36
Analysis of flicker noise degradation mechanism in ultra-thin oxide CMOS Student: H. C. Chang Advisor: Tahui Wang National Chiao Tung University Institute of electronics EVDTL

Master Final Defense Presentation

Embed Size (px)

Citation preview

Page 1: Master Final Defense Presentation

Analysis of flicker noise degradation mechanism in ultra-thin oxide CMOS

Student: H. C. ChangAdvisor: Tahui Wang

National Chiao Tung University

Institute of electronics

EVDTL

Page 2: Master Final Defense Presentation

Outline

1.Introduction

2.Flicker Noise Unified Model

3.Stress-enhanced Flicker Noise degradation

4.Dominant 1/f noise degradation mechanisms

5.Oxide Soft Breakdown Effects on 1/f noise

6.Summary

Page 3: Master Final Defense Presentation

Motivation

To develop an accurate, physics-based flicker noise

model

Using the drain current flicker noise to monitor the

Si-SiO2 interface quality

• Stress effect

• Ultra thin oxide MOSFETs

Page 4: Master Final Defense Presentation

In this thesis

Introduction to Unified 1/f noise theory

Developing a two-region model based on the unified

noise theory

Using the two models in stress-enhanced 1/f noise

degradation

Using the two models to distinguish between number

and mobility fluctuation

Using the two models to explain the SBD effect on 1/

f noise

Page 5: Master Final Defense Presentation

Flicker Noise Unified Model

xeff qNEWIdI

µ=

NtNtNt

N

NII eff

effdd ∆

±∆∆

∆= δ

δδµ

µδδδ 11

),(1

),(22

fxSNxW

IfxS Nteff

dId ∆∆

±

∆= αµ

I-V model:

( ) ( ) ( ) ( )( )

dzdydEzyxE

zyxEfxfzyxENfxS ttt

E

E

W t

Nt

c

v

ox

220 0 ,,,1

,,,1,,,4,

τωτ

+−∆= ∫ ∫ ∫∆

Page 6: Master Final Defense Presentation

Flicker Noise Unified Model

)(1

)(22

fntd

Id ENNfWL

kTIfS

+= αµ

γ

)()1()( 22

2

fnT

OX

Vg ENNfWLC

kTqfS αµ

γ+=

Drain current noise power:

Input referred noise power:

Page 7: Master Final Defense Presentation

Stress-enhanced Flicker Noise degradation

NMOS

ONO Cell

Two-region model

Page 8: Master Final Defense Presentation

NMOS:Max Ib Stress

-0.5 0.0 0.5 1.0 1.5 2.010

-13

10-11

10-9

10-7

10-5

10-3

10-1

NMOS, tOX=33A, Vt=0.1VW/L=10µm/0.18µmCharacterization VD=0.1VMaximum IB stress:VD=3V, VG=1.59V

I D (

A)

VG (V)

fresh t=3000s

102 103 104 105

10-14

10-13

10-12

10-11

NMOS, tOX=33A, Vt=0.1VW/L=10µm/0.18µmV

D=0.2V,V

G=1V (Operation Region)

Maximum IB stress:

VD=3V,V

G=1.64V

SV

g (

V2 /H

z)f (Hz)

fresh t=3000s

Max Ib stress generates interface states

Interface states enhance less 1/f noise degradation

Page 9: Master Final Defense Presentation

NMOS:Max Ig Stress

0.0 0.5 1.0 1.5 2.0 2.5 3.010-12

10-10

10-8

10-6

10-4

NMOS 65A W/L=10/0.34measure @ VD=0.1V

I D(A

)

VG(V)

fresh Max IG stress ∆Vt=0.3V

102

103

104

105

10-14

10-13

10-12

10-11

10-10

S

Vg (V

2 /Hz)

NMOS 65A W/L=10/0.34measure @ V

G=1V V

D=0.1V

fresh Max IG stress ∆Vt=0.3V

f(Hz)

Max Ig stress generates local oxide charges & traps

Either Local charges or traps enhance serious 1/f noise degradation

Page 10: Master Final Defense Presentation

NMOS:FN Stress

0 1 2 310-14

10-12

10-10

10-8

10-6

10-4

NMOS 65A W/L=10/0.34measure @ VG=1V VD=0.1V

I D(A

)

VG(V)

fresh FN stress ∆V

t=0.3v

102 103 104 10510-14

10-13

10-12

10-11

NMOS 65A W/L=10/0.34measure @ VG=1V VD=0.1V

SV

g (V

2 /Hz)

f(Hz)

fresh FN stress ∆Vt=0.3V

FN stress generates uniform oxide charges & traps

Uniform charges or traps enhance less 1/f noise degradation

Page 11: Master Final Defense Presentation

ONO Cell:FN Program

0 1 2 3 4 5

10-12

10-10

10-8

10-6

measure @ VD=0.1v

ONO cell W/L=1/0.58

I D(A

)

VG(V)

fresh program (V

G=15V,V

D=0V)

102

103

104

105

10-14

10-13

10-12

10-11

10-10

fresh program (V

G=15V,V

D=0V)

SV

g (

V2 /H

z)

ONO cell W/L=1/0.58measure@ V

D=0.5V,V

G=3V

f(Hz)

FN program generates uniform oxide charges

Uniform oxide charges enhance less 1/f noise degradation

the oxide traps don’t induce the noise degradation

Page 12: Master Final Defense Presentation

ONO Cell:Max Ig Program

0 1 2 3 4 5

10-11

10-9

10-7

10-5

I D

(A

) ONO cell W/L=1/0.58measure @ V

D=0.1v

VG(v)

fresh program (Vd=4V,Vg=6.5V,2ms) erase (Vd=7V,Vg=-3V,2ms)

102

103

104

10510

-14

10-13

10-12

10-11

10-10

10-9

SV

g (

V2 /H

z)

ONO cell W/L=1/0.58measure @ Vd=0.2v

fresh program erase

VD=0.5V,V

G=3V

f(Hz)

Max Ig program generates local oxide charges

Oxide traps don’t contribute to the 1/f noise degradation

the flicker noise degradation is due to non-uniform oxide charge distribution

Page 13: Master Final Defense Presentation

ONO Cell:Double side Program

0 1 2 3 4 5

10-12

10-10

10-8

10-6

measure @ VG=2.5V V

D=0.2V

ONO cell W/L=1/0.58

I D

(A)

VG(V)

fresh program one side program two side

102

103

104

105

10-13

10-12

10-11

10-10

Svg

(V2 /H

z)

ONO cell W/L=1/0.58

f(Hz)

measure @ VG=2.5V V

D=0.2V

erase state Vt=1.1V program one side V

t=2.2V

program two side Vt=2.2V,V

t=1.6V

the 1/f noise of double-side program is only half of the one-side program and is much larger than that of the fresh device

Page 14: Master Final Defense Presentation

Two-region model

22

22

1

12

)( )()()(

G

fS

G

fS

G

fSVgVgstressVg

+=i

iii L

WQG

µ=

121

1

2

2 GGL

Q

L

Q >>⇒>> )()(1)( fSfS VgstressVg =⇒

)()1()( 112

11

12

2

)( fT

OX

stressVg ENNWLfC

kTqfS αµ

γ+=

)(

)(

)(

)( 1

1

)(

fnt

fnt

Vg

stressVg

EN

EN

L

L

fS

fS

VtL2 L1

Q2Q1

High Vt region dominate

Page 15: Master Final Defense Presentation

Extended to Three-region

High Vt region dominate

VtL2 L1

Q2Q1

L3

Q3

23

22

22

1

12

)( )()()()(3

G

fS

G

fS

G

fS

G

fSVgVgVgstressVg

++=

3123

3

1

1

2

2 && GGGL

Q

L

Q

L

Q >>⇒>>2

32

1

12

)( )()()(3

G

fS

G

fS

G

fSVgVgstressVg

+=

31),()(31

GGfSfS vgvg == 12

1GG =⇒

)(2

1)(

1)( fSfS VgstressVg =

Page 16: Master Final Defense Presentation

Dominant 1/f noise degradation mechanisms

NMOS

• Gate Voltage Dependence

• Channel Length Dependence

• Delta threshold shift dependence

Repeat with PMOS

Page 17: Master Final Defense Presentation

NMOS: Gate Voltage Dependence

1 2 3 4 510

-13

10-12

10-11

S

Vg (

V2 /H

z)

Fresh Max IG Stress ∆Vt=0.3V

tox

=65A W/L=10/0.5measure @ V

D=0.13v f=1kHz

VG(V)

Low gate bias: Number fluctuation dominate

High gate bias: Mobility fluctuation dominate

)()1()( 22

2

fnT

OX

Vg ENNfWLC

kTqfS αµ

γ+=

Fresh:

Max Ig stress:

)()1()( 112

11

12

2

)( fT

OX

stressVg ENNWLfC

kTqfS αµ

γ+=

Page 18: Master Final Defense Presentation

NMOS: Cross Point in VG dependence

0 1 21.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

NMOS 65A W=10µmmeasure @ f=1kHz

VG(V

)

L(µm)

Cross Point

+

+

)(

)(

1

1

)(

)( 1

2

111

1

)(

fnt

fnt

Vg

stressVg

EN

EN

N

N

L

L

fS

fS

αµµα

Page 19: Master Final Defense Presentation

NMOS: Channel Length Dependence

110

-14

10-13

L(µm)

SV

g (

V2 /H

z)

Measure @ VG=1.5V

NMOS tox

=65A W=10µm

0.3 0.5 2

Fresh Stress delta V

t=0.3V

110

-12

10-11

10-10

0.3 0.5 2

measure @ VG=5V f=1Khz

tox

=65A W=10µm

Fresh Max Ig Stress ∆V

t=0.3V

SVg

(V2 /H

z)L(µm)

Low Vg High Vg

after stress: at low gate biasL independence

at high gate bias1/L

Page 20: Master Final Defense Presentation

NMOS: V t Dependence

2.5 3.0 3.5 4.0 4.5 5.0

10-12

10-11

10-10

S

Vg (

V2 /H

z)

measure @ VD=0.5V

NMOS tox

=65A W/L=10/1

VG(V)

fresh Vt=0.8V Max I

G stress V

t=1.0V

Max IG stress Vt=1.2V Max IG stress Vt=1.4V Max I

G stress V

t=1.5V

Max IG stress Vt=1.6V Max IG stress Vt=1.8V

At low gate bias1/f noise

At high gate bias1/f noise

)( 11 fT EN

∝ ( ) 211Nµ

Page 21: Master Final Defense Presentation

PMOS: Gate Voltage Dependence

1 2 3 4 5

10-13

10-12

10-11

SV

g (

V2 /H

z)

Fresh Vt=-0.5V

Stress ∆ Vt=-0.3v

PMOS65A W/L=10/0.5measure @ VD=-0.12V

-Vg(V)

Page 22: Master Final Defense Presentation

PMOS: Channel Length Dependence

110-14

10-13

10-12

20.50.3

measure @Vg= -1.5V

UMC tox=65A W=10µm

Fresh Hot hole Stress delta Vt=0.3V

L(µm)

SVg

(V2 /H

z)

110-12

10-11

10-10

measure @Vg= -5V

tox=65A W=10µm

Fresh Hot hole Stress delta Vt=0.3V

0.3 0.5 2L(µm)

SVg

(V2 /H

z)

Low Vg High Vg

PMOS: Mobility fluctuation dominate

Page 23: Master Final Defense Presentation

PMOS: V t Dependence∆

2.0 2.5 3.0 3.5 4.0 4.5 5.010

-14

10-13

10-12

S

Vg (

V2 /H

z)

PMOS 65A W/L=10/2 measure @ Vd= -0.5V

-Vg(V)

Fresh Vt=-0.5V Stress Vt=-0.8V Stress Vt=-1.32V

PMOS1/f noise ∝ ( ) 211Nµ

Page 24: Master Final Defense Presentation

Oxide Soft Breakdown Effects on 1/f noise

Tunneling Current Effect

Comparison of SBD effect between NMOS & PMOS

SBD channel width dependence

Page 25: Master Final Defense Presentation

Tunneling current effect on NMOS

0.0 0.5 1.0 1.510

-41

10-39

10-37

10-35

10-13

10-11

10-9

10-7

10-41

10-39

10-37

10-35

10-13

10-11

10-9

10-7

Vg(65A) 4.1852.7081.230-0.247

measure @ Vd=0.25V f=1kHz

NMOS W/L=10/1

Svg(22A) Svg(33A) Svg(65A) Ig(22A) Ig(33A) Ig(65A)

2.1551.4050.655-0.095

IG (A)

Vg(33A)

Svg

*(C

ox2 )

Vg(22A)

Page 26: Master Final Defense Presentation

Tunneling current effect on PMOS

0 1 210-41

10-39

10-37

10-35

10-12

10-10

10-8

10-6

10-41

10-39

10-37

10-35

10-12

10-10

10-8

10-6

5.6622.708-0.247-Vg(22A) -Vg(65A)

measure @ Vd=-0.25V f=1kHzPMOS W/L=10/1

IG (A)

Svg

*to

x2

Svg(22A) Svg(65A) Ig(22A) Ig(65A)

the gate tunneling current doesn’t contribute to the flicker noise

Page 27: Master Final Defense Presentation

Comparison of SBD effect between NMOS & PMOS

0 1240 1280 1320

10-7

10-5

10-3

SBD

t3

t2t1

t0

PMOS

FN stress @ V

G=-4.6V

I G (

A)

time (s)0 90 180 270 360

SBD

NMOS

t3

t2

t0t

1

FN stress @ VG=4.2V

time (s)

Page 28: Master Final Defense Presentation

SBD effect on PMOS

102

103

104

105

10-14

10-13

10-12

10-11

10-10

measure @VG=-0.7V , VD=-0.1V

S vg(V

2 /Hz)

f (Hz)

t0

t1

t2

t3

0.0 0.3 0.6 0.9 1.2 1.510-13

10-11

10-9

10-7

10-5

10-3

measure @ VD=-0.1V

-ID (

A)

-VG (V)

t0

t1

t2

t3

SBD enhances local positive oxide charge in the SBD spot

rapidly increase in Vt after SBD

Page 29: Master Final Defense Presentation

SBD effect on PMOS

0.0 0.1 0.2 0.3 0.40

2

4

6

8

SBD

VT(t)-V

T(t

0) (V)

Svg(

t)/S

vg(t

=0)

@ f

=10

kHz

localized Q

ox gen.

uniform Q

ox gen.

1/f Noise arises sharply due to non-uniform charge creation

Page 30: Master Final Defense Presentation

Oxide charge distribution

Nox distributionafter SBD

LS D

G

SBD path in the gate oxide

)N , L(S : 1Region 11 tVg ∆

2Region

Page 31: Master Final Defense Presentation

SBD effect on NMOS

102 103 104 105

10-14

10-13

10-12

10-11

measure @V

D=0.7V , V

G=0.1V

S vg(V

2 /Hz)

f (Hz)

t0

t1

t2

t3

0.0 0.3 0.6 0.9 1.2 1.510

-12

10-10

10-8

10-6

10-4 measure @ VD=0.1V

I D (

A)

VG (V)

t0

t1

t2

t3

negative oxide charge creation in ultrathin gate oxide is negligible

No Vt shift

1/f noise remain the same

Page 32: Master Final Defense Presentation

SBD channel width dependence

Smaller 1/f noise degradation in a larger gate width device.

Page 33: Master Final Defense Presentation

Two-region model along the gate width

W

LS D

G

SVg1

SVg2SBD spot

22

212

12

VgmVgmVgm SgSgSg +=

21 IdIdId SSS +=

For large gate width

current bypass the SBD spot

negligible noise degradation

2VgVg SS ≈

Page 34: Master Final Defense Presentation

Summary

The local oxide charge caused by CHE stress give rise

to serious degradation of flicker noise

NMOS: low gate biasnumber fluctuation dominate

high gate biasmobility fluctuation dominate

PMOS: mobility fluctuation dominate

CHE stress enhanced 1/f noise degradation is more

serious in long channel devices

Page 35: Master Final Defense Presentation

Summary

Gate leakage current doesn’t contribute to 1/f noise

SBD effect induces larger 1/f noise degradation in

PMOS than in NMOS

SBD enhanced 1/f noise degradation is more serious

in short width devices

Page 36: Master Final Defense Presentation

Reference

J. W. Wu, H. C. Chang, and T. Wang, “Oxide soft

breakdown effects on drain current flicker noise in

ultra-thin oxide CMOS devices,” The International

Conference on Solid State Devices and Materials

(SSDM) 2002, pp. 698–699.