4
Volume27B, number 6 PHYSICS LETTERS 19 August 1968 "MASS FORMULA" FOR M = 0 AND M = 1 TOLLER FAMILIES P. DI VECCHIA and F. DRAGO * Laboratori Nazionali del CNEN, Frascati (Rorna) Italy Received 29 June 1968 A method to derive the so-called mass formulae, based on analyticity alone, is presented. The simpler M = 0 case is discussed in some detail. The behaviour of the residue functions is also studied; using the factorization theorem the Toller pole is reconstructed. The mass formula for M = 1 is given. It is well known that Regge poles occur in families with integral spacing at zero energy. This cir- cumstance raises some very interesting problems. In fact if the daughter trajectories are approximately linear and parallel to the parent for positive t, they could give rise to particle or resonances with well defined quantum numbers. It seems therefore important to obtain some general information about the slopes of the daughter trajectories. Some work in this direction has been done by Domokos [1] and Do- mokos and Suranyi [2]. For small violations of SL(2, C), using the Bethe-Salpeter equation and a pertur- bation expansion, they obtained, for families of poles with Toller quantum number M = 0, the expression an(t) = a - n + [a 1 +a2(a -n)(a -n+ 1)]t + O(t 2) where the index n enumerates the trajectories, and, here and in the following, a is the t = 0 intercept of the parent Regge trajectory. In the Bethe-Salpeter model the constants a 1 and a 2 can be calculated for any given kernel. In this letter we will give some results and the general idea of a method, based only on analyticity, for studying the n-dependence of the residue functions and of the derivatives of the trajectories an(t ) at t=0. For M = 0 the most general n-dependence of the derivatives, compatible with analyticity, is in agree- ment with the Domokos mass formula: an(0) = a 1 + a2(a -n)(a -n + 1) . (1) We have shown explicitely that one arrives at this result starting from both the unequal-unequal (UU) and the equal-unequal (EU) mass problems. We have also determined the n-dependence of the residue functions, both in the UU and EU ease: once this is done, assuming the factorization theorem, we obtained the n-dependence of the residue functions in the equal (EE) mass case: the results are in agreement with those found using the 0(4) symmetry. We have thus formally reconstructed the M = 0 Toller pole using analyticity and factoriza- tion. Using essentially the same method we have studied the same problem for the more interesting case of families with M = 1, where the parity doubling phenomenon begins to appear. We have found the n- dependence ~- a n (0) = c 1 + [c2:~c3]((~ -n)(a -n+l) . (2) Let us briefly illustrate here, in the simpler case of the scattering of spinless particles (i.e. for class I poles), the method used. A more complete description of our work will be published elsewhere. The contribution of a family of Regge poles to the scattering amplitude is given by * Sponsored in part by the Air Force Office of Scientific Research through the European Office of Aerospace Re- search, OAR, United States Air Force, under contract F61052 67 C 0084. The ± sign refers to the natural parity. As before a = a+(0) = a-(0). 387

“Mass formula” for M=0 and M=1 toller families

Embed Size (px)

Citation preview

Volume27B, number 6 P H Y S I C S L E T T E R S 19 August 1968

" M A S S F O R M U L A " F O R M = 0 A N D M = 1 T O L L E R F A M I L I E S

P. DI V E C C H I A and F. DRAGO * L a b o r a t o r i N a z i o n a l i d e l C N E N , F r a s c a t i (Rorna) I ta l y

Received 29 June 1968

A method to derive the so-cal led mass formulae, based on analyticity alone, is presented. The s impler M = 0 case is discussed in some detail. The behaviour of the residue functions is also studied; using the factorization theorem the Tol ler pole is reconstructed. The mass formula for M = 1 is given.

I t i s w e l l known tha t R e g g e p o l e s o c c u r in f a m i l i e s wi th i n t e g r a l spac ing a t z e r o e n e r g y . T h i s c i r - c u m s t a n c e r a i s e s s o m e v e r y i n t e r e s t i n g p r o b l e m s . In f a c t i f the d a u g h t e r t r a j e c t o r i e s a r e a p p r o x i m a t e l y l i n e a r and p a r a l l e l to the p a r e n t fo r p o s i t i v e t, they could g ive r i s e to p a r t i c l e o r r e s o n a n c e s wi th we l l de f ined quan tum n u m b e r s . I t s e e m s t h e r e f o r e i m p o r t a n t to obtain s o m e g e n e r a l i n f o r m a t i o n about the s l o p e s of the d a u g h t e r t r a j e c t o r i e s . S o m e w o r k in th i s d i r e c t i o n has been done by D o m o k o s [1] and D o - m o k o s and Su rany i [2]. F o r s m a l l v i o l a t i o n s of SL(2, C), u s ing the B e t h e - S a l p e t e r equa t ion and a p e r t u r - ba t ion expans ion , they ob ta ined , fo r f a m i l i e s of po l e s with T o l l e r quan tum n u m b e r M = 0, the e x p r e s s i o n

a n ( t ) = a - n + [a 1 +a2 (a - n ) ( a - n + 1)]t + O(t 2)

w h e r e the i n d e x n e n u m e r a t e s the t r a j e c t o r i e s , and, h e r e and in the fo l lowing , a i s the t = 0 i n t e r c e p t of the p a r e n t R e g g e t r a j e c t o r y . In t he B e t h e - S a l p e t e r m o d e l the c o n s t a n t s a 1 and a 2 can be c a l c u l a t e d fo r any g iven k e r n e l .

In th i s l e t t e r we wi l l g i v e s o m e r e s u l t s and the g e n e r a l i dea of a me thod , b a s e d only on ana ly t i c i t y , fo r s tudying the n - d e p e n d e n c e of the r e s i d u e func t ions and of the d e r i v a t i v e s of t he t r a j e c t o r i e s a n ( t ) at t = 0 .

F o r M = 0 the m o s t g e n e r a l n - d e p e n d e n c e of the d e r i v a t i v e s , c o m p a t i b l e wi th ana ly t i c i t y , i s in a g r e e - m e n t wi th the D o m o k o s m a s s f o r m u l a :

an(0) = a 1 + a 2 ( a - n ) ( a - n + 1) . (1)

We h a v e shown e x p l i c i t e l y tha t one a r r i v e s at th i s r e s u l t s t a r t i n g f r o m both the u n e q u a l - u n e q u a l (UU) and the e q u a l - u n e q u a l (EU) m a s s p r o b l e m s .

We h a v e a l s o d e t e r m i n e d the n - d e p e n d e n c e of the r e s i d u e func t ions , both in the UU and EU ease : o n c e th i s i s done, a s s u m i n g the f a c t o r i z a t i o n t h e o r e m , we ob ta ined the n - d e p e n d e n c e of the r e s i d u e func t ions in the equa l (EE) m a s s ca se : the r e s u l t s a r e in a g r e e m e n t wi th t h o s e found u s ing the 0(4) s y m m e t r y . We h a v e thus f o r m a l l y r e c o n s t r u c t e d the M = 0 T o l l e r po le u s ing a n a l y t i c i t y and f a c t o r i z a - t ion.

Us ing e s s e n t i a l l y t he s a m e m e t h o d we h a v e s tud ied the s a m e p r o b l e m f o r the m o r e i n t e r e s t i n g c a s e of f a m i l i e s wi th M = 1, w h e r e the p a r i t y doubl ing p h e n o m e n o n b e g i n s to a p p e a r . We have found the n - d e p e n d e n c e ~-

a n (0) = c 1 + [c2:~c3]((~ - n ) ( a - n + l ) . (2)

Le t us b r i e f l y i l l u s t r a t e h e r e , in the s i m p l e r c a s e of the s c a t t e r i n g of s p i n l e s s p a r t i c l e s (i .e. f o r c l a s s I po l e s ) , the m e t h o d used . A m o r e c o m p l e t e d e s c r i p t i o n of our w o r k wi l l be pub l i shed e l s e w h e r e .

The con t r i bu t i on of a f a m i l y of R e g g e p o l e s to the s c a t t e r i n g a m p l i t u d e i s g iven by

* Sponsored in part by the Air Force Office of Scientific Research through the European Office of Aerospace Re- search, OAR, United States Air Force , under contract F61052 67 C 0084. The ± sign re fe r s to the natural parity. As before a = a+(0) = a- (0) .

387

Volume27B, number 6 P H Y S I C S L E T T E R S 19 August 1968

f ( s , t ) = ~ 2 a n + l n=O s i n ~ a n [1 + r n exp ( - i l r an ) ] ~ a n ( - c o s Ot)fln(t) (3)

w h e r e

tg~a 2 a r ( a +½) z a F ( - ½ a , ~ - a , a - a ; z -2) = ~r(a71) * a * 2 a r ( a +½) z a ~ ak(a)z-2k ~a(z) = - ~ ~ - a - l ( Z ) - 4-~r(a + l) k=O "

In the UU c a s e , wh ich we d i s c u s s h e r e , one has

t ( t - ~ m 2) +(rn~- 2m3)(m 22-rn2) s i

cos 0 t - - - + 2qinqou t 4t q inqou t

w h e r e q in and qou t a r e the i n i t i a l and f ina l m o m e n t a in the c r o s s e d t - c h a n n e l . Expand ing the r i g h t hand s ide of eq. (3) in a p o w e r s e r i e s , a f t e r s o m e r e a r r a n g e m e n t , we ge t

-m N(m) m-2k On(t)+n f ( s , t ) = ~ m s ~ ~ bn;k(t ) (_~o j

m=O k=O n=O

w h e r e s o i s a s c a l e f a c t o r ,

_ _ m3)(m 2 - B(t) = i

2s o

½m ff (-1) m = 1

N(m) = l { ½ ( m - l ) ff (-1) m = - l

and, a t t = 0, which i s the po in t of i n t e r e s t h e r e ,

%~m~(0) = g ~ (a) [2 (a -n) + 1] 2n+2kk:

( - l>n~n(0)

r ( ½ - a +n +k)(m -n - 2k)!

w h e r e

½[1 + r e x p ( - i ~ a ) ] 2 a + l

gin(a) = ~ s in 2~a F (a +1 - m )

and Yn(0) a r e t he r e d u c e d r e s i d u e func t ions , f r o m which , f o r n >/ 1, the a p p r o p r i a t e s i n g u l a r i t i e s [3] a t t = 0 h a v e b e e n r e m o v e d .

If t he a m p l i t u d e h a s to be a n a l y t i c at t = 0 we m u s t r e q u i r e tha t , f o r t --. 0

N(m) m-2k

k=O n=O bn;k(t) \-~o] = o(tm) "

T h e s e a r e the f u n d a m e n t a l equa t ions in ou r a p p r o a c h . F r o m t h e s e cond i t i ons we can e x t r a c t the r e l a - t i ons b e t w e e n the r e s i d u e s of the p a r e n t and d a u g h t e r t r a j e c t o r i e s and, d i f f e r e n t i a t i n g with r e s p e c t to t, the n - d e p e n d e n c e of the d e r i v a t i v e s an (0 ) , i . e . the m a s s f o r m u l a . In f ac t a t t = 0 the s y s t e m (4) t u r n s out to be

m [ 2 ( a - n ) + l ] (-1) n 1 2m+nF(m-a)

2 n 22a+14-~ (m-n) ! F ( m + n - 2 a ) 7n(O) =0 n=O

w h o s e so lu t i ons can be shown to be

388

Volume 27B, number 6 PHYSICS L E T T E R S 19 August 1968

7n(0) = - (2a + 1) (-1)n F(n - 1 - 2 a ) " ( 5 )

Once these re la t ions a r e known we can deduce the mass formula . In fact f rom the sys tem (4), dif- fe ren t ia t ing with r e spec t to t, we obtain, for m >/ 2

N ( m ) m - 2 k m ,

~ bn;k(O)an(O) = 0 i

k=0 n=O

F r o m this sys tem we can express the slopes of al l the daughter t r a j ec to r i e s in t e r m s of those of the pa ren t and of the f i r s t daughter in the form

a~(0)n(1 +2a - n ) a'o(O)(n - 1)(n - 2a) v

an(O) = 2a + 2a

which is readi ly seen to be equivalent to eq. (1). At this point it is i n t e r s t ing to invest igate the EU problem, as a f i r s t step toward the proof of the

cons is tency of the whole scheme. Assuming that the equal mass pa r t i c l e s a re pa r t i c l e - an t ipa r t i c l e sys tems , only the daughters with P = G(-1)I contr ibute: for a c lass I family these a re the even one.

Using essen t ia l ly the same methods desc r ibed above we get

EU (-1) n+l r ( n - ½ - a ) EU ~2n (0) = (2a +1) ~o (0) 2n'. r'(~ -a)

and a~(0)n(1 +2a -2n) a 'o(O)(n- 1)(1 +2n - 2 a )

a'2n(O) = 2a - 1 + 2a - 1

which, as expected, is again of the form of eq. (1). Having de te rmined the mos t s ingular par t of the res idue functions in the EU and UU case, us ing the

fac tor iza t ion theorem [4] we can obtain, at t = 0, the daughter res idue in the EE ease, where, as is well known [5], analyt ic i ty i t se l f does not give any informat ion. In this way we obtain

(2n)'. I ' ( a - n + l ) r ( ~ + a ) vEE(0). (7) EE :¢2n (0) - (n!)222n r ( a + 1) F(a + ~ - n)

F r o m the O(4) s y m m e t r y [5], in the sp in less equal mass case, one has

EE R (a +1) 2 .a ,0 ,1 , 2 ~2n (0) - 2~r 2 [2(a - 2 ~ + 1] ]cta-2n;0;0 t ~ ) I

where R is the Tol le r pole res idue and _1

i ( 2 j + l ) F ( n _ j + l ) ] 2 [ f ~1 F(l+z~-(n+j))

L J

It is easily seen that the residues given by the 0(4) symmetry in the equal mass case coincide with those, given above, der ived f rom the usual Regge pole theory.

We have thus r econs t ruc t ed the contr ibut ion of the Tol le r pole to the sca t te r ing ampli tude, and it is i n t e res t ing to note that this has been done, via fac tor iza t ion, through the study of the unequal mass problem, where the extension of the g roup- theore t i ca l approach is not t r iv ia l .

In conclusion, the main r e su l t s of our work have been to es tabl ish the mass formula , eqs. (1) and (2), both for M = 0 and M = 1, s ta r t ing f rom genera l analyt ic i ty p roper t i e s , without any addit ional dynamical assumpt ion. We have also shown, for the s imp le r M = 0 case, that the group- theore t ica l r e su l t s on the res idue functions can be obtained f rom the analyt ic i ty r e q u i r e m e n t s and the factor izat ion theorem.

We a re pa r t i cu l a r ly grateful to Prof . L. Bertocchi , Dr. B. Tagl ient i and Prof. M. Tol le r for useful d i scuss ions . After the conclusion of this work we l ea rned that the M = 0 case was independently studied by Bronzan, Jones and Kuo.

389

Volume 27B, n u m b er 6 P H Y S I C S L E T T E R S 19 August 1968

References 1. G.Domokos , Phys . Rev. 159 (1967) 1387. 2. G. Domokos and P. Suranyi, Budapest p repr in t s (1968) ;

a) Fam i l i e s of Regge t r a j ec to r i e s at nonvanishing energy. I b) Fami l i e s of Regge t r a j ec to r i e s at nonvanishing energy . II.

3. D . Z . F r e e d m a n and J . M . W a n g , Phys . Rev. 153 (1967) 1597. 4. M.Gel l -Mann, Phys . Rev. Le t t e r s 8 (1962) 263;

V. N.Gribov and I. Y. Pomeranchuk , Phys . Rev. Le t t e r s 8 (1962) 343. 5. D . Z . F r e e d m a n and J . M . W a n g , Phys . Rev. 160 (1967) 1560.

390