklahoma S t a t e U., S t i l l w a t e r , A p r i l 1979.

5. Ja rd ine , D. M., Phase I1 Phoenix/City of Colorado Spr ings s o l a r a s s i s t e d h e a t pump p r o j e c t , i n Proc. 3rd Annu. Solar Heating and-cool ing R&D Branch Cont rac to rs ' Meet., Sept; 1978, U.S. DOE CONF-780983, p. 241, 1979.

6. Nicho l l s , R. L. Comparisons of deep wel l and i n s u l a t e d shallow e a r t h s t o r - a g e of s o l a r h e a t , S o l a r Energy - 20, 127 (1978).

7. Merz, P. D . , A s imple computer program t o model three-dimensional under- ground h e a t f low with r e a l i s t i c boundary r .nnd i t ions , Brookhaven Nat ional Laboratory r e p o r t in prepara t ion .

8 . Andrews, J. W. and Metz, P. D . , Computer s imulat ion of ground-coupled s t o r a g e i n a s e r i e s s o l a r a s s i s t e d hea t pump system, i n Proc. 1979 I n t . So la r Enerpy Soc. Congr., At lan ta , May 1979.

Page 28: MASTER - University of North Texas

9. Klein, S. A. et a l . , TRNSYS, a Transient Simulation Program, U . of Wisconsin- Madison, 1976.

10. Kutateladze, S. S . , Fundamentals of Heat Transfer, p . 93; Academic Press, New York, 1963.