15
Mass spectra for qc ¯ q ¯ c, sc ¯ s¯ c, qb ¯ q ¯ b, sb ¯ s ¯ b tetraquark states with J PC =0 ++ and 2 ++ Wei Chen 1,2 , Hua-Xing Chen 3 , * Xiang Liu 4,5 , T. G. Steele 1 , and Shi-Lin Zhu 6,7,8§ 1 School of Physics, Sun Yat-Sen University, Guangzhou 510275, China 2 Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E2, Canada 3 School of Physics and Beijing Key Laboratory of Advanced Nuclear Materials and Physics, Beihang University, Beijing 100191, China 4 School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China 5 Research Center for Hadron and CSR Physics, Lanzhou University and Institute of Modern Physics of CAS, Lanzhou 730000, China 6 School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China 7 Collaborative Innovation Center of Quantum Matter, Beijing 100871, China 8 Center of High Energy Physics, Peking University, Beijing 100871, China We have studied the mass spectra of the hidden-charm/bottom qc ¯ q ¯ c, sc¯ s¯ c and qb ¯ q ¯ b, sb¯ s ¯ b tetraquark states with J PC =0 ++ and 2 ++ in the framework of QCD sum rules. We construct ten scalar and four tensor interpolating currents in a systematic way and calculate the mass spectra for these tetraquark states. The X * (3860) may be either an isoscalar tetraquark state or χc0(2P ). If the X * (3860) is a tetraquark candidate, our results prefer the 0 ++ option over the 2 ++ one. The X(4160) may be classified as either the scalar or tensor qc ¯ q ¯ c tetraquark state while the X(3915) favors a 0 ++ qc ¯ q ¯ c or sc¯ s¯ c tetraquark assignment over the tensor one. The X(4350) can not be interpreted as a sc¯ s¯ c tetraquark with either J PC =0 ++ or 2 ++ . PACS numbers: 12.39.Mk, 12.38.Lg, 14.40.Lb, 14.40.Nd Keywords: QCD sum rules, open-flavor, tetraquark I. INTRODUCTION In B factories, the two photon fusion process γγ X is used to produce C-even charmonium states. To date, the Belle Collaboration have reported three charmnomium-like states in this process. They are the Z (3930) state in the γγ D ¯ D [1], the X(3915) state in γγ ωJ/ψ process [2] and the X(4350) state in the γγ φJ/ψ process [3]. Since these three states were produced in the γγ fusion process, their possible quantum numbers can be either J PC =0 ++ or 2 ++ . In 2008, Belle analyzed the double charmonium production e + e - J/ψD *+ D *- process and found a new charmonium-like structure X(4160) with a significance of 5.1σ [4]. At present, the D *+ D *- is the only observed decay mode for the X(4160) state. If e + e - J/ψX(4160) is dominant by e + e - γ * J/ψX(4160), the C-parity of X(4160) should be positive. Very recently, Belle performed a full amplitude analysis of the double charmonium production process e + e - J/ψD ¯ D and observed a new charmonium-like structure X * (3860) with a significance of 6.5σ [5]. Using Monte Carlo simulation, Belle compared the J PC =0 ++ and 2 ++ hypotheses for the X * (3860) and found that the J PC =0 ++ hypothesis is favored, although the 2 ++ hypothesis is not excluded [5]. The masses and decay widths for the X(4160), Z (3930), X(3915), X(4350) and X * (3860) are shown in Table I. Their possible quantum numbers are also listed in the second column. According to the GI (Godfrey-Isgur) model calculations [6, 7], the Z (3930) has been assigned as the 2 3 P 2 radially excited charmonium χ 0 c2 (2P ) with J PC =2 ++ while the X(3915) as χ c0 (2P ) charmonium state with J PC =0 ++ in PDG [8]. Such an assignment was also supported by analyzing the mass spectrum of the P-wave charmonium family and open-charm strong decay of the X(3915) [9, 10]. However, the χ c0 (2P ) interpretation for X(3915) was challenged by the absence of the D ¯ D decay mode and small mass splitting between X(3915) and Z (3930) compared with that between χ c0 (2P ) and χ c2 (2P ) [11]. In Ref. [5], Belle thus suggested the X * (3860) as a better candidate for the χ c0 (2P ) charmonium state than X(3915) since its mass and decay mode are well matched with the expectations for χ c0 (2P ). This suggestion was studied in a Friedrichs- model-like scheme in Ref. [12]. Additionally, the tetraquark interpretation was also proposed to study the nature of * Electronic address: [email protected] Electronic address: [email protected] Electronic address: [email protected] § Electronic address: [email protected] arXiv:1706.09731v1 [hep-ph] 29 Jun 2017

Mass spectra for qcq c s qbq sbs tetraquark states with J ...Mass spectra for qcq c, sc sc , qbq b, sbs b tetraquark states with JPC = 0++ and 2++ Wei Chen1 ;2, Hua-Xing Chen3, Xiang

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Mass spectra for qcq c s qbq sbs tetraquark states with J ...Mass spectra for qcq c, sc sc , qbq b, sbs b tetraquark states with JPC = 0++ and 2++ Wei Chen1 ;2, Hua-Xing Chen3, Xiang

Mass spectra for qcq̄c̄, scs̄c̄, qbq̄b̄, sbs̄b̄ tetraquark states with JPC = 0++ and 2++

Wei Chen1,2, Hua-Xing Chen3,∗ Xiang Liu4,5,† T. G. Steele1,‡ and Shi-Lin Zhu6,7,8§1School of Physics, Sun Yat-Sen University, Guangzhou 510275, China

2Department of Physics and Engineering Physics,University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E2, Canada

3School of Physics and Beijing Key Laboratory of Advanced NuclearMaterials and Physics, Beihang University, Beijing 100191, China

4School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China5Research Center for Hadron and CSR Physics, Lanzhou Universityand Institute of Modern Physics of CAS, Lanzhou 730000, China

6School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China7Collaborative Innovation Center of Quantum Matter, Beijing 100871, China8Center of High Energy Physics, Peking University, Beijing 100871, China

We have studied the mass spectra of the hidden-charm/bottom qcq̄c̄, scs̄c̄ and qbq̄b̄, sbs̄b̄ tetraquarkstates with JPC = 0++ and 2++ in the framework of QCD sum rules. We construct ten scalar andfour tensor interpolating currents in a systematic way and calculate the mass spectra for thesetetraquark states. The X∗(3860) may be either an isoscalar tetraquark state or χc0(2P ). If theX∗(3860) is a tetraquark candidate, our results prefer the 0++ option over the 2++ one. TheX(4160) may be classified as either the scalar or tensor qcq̄c̄ tetraquark state while the X(3915)favors a 0++ qcq̄c̄ or scs̄c̄ tetraquark assignment over the tensor one. The X(4350) can not beinterpreted as a scs̄c̄ tetraquark with either JPC = 0++ or 2++.

PACS numbers: 12.39.Mk, 12.38.Lg, 14.40.Lb, 14.40.NdKeywords: QCD sum rules, open-flavor, tetraquark

I. INTRODUCTION

In B factories, the two photon fusion process γγ → X is used to produce C-even charmonium states. To date, theBelle Collaboration have reported three charmnomium-like states in this process. They are the Z(3930) state in theγγ → DD̄ [1], the X(3915) state in γγ → ωJ/ψ process [2] and the X(4350) state in the γγ → φJ/ψ process [3]. Sincethese three states were produced in the γγ fusion process, their possible quantum numbers can be either JPC = 0++

or 2++.In 2008, Belle analyzed the double charmonium production e+e− → J/ψD∗+D∗− process and found a new

charmonium-like structure X(4160) with a significance of 5.1σ [4]. At present, the D∗+D∗− is the only observeddecay mode for the X(4160) state. If e+e− → J/ψX(4160) is dominant by e+e− → γ∗ → J/ψX(4160), the C-parityof X(4160) should be positive. Very recently, Belle performed a full amplitude analysis of the double charmoniumproduction process e+e− → J/ψDD̄ and observed a new charmonium-like structure X∗(3860) with a significance of6.5σ [5]. Using Monte Carlo simulation, Belle compared the JPC = 0++ and 2++ hypotheses for the X∗(3860) andfound that the JPC = 0++ hypothesis is favored, although the 2++ hypothesis is not excluded [5].

The masses and decay widths for the X(4160), Z(3930), X(3915), X(4350) and X∗(3860) are shown in Table I.Their possible quantum numbers are also listed in the second column. According to the GI (Godfrey-Isgur) modelcalculations [6, 7], the Z(3930) has been assigned as the 23P2 radially excited charmonium χ′c2(2P ) with JPC = 2++

while the X(3915) as χc0(2P ) charmonium state with JPC = 0++ in PDG [8]. Such an assignment was also supportedby analyzing the mass spectrum of the P-wave charmonium family and open-charm strong decay of the X(3915) [9, 10].However, the χc0(2P ) interpretation for X(3915) was challenged by the absence of the DD̄ decay mode and smallmass splitting between X(3915) and Z(3930) compared with that between χc0(2P ) and χc2(2P ) [11]. In Ref. [5], Bellethus suggested the X∗(3860) as a better candidate for the χc0(2P ) charmonium state than X(3915) since its massand decay mode are well matched with the expectations for χc0(2P ). This suggestion was studied in a Friedrichs-model-like scheme in Ref. [12]. Additionally, the tetraquark interpretation was also proposed to study the nature of

∗Electronic address: [email protected]†Electronic address: [email protected]‡Electronic address: [email protected]§Electronic address: [email protected]

arX

iv:1

706.

0973

1v1

[he

p-ph

] 2

9 Ju

n 20

17

Page 2: Mass spectra for qcq c s qbq sbs tetraquark states with J ...Mass spectra for qcq c, sc sc , qbq b, sbs b tetraquark states with JPC = 0++ and 2++ Wei Chen1 ;2, Hua-Xing Chen3, Xiang

2

State JPC Process Mass (MeV) Width (MeV)

Z(3930) [1] 2++ γγ → DD̄ 3929± 5± 2 29± 10± 2

X(3915) [2] 0++ or 2++ γγ → ωJ/ψ 3915± 3± 2MeV 17± 10± 3

X(4350) [3] 0++ or 2++ γγ → φJ/ψ 4350.6+4.6−5.1 ± 0.7MeV 13+18

−9 ± 4

X(4160) [4] ??+ e+e− → J/ψD∗+D∗− 4156+29−25 37+27

−17

X∗(3860) [5] 0++(prefered) or 2++ e+e− → J/ψDD̄ 3862+26+40−32−13 201+154+88

−67−82

TABLE I: Experimental parameters for X(4160), Z(3930), X(3915), X(4350) and X∗(3860).

X(3915) and X∗(3860). In Ref. [13], the X(3915) was considered as the lightest 0++ csc̄s̄ tetraquark state in thediquark model. Such an interpretation was supported by the QCD sum rule calculation [14]. See also QCD sum rulestudies in Refs. [15–19]. The X∗(3860) was explained to be the scalar csc̄s̄ state in Refs. [20, 21].

Since the X(4160) was only observed in the D∗D̄∗ final states [4], its JP quantum numbers has not been determinedup to now. In Ref. [22], Chao ruled out the interpretations of the X(4160) as the ψ(4160) or D-wave charmoniumstate 21D2 with JPC = 2−+ based on NRQCD calculations and proposed the X(4160) as a candidate of the ηc(4S).However, the ηc(4S) assignment for the X(4160) was in conflict with the mass and decay width predictions for ηc(4S)state [7, 23, 24]. The X(4160) was also explained as an isoscalar D∗sD̄

∗s molecular state with JPC = 2++ within the

framework of the hidden gauge formalism in Ref. [25]. See also discussions in Refs. [26–28].In the recent reviews [29–33], one can consult the latest progress on the X(4160), X(3915), X(4350) and X∗(3860)

states. The tetraquark configuration is an interesting explanation of their underlying structure. As shown in Table I,the quantum numbers for the X(4160), X(3915), X(4350) and X∗(3860) states can be JPC = 0++ or 2++. In thispaper, we shall study the mass spectra for the qcq̄c̄, scs̄c̄, qbq̄b̄ and sbs̄b̄ tetraquark states with JPC = 0++ and 2++

in the method of QCD sum rules.This paper is organized as follows. In Sect. II, we systematically construct the qcq̄c̄ tetraquark interpolating currents

with JPC = 0++ and 2++ and introduce the QCD sum rule formalism. Then we derive the spectral densities withthe two-point correlation functions. In Sect. III, we perform the QCD sum rule analyses and extract the mass spectraof the qcq̄c̄, scs̄c̄, qbq̄b̄ and sbs̄b̄ tetraquark states. The last section is a brief discussion and summary.

II. FORMALISM OF QCD SUM RULES

To explore the charmonium-like tetraquark systems, we construct the qcq̄c̄ diquark-antidiquark operators using thefollowing diquark fields qTa Ccb, q

Ta Cγ5cb, q

Ta Cγµcb, q

Ta Cγµγ5cb, q

Ta Cσµνcb with various Lorentz structures [34–38].

Using SU(3) color symmetry, we obtain the scalar interpolating currents with quantum numbers JPC = 0++

J1 = qTa Cγ5cb(q̄aγ5Cc̄Tb + q̄bγ5Cc̄

Ta ) ,

J2 = qTa Cγµcb(q̄aγµCc̄Tb + q̄bγ

µCc̄Ta ) ,

J3 = qTa Cγ5cb(q̄aγ5Cc̄Tb − q̄bγ5Cc̄

Ta ) ,

J4 = qTa Cγµcb(q̄aγµCc̄Tb − q̄bγµCc̄Ta ) ,

J5 = qTa Ccb(q̄aCc̄Tb + q̄bCc̄

Ta ) ,

J6 = qTa Cγµγ5cb(q̄aγµγ5Cc̄

Tb + q̄bγ

µγ5Cc̄Ta ) ,

J7 = qTa Cσµνcb(q̄aσµνCc̄Tb + q̄bσ

µνCc̄Ta ) ,

J8 = qTa Ccb(q̄aCc̄Tb − q̄bCc̄Ta ) ,

J9 = qTa Cγµγ5cb(q̄aγµγ5Cc̄

Tb − q̄bγµγ5Cc̄

Ta ) ,

J10 = qTa Cσµνcb(q̄aσµνCc̄Tb − q̄bσµνCc̄Ta ) ,

(1)

and the tensor interpolating currents with quantum numbers JPC = 2++

J11µν = qTa Cγµcb(q̄aγνCc̄Tb − q̄bγνCc̄Ta ) + qTa Cγνcb(q̄aγµCc̄

Tb − q̄bγµCc̄Ta ) ,

J12µν = qTa Cγµγ5cb(q̄aγνγ5Cc̄Tb − q̄bγνγ5Cc̄

Ta ) + qTa Cγνγ5cb(q̄aγµγ5Cc̄

Tb − q̄bγµγ5Cc̄

Ta ) ,

J13µν = qTa Cγµcb(q̄aγνCc̄Tb + q̄bγνCc̄

Ta ) + qTa Cγνcb(q̄aγµCc̄

Tb + q̄bγµCc̄

Ta ) ,

J14µν = qTa Cγµγ5cb(q̄aγνγ5Cc̄Tb + q̄bγνγ5Cc̄

Ta ) + qTa Cγνγ5cb(q̄aγµγ5Cc̄

Tb + q̄bγµγ5Cc̄

Ta ) ,

(2)

Page 3: Mass spectra for qcq c s qbq sbs tetraquark states with J ...Mass spectra for qcq c, sc sc , qbq b, sbs b tetraquark states with JPC = 0++ and 2++ Wei Chen1 ;2, Hua-Xing Chen3, Xiang

3

in which the currents J1(x), J2(x), J5(x), J6(x), J7(x), J13µν(x), J13µν(x) belong to the [6c]qc⊗ [6̄c]q̄c̄ color symmetricrepresentation while the currents J3(x), J4(x), J8(x), J9(x), J10(x), J11µν(x), J12µν(x) belong to the [3̄c]qc ⊗ [3c]q̄c̄color antisymmetric representation. Throughout our calculation, we assume mu = md = 0. Hence the masses of theisoscalar and isovector tetraquark states with the same heavy flavor content are degenerate.

We study the two-point correlation functions induced by the above scalar and tensor interpolating currents respec-tively

Π(q2) = i

∫d4x eiq·x 〈0|T [J(x)J†(0)]|0〉 , (3)

Πµν,ρσ(q2) = i

∫d4x eiq·x 〈0|T [Jµν(x)J†ρσ(0)]|0〉 , (4)

where the currents J(x) and Jµν(x) can couple to the corresponding hadronic states with the same quantum numbers

〈0|J |X〉 = fS , (5)

〈0|Jµν |X〉 = fT εµν + · · · , (6)

in which εµν is the polarization tensor, fS and fT are the coupling constants. The polarization tensor εµν in Eq. (6)represents the coupling to the spin-2 state. There also exist some other structures (represented by “· · · ”) for spin-0and spin-1 hadrons, which are omitted here. Accordingly, the correlation function for the tensor current in Eq. (4)can be written as

Πµν,ρσ(q2) =1

2(ηµρηνσ + ηµσηνρ −

2

3ηµνηρσ)Π(q2) + · · · , (7)

where ηµν = qµqν/q2 − gµν . At the hadronic level, this invariant function can be described by the dispersion relation

Π(q2) =(q2)N

π

∫ ∞4m2

c

ImΠ(s)

sN (s− q2 − iε)ds+

N−1∑n=0

bn(q2)n , (8)

in which bn are unknown subtraction constants. The imaginary part in the first term is defined as the spectral functionand can be written as a sum over δ functions

ρ(s) ≡ ImΠ(s)/π =∑n

δ(s−m2n)〈0|J |n〉〈n|J†|0〉

= f2Xδ(s−m2

X) + continuum , (9)

where we adopt the single narrow pole plus continuum parametrization in the second step.Using the operator product expansion (OPE) method, the correlation function can also be computed at the quark-

gluonic level in expression of various QCD condensates. One can then establish QCD sum rules due to the quark-hadron duality that the correlation functions obtained at the hadronic and quark-gluonic levels must equal to eachother. After performing the Borel transform, the QCD sum rules read as functions of the continuum threshold s0 andBorel parameter M2

B

Lk(s0,M2B) = f2

Xm2kX e−m2

X/M2B =

∫ s0

4m2c

dse−s/M2Bρ(s)sk . (10)

The mass of the lowest-lying hadron state can be extracted as

mX(s0,M2B) =

√L1(s0,M2

B)

L0(s0,M2B)

. (11)

In this paper, the spectral density in Eq. (10) is calculated up to dimension eight at the leading order of αs, includingthe perturbative term and various non-perturbative condensates. In Appendix A, we list the expressions of ρ(s) forall interpolating currents in Eqs. (1)-(2).

Page 4: Mass spectra for qcq c s qbq sbs tetraquark states with J ...Mass spectra for qcq c, sc sc , qbq b, sbs b tetraquark states with JPC = 0++ and 2++ Wei Chen1 ;2, Hua-Xing Chen3, Xiang

4

III. NUMERICAL ANALYSIS

In this section, we perform numerical analyses using the following parameters of quark masses and various QCDcondensates [8, 39–42]:

mc(mc) = 1.27± 0.03 GeV ,

mb(mb) = 4.18+0.04−0.03 GeV ,

〈q̄q〉 = −(0.23± 0.03)3 GeV3 ,

〈q̄gsσ ·Gq〉 = −M20 〈q̄q〉 , (12)

M20 = (0.8± 0.2) GeV2 ,

〈g2sGG〉 = (0.48± 0.14) GeV4 ,

in which the MS running heavy quark masses are adopted. The QCD sum rules in Eq. (10) are functions of thecontinuum threshold s0 and Borel parameter M2

B . The working ranges for these two parameters will affect thenumerical sum rule analyses. The suitable working range (Borel window) of M2

B can be determined by the requirementof the OPE convergence and the pole contribution (PC). In our analyses, we use the following criteria to obtain theBorel windows and optimal values for s0:

1. Requiring the dominant non-perturbative contribution (quark condensate 〈q̄q〉) to be less than at least one halfof the perturbative term leads to the lower bound on the Borel parameter. This ratio is adjusted as one thirdfor the currents J7(x) and J10(x) since the quark condensate 〈q̄q〉 and quark-gluon mixed condensate 〈q̄gsσ ·Gq〉give no contribution in OPEs and thus the dimension six condensate 〈q̄q〉2 is the dominant power correction forthese two channels.

2. The contribution of the dimension eight condensate 〈q̄q〉〈q̄gsσ · Gq〉 should be less than 5%. This requirementcan be usually satisfied under the first criterion except for the J7(x) and J10(x).

3. We require the pole contribution to be larger than 10% (30% for J8(x)) to restrict the upper bound on the Borelparameter, in which the PC is defined as

PC ≡ L0(s0,M2B)

L0(∞,M2B)

=

∫ s04m2

cdse−s/M

2Bρ(s)∫∞

4m2cdse−s/M

2Bρ(s)

. (13)

4. By minimizing the dependence of mX on M2B , we can determine the optimal value of s0 in the Borel window.

8 11 14 17 20 23 26 293.4

3.6

3.8

4.0

4.2

4.4

4.6

s0 @GeV2D

mX

@GeV

D

MB2

=4.0GeV2

MB2

=3.7GeV2

MB2

=3.4GeV2

MB2

=3.0GeV2

3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.02.8

3.1

3.4

3.7

4.0

4.3

3.81

MB2 @GeV2D

mX

@GeV

D

s0=8.7GeV2

s0=17.0GeV2

s0=15.3GeV2

FIG. 1: Variations of the qcq̄c̄ hadron mass mX with s0 and M2B for the JPC = 0++ tetraquark using current J4(x).

The advantage of these criteria is that the working ranges for s0 and M2B can be determined by the intrinsic behavior

of QCD sum rules itself. To show the behavior of the mass sum rules, we plot the variations of the extracted hadronmass with respect to s0 and M2

B for the scalar current J4(x) in Fig. 1 as an example. Applying the above criteria,the Borel window for J4(x) is determined to be 3.0 GeV2 ≤ M2

B ≤ 4.0 GeV2 with the optimal continuum thresholdvalue s0 = 17.0 GeV2. One may find from the left side of Fig. 1 that the curves of mX with different value of M2

Bintersect around s0 = 17.0 GeV2, where the variation of mX with M2

B is very weak. Considering 10% uncertainty of

Page 5: Mass spectra for qcq c s qbq sbs tetraquark states with J ...Mass spectra for qcq c, sc sc , qbq b, sbs b tetraquark states with JPC = 0++ and 2++ Wei Chen1 ;2, Hua-Xing Chen3, Xiang

5

JPC Currents s0(GeV2) M2B(GeV2) mX (GeV) PC fX (10−2GeV5)

0++ J1 20± 2.0 4.1− 5.0 4.17± 0.20 13.9% 3.15

J2 15± 1.5 3.0− 3.6 3.56± 0.17 14.4% 2.14

J3 16± 1.6 4.0− 4.3 3.72± 0.17 9.41% 1.10

J4 17± 1.7 3.0− 4.0 3.81± 0.19 15.9% 2.18

J7 15± 1.5 2.6− 3.4 3.58± 0.18 16.0% 3.77

J9 19± 1.9 3.1− 3.4 3.93± 0.19 12.2% 1.42

J10 18± 1.8 3.1− 3.9 3.90± 0.16 14.4% 4.99

2++ J11µν 19± 1.9 4.2− 4.8 4.06± 0.15 12.8% 11.0

J13µν 20± 2.0 4.2− 5.1 4.16± 0.20 14.3% 18.6

TABLE II: Masses of the charmonium-like qcq̄c̄ tetraquark states. The mass sum rules are unstable for theinterpolating currents J5(x), J12µν(x) and J14µν(x).

JPC Currents s0(GeV2) M2B(GeV2) mX (GeV) PC fX (10−2GeV5)

0++ J1 20± 2.0 3.7− 4.9 4.18± 0.19 14.8% 2.97

J2 15± 1.5 2.7− 3.5 3.57± 0.15 15.5% 1.94

J3 16± 1.6 3.7− 4.0 3.73± 0.17 10.6% 1.00

J4 17± 1.7 2.7− 3.9 3.83± 0.19 17.0% 2.13

J7 16± 1.6 2.4− 3.4 3.61± 0.15 19.1% 4.39

J9 18± 1.8 2.8− 3.1 3.86± 0.15 13.4% 1.19

J10 18± 1.8 2.8− 3.9 3.92± 0.17 16.1% 4.86

2++ J11µν 19± 1.9 3.8− 4.7 4.07± 0.20 14.2% 10.3

J13µν 20± 2.0 3.8− 5.0 4.17± 0.19 15.0% 17.5

TABLE III: Masses of the charmonium-like scs̄c̄ tetraquark states.

s0, we can plot the Borel curves in the above Borel window, as shown in the right side of Fig 1. These Borel curvesare very stable with respect to M2

B and thus we extract the hadron mass and coupling constant as

mX, 0++ = 3.81± 0.19 GeV , (14)

fX, 0++ = 2.18× 10−2 GeV5 , (15)

which is in very good agreement with the experimental mass of the X∗(3860) state.Performing similar analyses, we study the mass sum rules for all interpolating currents in Eq. (1). We study the

properties of the spectral densities in Fig. 2. The spectral density for J4(x) becomes positive in the region s > 7.5GeV2. However, the behavior for the spectral density for J8(x) is more complicated, as shown in Fig. 2, which becomespositive only for s > 18.5 GeV2. Such a spectral density is unphysical and can not be used to make a reliable massprediction. The situations are similar for the currents J5(x) and J6(x). We shall not make mass predictions usingthese currents. For the other interpolating currents, we perform the numerical analyses and collect the numericalresults in Table II. The errors of mX come from the uncertainties of charm quark mass, various condensates and thecontinuum threshold s0, in which the uncertainties from s0 and quark condensate are the dominant error sources.As shown in Table II, the masses extracted from J4(x), J9(x) and J10(x) are very close to the mass of X∗(3860),which implies that these currents may well couple to this state and suggests a possible tetraquark interpretation forX∗(3860).

Page 6: Mass spectra for qcq c s qbq sbs tetraquark states with J ...Mass spectra for qcq c, sc sc , qbq b, sbs b tetraquark states with JPC = 0++ and 2++ Wei Chen1 ;2, Hua-Xing Chen3, Xiang

6

6.6 7.6 8.6 9.6 10.6 11.6 12.6

-2.0

-1.0

0.0

1.0

2.0

3.0

s @GeV2D

ΡHsL@

10-

5G

eV

8D

6.5 8.5 10.5 12.5 14.5 16.5 18.5 20

-2.0

-1.0

0.0

1.0

2.0

3.0

s @GeV2D

ΡHsL@

10-

5G

eV

8D

FIG. 2: Property of the spectral density for the interpolating currents J4(x) (left) and J8(x) (right) with JPC = 0++.

For the tensor current J11µν with JPC = 2++, we show the variations of mX with s0 and M2B in Fig. 3 and extract

the mass and coupling constant as

mX, 2++ = 4.06± 0.15 GeV , (16)

fX, 2++ = 0.11 GeV5 , (17)

which is a bit higher than the mass of X∗(3860), but is still consistent with the experiment result within errors.Similarly, we can also study the hidden-charm scs̄c̄ tetraquark systems in the same channels. Using the spectraldensities in Appendix A, we can make the replacement 〈q̄q〉 → ß and 〈q̄gsσ · Gq〉 → 〈s̄gsσ · Gs〉. After performingsimilar numerical analyses, we collect the numerical results for the scs̄c̄ tetraquark states in Table III. The masses forthese scs̄c̄ tetraquarks are almost degenerate with the scs̄c̄ states with the same current.

12 14 16 18 20 22 24 26 283.7

3.9

4.1

4.3

4.5

4.7

s0 @GeV2D

mX

@GeV

D

MB2

=4.8GeV2

MB2

=4.6GeV2

MB2

=4.4GeV2

MB2

=4.2GeV2

4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.03.0

3.3

3.6

3.9

4.2

4.5

4.06

MB2 @GeV2D

mX

@GeV

D

s0=20.9GeV2

s0=19.0GeV2

s0=17.1GeV2

FIG. 3: Variations of the qcq̄c̄ hadron mass mX with s0 and M2B for the JPC = 2++ tetraquark using current J11µν(x).

With the heavy quark symmetry, we can similarly study the hidden-bottom qbq̄b̄ and sbs̄b̄ tetraquark states withJPC = 0++ and 2++. Replacing mc → mb in the expressions of ρ(s), we perform QCD sum rule analyses collect thenumerical results for the hidden-bottom qbq̄b̄ and sbs̄b̄ tetraquarks in Table IV. One notes that the pole contributionsand coupling constants for the hidden-bottom tetraquark systems are much higher than those in the hidden-charmsystems. The masses for these hidden-bottom tetraquarks are around 9.7− 10.2 GeV.

IV. DISCUSSION AND SUMMARY

In this work, we have studied the hidden-charm/bottom qcq̄c̄, scs̄c̄ and qbq̄b̄, sbs̄b̄ tetraquark systems in the methodof QCD sum rules. We have constructed the interpolating tetraquark currents with JPC = 0++ and 2++ in asystematical way and calculated their correlation functions and spectral densities at the leading order on αs. Themass spectra for these scalar and tensor tetraquark states are predicted. Since the quantum numbers for the X(4160),X(3915), X(4350) and X∗(3860) can be JPC = 0++ or 2++, we can compare the experimental results for theseresonances with the tetraquark mass spectra listed in Tables II-III.

Page 7: Mass spectra for qcq c s qbq sbs tetraquark states with J ...Mass spectra for qcq c, sc sc , qbq b, sbs b tetraquark states with JPC = 0++ and 2++ Wei Chen1 ;2, Hua-Xing Chen3, Xiang

7

JPC Currents s0(GeV2) M2B(GeV2) mX (GeV) PC fX (10−1GeV5)

0++ J1 108± 5 9.3− 9.9 10.00± 0.21 22.0% 1.51

J2 103± 5 7.4− 8.8 9.71± 0.19 26.6% 1.82

J3 104± 5 9.2− 9.5 9.83± 0.20 19.5% 0.82

J4 106± 5 7.6− 9.2 9.87± 0.20 26.6% 1.59

J7 105± 5 7.6− 8.4 9.80± 0.22 23.8% 4.03

J9 112± 5 8.2− 8.5 10.18± 0.22 20.4% 1.56

J10 108± 5 8.0− 8.9 9.96± 0.21 23.6% 3.65

2++ J11µν 108± 5 9.5− 10.1 10.00± 0.21 21.8% 6.52

J13µν 109± 5 9.5− 10.2 10.05± 0.22 22.7% 9.88

TABLE IV: Masses of the bottomonium-like qbq̄b̄ tetraquark states.

JPC Currents s0(GeV2) M2B(GeV2) mX (GeV) PC fX (10−1GeV5)

0++ J1 108± 5 8.5− 9.6 10.01± 0.21 24.5% 1.42

J2 103± 5 7.0− 8.6 9.72± 0.19 28.3% 1.70

J3 104± 5 8.5− 9.0 9.84± 0.20 21.8% 0.76

J4 106± 5 7.2− 9.0 9.88± 0.19 27.4% 1.51

J7 105± 5 7.2− 8.2 9.82± 0.20 25.1% 3.95

J9 111± 5 7.7− 8.3 10.15± 0.21 22.2% 1.51

J10 108± 5 7.4− 8.7 9.97± 0.19 26.1% 3.60

2++ J11µν 108± 5 8.7− 9.8 10.01± 0.20 24.1% 6.14

J13µν 110± 5 8.7− 10.2 10.09± 0.21 25.4% 9.97

TABLE V: Masses of the bottomonium-like sbs̄b̄ tetraquark states.

X∗(3860)

J1 J2 J3 J4 J7 J10 J11µν2.0

3.0

4.0

5.0

6.0

Mass(G

eV)

J9 J13µν

X(3915)

X(4350)

X(4160)

qcq̄c̄

2++2++0++0++0++0++0++0++0++

scs̄c̄

FIG. 4: Mass spectra for the hidden-charm qcq̄c̄ and scs̄c̄ tetraquark states with JPC = 0++ and 2++. The verticalsizes of the rectangles represent the uncertainties of the experimental hadron masses and our calculations.

In Fig. 4, we show the mass spectra for the hidden-charm qcq̄c̄ and scs̄c̄ tetraquark states labeled by the interpolatingcurrent and JPC quantum numbers. To compare these mass spectra with the masses of theX(4160), X(3915), X(4350)and X∗(3860), we also show their experimental mass values with uncertainties in Fig. 4.

For the hidden-charm qcq̄c̄ systems, the currents J4(x), J9(x) and J10(x) are composed of color antisymmetric.

Page 8: Mass spectra for qcq c s qbq sbs tetraquark states with J ...Mass spectra for qcq c, sc sc , qbq b, sbs b tetraquark states with JPC = 0++ and 2++ Wei Chen1 ;2, Hua-Xing Chen3, Xiang

8

The isovector and isoscalar tetraquark masses extracted from these three currents are about 3.8 − 3.9 GeV, whichis consistent with the mass of the X∗(3860) state, as shown in Fig. 4. However, the isoscalar tetraquark currentscomposed of two S-wave diquarks may also couple to a conventional charmonium, especially the radially excitedcharmonium. For example, the light tetraquark currents may also couple to the conventional non-exotica physicalstates [43]. In other words, X∗(3860) may be either an isoscalar tetraquark state or χc0(2P ).

In contrast, the masses for the tensor charmonium-like tetraquarks are about 4.06−4.16 GeV, which is a bit higherthan that of X∗(3860) but with a small overlap within errors. On the other hand, our results prefer the JPC = 0++

assignment for the X∗(3860) over the 2++ assignment, which is also in agreement with the Belle experiment [5].Nonetheless, the 2++ possibility is still not excluded as shown in Fig. 4.

Using the currents J1(x) with JPC = 0++ and J13µν(x) with JPC = 2++, we extract the hadron masses for thescalar and tensor qcq̄c̄ tetraquarks around 4.1 − 4.2 GeV. These results are in good agreement with the mass of theX(4160) state, which implies the tetraquark interpretation for this resonance. For the X(3915), our results favor the0++ qcq̄c̄ or scs̄c̄ tetraquark assignment over the tensor assignment. From Fig. 4, the qcq̄c̄ and scs̄c̄ tetraquarks arealmost degenerate for the same interpolating current and quantum numbers. Our results do not support the X(4350)to be a scs̄c̄ tetraquark with JPC = 0++ or 2++. We have also predicted the mass spectra of the hidden-bottomqbq̄b̄ and sbs̄b̄ tetraquarks with JPC = 0++ and 2++. The masses for these hidden-bottom tetraquarks are obtainedaround 9.7 − 10.2 GeV. These mass predictions may be useful for understanding the tetraquark spectroscopy andsearching for such states at the facilities such as LHCb and BelleII in the future.

Acknowledgments

This project is supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) andthe National Natural Science Foundation of China under Grants No. 11475015, No. 11375024, No. 11222547, No.11175073, No. 11575008, and No. 11621131001; the 973 program; the Ministry of Education of China (SRFDP underGrant No. 20120211110002 and the Fundamental Research Funds for the Central Universities); the National Programfor Support of Top-notch Youth Professionals.

[1] S. Uehara et al. (Belle), Phys. Rev. Lett. 96, 082003 (2006), hep-ex/0512035.[2] S. Uehara et al. (Belle), Phys. Rev. Lett. 104, 092001 (2010).[3] C. P. Shen et al. (Belle), Phys. Rev. Lett. 104, 112004 (2010).[4] P. Pakhlov et al. (Belle), Phys. Rev. Lett. 100, 202001 (2008).[5] K. Chilikin et al. (Belle), Phys. Rev. D95, 112003 (2017).[6] S. Godfrey and N. Isgur, Phys.Rev. D32, 189 (1985).[7] T. Barnes, S. Godfrey, and E. S. Swanson, Phys. Rev. D72, 054026 (2005), hep-ph/0505002.[8] C. Patrignani et al. (Particle Data Group), Chin. Phys. C40, 100001 (2016).[9] X. Liu, Z.-G. Luo, and Z.-F. Sun, Phys. Rev. Lett. 104, 122001 (2010).

[10] Y. Jiang, G.-L. Wang, T. Wang, and W.-L. Ju, Int. J. Mod. Phys. A28, 1350145 (2013).[11] F.-K. Guo, C. Hanhart, G. Li, U.-G. Meissner, and Q. Zhao, Phys. Rev. D83, 034013 (2011).[12] Z.-Y. Zhou and Z. Xiao (2017), arXiv:1704.04438.[13] R. F. Lebed and A. D. Polosa, Phys. Rev. D93, 094024 (2016).[14] Z.-G. Wang, Eur. Phys. J. C77, 78 (2017).[15] R. M. Albuquerque, M. E. Bracco and M. Nielsen, Phys. Lett. B 678, 186 (2009).[16] J. R. Zhang and M. Q. Huang, J. Phys. G 37, 025005 (2010).[17] Z. G. Wang, Eur. Phys. J. C 63, 115 (2009).[18] Z. G. Wang, Z. C. Liu and X. H. Zhang, Eur. Phys. J. C 64, 373 (2009).[19] H. X. Chen, E. L. Cui, W. Chen, X. Liu and S. L. Zhu, Eur. Phys. J. C 77, 160 (2017).[20] Z.-G. Wang (2017), arXiv:1704.04111.[21] G. L. Yu, Z. G. Wang, and Z. Y. Li (2017), arXiv:1704.06763.[22] K.-T. Chao, Phys. Lett. B661, 348 (2008).[23] B.-Q. Li and K.-T. Chao, Phys. Rev. D79, 094004 (2009).[24] L.-P. He, D.-Y. Chen, X. Liu, and T. Matsuki, Eur. Phys. J. C74, 3208 (2014).[25] R. Molina and E. Oset, Phys. Rev. D80, 114013 (2009).[26] W. H. Liang, J. J. Xie, E. Oset, R. Molina and M. Doring, Eur. Phys. J. A 51, 58 (2015).[27] Z. H. Guo and J. A. Oller, Phys. Rev. D 93, 096001 (2016).[28] L. R. Dai, J. J. Xie and E. Oset, Eur. Phys. J. C 76, 121 (2016).[29] H.-X. Chen, W. Chen, X. Liu, and S.-L. Zhu, Phys. Rept. 639, 1 (2016).[30] A. Esposito, A. Pilloni, and A. D. Polosa, Phys. Rept. 668, 1 (2016).

Page 9: Mass spectra for qcq c s qbq sbs tetraquark states with J ...Mass spectra for qcq c, sc sc , qbq b, sbs b tetraquark states with JPC = 0++ and 2++ Wei Chen1 ;2, Hua-Xing Chen3, Xiang

9

[31] R. F. Lebed, R. E. Mitchell, and E. S. Swanson, Prog. Part. Nucl. Phys. 93, 143 (2017).[32] F.-K. Guo, C. Hanhart, U.-G. Meiner, Q. Wang, Q. Zhao, and B.-S. Zou (2017).[33] H. X. Chen, W. Chen, X. Liu, Y. R. Liu and S. L. Zhu, Rept. Prog. Phys. 80, 076201 (2017).[34] H. X. Chen, A. Hosaka and S. L. Zhu, Phys. Rev. D 76, 094025 (2007).[35] M.-L. Du, W. Chen, X.-L. Chen, and S.-L. Zhu, Phys.Rev. D87, 014003 (2013).[36] W. Chen, T. Steele, and S.-L. Zhu, Phys.Rev. D89, 054037 (2014).[37] W. Chen and S.-L. Zhu, Phys. Rev. D83, 034010 (2011).[38] W. Chen and S.-L. Zhu, Phys.Rev. D81, 105018 (2010).[39] M. Eidemuller and M. Jamin, Phys. Lett. B498, 203 (2001), hep-ph/0010334.[40] M. Jamin and A. Pich, Nucl. Phys. Proc. Suppl. 74, 300 (1999), hep-ph/9810259.[41] M. Jamin, J. A. Oller, and A. Pich, Eur. Phys. J. C24, 237 (2002), hep-ph/0110194.[42] A. Khodjamirian, T. Mannel, N. Offen, and Y.-M. Wang, Phys.Rev. D83, 094031 (2011).[43] R. Jaffe, Phys.Rept. 409, 1 (2005).

Appendix A: The spectral densities

In this appendix, we list the expressions of the spectral densities for the interpolating currents listed in Eqs. (1)-(2)as the following. The spectral densities are calculated by including the perturbative term, quark condensate 〈q̄q〉,gluon condensate 〈g2

sGG〉, quark-gluon mixed condensate 〈q̄gsσ ·Gq〉, four-quark condensate 〈q̄q〉2 and the dimensioneight condensate 〈q̄q〉〈q̄gsσ ·Gq〉

ρi(s) = ρperti (s) + ρ〈q̄q〉i (s) + ρ

〈GG〉i (s) + ρ

〈q̄Gq〉i (s) + ρ

〈q̄q〉2i (s) + ρ

〈q̄q〉〈q̄Gq〉i (s) , (A1)

in which the subscript “i” denotes the interpolating current number.

• For the current J1 with JPC = 0++:

ρpert1 (s) =1

256π6

∫ αmax

αmin

∫ βmax

βmin

dβ(1− α− β)2

[m2c(α+ β)− 3αβs

] [(α+ β)m2

c − αβs]3

α3β3,

ρ〈q̄q〉1 (s) = −mc〈q̄q〉

4π4

∫ αmax

αmin

∫ βmax

βmin

dβ(1− α− β)

[(α+ β)m2

c − αβs] [m2c(α+ β)− 2αβs

]α2β

,

ρ〈GG〉1 (s) =

〈g2sGG〉

256π6

∫ αmax

αmin

∫ βmax

βmin

{m2c(1− α− β)2

[2m2

c(α+ β)− 3αβs]

3β3

−(1− α− β)

[m2c(α+ β)− 2αβs

] [(α+ β)m2

c − αβs]

2αβ2

},

ρ〈q̄Gq〉1 (s) =

mc〈q̄gsσ ·Gq〉32π4

∫ αmax

αmin

∫ βmax

βmin

dβ(1 + α− β)

[2m2

c(α+ β)− 3αβs]

α2,

ρ〈q̄q〉21 (s) =

m2c〈q̄q〉2

6π2

√1− 4m2

c/s ,

ρ〈q̄q〉〈q̄Gq〉1 (s) =

m2c〈q̄q〉〈q̄gsσ ·Gq〉

24π2

∫ 1

0

{2m2

c

α2δ′(s− m̃2

c

)+

1

αδ(s− m̃2

c

)}, (A2)

where the integral limits are

αmax =1 +

√1− 4m2

c/s

2, αmin =

1−√

1− 4m2c/s

2, βmax = 1− α , βmin =

αm2c

αs−m2c

. (A3)

• For the current J2 with JPC = 0++:

ρpert2 (s) =1

64π6

∫ αmax

αmin

∫ βmax

βmin

dβ(1− α− β)2

[m2c(α+ β)− 3αβs

] [(α+ β)m2

c − αβs]3

α3β3,

ρ〈q̄q〉2 (s) = −mc〈q̄q〉

2π4

∫ αmax

αmin

∫ βmax

βmin

dβ(1− α− β)

[(α+ β)m2

c − αβs] [m2c(α+ β)− 2αβs

]α2β

,

Page 10: Mass spectra for qcq c s qbq sbs tetraquark states with J ...Mass spectra for qcq c, sc sc , qbq b, sbs b tetraquark states with JPC = 0++ and 2++ Wei Chen1 ;2, Hua-Xing Chen3, Xiang

10

ρ〈GG〉2 (s) =

〈g2sGG〉64π6

∫ αmax

αmin

∫ βmax

βmin

{m2c(1− α− β)2

[2m2

c(α+ β)− 3αβs]

3β3

+5[m2c(α+ β)− 2αβs

] [(α+ β)m2

c − αβs]

16

[(1− α− β)2

2α2β2+

(2− 2α− β)

αβ2

]},

ρ〈q̄Gq〉2 (s) = −mc〈q̄gsσ ·Gq〉

64π4

∫ αmax

αmin

∫ βmax

βmin

dβ(5− 13β)

[2m2

c(α+ β)− 3αβs]

αβ,

ρ〈q̄q〉22 (s) =

2m2c〈q̄q〉2

3π2

√1− 4m2

c/s ,

ρ〈q̄q〉〈q̄Gq〉2 (s) =

m2c〈q̄q〉〈q̄gsσ ·Gq〉

24π2

∫ 1

0

{8m2

c

α2δ′(s− m̃2

c

)− 5

αδ(s− m̃2

c

)}. (A4)

• For the current J3 with JPC = 0++:

ρpert3 (s) =1

512π6

∫ αmax

αmin

∫ βmax

βmin

dβ(1− α− β)2

[m2c(α+ β)− 3αβs

] [(α+ β)m2

c − αβs]3

α3β3,

ρ〈q̄q〉3 (s) = −mc〈q̄q〉

8π4

∫ αmax

αmin

∫ βmax

βmin

dβ(1− α− β)

[(α+ β)m2

c − αβs] [m2c(α+ β)− 2αβs

]α2β

,

ρ〈GG〉3 (s) =

〈g2sGG〉

512π6

∫ αmax

αmin

∫ βmax

βmin

{m2c(1− α− β)2

[2m2

c(α+ β)− 3αβs]

3β3

+(1− α− β)

[m2c(α+ β)− 2αβs

] [(α+ β)m2

c − αβs]

αβ2

},

ρ〈q̄Gq〉3 (s) = −mc〈q̄gsσ ·Gq〉

32π4

∫ αmax

αmin

∫ βmax

βmin

dβ(1− 2α− β)

[2m2

c(α+ β)− 3αβs]

α2,

ρ〈q̄q〉23 (s) =

m2c〈q̄q〉2

12π2

√1− 4m2

c/s ,

ρ〈q̄q〉〈q̄Gq〉3 (s) =

m2c〈q̄q〉〈q̄gsσ ·Gq〉

24π2

∫ 1

0

{m2c

α2δ′(s− m̃2

c

)− 1

αδ(s− m̃2

c

)}. (A5)

• For the current J4 with JPC = 0++:

ρpert4 (s) =1

128π6

∫ αmax

αmin

∫ βmax

βmin

dβ(1− α− β)2

[m2c(α+ β)− 3αβs

] [(α+ β)m2

c − αβs]3

α3β3,

ρ〈q̄q〉4 (s) = −mc〈q̄q〉

4π4

∫ αmax

αmin

∫ βmax

βmin

dβ(1− α− β)

[(α+ β)m2

c − αβs] [m2c(α+ β)− 2αβs

]α2β

,

ρ〈GG〉4 (s) =

〈g2sGG〉

128π6

∫ αmax

αmin

∫ βmax

βmin

{m2c(1− α− β)2

[2m2

c(α+ β)− 3αβs]

3β3

+

[m2c(α+ β)− 2αβs

] [(α+ β)m2

c − αβs]

8

[(1− α− β)2

2α2β2+

(2− 2α− β)

αβ2

]},

ρ〈q̄Gq〉4 (s) = −mc〈q̄gsσ ·Gq〉

64π4

∫ αmax

αmin

∫ βmax

βmin

dβ(1− 5β)

[2m2

c(α+ β)− 3αβs]

αβ,

ρ〈q̄q〉24 (s) =

m2c〈q̄q〉2

3π2

√1− 4m2

c/s ,

ρ〈q̄q〉〈q̄Gq〉4 (s) =

m2c〈q̄q〉〈q̄gsσ ·Gq〉

24π2

∫ 1

0

{4m2

c

α2δ′(s− m̃2

c

)− 1

αδ(s− m̃2

c

)}. (A6)

Page 11: Mass spectra for qcq c s qbq sbs tetraquark states with J ...Mass spectra for qcq c, sc sc , qbq b, sbs b tetraquark states with JPC = 0++ and 2++ Wei Chen1 ;2, Hua-Xing Chen3, Xiang

11

• For the current J5 with JPC = 0++:

ρpert5 (s) =1

256π6

∫ αmax

αmin

∫ βmax

βmin

dβ(1− α− β)2

[m2c(α+ β)− 3αβs

] [(α+ β)m2

c − αβs]3

α3β3,

ρ〈q̄q〉5 (s) =

mc〈q̄q〉4π4

∫ αmax

αmin

∫ βmax

βmin

dβ(1− α− β)

[(α+ β)m2

c − αβs] [m2c(α+ β)− 2αβs

]α2β

,

ρ〈GG〉5 (s) =

〈g2sGG〉

256π6

∫ αmax

αmin

∫ βmax

βmin

{m2c(1− α− β)2

[2m2

c(α+ β)− 3αβs]

3β3

−(1− α− β)

[m2c(α+ β)− 2αβs

] [(α+ β)m2

c − αβs]

2αβ2

},

ρ〈q̄Gq〉5 (s) = −mc〈q̄gsσ ·Gq〉

32π4

∫ αmax

αmin

∫ βmax

βmin

dβ(1 + α− β)

[2m2

c(α+ β)− 3αβs]

α2,

ρ〈q̄q〉25 (s) =

m2c〈q̄q〉2

6π2

√1− 4m2

c/s ,

ρ〈q̄q〉〈q̄Gq〉5 (s) =

m2c〈q̄q〉〈q̄gsσ ·Gq〉

24π2

∫ 1

0

{2m2

c

α2δ′(s− m̃2

c

)+

1

αδ(s− m̃2

c

)}. (A7)

• For the current J6 with JPC = 0++:

ρpert6 (s) =1

64π6

∫ αmax

αmin

∫ βmax

βmin

dβ(1− α− β)2

[m2c(α+ β)− 3αβs

] [(α+ β)m2

c − αβs]3

α3β3,

ρ〈q̄q〉6 (s) =

mc〈q̄q〉2π4

∫ αmax

αmin

∫ βmax

βmin

dβ(1− α− β)

[(α+ β)m2

c − αβs] [m2c(α+ β)− 2αβs

]α2β

,

ρ〈GG〉6 (s) =

〈g2sGG〉64π6

∫ αmax

αmin

∫ βmax

βmin

{m2c(1− α− β)2

[2m2

c(α+ β)− 3αβs]

3β3

+5[m2c(α+ β)− 2αβs

] [(α+ β)m2

c − αβs]

16

[(1− α− β)2

2α2β2+

(2− 2α− β)

αβ2

]},

ρ〈q̄Gq〉6 (s) =

mc〈q̄gsσ ·Gq〉64π4

∫ αmax

αmin

∫ βmax

βmin

dβ(5− 13β)

[2m2

c(α+ β)− 3αβs]

αβ,

ρ〈q̄q〉26 (s) =

2m2c〈q̄q〉2

3π2

√1− 4m2

c/s ,

ρ〈q̄q〉〈q̄Gq〉6 (s) =

m2c〈q̄q〉〈q̄gsσ ·Gq〉

24π2

∫ 1

0

{8m2

c

α2δ′(s− m̃2

c

)− 5

αδ(s− m̃2

c

)}. (A8)

• For the current J7 with JPC = 0++:

ρpert7 (s) =3

32π6

∫ αmax

αmin

∫ βmax

βmin

dβ(1− α− β)2

[m2c(α+ β)− 3αβs

] [(α+ β)m2

c − αβs]3

α3β3,

ρ〈q̄q〉7 (s) = ρ

〈q̄Gq〉7 (s) = 0 ,

ρ〈GG〉7 (s) =

〈g2sGG〉32π6

∫ αmax

αmin

∫ βmax

βmin

{m2c(1− α− β)2

[2m2

c(α+ β)− 3αβs]

β3

+

[m2c(α+ β)− 2αβs

] [(α+ β)m2

c − αβs]

4

[5(1− α− β)2

2α2β2+

(12− 12α− 7β)

αβ2

]},

ρ〈q̄q〉27 (s) =

4m2c〈q̄q〉2

π2

√1− 4m2

c/s ,

Page 12: Mass spectra for qcq c s qbq sbs tetraquark states with J ...Mass spectra for qcq c, sc sc , qbq b, sbs b tetraquark states with JPC = 0++ and 2++ Wei Chen1 ;2, Hua-Xing Chen3, Xiang

12

ρ〈q̄q〉〈q̄Gq〉7 (s) =

2m2c〈q̄q〉〈q̄gsσ ·Gq〉

π2

∫ 1

0

{m2c

α2δ′(s− m̃2

c

)− 1

αδ(s− m̃2

c

)}. (A9)

• For the current J8 with JPC = 0++:

ρpert8 (s) =1

512π6

∫ αmax

αmin

∫ βmax

βmin

dβ(1− α− β)2

[m2c(α+ β)− 3αβs

] [(α+ β)m2

c − αβs]3

α3β3,

ρ〈q̄q〉8 (s) =

mc〈q̄q〉8π4

∫ αmax

αmin

∫ βmax

βmin

dβ(1− α− β)

[(α+ β)m2

c − αβs] [m2c(α+ β)− 2αβs

]α2β

,

ρ〈GG〉8 (s) =

〈g2sGG〉

512π6

∫ αmax

αmin

∫ βmax

βmin

{m2c(1− α− β)2

[2m2

c(α+ β)− 3αβs]

3β3

+(1− α− β)

[m2c(α+ β)− 2αβs

] [(α+ β)m2

c − αβs]

αβ2

},

ρ〈q̄Gq〉8 (s) =

mc〈q̄gsσ ·Gq〉32π4

∫ αmax

αmin

∫ βmax

βmin

dβ(1− 2α− β)

[2m2

c(α+ β)− 3αβs]

α2,

ρ〈q̄q〉28 (s) =

m2c〈q̄q〉2

12π2

√1− 4m2

c/s ,

ρ〈q̄q〉〈q̄Gq〉8 (s) =

m2c〈q̄q〉〈q̄gsσ ·Gq〉

24π2

∫ 1

0

{m2c

α2δ′(s− m̃2

c

)− 1

αδ(s− m̃2

c

)}. (A10)

• For the current J9 with JPC = 0++:

ρpert9 (s) =1

128π6

∫ αmax

αmin

∫ βmax

βmin

dβ(1− α− β)2

[m2c(α+ β)− 3αβs

] [(α+ β)m2

c − αβs]3

α3β3,

ρ〈q̄q〉9 (s) =

mc〈q̄q〉4π4

∫ αmax

αmin

∫ βmax

βmin

dβ(1− α− β)

[(α+ β)m2

c − αβs] [m2c(α+ β)− 2αβs

]α2β

,

ρ〈GG〉9 (s) =

〈g2sGG〉

128π6

∫ αmax

αmin

∫ βmax

βmin

{m2c(1− α− β)2

[2m2

c(α+ β)− 3αβs]

3β3

+

[m2c(α+ β)− 2αβs

] [(α+ β)m2

c − αβs]

8

[(1− α− β)2

2α2β2+

(2− 2α− β)

αβ2

]},

ρ〈q̄Gq〉9 (s) =

mc〈q̄gsσ ·Gq〉64π4

∫ αmax

αmin

∫ βmax

βmin

dβ(1− 5β)

[2m2

c(α+ β)− 3αβs]

αβ,

ρ〈q̄q〉29 (s) =

m2c〈q̄q〉2

3π2

√1− 4m2

c/s ,

ρ〈q̄q〉〈q̄Gq〉9 (s) =

m2c〈q̄q〉〈q̄gsσ ·Gq〉

24π2

∫ 1

0

{4m2

c

α2δ′(s− m̃2

c

)− 1

αδ(s− m̃2

c

)}. (A11)

• For the current J10 with JPC = 0++:

ρpert10 (s) =3

64π6

∫ αmax

αmin

∫ βmax

βmin

dβ(1− α− β)2

[m2c(α+ β)− 3αβs

] [(α+ β)m2

c − αβs]3

α3β3,

ρ〈q̄q〉10 (s) = ρ

〈q̄Gq〉10 (s) = 0 ,

ρ〈GG〉10 (s) =

〈g2sGG〉64π6

∫ αmax

αmin

∫ βmax

βmin

{m2c(1− α− β)2

[2m2

c(α+ β)− 3αβs]

β3

Page 13: Mass spectra for qcq c s qbq sbs tetraquark states with J ...Mass spectra for qcq c, sc sc , qbq b, sbs b tetraquark states with JPC = 0++ and 2++ Wei Chen1 ;2, Hua-Xing Chen3, Xiang

13

+

[m2c(α+ β)− 2αβs

] [(α+ β)m2

c − αβs]

2

[(1− α− β)2

2α2β2+

1

αβ

]},

ρ〈q̄q〉210 (s) =

2m2c〈q̄q〉2

π2

√1− 4m2

c/s ,

ρ〈q̄q〉〈q̄Gq〉10 (s) =

m2c〈q̄q〉〈q̄gsσ ·Gq〉

π2

∫ 1

0

dαm2c

α2δ′(s− m̃2

c

). (A12)

• For the current J11µν with JPC = 2++:

ρpert11 (s) =1

384π6

∫ αmax

αmin

∫ βmax

βmin

dβ{(1− α− β)3

[m2c(α+ β)− 5αβs

] [3m2

c(α+ β)− 17αβs] [

(α+ β)m2c − αβs

]22α3β3

−(1− α− β)2[(α+ β)m2

c − αβs]3 [13(1− α− β)s

α2β2− 17m2

c(α+ β)− 81αβs

2α3β3

]},

ρ〈q̄q〉11 (s) = −5mc〈q̄q〉

2π4

∫ αmax

αmin

∫ βmax

βmin

dβ(1− α− β)

[(α+ β)m2

c − αβs] [m2c(α+ β)− 3αβs

]α2β

,

ρ〈GG〉11 (s) =

〈g2sGG〉

384π6

∫ αmax

αmin

∫ βmax

βmin

{m2c(1− α− β)3

[3m2

c(α+ β)− 16αβs]

3α3

+m2c(1− α− β)2

[17m2

c(α+ β)− 33αβs]

3α3−

5[m2c(α+ β)− 3αβs

] [(α+ β)m2

c − αβs]

4αβ

−5(1− α− β)2

[5m2

c(α+ β)− 13αβs] [

(α+ β)m2c − αβs

]48α2β2

−(1− α− β)

[29m2

c(α+ β)− 88αβs] [

(α+ β)m2c − αβs

]3α2β

−5(1− α− β)3

144α2β2

[4(αβs)2 − 18αβs

[(α+ β)m2

c − αβs]

+ 3[(α+ β)m2

c − αβs]2]

+(1− α− β)2

12α2β

[28(αβs)2 − 78αβs

[(α+ β)m2

c − αβs]

+ 9[(α+ β)m2

c − αβs]2]}

+7m6

c〈g2sGG〉

1728π6

∫ αmax

αmin

dαs2(1− α)

[m2c − α(1− α)s

]3[m2

c − (1− α)s]6 ,

ρ〈q̄Gq〉11 (s) =

5mc〈q̄gsσ ·Gq〉48π4

∫ αmax

αmin

∫ βmax

βmin

dβ(1 + 12α− β)

[m2c(α+ β)− 2αβs

]αβ

,

ρ〈q̄q〉211 (s) =

10m2c〈q̄q〉2

3π2

√1− 4m2

c/s ,

ρ〈q̄q〉〈q̄Gq〉11 (s) =

5m2c〈q̄q〉〈q̄gsσ ·Gq〉

36π2

∫ 1

0

{12m2

c

α2δ′(s− m̃2

c

)+

1

αδ(s− m̃2

c

)}. (A13)

• For the current J12µν with JPC = 2++:

ρpert12 (s) =1

384π6

∫ αmax

αmin

∫ βmax

βmin

dβ{(1− α− β)3

[m2c(α+ β)− 5αβs

] [3m2

c(α+ β)− 17αβs] [

(α+ β)m2c − αβs

]22α3β3

Page 14: Mass spectra for qcq c s qbq sbs tetraquark states with J ...Mass spectra for qcq c, sc sc , qbq b, sbs b tetraquark states with JPC = 0++ and 2++ Wei Chen1 ;2, Hua-Xing Chen3, Xiang

14

−(1− α− β)2[(α+ β)m2

c − αβs]3 [13(1− α− β)s

α2β2− 17m2

c(α+ β)− 81αβs

2α3β3

]},

ρ〈q̄q〉12 (s) =

5mc〈q̄q〉2π4

∫ αmax

αmin

∫ βmax

βmin

dβ(1− α− β)

[(α+ β)m2

c − αβs] [m2c(α+ β)− 3αβs

]α2β

,

ρ〈GG〉12 (s) =

〈g2sGG〉

384π6

∫ αmax

αmin

∫ βmax

βmin

{m2c(1− α− β)3

[3m2

c(α+ β)− 16αβs]

3α3

+m2c(1− α− β)2

[17m2

c(α+ β)− 33αβs]

3α3−

5[m2c(α+ β)− 3αβs

] [(α+ β)m2

c − αβs]

4αβ

−5(1− α− β)2

[5m2

c(α+ β)− 13αβs] [

(α+ β)m2c − αβs

]48α2β2

−(1− α− β)

[29m2

c(α+ β)− 88αβs] [

(α+ β)m2c − αβs

]3α2β

−5(1− α− β)3

144α2β2

[4(αβs)2 − 18αβs

[(α+ β)m2

c − αβs]

+ 3[(α+ β)m2

c − αβs]2]

+(1− α− β)2

12α2β

[28(αβs)2 − 78αβs

[(α+ β)m2

c − αβs]

+ 9[(α+ β)m2

c − αβs]2]}

+7m6

c〈g2sGG〉

1728π6

∫ αmax

αmin

dαs2(1− α)

[m2c − α(1− α)s

]3[m2

c − (1− α)s]6 ,

ρ〈q̄Gq〉12 (s) = −5mc〈q̄gsσ ·Gq〉

48π4

∫ αmax

αmin

∫ βmax

βmin

dβ(1 + 12α− β)

[m2c(α+ β)− 2αβs

]αβ

,

ρ〈q̄q〉212 (s) =

10m2c〈q̄q〉2

3π2

√1− 4m2

c/s ,

ρ〈q̄q〉〈q̄Gq〉12 (s) =

5m2c〈q̄q〉〈q̄gsσ ·Gq〉

36π2

∫ 1

0

{12m2

c

α2δ′(s− m̃2

c

)+

1

αδ(s− m̃2

c

)}. (A14)

• For the current J13µν with JPC = 2++:

ρpert13 (s) =1

192π6

∫ αmax

αmin

∫ βmax

βmin

dβ{(1− α− β)3

[m2c(α+ β)− 5αβs

] [3m2

c(α+ β)− 17αβs] [

(α+ β)m2c − αβs

]22α3β3

−(1− α− β)2[(α+ β)m2

c − αβs]3 [13(1− α− β)s

α2β2− 17m2

c(α+ β)− 81αβs

2α3β3

]},

ρ〈q̄q〉13 (s) = −5mc〈q̄q〉

π4

∫ αmax

αmin

∫ βmax

βmin

dβ(1− α− β)

[(α+ β)m2

c − αβs] [m2c(α+ β)− 3αβs

]α2β

,

ρ〈GG〉13 (s) =

〈g2sGG〉

576π6

∫ αmax

αmin

∫ βmax

βmin

{m2c(1− α− β)3

[3m2

c(α+ β)− 16αβs]

α3

+m2c(1− α− β)2

[17m2

c(α+ β)− 33αβs]

α3−

25[m2c(α+ β)− 2αβs

] [(α+ β)m2

c − αβs]

4αβ

−25(1− α− β)2

[5m2

c(α+ β)− 13αβs] [

(α+ β)m2c − αβs

]32α2β2

−(1− α− β)

[16m2

c(α+ β)− 47αβs] [

(α+ β)m2c − αβs

]2α2β

−25(1− α− β)3

96α2β2

[4(αβs)2 − 18αβs

[(α+ β)m2

c − αβs]

+ 3[(α+ β)m2

c − αβs]2]

Page 15: Mass spectra for qcq c s qbq sbs tetraquark states with J ...Mass spectra for qcq c, sc sc , qbq b, sbs b tetraquark states with JPC = 0++ and 2++ Wei Chen1 ;2, Hua-Xing Chen3, Xiang

15

− (1− α− β)2

8α2β

[28(αβs)2 − 78αβs

[(α+ β)m2

c − αβs]

+ 9[(α+ β)m2

c − αβs]2]}

+7m6

c〈g2sGG〉

864π6

∫ αmax

αmin

dαs2(1− α)

[m2c − α(1− α)s

]3[m2

c − (1− α)s]6 ,

ρ〈q̄Gq〉13 (s) =

5mc〈q̄gsσ ·Gq〉48π4

∫ αmax

αmin

∫ βmax

βmin

dβ(5 + 24α− 5β)

[m2c(α+ β)− 2αβs

]αβ

,

ρ〈q̄q〉213 (s) =

20m2c〈q̄q〉2

3π2

√1− 4m2

c/s ,

ρ〈q̄q〉〈q̄Gq〉13 (s) =

5m2c〈q̄q〉〈q̄gsσ ·Gq〉

36π2

∫ 1

0

{24m2

c

α2δ′(s− m̃2

c

)+

5

αδ(s− m̃2

c

)}. (A15)

• For the current J14µν with JPC = 2++:

ρpert14 (s) =1

192π6

∫ αmax

αmin

∫ βmax

βmin

dβ{(1− α− β)3

[m2c(α+ β)− 5αβs

] [3m2

c(α+ β)− 17αβs] [

(α+ β)m2c − αβs

]22α3β3

−(1− α− β)2[(α+ β)m2

c − αβs]3 [13(1− α− β)s

α2β2− 17m2

c(α+ β)− 81αβs

2α3β3

]},

ρ〈q̄q〉14 (s) =

5mc〈q̄q〉π4

∫ αmax

αmin

∫ βmax

βmin

dβ(1− α− β)

[(α+ β)m2

c − αβs] [m2c(α+ β)− 3αβs

]α2β

,

ρ〈GG〉14 (s) =

〈g2sGG〉

576π6

∫ αmax

αmin

∫ βmax

βmin

{m2c(1− α− β)3

[3m2

c(α+ β)− 16αβs]

α3

+m2c(1− α− β)2

[17m2

c(α+ β)− 33αβs]

α3−

25[m2c(α+ β)− 2αβs

] [(α+ β)m2

c − αβs]

4αβ

−25(1− α− β)2

[5m2

c(α+ β)− 13αβs] [

(α+ β)m2c − αβs

]32α2β2

−(1− α− β)

[16m2

c(α+ β)− 47αβs] [

(α+ β)m2c − αβs

]2α2β

−25(1− α− β)3

96α2β2

[4(αβs)2 − 18αβs

[(α+ β)m2

c − αβs]

+ 3[(α+ β)m2

c − αβs]2]

− (1− α− β)2

8α2β

[28(αβs)2 − 78αβs

[(α+ β)m2

c − αβs]

+ 9[(α+ β)m2

c − αβs]2]}

+7m6

c〈g2sGG〉

864π6

∫ αmax

αmin

dαs2(1− α)

[m2c − α(1− α)s

]3[m2

c − (1− α)s]6 ,

ρ〈q̄Gq〉14 (s) = −5mc〈q̄gsσ ·Gq〉

48π4

∫ αmax

αmin

∫ βmax

βmin

dβ(5 + 24α− 5β)

[m2c(α+ β)− 2αβs

]αβ

,

ρ〈q̄q〉214 (s) =

20m2c〈q̄q〉2

3π2

√1− 4m2

c/s ,

ρ〈q̄q〉〈q̄Gq〉14 (s) =

5m2c〈q̄q〉〈q̄gsσ ·Gq〉

36π2

∫ 1

0

{24m2

c

α2δ′(s− m̃2

c

)+

5

αδ(s− m̃2

c

)}. (A16)