66
多次元の超新星爆発及び超新星残骸モデル, 重元素の起源 Masaomi ONO Kyushu University 2014/03/04 BH-mag 2014 @ Kumamoto Univ. 1 ブラックホール磁気圏勉強会2014 @ Kumamoto University 2014.03.04

Masaomi ONO Kyushu University - aichi-edu.ac.jptakahasi/BHmag2014_pdf/Presen/...Method of MHD simulation 16 Magnetohydrodynamics (ideal MHD) Poisson eq. pseudo-Newtonian potential

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Masaomi ONO Kyushu University - aichi-edu.ac.jptakahasi/BHmag2014_pdf/Presen/...Method of MHD simulation 16 Magnetohydrodynamics (ideal MHD) Poisson eq. pseudo-Newtonian potential

多次元の超新星爆発及び超新星残骸モデル

重元素の起源

Masaomi ONO

Kyushu University

20140304 BH-mag 2014 Kumamoto Univ 1

ブラックホール磁気圏勉強会2014 Kumamoto University

20140304

Outline

bull Aspheical nature of core-collapse supernova

explosions

bull Origin of heavy elements

ndash Nucleosynthesis in Magnetically driven jets

bull Matter mixing in core-collapse supernovae

bull Multi-dimensional simulation of SNR

20140304 BH-mag 2014 Kumamoto Univ 2

Aspherical nature of supernovae

20140304 BH-mag 2014 Kumamoto Univ 3

3

Crab pulsar PSR B0531+21 (X-ray image)

Supernova remnant Crab nebula (M1 NGC 1952)

Supernova remnant Cassiopeia A

SN1987A

Mechanisms of core-collapse supernova explosions

bull The neutrino-heating with aid of Multi-dimensional

effects

ndash Standing accretion shock instability (SASI)

ndash Neutrino-driven convection

bull Acoustic mechanism (Burrows et al 2006)

ndash Oscillation of PNS

bull MHD effects

ndash Rotation and Magnetic field

20140304 BH-mag 2014 Kumamoto Univ 4

Explosive Nucleosynthesis in Magnetohydrodynamical Jets

from Collapsars II

- Heavy-element Nucleosynthesis of s p r-processes -

Masaomi Ono1

Masa-aki Hashimoto1 Shin-ichiro Fujimoto2

Kei Kotake3 and Shoichi Yamada4

Kyushu University1 Komamoto Nat Coll Tech2

NAOJ(Fukuoka Univ)3 Waseda Univ4

20140304 BH-mag 2014 Kumamoto Univ 5

MO+2012 PTP 128 741

Origin of heavy elements

20140304 BH-mag 2014 Kumamoto Univ 6

Anderse amp Grevesse 1989

Solar system abundances

Nucleosynthesis

processes that

makes elements

heavier than iron

Neutron capture

processes

世界で一番美しい元素図鑑 (セオドアグレイ)より

Two-neutron capture processes

20140304 BH-mag 2014 Kumamoto Univ 7

bull r (rapid)-process explosive environments

bull s (slow)-process) stellar evolution

20140304 BH-mag 2014 Kumamoto Univ 8

Key physical parameters for the r-process

bull Low electron fraction Ye

bull High Entropy S prop T 3ρ

bull Short Dynamical time scale

low Ye is essential for the r-process

neutron-rich Ye lt 05

Ye ~ 01

119884119890 = 119883119894119860119894

119894

119885119894 ~ 119899119901119899119899 + 119899119901

Entropy S prop T 3ρ Hoffman et al 1997

[kBbaryon]

20140304 BH-mag 2014 Kumamoto Univ 9

What is the site of the r-process

bull Neutron star mergers (NSM)

ndash Difficult to explain the early enrichment of

r-process elements in galaxies

ndash But we should carefully investigate

bull Magnetohydrodynamical (MHD) jets

20140304 BH-mag 2014 Kumamoto Univ 10

Neutron star mergers (NSM) are the main source of

the r-process elements

Argast et al 2004

ejected r-element mass 10-3 M8

coalescence time 106 yr

NSM rate 2times10-4 yr-1

inhomogeneous galactic chemical evolution model

Inputs and method

11

Input

bull Results of stellar evolution

calculation

(Hashimoto 1995)

ndash 32 M8 He core (Mms = 70 M8)

ndash Only 30 nuclei Mms = 70 M8

n p 4He 12C 14N 1618O 20-22Ne 23Na 24-26Mg

2627Al 28-30Si 3031P 31-34S 35Cl 3638Ar 39K 40Ca

Method

bull Using time evolution of

bull ρ T

bull Convective region

bull Nuclear reaction network (464 nuclei up to Kr)

20140304 BH-mag 2014 Kumamoto Univ

Nuclear reaction network

12

Thermonuclear reaction rates

Nucleosynthesis calculation in Lagrange mesh with a relatively large nuclear reaction network (464 nuclei up to 94Kr)

Reaction rates based on experimental values and REACLIB compilation

20140304 BH-mag 2014 Kumamoto Univ

Treatment of convective region

13

bull Initial abundance

ndash Solar system abundance H rarr He 12C16O rarr 14N (CNO cycle)

bull Convective region

ndash Stellar evolution calculation

bull Criterion of convection

ndash Schwarzschild

c

A c

( )

( )

i i

n

X X m dm M

m N v dm M

Convective region one zone

He burn

rad ad rad

rad

ln

ln

d T

d P

ad

ad

ln

ln

d T

d P

20140304 BH-mag 2014 Kumamoto Univ

Mass fraction at the pre-collapse

14 20140304 BH-mag 2014 Kumamoto Univ

MHD simulations of Collapsar model

15 20140304 BH-mag 2014 Kumamoto Univ

Method of MHD simulation

16

Magnetohydrodynamics (ideal MHD)

Poisson eq

pseudo-Newtonian potential

Equation of State(EoS)

Shen et al 1998

Code ZEUS-2D

Stone amp Norman 1992

BH

Self gravity

0D

Dt

v

1( ) ( )

4

DP

Dt

vB B

D eP q

Dt

v

( )t

Bv B

2 4 G

BH BH

2

2 g

g

GM GMr

r r c

Magnetic field lines

ldquo frozen in

Fluid particle

20140304 BH-mag 2014 Kumamoto Univ

20140304 BH-mag 2014 Kumamoto Univ 17

Nucleosynthesis in the MHD jet from a

collapsar including weak s- p- and r-processes

MO+12

20140304 BH-mag 2014 Kumamoto Univ 18

r-process nucleosynthesis (movie)

MO+12

20140304 BH-mag 2014 Kumamoto Univ 19

Comparison with abundances of the solar and

metal-poor stars

bull Weak r-process

bull Primary synthesis of

Sr-Y-Zr

darr

Lighter element

primary process

(LEPP)

MO+12

Universality of the r-process (eg Sneden et al 2003)

Future collaboration with nuclear physics groups in

RIKEN

bull RIBF (beam factory)

bull Theoretical nuclear physics

group

bull Impact of uncertainties of

nuclear physics inputs

on nucleosynthesis in

astrophysical sites

20140304 BH-mag 2014 Kumamoto Univ 20

A lsquoKilonovarsquo associated with the short-duration

GRB 130603B (z = 0356)

bull Optical near-IR afterglow

ndash kilonova (1040 -1042 erg s-1)

bull r-process powered transient

(eg Li amp Paczyński 1998

Metzger et al 2010)

bull Electromagnetic counterpart

of GW

bull Robust r-process in NS merger

(Korobkin et al 2012)

bull Recent numerical study

ndash Wanajo et al 2013 (arXiv14027317)

20140304 BH-mag 2014 Kumamoto Univ 21

Tanvir et al 2013 Nature 500 547

Matter mixing in aspherical core-collapse supernovae

- A search for possible conditions for conveying 56Ni into high

velocity regions

Masaomi Ono1

Shigehiro Nagataki2 Hirotaka Ito2 Shiu-Hang Lee2 Jirong

Mao2 Masa-aki Hashimoto1 Tolstov Alexey2

Kyushu University

Astrophysical Big Bang Laboratory RIKEN

20140304 BH-mag 2014 Kumamoto Univ 22

MO+2013 ApJ 773 161

20140304 BH-mag 2014 Kumamoto Univ 23

Introduction observational evidence of mixing

in supernovae bull SN 1987A

ndash Early detection of X-rays (Dotani et al 1987)

γ-rays lines from 56Co (Matz et al 1988)

ndash Sudden development of the fine structure of Ha

(Hanuschik et al 1988)

ndash Line profiles of [Fe II]

(Spyromilo+90 Haas+90)

Fe (56Ni) is mixed into high velocity regions

56Ni rarr 56Co rarr 56Fe

20140304 BH-mag 2014 Kumamoto Univ 24

Broadened line profile of [Fe II] in SN 1987A

[Fe II] line profile (Haas et al 1990)

56Ni rarr 56Co rarr 56Fe

4000 km s-1

SN 1987A

Doppler velocity

T12 = 61 d T12 = 77 d

20140304 BH-mag 2014 Kumamoto Univ 25

Matter mixing in supernova explosions

HeH C+OHe

Synthesized 56Ni by

explosive

nucleosynthesis Mixing

56Ni is mixed up into high

velocity regions

radial velocity HeH

56Ni

Distance from the center

20140304 BH-mag 2014 Kumamoto Univ 26

What is the mechanism of the mixing

bull Fluid instabilities

ndash Rayleigh-Taylor (RT) instability

ndash Kelvin-Helmholtz (KH) instability

ndash Richtmyer-Meshkov (RM) instability

bull Aspherical supernova explosion

ndash Neutrino heating aided by SASI

(Standing Accretion Shock Instability)

ndash MHD Jets

Wongwathanarat et al 2010

Entropy per baryon

20140304 BH-mag 2014 Kumamoto Univ 27

Early previous study of hydrodynamic models of

the late time shock wave propagation

bull 2D3D hydrodynamic simulations

bull Add hoc initiation of spherical supernova explosion

bull RT mixing at OHe HeH interfaces

bull Maximum 56Ni velocity around 2000 km s-1

Arnett et al 1989 Fryxell et al 1991 Mueller et al 1991bac Hachisu et al

1990 1991 1992 1994 Herant amp Benz 1991 Herant amp Benz 1992

Hachisu et al 1992

Spherical explosion + RT instability could not explain

the observed high velocity of 56Ni

bull Recent study on mixing

ndash 2D (Kifonidis et al 2003 2006 Gawryszczak et al 2010)

20140304 BH-mag 2014 Kumamoto Univ 28

Simulations of non-spherical supernova explosions

bull Neutrino-driven explosion

(Kifonidis et al 2006 Gawryszczak et al 2010)

Solid circle 10-4 M8

Open circle 10-5 M8

Density 7days after the explosion

Maximum ~ 4000 km s-1

bull Jet like explosions (Yamada amp Sato 1991 Nagataki et al 2000)

bull 3D (Hammer et al 2010)

bull SPH (Hungerford et al 20032005 Ellinger et al 2012)

Motivation

bull Multidimensional high resolution hydrodynamics

simulations of the propagation of supernova shock wave

+ Nucleosynthesis calculation and advections of

synthesized nuclear species

20140304 BH-mag 2014 Kumamoto Univ 29

The conditions for reproducing the observed high

velocity of 56Ni are still unclear

To clarify the key conditions for reproducing such

high velocity of 56Ni we revisit matter mixing in

aspherical core-collapse supernova explosions

Methods

20140304 BH-mag 2014 Kumamoto Univ 30

20140304 BH-mag 2014 Kumamoto Univ 31

Methods

bull 2D hydrodynamic simulation

ndash AMR hydrodynamic code (FLASH Fryxell et al 2000)

ndash Parallel computing (SR16000 in YITP)

ndash Nuclear reaction network 1H 4He 12C hellip 54Fe 56Ni (19 nuclei)

ndash Spherical point mass and self gravity

ndash Spherical coordinate effective maximum grid r (3027) x q (768)

ndash Initial computational domain 109 cm ndash stellar surface 3x1012 cm

ndash How to initiate the explosionIntroduce aspherical initial radial

velocity and inject thermal energy around FeSi surface

ndash Perturbations of presupernova origins

httpflashuchicagoedusite

20140304 BH-mag 2014 Kumamoto Univ 32

FLASH Code

bull Eulerian hydrodynamic code

ndash Piecewise Parabolic Method (PPM)

ndash Unsplit solver MHD RHD

bull AMR (Adaptive mesh refinement)

ndash Reduce numerical costs

bull Many optional units

ndash Nuclear reaction networks

(7-19 nuclei)

The FLASH code is a modular parallel multiphysics simulation code

capable of handling general compressible flow problems found in many astrophysical environment (Fryxell et al 2000)

Type Ia SN

explosion

Jordan et al 2008

20140304 BH-mag 2014 Kumamoto Univ 33

Rayleigh-Taylor (RT) instability

120571120588 ∙ 120571119901 lt 0 (Chevalier 1979)

120588 1199033 rarr accelerate

Kifonidis et al 2006

Shengtai Li amp Hui Li 2006

RT unstable condition

1205882

1205881

g

Spherical explosions + RT

instabilities have not explained

the high velocity 56Ni

if 1205881 gt 1205882 120588 1199033 rarr decelerate

20140304 BH-mag 2014 Kumamoto Univ 34

Presupernova structure and introduced

perturbations

120571120588 ∙ 120571119901 lt 0 (Chavalier 1979)

120588 1199033 rarr shock wave tend

to be decelerated

Progenitor model 6 M8

helium core (Nomoto amp Hashimoto

1988) + 103 M8 hydrogen envelope

Si C+O He H

Rayleigh-Taylor unstable

Random

Sinusoidal

Perturbations are introduced at 6times109 cm (C+OHe) 5times1010 cm (HeH)

Models

20140304 BH-mag 2014 Kumamoto Univ 35

Parametersasphericity timing of the introduction

of perturbations

1 Spherical explosion models

2 Bipolar explosion models

3 Explosion models mimicking neutrino-driven

explosion

Results of models

20140304 BH-mag 2014 Kumamoto Univ 36

Spherical explosion models

20140304 BH-mag 2014 Kumamoto Univ 37

Density distributions

Perturbations

at C+OHe

Perturbations

at HeH

Perturbations

at both

Growth factor of instability

20140304 BH-mag 2014 Kumamoto Univ 38

Growth factors at the end of

simulation time

Growth rate for incompressible fluid

Growth rate for compressible fluid

Growth factors

Based on pure 1d spherical simulation

Radial velocity distribution of elements for

spherical explosion models

20140304 BH-mag 2014 Kumamoto Univ 39

Timing of the perturbations hardly affect

the maximum velocity of 56Ni

Maximum velocity of 56Ni lt 1600 km s-1

Different asphericity of bipolar explosions

20140304 BH-mag 2014 Kumamoto Univ 40

Bipolar explosion slightly enhance the mixing

length along the polar axis but maximum velocity

of 56Ni is still the level of lt 1700 km s-1

milder asphericity stronger asphericity

Revisiting Nagataki et al 2000 (jetlike explosion)

only initial large amplitude of perturbations

20140304 BH-mag 2014 Kumamoto Univ 41

with amplitude of 30 and m = 20

Initial relatively large sale of perturbations can not survive in later phase due to KH instabilities

Mimicking the neutrino-driven explosions

20140304 BH-mag 2014 Kumamoto Univ 42

Initial radial velocity

Scheck+04

Gawryszczak+10

Mechanism of the core-collapse supernova

explosions

bull Neutrino heating

20140304 BH-mag 2014 Kumamoto Univ 43

Taken from Janka et al 2012 (PTEP 1 A309)

Bethe 1990 (Rev Mod Phys 62 801) Taken from Liebendofer et al 2001

Convections and Standing Accretion Shock

Instability (SASI)

bull Convection around PNS surface

bull Neutrino-driven convection

bull Standing Accretion Shock Instability (SASI) (Blondin et al )

ndash Acoustic-vorticity cycle

20140304 BH-mag 2014 Kumamoto Univ 44

Ledoux criterion

Ledoux criterion

Taken from Liebendofer et al 2001

20140304 BH-mag 2014 Kumamoto Univ 45

Aspherical explosion with clumpy structure in the

explosion (movie)

20140304 BH-mag 2014 Kumamoto Univ 46

Aspherical explosion with clumpy structure + RT

instability

053 s 288 s 5752 s

20140304 BH-mag 2014 Kumamoto Univ 47

Maximum 3000 km s-1

56Ni

Radial velocity distributions of the best model in

this study

bull Relatively high velocity

(3000 km s-1) of 56Ni

bull Mass of 56Ni with ~ 3000

km s-1 14 x 10-3 M8

20140304 BH-mag 2014 Kumamoto Univ 48

Summary

bull To reproduce the high velocity of 56Ni both aspherical

explosion with clumpy structure and perturbations of

presupernova origins may be necessary

bull There are still missing ingredients to explain the observed

high velocity of 56Ni in SN 1987A

bull Possible missing ingredients

ndash More realistic explosion model (eg Kifonidis et al 2006)

ndash Lager perturbations in presupernova structure (Arnett amp Meakin 2011)

ndash Long simulation time

bull Heating due to the decay of 56Co (Herant amp Benz 1991)

ndash 3D effect (Hammer et al 2010)

Possible seeds of perturbations

bull Dynamical stellar evolution calculation

bull Density fluctuations

around the composition

interfaces

20140304 BH-mag 2014 Kumamoto Univ 49

Arnett amp Meakin 2011

20140304 BH-mag 2014 Kumamoto Univ 50

3D simulations of mixing instabilities in SN

explosions

Hammer et al 2010

56Ni 56Ni

2D 3D

Entropy per baryon Red Oxygen

Blue Nickel

Green Carbon

Direct-escape lines of 44Ti from SNR 1987A

bull lines from 44Ti 679 keV and 784 keV

bull Estimated 44Ti mass (31plusmn08) x 10-4 M8

20140304 BH-mag 2014 Kumamoto Univ 51

Grebenev+12 Nature 490 373

44Ti rarr 44Sc rarr 44Ca T12 = 60 d T12 = 4 h

Asymmetries in core-collapse supernovae from

maps of radioactive 44Ti in Cas A

20140304 BH-mag 2014 Kumamoto Univ 52

Grefenstette+14 Nature 506 339

Aspherical explosion enhance 44Ti

20140304 BH-mag 2014 Kumamoto Univ 53

56Ni 4He 44Ti

Alpha-rich freeze-out enhance the production of 44Ti in the

explosive nucleosynthesis

Aspherical explosion enhance the ratio of M(44Ti)M(56Ni)

096 s after the initiation of the explosion

Toward full 3D radiative transfer

bull 爆発形状を仮定した

輻射輸送計算

ndash 形状で偏光度が異なる

ndash 元素によっても異なる

bull 3次元物質混合計算を

インプットにした輻射

輸送計算

20140304 BH-mag 2014 Kumamoto Univ 54

Tanaka et al 2012 bipolar

clumpy

爆発形状のプローブ

20140304 BH-mag 2014 Kumamoto Univ 55

3D MHD simulation of a SNR

Introduction

bull Acceleration of cosmic-rays in SNRs

ndash Up to ~ 1015 eV or more

ndash Magnetic field is key ingredient

20140304 BH-mag 2014 Kumamoto Univ 56

SN1006 (Chandra X-ray)

Amplified strong magnetic field

20140304 BH-mag 2014 Kumamoto Univ 57

Uchiyama et al 2007 Nature 4469 576

Bohm-diffusion limit

Variations of X-ray hot

spots on a 1 yr timescale

Strong amplified

magnetic field

3D MHD simulation of a SNR

20140304 BH-mag 2014 Kumamoto Univ 58

3 pc

Preliminary

20140304 BH-mag 2014 Kumamoto Univ 59

Amplified magnetic field

20121015 - 17 SNSNR12 59

~ 50 μ G

1 μ G Preliminary

20140304 BH-mag 2014 Kumamoto Univ 60

3D structure of Cas A

Delaney et al 2010

Chandra lsquos X-rays

Spitzer lsquos infrared

Green X-ray Fe-K

Red IR [Ar II]

Blue high [Ne II][Ar II] ratio

Yellow optical outer ejecta

Grey IR [Si II]

Black X-ray Si XIII

20140304 BH-mag 2014 Kumamoto Univ 61

ASTRO-H

bull New exploration X-ray

Telescope

ndash First right will be

2015 yr

ndash 10 times larger

energy resolution

httpastro-hisasjaxajpgallerysatelite02html

High resolution spectrum

of X-ray from SNRs is

expected

3D simulation of the thermal X-ray emission from young

SNRs including efficient particle acceleration

bull 3D simulation

bull Diffusive Shock Acceleration

bull Back reaction from

accelerated particle

bull Non-equilibrium ionization

bull Thermal X-ray emission

20140304 BH-mag 2014 Kumamoto Univ 62

Ferrand et al 2012

To go further than

Ferrand et al

Test 1D calculation

bull Two energy equation for ions and electrons respectively

bull Energy equilibration between ions and electrons

bull Ionization

20140304 BH-mag 2014 Kumamoto Univ 63

20140304 BH-mag 2014 Kumamoto Univ 64

Density contour

Preliminary

Emission from deferent regions

20140304 BH-mag 2014 Kumamoto Univ 65

Preliminary

Summary

bull Aspherical nature of core-collapse supernova

explosions

bull Origin of heavy elements

ndash NS merger

ndash Magnetically driven jets

bull Mixing in CCSN explosion

bull Supernova explosions to Supernova remnant

20140304 BH-mag 2014 Kumamoto Univ 66

Page 2: Masaomi ONO Kyushu University - aichi-edu.ac.jptakahasi/BHmag2014_pdf/Presen/...Method of MHD simulation 16 Magnetohydrodynamics (ideal MHD) Poisson eq. pseudo-Newtonian potential

Outline

bull Aspheical nature of core-collapse supernova

explosions

bull Origin of heavy elements

ndash Nucleosynthesis in Magnetically driven jets

bull Matter mixing in core-collapse supernovae

bull Multi-dimensional simulation of SNR

20140304 BH-mag 2014 Kumamoto Univ 2

Aspherical nature of supernovae

20140304 BH-mag 2014 Kumamoto Univ 3

3

Crab pulsar PSR B0531+21 (X-ray image)

Supernova remnant Crab nebula (M1 NGC 1952)

Supernova remnant Cassiopeia A

SN1987A

Mechanisms of core-collapse supernova explosions

bull The neutrino-heating with aid of Multi-dimensional

effects

ndash Standing accretion shock instability (SASI)

ndash Neutrino-driven convection

bull Acoustic mechanism (Burrows et al 2006)

ndash Oscillation of PNS

bull MHD effects

ndash Rotation and Magnetic field

20140304 BH-mag 2014 Kumamoto Univ 4

Explosive Nucleosynthesis in Magnetohydrodynamical Jets

from Collapsars II

- Heavy-element Nucleosynthesis of s p r-processes -

Masaomi Ono1

Masa-aki Hashimoto1 Shin-ichiro Fujimoto2

Kei Kotake3 and Shoichi Yamada4

Kyushu University1 Komamoto Nat Coll Tech2

NAOJ(Fukuoka Univ)3 Waseda Univ4

20140304 BH-mag 2014 Kumamoto Univ 5

MO+2012 PTP 128 741

Origin of heavy elements

20140304 BH-mag 2014 Kumamoto Univ 6

Anderse amp Grevesse 1989

Solar system abundances

Nucleosynthesis

processes that

makes elements

heavier than iron

Neutron capture

processes

世界で一番美しい元素図鑑 (セオドアグレイ)より

Two-neutron capture processes

20140304 BH-mag 2014 Kumamoto Univ 7

bull r (rapid)-process explosive environments

bull s (slow)-process) stellar evolution

20140304 BH-mag 2014 Kumamoto Univ 8

Key physical parameters for the r-process

bull Low electron fraction Ye

bull High Entropy S prop T 3ρ

bull Short Dynamical time scale

low Ye is essential for the r-process

neutron-rich Ye lt 05

Ye ~ 01

119884119890 = 119883119894119860119894

119894

119885119894 ~ 119899119901119899119899 + 119899119901

Entropy S prop T 3ρ Hoffman et al 1997

[kBbaryon]

20140304 BH-mag 2014 Kumamoto Univ 9

What is the site of the r-process

bull Neutron star mergers (NSM)

ndash Difficult to explain the early enrichment of

r-process elements in galaxies

ndash But we should carefully investigate

bull Magnetohydrodynamical (MHD) jets

20140304 BH-mag 2014 Kumamoto Univ 10

Neutron star mergers (NSM) are the main source of

the r-process elements

Argast et al 2004

ejected r-element mass 10-3 M8

coalescence time 106 yr

NSM rate 2times10-4 yr-1

inhomogeneous galactic chemical evolution model

Inputs and method

11

Input

bull Results of stellar evolution

calculation

(Hashimoto 1995)

ndash 32 M8 He core (Mms = 70 M8)

ndash Only 30 nuclei Mms = 70 M8

n p 4He 12C 14N 1618O 20-22Ne 23Na 24-26Mg

2627Al 28-30Si 3031P 31-34S 35Cl 3638Ar 39K 40Ca

Method

bull Using time evolution of

bull ρ T

bull Convective region

bull Nuclear reaction network (464 nuclei up to Kr)

20140304 BH-mag 2014 Kumamoto Univ

Nuclear reaction network

12

Thermonuclear reaction rates

Nucleosynthesis calculation in Lagrange mesh with a relatively large nuclear reaction network (464 nuclei up to 94Kr)

Reaction rates based on experimental values and REACLIB compilation

20140304 BH-mag 2014 Kumamoto Univ

Treatment of convective region

13

bull Initial abundance

ndash Solar system abundance H rarr He 12C16O rarr 14N (CNO cycle)

bull Convective region

ndash Stellar evolution calculation

bull Criterion of convection

ndash Schwarzschild

c

A c

( )

( )

i i

n

X X m dm M

m N v dm M

Convective region one zone

He burn

rad ad rad

rad

ln

ln

d T

d P

ad

ad

ln

ln

d T

d P

20140304 BH-mag 2014 Kumamoto Univ

Mass fraction at the pre-collapse

14 20140304 BH-mag 2014 Kumamoto Univ

MHD simulations of Collapsar model

15 20140304 BH-mag 2014 Kumamoto Univ

Method of MHD simulation

16

Magnetohydrodynamics (ideal MHD)

Poisson eq

pseudo-Newtonian potential

Equation of State(EoS)

Shen et al 1998

Code ZEUS-2D

Stone amp Norman 1992

BH

Self gravity

0D

Dt

v

1( ) ( )

4

DP

Dt

vB B

D eP q

Dt

v

( )t

Bv B

2 4 G

BH BH

2

2 g

g

GM GMr

r r c

Magnetic field lines

ldquo frozen in

Fluid particle

20140304 BH-mag 2014 Kumamoto Univ

20140304 BH-mag 2014 Kumamoto Univ 17

Nucleosynthesis in the MHD jet from a

collapsar including weak s- p- and r-processes

MO+12

20140304 BH-mag 2014 Kumamoto Univ 18

r-process nucleosynthesis (movie)

MO+12

20140304 BH-mag 2014 Kumamoto Univ 19

Comparison with abundances of the solar and

metal-poor stars

bull Weak r-process

bull Primary synthesis of

Sr-Y-Zr

darr

Lighter element

primary process

(LEPP)

MO+12

Universality of the r-process (eg Sneden et al 2003)

Future collaboration with nuclear physics groups in

RIKEN

bull RIBF (beam factory)

bull Theoretical nuclear physics

group

bull Impact of uncertainties of

nuclear physics inputs

on nucleosynthesis in

astrophysical sites

20140304 BH-mag 2014 Kumamoto Univ 20

A lsquoKilonovarsquo associated with the short-duration

GRB 130603B (z = 0356)

bull Optical near-IR afterglow

ndash kilonova (1040 -1042 erg s-1)

bull r-process powered transient

(eg Li amp Paczyński 1998

Metzger et al 2010)

bull Electromagnetic counterpart

of GW

bull Robust r-process in NS merger

(Korobkin et al 2012)

bull Recent numerical study

ndash Wanajo et al 2013 (arXiv14027317)

20140304 BH-mag 2014 Kumamoto Univ 21

Tanvir et al 2013 Nature 500 547

Matter mixing in aspherical core-collapse supernovae

- A search for possible conditions for conveying 56Ni into high

velocity regions

Masaomi Ono1

Shigehiro Nagataki2 Hirotaka Ito2 Shiu-Hang Lee2 Jirong

Mao2 Masa-aki Hashimoto1 Tolstov Alexey2

Kyushu University

Astrophysical Big Bang Laboratory RIKEN

20140304 BH-mag 2014 Kumamoto Univ 22

MO+2013 ApJ 773 161

20140304 BH-mag 2014 Kumamoto Univ 23

Introduction observational evidence of mixing

in supernovae bull SN 1987A

ndash Early detection of X-rays (Dotani et al 1987)

γ-rays lines from 56Co (Matz et al 1988)

ndash Sudden development of the fine structure of Ha

(Hanuschik et al 1988)

ndash Line profiles of [Fe II]

(Spyromilo+90 Haas+90)

Fe (56Ni) is mixed into high velocity regions

56Ni rarr 56Co rarr 56Fe

20140304 BH-mag 2014 Kumamoto Univ 24

Broadened line profile of [Fe II] in SN 1987A

[Fe II] line profile (Haas et al 1990)

56Ni rarr 56Co rarr 56Fe

4000 km s-1

SN 1987A

Doppler velocity

T12 = 61 d T12 = 77 d

20140304 BH-mag 2014 Kumamoto Univ 25

Matter mixing in supernova explosions

HeH C+OHe

Synthesized 56Ni by

explosive

nucleosynthesis Mixing

56Ni is mixed up into high

velocity regions

radial velocity HeH

56Ni

Distance from the center

20140304 BH-mag 2014 Kumamoto Univ 26

What is the mechanism of the mixing

bull Fluid instabilities

ndash Rayleigh-Taylor (RT) instability

ndash Kelvin-Helmholtz (KH) instability

ndash Richtmyer-Meshkov (RM) instability

bull Aspherical supernova explosion

ndash Neutrino heating aided by SASI

(Standing Accretion Shock Instability)

ndash MHD Jets

Wongwathanarat et al 2010

Entropy per baryon

20140304 BH-mag 2014 Kumamoto Univ 27

Early previous study of hydrodynamic models of

the late time shock wave propagation

bull 2D3D hydrodynamic simulations

bull Add hoc initiation of spherical supernova explosion

bull RT mixing at OHe HeH interfaces

bull Maximum 56Ni velocity around 2000 km s-1

Arnett et al 1989 Fryxell et al 1991 Mueller et al 1991bac Hachisu et al

1990 1991 1992 1994 Herant amp Benz 1991 Herant amp Benz 1992

Hachisu et al 1992

Spherical explosion + RT instability could not explain

the observed high velocity of 56Ni

bull Recent study on mixing

ndash 2D (Kifonidis et al 2003 2006 Gawryszczak et al 2010)

20140304 BH-mag 2014 Kumamoto Univ 28

Simulations of non-spherical supernova explosions

bull Neutrino-driven explosion

(Kifonidis et al 2006 Gawryszczak et al 2010)

Solid circle 10-4 M8

Open circle 10-5 M8

Density 7days after the explosion

Maximum ~ 4000 km s-1

bull Jet like explosions (Yamada amp Sato 1991 Nagataki et al 2000)

bull 3D (Hammer et al 2010)

bull SPH (Hungerford et al 20032005 Ellinger et al 2012)

Motivation

bull Multidimensional high resolution hydrodynamics

simulations of the propagation of supernova shock wave

+ Nucleosynthesis calculation and advections of

synthesized nuclear species

20140304 BH-mag 2014 Kumamoto Univ 29

The conditions for reproducing the observed high

velocity of 56Ni are still unclear

To clarify the key conditions for reproducing such

high velocity of 56Ni we revisit matter mixing in

aspherical core-collapse supernova explosions

Methods

20140304 BH-mag 2014 Kumamoto Univ 30

20140304 BH-mag 2014 Kumamoto Univ 31

Methods

bull 2D hydrodynamic simulation

ndash AMR hydrodynamic code (FLASH Fryxell et al 2000)

ndash Parallel computing (SR16000 in YITP)

ndash Nuclear reaction network 1H 4He 12C hellip 54Fe 56Ni (19 nuclei)

ndash Spherical point mass and self gravity

ndash Spherical coordinate effective maximum grid r (3027) x q (768)

ndash Initial computational domain 109 cm ndash stellar surface 3x1012 cm

ndash How to initiate the explosionIntroduce aspherical initial radial

velocity and inject thermal energy around FeSi surface

ndash Perturbations of presupernova origins

httpflashuchicagoedusite

20140304 BH-mag 2014 Kumamoto Univ 32

FLASH Code

bull Eulerian hydrodynamic code

ndash Piecewise Parabolic Method (PPM)

ndash Unsplit solver MHD RHD

bull AMR (Adaptive mesh refinement)

ndash Reduce numerical costs

bull Many optional units

ndash Nuclear reaction networks

(7-19 nuclei)

The FLASH code is a modular parallel multiphysics simulation code

capable of handling general compressible flow problems found in many astrophysical environment (Fryxell et al 2000)

Type Ia SN

explosion

Jordan et al 2008

20140304 BH-mag 2014 Kumamoto Univ 33

Rayleigh-Taylor (RT) instability

120571120588 ∙ 120571119901 lt 0 (Chevalier 1979)

120588 1199033 rarr accelerate

Kifonidis et al 2006

Shengtai Li amp Hui Li 2006

RT unstable condition

1205882

1205881

g

Spherical explosions + RT

instabilities have not explained

the high velocity 56Ni

if 1205881 gt 1205882 120588 1199033 rarr decelerate

20140304 BH-mag 2014 Kumamoto Univ 34

Presupernova structure and introduced

perturbations

120571120588 ∙ 120571119901 lt 0 (Chavalier 1979)

120588 1199033 rarr shock wave tend

to be decelerated

Progenitor model 6 M8

helium core (Nomoto amp Hashimoto

1988) + 103 M8 hydrogen envelope

Si C+O He H

Rayleigh-Taylor unstable

Random

Sinusoidal

Perturbations are introduced at 6times109 cm (C+OHe) 5times1010 cm (HeH)

Models

20140304 BH-mag 2014 Kumamoto Univ 35

Parametersasphericity timing of the introduction

of perturbations

1 Spherical explosion models

2 Bipolar explosion models

3 Explosion models mimicking neutrino-driven

explosion

Results of models

20140304 BH-mag 2014 Kumamoto Univ 36

Spherical explosion models

20140304 BH-mag 2014 Kumamoto Univ 37

Density distributions

Perturbations

at C+OHe

Perturbations

at HeH

Perturbations

at both

Growth factor of instability

20140304 BH-mag 2014 Kumamoto Univ 38

Growth factors at the end of

simulation time

Growth rate for incompressible fluid

Growth rate for compressible fluid

Growth factors

Based on pure 1d spherical simulation

Radial velocity distribution of elements for

spherical explosion models

20140304 BH-mag 2014 Kumamoto Univ 39

Timing of the perturbations hardly affect

the maximum velocity of 56Ni

Maximum velocity of 56Ni lt 1600 km s-1

Different asphericity of bipolar explosions

20140304 BH-mag 2014 Kumamoto Univ 40

Bipolar explosion slightly enhance the mixing

length along the polar axis but maximum velocity

of 56Ni is still the level of lt 1700 km s-1

milder asphericity stronger asphericity

Revisiting Nagataki et al 2000 (jetlike explosion)

only initial large amplitude of perturbations

20140304 BH-mag 2014 Kumamoto Univ 41

with amplitude of 30 and m = 20

Initial relatively large sale of perturbations can not survive in later phase due to KH instabilities

Mimicking the neutrino-driven explosions

20140304 BH-mag 2014 Kumamoto Univ 42

Initial radial velocity

Scheck+04

Gawryszczak+10

Mechanism of the core-collapse supernova

explosions

bull Neutrino heating

20140304 BH-mag 2014 Kumamoto Univ 43

Taken from Janka et al 2012 (PTEP 1 A309)

Bethe 1990 (Rev Mod Phys 62 801) Taken from Liebendofer et al 2001

Convections and Standing Accretion Shock

Instability (SASI)

bull Convection around PNS surface

bull Neutrino-driven convection

bull Standing Accretion Shock Instability (SASI) (Blondin et al )

ndash Acoustic-vorticity cycle

20140304 BH-mag 2014 Kumamoto Univ 44

Ledoux criterion

Ledoux criterion

Taken from Liebendofer et al 2001

20140304 BH-mag 2014 Kumamoto Univ 45

Aspherical explosion with clumpy structure in the

explosion (movie)

20140304 BH-mag 2014 Kumamoto Univ 46

Aspherical explosion with clumpy structure + RT

instability

053 s 288 s 5752 s

20140304 BH-mag 2014 Kumamoto Univ 47

Maximum 3000 km s-1

56Ni

Radial velocity distributions of the best model in

this study

bull Relatively high velocity

(3000 km s-1) of 56Ni

bull Mass of 56Ni with ~ 3000

km s-1 14 x 10-3 M8

20140304 BH-mag 2014 Kumamoto Univ 48

Summary

bull To reproduce the high velocity of 56Ni both aspherical

explosion with clumpy structure and perturbations of

presupernova origins may be necessary

bull There are still missing ingredients to explain the observed

high velocity of 56Ni in SN 1987A

bull Possible missing ingredients

ndash More realistic explosion model (eg Kifonidis et al 2006)

ndash Lager perturbations in presupernova structure (Arnett amp Meakin 2011)

ndash Long simulation time

bull Heating due to the decay of 56Co (Herant amp Benz 1991)

ndash 3D effect (Hammer et al 2010)

Possible seeds of perturbations

bull Dynamical stellar evolution calculation

bull Density fluctuations

around the composition

interfaces

20140304 BH-mag 2014 Kumamoto Univ 49

Arnett amp Meakin 2011

20140304 BH-mag 2014 Kumamoto Univ 50

3D simulations of mixing instabilities in SN

explosions

Hammer et al 2010

56Ni 56Ni

2D 3D

Entropy per baryon Red Oxygen

Blue Nickel

Green Carbon

Direct-escape lines of 44Ti from SNR 1987A

bull lines from 44Ti 679 keV and 784 keV

bull Estimated 44Ti mass (31plusmn08) x 10-4 M8

20140304 BH-mag 2014 Kumamoto Univ 51

Grebenev+12 Nature 490 373

44Ti rarr 44Sc rarr 44Ca T12 = 60 d T12 = 4 h

Asymmetries in core-collapse supernovae from

maps of radioactive 44Ti in Cas A

20140304 BH-mag 2014 Kumamoto Univ 52

Grefenstette+14 Nature 506 339

Aspherical explosion enhance 44Ti

20140304 BH-mag 2014 Kumamoto Univ 53

56Ni 4He 44Ti

Alpha-rich freeze-out enhance the production of 44Ti in the

explosive nucleosynthesis

Aspherical explosion enhance the ratio of M(44Ti)M(56Ni)

096 s after the initiation of the explosion

Toward full 3D radiative transfer

bull 爆発形状を仮定した

輻射輸送計算

ndash 形状で偏光度が異なる

ndash 元素によっても異なる

bull 3次元物質混合計算を

インプットにした輻射

輸送計算

20140304 BH-mag 2014 Kumamoto Univ 54

Tanaka et al 2012 bipolar

clumpy

爆発形状のプローブ

20140304 BH-mag 2014 Kumamoto Univ 55

3D MHD simulation of a SNR

Introduction

bull Acceleration of cosmic-rays in SNRs

ndash Up to ~ 1015 eV or more

ndash Magnetic field is key ingredient

20140304 BH-mag 2014 Kumamoto Univ 56

SN1006 (Chandra X-ray)

Amplified strong magnetic field

20140304 BH-mag 2014 Kumamoto Univ 57

Uchiyama et al 2007 Nature 4469 576

Bohm-diffusion limit

Variations of X-ray hot

spots on a 1 yr timescale

Strong amplified

magnetic field

3D MHD simulation of a SNR

20140304 BH-mag 2014 Kumamoto Univ 58

3 pc

Preliminary

20140304 BH-mag 2014 Kumamoto Univ 59

Amplified magnetic field

20121015 - 17 SNSNR12 59

~ 50 μ G

1 μ G Preliminary

20140304 BH-mag 2014 Kumamoto Univ 60

3D structure of Cas A

Delaney et al 2010

Chandra lsquos X-rays

Spitzer lsquos infrared

Green X-ray Fe-K

Red IR [Ar II]

Blue high [Ne II][Ar II] ratio

Yellow optical outer ejecta

Grey IR [Si II]

Black X-ray Si XIII

20140304 BH-mag 2014 Kumamoto Univ 61

ASTRO-H

bull New exploration X-ray

Telescope

ndash First right will be

2015 yr

ndash 10 times larger

energy resolution

httpastro-hisasjaxajpgallerysatelite02html

High resolution spectrum

of X-ray from SNRs is

expected

3D simulation of the thermal X-ray emission from young

SNRs including efficient particle acceleration

bull 3D simulation

bull Diffusive Shock Acceleration

bull Back reaction from

accelerated particle

bull Non-equilibrium ionization

bull Thermal X-ray emission

20140304 BH-mag 2014 Kumamoto Univ 62

Ferrand et al 2012

To go further than

Ferrand et al

Test 1D calculation

bull Two energy equation for ions and electrons respectively

bull Energy equilibration between ions and electrons

bull Ionization

20140304 BH-mag 2014 Kumamoto Univ 63

20140304 BH-mag 2014 Kumamoto Univ 64

Density contour

Preliminary

Emission from deferent regions

20140304 BH-mag 2014 Kumamoto Univ 65

Preliminary

Summary

bull Aspherical nature of core-collapse supernova

explosions

bull Origin of heavy elements

ndash NS merger

ndash Magnetically driven jets

bull Mixing in CCSN explosion

bull Supernova explosions to Supernova remnant

20140304 BH-mag 2014 Kumamoto Univ 66

Page 3: Masaomi ONO Kyushu University - aichi-edu.ac.jptakahasi/BHmag2014_pdf/Presen/...Method of MHD simulation 16 Magnetohydrodynamics (ideal MHD) Poisson eq. pseudo-Newtonian potential

Aspherical nature of supernovae

20140304 BH-mag 2014 Kumamoto Univ 3

3

Crab pulsar PSR B0531+21 (X-ray image)

Supernova remnant Crab nebula (M1 NGC 1952)

Supernova remnant Cassiopeia A

SN1987A

Mechanisms of core-collapse supernova explosions

bull The neutrino-heating with aid of Multi-dimensional

effects

ndash Standing accretion shock instability (SASI)

ndash Neutrino-driven convection

bull Acoustic mechanism (Burrows et al 2006)

ndash Oscillation of PNS

bull MHD effects

ndash Rotation and Magnetic field

20140304 BH-mag 2014 Kumamoto Univ 4

Explosive Nucleosynthesis in Magnetohydrodynamical Jets

from Collapsars II

- Heavy-element Nucleosynthesis of s p r-processes -

Masaomi Ono1

Masa-aki Hashimoto1 Shin-ichiro Fujimoto2

Kei Kotake3 and Shoichi Yamada4

Kyushu University1 Komamoto Nat Coll Tech2

NAOJ(Fukuoka Univ)3 Waseda Univ4

20140304 BH-mag 2014 Kumamoto Univ 5

MO+2012 PTP 128 741

Origin of heavy elements

20140304 BH-mag 2014 Kumamoto Univ 6

Anderse amp Grevesse 1989

Solar system abundances

Nucleosynthesis

processes that

makes elements

heavier than iron

Neutron capture

processes

世界で一番美しい元素図鑑 (セオドアグレイ)より

Two-neutron capture processes

20140304 BH-mag 2014 Kumamoto Univ 7

bull r (rapid)-process explosive environments

bull s (slow)-process) stellar evolution

20140304 BH-mag 2014 Kumamoto Univ 8

Key physical parameters for the r-process

bull Low electron fraction Ye

bull High Entropy S prop T 3ρ

bull Short Dynamical time scale

low Ye is essential for the r-process

neutron-rich Ye lt 05

Ye ~ 01

119884119890 = 119883119894119860119894

119894

119885119894 ~ 119899119901119899119899 + 119899119901

Entropy S prop T 3ρ Hoffman et al 1997

[kBbaryon]

20140304 BH-mag 2014 Kumamoto Univ 9

What is the site of the r-process

bull Neutron star mergers (NSM)

ndash Difficult to explain the early enrichment of

r-process elements in galaxies

ndash But we should carefully investigate

bull Magnetohydrodynamical (MHD) jets

20140304 BH-mag 2014 Kumamoto Univ 10

Neutron star mergers (NSM) are the main source of

the r-process elements

Argast et al 2004

ejected r-element mass 10-3 M8

coalescence time 106 yr

NSM rate 2times10-4 yr-1

inhomogeneous galactic chemical evolution model

Inputs and method

11

Input

bull Results of stellar evolution

calculation

(Hashimoto 1995)

ndash 32 M8 He core (Mms = 70 M8)

ndash Only 30 nuclei Mms = 70 M8

n p 4He 12C 14N 1618O 20-22Ne 23Na 24-26Mg

2627Al 28-30Si 3031P 31-34S 35Cl 3638Ar 39K 40Ca

Method

bull Using time evolution of

bull ρ T

bull Convective region

bull Nuclear reaction network (464 nuclei up to Kr)

20140304 BH-mag 2014 Kumamoto Univ

Nuclear reaction network

12

Thermonuclear reaction rates

Nucleosynthesis calculation in Lagrange mesh with a relatively large nuclear reaction network (464 nuclei up to 94Kr)

Reaction rates based on experimental values and REACLIB compilation

20140304 BH-mag 2014 Kumamoto Univ

Treatment of convective region

13

bull Initial abundance

ndash Solar system abundance H rarr He 12C16O rarr 14N (CNO cycle)

bull Convective region

ndash Stellar evolution calculation

bull Criterion of convection

ndash Schwarzschild

c

A c

( )

( )

i i

n

X X m dm M

m N v dm M

Convective region one zone

He burn

rad ad rad

rad

ln

ln

d T

d P

ad

ad

ln

ln

d T

d P

20140304 BH-mag 2014 Kumamoto Univ

Mass fraction at the pre-collapse

14 20140304 BH-mag 2014 Kumamoto Univ

MHD simulations of Collapsar model

15 20140304 BH-mag 2014 Kumamoto Univ

Method of MHD simulation

16

Magnetohydrodynamics (ideal MHD)

Poisson eq

pseudo-Newtonian potential

Equation of State(EoS)

Shen et al 1998

Code ZEUS-2D

Stone amp Norman 1992

BH

Self gravity

0D

Dt

v

1( ) ( )

4

DP

Dt

vB B

D eP q

Dt

v

( )t

Bv B

2 4 G

BH BH

2

2 g

g

GM GMr

r r c

Magnetic field lines

ldquo frozen in

Fluid particle

20140304 BH-mag 2014 Kumamoto Univ

20140304 BH-mag 2014 Kumamoto Univ 17

Nucleosynthesis in the MHD jet from a

collapsar including weak s- p- and r-processes

MO+12

20140304 BH-mag 2014 Kumamoto Univ 18

r-process nucleosynthesis (movie)

MO+12

20140304 BH-mag 2014 Kumamoto Univ 19

Comparison with abundances of the solar and

metal-poor stars

bull Weak r-process

bull Primary synthesis of

Sr-Y-Zr

darr

Lighter element

primary process

(LEPP)

MO+12

Universality of the r-process (eg Sneden et al 2003)

Future collaboration with nuclear physics groups in

RIKEN

bull RIBF (beam factory)

bull Theoretical nuclear physics

group

bull Impact of uncertainties of

nuclear physics inputs

on nucleosynthesis in

astrophysical sites

20140304 BH-mag 2014 Kumamoto Univ 20

A lsquoKilonovarsquo associated with the short-duration

GRB 130603B (z = 0356)

bull Optical near-IR afterglow

ndash kilonova (1040 -1042 erg s-1)

bull r-process powered transient

(eg Li amp Paczyński 1998

Metzger et al 2010)

bull Electromagnetic counterpart

of GW

bull Robust r-process in NS merger

(Korobkin et al 2012)

bull Recent numerical study

ndash Wanajo et al 2013 (arXiv14027317)

20140304 BH-mag 2014 Kumamoto Univ 21

Tanvir et al 2013 Nature 500 547

Matter mixing in aspherical core-collapse supernovae

- A search for possible conditions for conveying 56Ni into high

velocity regions

Masaomi Ono1

Shigehiro Nagataki2 Hirotaka Ito2 Shiu-Hang Lee2 Jirong

Mao2 Masa-aki Hashimoto1 Tolstov Alexey2

Kyushu University

Astrophysical Big Bang Laboratory RIKEN

20140304 BH-mag 2014 Kumamoto Univ 22

MO+2013 ApJ 773 161

20140304 BH-mag 2014 Kumamoto Univ 23

Introduction observational evidence of mixing

in supernovae bull SN 1987A

ndash Early detection of X-rays (Dotani et al 1987)

γ-rays lines from 56Co (Matz et al 1988)

ndash Sudden development of the fine structure of Ha

(Hanuschik et al 1988)

ndash Line profiles of [Fe II]

(Spyromilo+90 Haas+90)

Fe (56Ni) is mixed into high velocity regions

56Ni rarr 56Co rarr 56Fe

20140304 BH-mag 2014 Kumamoto Univ 24

Broadened line profile of [Fe II] in SN 1987A

[Fe II] line profile (Haas et al 1990)

56Ni rarr 56Co rarr 56Fe

4000 km s-1

SN 1987A

Doppler velocity

T12 = 61 d T12 = 77 d

20140304 BH-mag 2014 Kumamoto Univ 25

Matter mixing in supernova explosions

HeH C+OHe

Synthesized 56Ni by

explosive

nucleosynthesis Mixing

56Ni is mixed up into high

velocity regions

radial velocity HeH

56Ni

Distance from the center

20140304 BH-mag 2014 Kumamoto Univ 26

What is the mechanism of the mixing

bull Fluid instabilities

ndash Rayleigh-Taylor (RT) instability

ndash Kelvin-Helmholtz (KH) instability

ndash Richtmyer-Meshkov (RM) instability

bull Aspherical supernova explosion

ndash Neutrino heating aided by SASI

(Standing Accretion Shock Instability)

ndash MHD Jets

Wongwathanarat et al 2010

Entropy per baryon

20140304 BH-mag 2014 Kumamoto Univ 27

Early previous study of hydrodynamic models of

the late time shock wave propagation

bull 2D3D hydrodynamic simulations

bull Add hoc initiation of spherical supernova explosion

bull RT mixing at OHe HeH interfaces

bull Maximum 56Ni velocity around 2000 km s-1

Arnett et al 1989 Fryxell et al 1991 Mueller et al 1991bac Hachisu et al

1990 1991 1992 1994 Herant amp Benz 1991 Herant amp Benz 1992

Hachisu et al 1992

Spherical explosion + RT instability could not explain

the observed high velocity of 56Ni

bull Recent study on mixing

ndash 2D (Kifonidis et al 2003 2006 Gawryszczak et al 2010)

20140304 BH-mag 2014 Kumamoto Univ 28

Simulations of non-spherical supernova explosions

bull Neutrino-driven explosion

(Kifonidis et al 2006 Gawryszczak et al 2010)

Solid circle 10-4 M8

Open circle 10-5 M8

Density 7days after the explosion

Maximum ~ 4000 km s-1

bull Jet like explosions (Yamada amp Sato 1991 Nagataki et al 2000)

bull 3D (Hammer et al 2010)

bull SPH (Hungerford et al 20032005 Ellinger et al 2012)

Motivation

bull Multidimensional high resolution hydrodynamics

simulations of the propagation of supernova shock wave

+ Nucleosynthesis calculation and advections of

synthesized nuclear species

20140304 BH-mag 2014 Kumamoto Univ 29

The conditions for reproducing the observed high

velocity of 56Ni are still unclear

To clarify the key conditions for reproducing such

high velocity of 56Ni we revisit matter mixing in

aspherical core-collapse supernova explosions

Methods

20140304 BH-mag 2014 Kumamoto Univ 30

20140304 BH-mag 2014 Kumamoto Univ 31

Methods

bull 2D hydrodynamic simulation

ndash AMR hydrodynamic code (FLASH Fryxell et al 2000)

ndash Parallel computing (SR16000 in YITP)

ndash Nuclear reaction network 1H 4He 12C hellip 54Fe 56Ni (19 nuclei)

ndash Spherical point mass and self gravity

ndash Spherical coordinate effective maximum grid r (3027) x q (768)

ndash Initial computational domain 109 cm ndash stellar surface 3x1012 cm

ndash How to initiate the explosionIntroduce aspherical initial radial

velocity and inject thermal energy around FeSi surface

ndash Perturbations of presupernova origins

httpflashuchicagoedusite

20140304 BH-mag 2014 Kumamoto Univ 32

FLASH Code

bull Eulerian hydrodynamic code

ndash Piecewise Parabolic Method (PPM)

ndash Unsplit solver MHD RHD

bull AMR (Adaptive mesh refinement)

ndash Reduce numerical costs

bull Many optional units

ndash Nuclear reaction networks

(7-19 nuclei)

The FLASH code is a modular parallel multiphysics simulation code

capable of handling general compressible flow problems found in many astrophysical environment (Fryxell et al 2000)

Type Ia SN

explosion

Jordan et al 2008

20140304 BH-mag 2014 Kumamoto Univ 33

Rayleigh-Taylor (RT) instability

120571120588 ∙ 120571119901 lt 0 (Chevalier 1979)

120588 1199033 rarr accelerate

Kifonidis et al 2006

Shengtai Li amp Hui Li 2006

RT unstable condition

1205882

1205881

g

Spherical explosions + RT

instabilities have not explained

the high velocity 56Ni

if 1205881 gt 1205882 120588 1199033 rarr decelerate

20140304 BH-mag 2014 Kumamoto Univ 34

Presupernova structure and introduced

perturbations

120571120588 ∙ 120571119901 lt 0 (Chavalier 1979)

120588 1199033 rarr shock wave tend

to be decelerated

Progenitor model 6 M8

helium core (Nomoto amp Hashimoto

1988) + 103 M8 hydrogen envelope

Si C+O He H

Rayleigh-Taylor unstable

Random

Sinusoidal

Perturbations are introduced at 6times109 cm (C+OHe) 5times1010 cm (HeH)

Models

20140304 BH-mag 2014 Kumamoto Univ 35

Parametersasphericity timing of the introduction

of perturbations

1 Spherical explosion models

2 Bipolar explosion models

3 Explosion models mimicking neutrino-driven

explosion

Results of models

20140304 BH-mag 2014 Kumamoto Univ 36

Spherical explosion models

20140304 BH-mag 2014 Kumamoto Univ 37

Density distributions

Perturbations

at C+OHe

Perturbations

at HeH

Perturbations

at both

Growth factor of instability

20140304 BH-mag 2014 Kumamoto Univ 38

Growth factors at the end of

simulation time

Growth rate for incompressible fluid

Growth rate for compressible fluid

Growth factors

Based on pure 1d spherical simulation

Radial velocity distribution of elements for

spherical explosion models

20140304 BH-mag 2014 Kumamoto Univ 39

Timing of the perturbations hardly affect

the maximum velocity of 56Ni

Maximum velocity of 56Ni lt 1600 km s-1

Different asphericity of bipolar explosions

20140304 BH-mag 2014 Kumamoto Univ 40

Bipolar explosion slightly enhance the mixing

length along the polar axis but maximum velocity

of 56Ni is still the level of lt 1700 km s-1

milder asphericity stronger asphericity

Revisiting Nagataki et al 2000 (jetlike explosion)

only initial large amplitude of perturbations

20140304 BH-mag 2014 Kumamoto Univ 41

with amplitude of 30 and m = 20

Initial relatively large sale of perturbations can not survive in later phase due to KH instabilities

Mimicking the neutrino-driven explosions

20140304 BH-mag 2014 Kumamoto Univ 42

Initial radial velocity

Scheck+04

Gawryszczak+10

Mechanism of the core-collapse supernova

explosions

bull Neutrino heating

20140304 BH-mag 2014 Kumamoto Univ 43

Taken from Janka et al 2012 (PTEP 1 A309)

Bethe 1990 (Rev Mod Phys 62 801) Taken from Liebendofer et al 2001

Convections and Standing Accretion Shock

Instability (SASI)

bull Convection around PNS surface

bull Neutrino-driven convection

bull Standing Accretion Shock Instability (SASI) (Blondin et al )

ndash Acoustic-vorticity cycle

20140304 BH-mag 2014 Kumamoto Univ 44

Ledoux criterion

Ledoux criterion

Taken from Liebendofer et al 2001

20140304 BH-mag 2014 Kumamoto Univ 45

Aspherical explosion with clumpy structure in the

explosion (movie)

20140304 BH-mag 2014 Kumamoto Univ 46

Aspherical explosion with clumpy structure + RT

instability

053 s 288 s 5752 s

20140304 BH-mag 2014 Kumamoto Univ 47

Maximum 3000 km s-1

56Ni

Radial velocity distributions of the best model in

this study

bull Relatively high velocity

(3000 km s-1) of 56Ni

bull Mass of 56Ni with ~ 3000

km s-1 14 x 10-3 M8

20140304 BH-mag 2014 Kumamoto Univ 48

Summary

bull To reproduce the high velocity of 56Ni both aspherical

explosion with clumpy structure and perturbations of

presupernova origins may be necessary

bull There are still missing ingredients to explain the observed

high velocity of 56Ni in SN 1987A

bull Possible missing ingredients

ndash More realistic explosion model (eg Kifonidis et al 2006)

ndash Lager perturbations in presupernova structure (Arnett amp Meakin 2011)

ndash Long simulation time

bull Heating due to the decay of 56Co (Herant amp Benz 1991)

ndash 3D effect (Hammer et al 2010)

Possible seeds of perturbations

bull Dynamical stellar evolution calculation

bull Density fluctuations

around the composition

interfaces

20140304 BH-mag 2014 Kumamoto Univ 49

Arnett amp Meakin 2011

20140304 BH-mag 2014 Kumamoto Univ 50

3D simulations of mixing instabilities in SN

explosions

Hammer et al 2010

56Ni 56Ni

2D 3D

Entropy per baryon Red Oxygen

Blue Nickel

Green Carbon

Direct-escape lines of 44Ti from SNR 1987A

bull lines from 44Ti 679 keV and 784 keV

bull Estimated 44Ti mass (31plusmn08) x 10-4 M8

20140304 BH-mag 2014 Kumamoto Univ 51

Grebenev+12 Nature 490 373

44Ti rarr 44Sc rarr 44Ca T12 = 60 d T12 = 4 h

Asymmetries in core-collapse supernovae from

maps of radioactive 44Ti in Cas A

20140304 BH-mag 2014 Kumamoto Univ 52

Grefenstette+14 Nature 506 339

Aspherical explosion enhance 44Ti

20140304 BH-mag 2014 Kumamoto Univ 53

56Ni 4He 44Ti

Alpha-rich freeze-out enhance the production of 44Ti in the

explosive nucleosynthesis

Aspherical explosion enhance the ratio of M(44Ti)M(56Ni)

096 s after the initiation of the explosion

Toward full 3D radiative transfer

bull 爆発形状を仮定した

輻射輸送計算

ndash 形状で偏光度が異なる

ndash 元素によっても異なる

bull 3次元物質混合計算を

インプットにした輻射

輸送計算

20140304 BH-mag 2014 Kumamoto Univ 54

Tanaka et al 2012 bipolar

clumpy

爆発形状のプローブ

20140304 BH-mag 2014 Kumamoto Univ 55

3D MHD simulation of a SNR

Introduction

bull Acceleration of cosmic-rays in SNRs

ndash Up to ~ 1015 eV or more

ndash Magnetic field is key ingredient

20140304 BH-mag 2014 Kumamoto Univ 56

SN1006 (Chandra X-ray)

Amplified strong magnetic field

20140304 BH-mag 2014 Kumamoto Univ 57

Uchiyama et al 2007 Nature 4469 576

Bohm-diffusion limit

Variations of X-ray hot

spots on a 1 yr timescale

Strong amplified

magnetic field

3D MHD simulation of a SNR

20140304 BH-mag 2014 Kumamoto Univ 58

3 pc

Preliminary

20140304 BH-mag 2014 Kumamoto Univ 59

Amplified magnetic field

20121015 - 17 SNSNR12 59

~ 50 μ G

1 μ G Preliminary

20140304 BH-mag 2014 Kumamoto Univ 60

3D structure of Cas A

Delaney et al 2010

Chandra lsquos X-rays

Spitzer lsquos infrared

Green X-ray Fe-K

Red IR [Ar II]

Blue high [Ne II][Ar II] ratio

Yellow optical outer ejecta

Grey IR [Si II]

Black X-ray Si XIII

20140304 BH-mag 2014 Kumamoto Univ 61

ASTRO-H

bull New exploration X-ray

Telescope

ndash First right will be

2015 yr

ndash 10 times larger

energy resolution

httpastro-hisasjaxajpgallerysatelite02html

High resolution spectrum

of X-ray from SNRs is

expected

3D simulation of the thermal X-ray emission from young

SNRs including efficient particle acceleration

bull 3D simulation

bull Diffusive Shock Acceleration

bull Back reaction from

accelerated particle

bull Non-equilibrium ionization

bull Thermal X-ray emission

20140304 BH-mag 2014 Kumamoto Univ 62

Ferrand et al 2012

To go further than

Ferrand et al

Test 1D calculation

bull Two energy equation for ions and electrons respectively

bull Energy equilibration between ions and electrons

bull Ionization

20140304 BH-mag 2014 Kumamoto Univ 63

20140304 BH-mag 2014 Kumamoto Univ 64

Density contour

Preliminary

Emission from deferent regions

20140304 BH-mag 2014 Kumamoto Univ 65

Preliminary

Summary

bull Aspherical nature of core-collapse supernova

explosions

bull Origin of heavy elements

ndash NS merger

ndash Magnetically driven jets

bull Mixing in CCSN explosion

bull Supernova explosions to Supernova remnant

20140304 BH-mag 2014 Kumamoto Univ 66

Page 4: Masaomi ONO Kyushu University - aichi-edu.ac.jptakahasi/BHmag2014_pdf/Presen/...Method of MHD simulation 16 Magnetohydrodynamics (ideal MHD) Poisson eq. pseudo-Newtonian potential

Mechanisms of core-collapse supernova explosions

bull The neutrino-heating with aid of Multi-dimensional

effects

ndash Standing accretion shock instability (SASI)

ndash Neutrino-driven convection

bull Acoustic mechanism (Burrows et al 2006)

ndash Oscillation of PNS

bull MHD effects

ndash Rotation and Magnetic field

20140304 BH-mag 2014 Kumamoto Univ 4

Explosive Nucleosynthesis in Magnetohydrodynamical Jets

from Collapsars II

- Heavy-element Nucleosynthesis of s p r-processes -

Masaomi Ono1

Masa-aki Hashimoto1 Shin-ichiro Fujimoto2

Kei Kotake3 and Shoichi Yamada4

Kyushu University1 Komamoto Nat Coll Tech2

NAOJ(Fukuoka Univ)3 Waseda Univ4

20140304 BH-mag 2014 Kumamoto Univ 5

MO+2012 PTP 128 741

Origin of heavy elements

20140304 BH-mag 2014 Kumamoto Univ 6

Anderse amp Grevesse 1989

Solar system abundances

Nucleosynthesis

processes that

makes elements

heavier than iron

Neutron capture

processes

世界で一番美しい元素図鑑 (セオドアグレイ)より

Two-neutron capture processes

20140304 BH-mag 2014 Kumamoto Univ 7

bull r (rapid)-process explosive environments

bull s (slow)-process) stellar evolution

20140304 BH-mag 2014 Kumamoto Univ 8

Key physical parameters for the r-process

bull Low electron fraction Ye

bull High Entropy S prop T 3ρ

bull Short Dynamical time scale

low Ye is essential for the r-process

neutron-rich Ye lt 05

Ye ~ 01

119884119890 = 119883119894119860119894

119894

119885119894 ~ 119899119901119899119899 + 119899119901

Entropy S prop T 3ρ Hoffman et al 1997

[kBbaryon]

20140304 BH-mag 2014 Kumamoto Univ 9

What is the site of the r-process

bull Neutron star mergers (NSM)

ndash Difficult to explain the early enrichment of

r-process elements in galaxies

ndash But we should carefully investigate

bull Magnetohydrodynamical (MHD) jets

20140304 BH-mag 2014 Kumamoto Univ 10

Neutron star mergers (NSM) are the main source of

the r-process elements

Argast et al 2004

ejected r-element mass 10-3 M8

coalescence time 106 yr

NSM rate 2times10-4 yr-1

inhomogeneous galactic chemical evolution model

Inputs and method

11

Input

bull Results of stellar evolution

calculation

(Hashimoto 1995)

ndash 32 M8 He core (Mms = 70 M8)

ndash Only 30 nuclei Mms = 70 M8

n p 4He 12C 14N 1618O 20-22Ne 23Na 24-26Mg

2627Al 28-30Si 3031P 31-34S 35Cl 3638Ar 39K 40Ca

Method

bull Using time evolution of

bull ρ T

bull Convective region

bull Nuclear reaction network (464 nuclei up to Kr)

20140304 BH-mag 2014 Kumamoto Univ

Nuclear reaction network

12

Thermonuclear reaction rates

Nucleosynthesis calculation in Lagrange mesh with a relatively large nuclear reaction network (464 nuclei up to 94Kr)

Reaction rates based on experimental values and REACLIB compilation

20140304 BH-mag 2014 Kumamoto Univ

Treatment of convective region

13

bull Initial abundance

ndash Solar system abundance H rarr He 12C16O rarr 14N (CNO cycle)

bull Convective region

ndash Stellar evolution calculation

bull Criterion of convection

ndash Schwarzschild

c

A c

( )

( )

i i

n

X X m dm M

m N v dm M

Convective region one zone

He burn

rad ad rad

rad

ln

ln

d T

d P

ad

ad

ln

ln

d T

d P

20140304 BH-mag 2014 Kumamoto Univ

Mass fraction at the pre-collapse

14 20140304 BH-mag 2014 Kumamoto Univ

MHD simulations of Collapsar model

15 20140304 BH-mag 2014 Kumamoto Univ

Method of MHD simulation

16

Magnetohydrodynamics (ideal MHD)

Poisson eq

pseudo-Newtonian potential

Equation of State(EoS)

Shen et al 1998

Code ZEUS-2D

Stone amp Norman 1992

BH

Self gravity

0D

Dt

v

1( ) ( )

4

DP

Dt

vB B

D eP q

Dt

v

( )t

Bv B

2 4 G

BH BH

2

2 g

g

GM GMr

r r c

Magnetic field lines

ldquo frozen in

Fluid particle

20140304 BH-mag 2014 Kumamoto Univ

20140304 BH-mag 2014 Kumamoto Univ 17

Nucleosynthesis in the MHD jet from a

collapsar including weak s- p- and r-processes

MO+12

20140304 BH-mag 2014 Kumamoto Univ 18

r-process nucleosynthesis (movie)

MO+12

20140304 BH-mag 2014 Kumamoto Univ 19

Comparison with abundances of the solar and

metal-poor stars

bull Weak r-process

bull Primary synthesis of

Sr-Y-Zr

darr

Lighter element

primary process

(LEPP)

MO+12

Universality of the r-process (eg Sneden et al 2003)

Future collaboration with nuclear physics groups in

RIKEN

bull RIBF (beam factory)

bull Theoretical nuclear physics

group

bull Impact of uncertainties of

nuclear physics inputs

on nucleosynthesis in

astrophysical sites

20140304 BH-mag 2014 Kumamoto Univ 20

A lsquoKilonovarsquo associated with the short-duration

GRB 130603B (z = 0356)

bull Optical near-IR afterglow

ndash kilonova (1040 -1042 erg s-1)

bull r-process powered transient

(eg Li amp Paczyński 1998

Metzger et al 2010)

bull Electromagnetic counterpart

of GW

bull Robust r-process in NS merger

(Korobkin et al 2012)

bull Recent numerical study

ndash Wanajo et al 2013 (arXiv14027317)

20140304 BH-mag 2014 Kumamoto Univ 21

Tanvir et al 2013 Nature 500 547

Matter mixing in aspherical core-collapse supernovae

- A search for possible conditions for conveying 56Ni into high

velocity regions

Masaomi Ono1

Shigehiro Nagataki2 Hirotaka Ito2 Shiu-Hang Lee2 Jirong

Mao2 Masa-aki Hashimoto1 Tolstov Alexey2

Kyushu University

Astrophysical Big Bang Laboratory RIKEN

20140304 BH-mag 2014 Kumamoto Univ 22

MO+2013 ApJ 773 161

20140304 BH-mag 2014 Kumamoto Univ 23

Introduction observational evidence of mixing

in supernovae bull SN 1987A

ndash Early detection of X-rays (Dotani et al 1987)

γ-rays lines from 56Co (Matz et al 1988)

ndash Sudden development of the fine structure of Ha

(Hanuschik et al 1988)

ndash Line profiles of [Fe II]

(Spyromilo+90 Haas+90)

Fe (56Ni) is mixed into high velocity regions

56Ni rarr 56Co rarr 56Fe

20140304 BH-mag 2014 Kumamoto Univ 24

Broadened line profile of [Fe II] in SN 1987A

[Fe II] line profile (Haas et al 1990)

56Ni rarr 56Co rarr 56Fe

4000 km s-1

SN 1987A

Doppler velocity

T12 = 61 d T12 = 77 d

20140304 BH-mag 2014 Kumamoto Univ 25

Matter mixing in supernova explosions

HeH C+OHe

Synthesized 56Ni by

explosive

nucleosynthesis Mixing

56Ni is mixed up into high

velocity regions

radial velocity HeH

56Ni

Distance from the center

20140304 BH-mag 2014 Kumamoto Univ 26

What is the mechanism of the mixing

bull Fluid instabilities

ndash Rayleigh-Taylor (RT) instability

ndash Kelvin-Helmholtz (KH) instability

ndash Richtmyer-Meshkov (RM) instability

bull Aspherical supernova explosion

ndash Neutrino heating aided by SASI

(Standing Accretion Shock Instability)

ndash MHD Jets

Wongwathanarat et al 2010

Entropy per baryon

20140304 BH-mag 2014 Kumamoto Univ 27

Early previous study of hydrodynamic models of

the late time shock wave propagation

bull 2D3D hydrodynamic simulations

bull Add hoc initiation of spherical supernova explosion

bull RT mixing at OHe HeH interfaces

bull Maximum 56Ni velocity around 2000 km s-1

Arnett et al 1989 Fryxell et al 1991 Mueller et al 1991bac Hachisu et al

1990 1991 1992 1994 Herant amp Benz 1991 Herant amp Benz 1992

Hachisu et al 1992

Spherical explosion + RT instability could not explain

the observed high velocity of 56Ni

bull Recent study on mixing

ndash 2D (Kifonidis et al 2003 2006 Gawryszczak et al 2010)

20140304 BH-mag 2014 Kumamoto Univ 28

Simulations of non-spherical supernova explosions

bull Neutrino-driven explosion

(Kifonidis et al 2006 Gawryszczak et al 2010)

Solid circle 10-4 M8

Open circle 10-5 M8

Density 7days after the explosion

Maximum ~ 4000 km s-1

bull Jet like explosions (Yamada amp Sato 1991 Nagataki et al 2000)

bull 3D (Hammer et al 2010)

bull SPH (Hungerford et al 20032005 Ellinger et al 2012)

Motivation

bull Multidimensional high resolution hydrodynamics

simulations of the propagation of supernova shock wave

+ Nucleosynthesis calculation and advections of

synthesized nuclear species

20140304 BH-mag 2014 Kumamoto Univ 29

The conditions for reproducing the observed high

velocity of 56Ni are still unclear

To clarify the key conditions for reproducing such

high velocity of 56Ni we revisit matter mixing in

aspherical core-collapse supernova explosions

Methods

20140304 BH-mag 2014 Kumamoto Univ 30

20140304 BH-mag 2014 Kumamoto Univ 31

Methods

bull 2D hydrodynamic simulation

ndash AMR hydrodynamic code (FLASH Fryxell et al 2000)

ndash Parallel computing (SR16000 in YITP)

ndash Nuclear reaction network 1H 4He 12C hellip 54Fe 56Ni (19 nuclei)

ndash Spherical point mass and self gravity

ndash Spherical coordinate effective maximum grid r (3027) x q (768)

ndash Initial computational domain 109 cm ndash stellar surface 3x1012 cm

ndash How to initiate the explosionIntroduce aspherical initial radial

velocity and inject thermal energy around FeSi surface

ndash Perturbations of presupernova origins

httpflashuchicagoedusite

20140304 BH-mag 2014 Kumamoto Univ 32

FLASH Code

bull Eulerian hydrodynamic code

ndash Piecewise Parabolic Method (PPM)

ndash Unsplit solver MHD RHD

bull AMR (Adaptive mesh refinement)

ndash Reduce numerical costs

bull Many optional units

ndash Nuclear reaction networks

(7-19 nuclei)

The FLASH code is a modular parallel multiphysics simulation code

capable of handling general compressible flow problems found in many astrophysical environment (Fryxell et al 2000)

Type Ia SN

explosion

Jordan et al 2008

20140304 BH-mag 2014 Kumamoto Univ 33

Rayleigh-Taylor (RT) instability

120571120588 ∙ 120571119901 lt 0 (Chevalier 1979)

120588 1199033 rarr accelerate

Kifonidis et al 2006

Shengtai Li amp Hui Li 2006

RT unstable condition

1205882

1205881

g

Spherical explosions + RT

instabilities have not explained

the high velocity 56Ni

if 1205881 gt 1205882 120588 1199033 rarr decelerate

20140304 BH-mag 2014 Kumamoto Univ 34

Presupernova structure and introduced

perturbations

120571120588 ∙ 120571119901 lt 0 (Chavalier 1979)

120588 1199033 rarr shock wave tend

to be decelerated

Progenitor model 6 M8

helium core (Nomoto amp Hashimoto

1988) + 103 M8 hydrogen envelope

Si C+O He H

Rayleigh-Taylor unstable

Random

Sinusoidal

Perturbations are introduced at 6times109 cm (C+OHe) 5times1010 cm (HeH)

Models

20140304 BH-mag 2014 Kumamoto Univ 35

Parametersasphericity timing of the introduction

of perturbations

1 Spherical explosion models

2 Bipolar explosion models

3 Explosion models mimicking neutrino-driven

explosion

Results of models

20140304 BH-mag 2014 Kumamoto Univ 36

Spherical explosion models

20140304 BH-mag 2014 Kumamoto Univ 37

Density distributions

Perturbations

at C+OHe

Perturbations

at HeH

Perturbations

at both

Growth factor of instability

20140304 BH-mag 2014 Kumamoto Univ 38

Growth factors at the end of

simulation time

Growth rate for incompressible fluid

Growth rate for compressible fluid

Growth factors

Based on pure 1d spherical simulation

Radial velocity distribution of elements for

spherical explosion models

20140304 BH-mag 2014 Kumamoto Univ 39

Timing of the perturbations hardly affect

the maximum velocity of 56Ni

Maximum velocity of 56Ni lt 1600 km s-1

Different asphericity of bipolar explosions

20140304 BH-mag 2014 Kumamoto Univ 40

Bipolar explosion slightly enhance the mixing

length along the polar axis but maximum velocity

of 56Ni is still the level of lt 1700 km s-1

milder asphericity stronger asphericity

Revisiting Nagataki et al 2000 (jetlike explosion)

only initial large amplitude of perturbations

20140304 BH-mag 2014 Kumamoto Univ 41

with amplitude of 30 and m = 20

Initial relatively large sale of perturbations can not survive in later phase due to KH instabilities

Mimicking the neutrino-driven explosions

20140304 BH-mag 2014 Kumamoto Univ 42

Initial radial velocity

Scheck+04

Gawryszczak+10

Mechanism of the core-collapse supernova

explosions

bull Neutrino heating

20140304 BH-mag 2014 Kumamoto Univ 43

Taken from Janka et al 2012 (PTEP 1 A309)

Bethe 1990 (Rev Mod Phys 62 801) Taken from Liebendofer et al 2001

Convections and Standing Accretion Shock

Instability (SASI)

bull Convection around PNS surface

bull Neutrino-driven convection

bull Standing Accretion Shock Instability (SASI) (Blondin et al )

ndash Acoustic-vorticity cycle

20140304 BH-mag 2014 Kumamoto Univ 44

Ledoux criterion

Ledoux criterion

Taken from Liebendofer et al 2001

20140304 BH-mag 2014 Kumamoto Univ 45

Aspherical explosion with clumpy structure in the

explosion (movie)

20140304 BH-mag 2014 Kumamoto Univ 46

Aspherical explosion with clumpy structure + RT

instability

053 s 288 s 5752 s

20140304 BH-mag 2014 Kumamoto Univ 47

Maximum 3000 km s-1

56Ni

Radial velocity distributions of the best model in

this study

bull Relatively high velocity

(3000 km s-1) of 56Ni

bull Mass of 56Ni with ~ 3000

km s-1 14 x 10-3 M8

20140304 BH-mag 2014 Kumamoto Univ 48

Summary

bull To reproduce the high velocity of 56Ni both aspherical

explosion with clumpy structure and perturbations of

presupernova origins may be necessary

bull There are still missing ingredients to explain the observed

high velocity of 56Ni in SN 1987A

bull Possible missing ingredients

ndash More realistic explosion model (eg Kifonidis et al 2006)

ndash Lager perturbations in presupernova structure (Arnett amp Meakin 2011)

ndash Long simulation time

bull Heating due to the decay of 56Co (Herant amp Benz 1991)

ndash 3D effect (Hammer et al 2010)

Possible seeds of perturbations

bull Dynamical stellar evolution calculation

bull Density fluctuations

around the composition

interfaces

20140304 BH-mag 2014 Kumamoto Univ 49

Arnett amp Meakin 2011

20140304 BH-mag 2014 Kumamoto Univ 50

3D simulations of mixing instabilities in SN

explosions

Hammer et al 2010

56Ni 56Ni

2D 3D

Entropy per baryon Red Oxygen

Blue Nickel

Green Carbon

Direct-escape lines of 44Ti from SNR 1987A

bull lines from 44Ti 679 keV and 784 keV

bull Estimated 44Ti mass (31plusmn08) x 10-4 M8

20140304 BH-mag 2014 Kumamoto Univ 51

Grebenev+12 Nature 490 373

44Ti rarr 44Sc rarr 44Ca T12 = 60 d T12 = 4 h

Asymmetries in core-collapse supernovae from

maps of radioactive 44Ti in Cas A

20140304 BH-mag 2014 Kumamoto Univ 52

Grefenstette+14 Nature 506 339

Aspherical explosion enhance 44Ti

20140304 BH-mag 2014 Kumamoto Univ 53

56Ni 4He 44Ti

Alpha-rich freeze-out enhance the production of 44Ti in the

explosive nucleosynthesis

Aspherical explosion enhance the ratio of M(44Ti)M(56Ni)

096 s after the initiation of the explosion

Toward full 3D radiative transfer

bull 爆発形状を仮定した

輻射輸送計算

ndash 形状で偏光度が異なる

ndash 元素によっても異なる

bull 3次元物質混合計算を

インプットにした輻射

輸送計算

20140304 BH-mag 2014 Kumamoto Univ 54

Tanaka et al 2012 bipolar

clumpy

爆発形状のプローブ

20140304 BH-mag 2014 Kumamoto Univ 55

3D MHD simulation of a SNR

Introduction

bull Acceleration of cosmic-rays in SNRs

ndash Up to ~ 1015 eV or more

ndash Magnetic field is key ingredient

20140304 BH-mag 2014 Kumamoto Univ 56

SN1006 (Chandra X-ray)

Amplified strong magnetic field

20140304 BH-mag 2014 Kumamoto Univ 57

Uchiyama et al 2007 Nature 4469 576

Bohm-diffusion limit

Variations of X-ray hot

spots on a 1 yr timescale

Strong amplified

magnetic field

3D MHD simulation of a SNR

20140304 BH-mag 2014 Kumamoto Univ 58

3 pc

Preliminary

20140304 BH-mag 2014 Kumamoto Univ 59

Amplified magnetic field

20121015 - 17 SNSNR12 59

~ 50 μ G

1 μ G Preliminary

20140304 BH-mag 2014 Kumamoto Univ 60

3D structure of Cas A

Delaney et al 2010

Chandra lsquos X-rays

Spitzer lsquos infrared

Green X-ray Fe-K

Red IR [Ar II]

Blue high [Ne II][Ar II] ratio

Yellow optical outer ejecta

Grey IR [Si II]

Black X-ray Si XIII

20140304 BH-mag 2014 Kumamoto Univ 61

ASTRO-H

bull New exploration X-ray

Telescope

ndash First right will be

2015 yr

ndash 10 times larger

energy resolution

httpastro-hisasjaxajpgallerysatelite02html

High resolution spectrum

of X-ray from SNRs is

expected

3D simulation of the thermal X-ray emission from young

SNRs including efficient particle acceleration

bull 3D simulation

bull Diffusive Shock Acceleration

bull Back reaction from

accelerated particle

bull Non-equilibrium ionization

bull Thermal X-ray emission

20140304 BH-mag 2014 Kumamoto Univ 62

Ferrand et al 2012

To go further than

Ferrand et al

Test 1D calculation

bull Two energy equation for ions and electrons respectively

bull Energy equilibration between ions and electrons

bull Ionization

20140304 BH-mag 2014 Kumamoto Univ 63

20140304 BH-mag 2014 Kumamoto Univ 64

Density contour

Preliminary

Emission from deferent regions

20140304 BH-mag 2014 Kumamoto Univ 65

Preliminary

Summary

bull Aspherical nature of core-collapse supernova

explosions

bull Origin of heavy elements

ndash NS merger

ndash Magnetically driven jets

bull Mixing in CCSN explosion

bull Supernova explosions to Supernova remnant

20140304 BH-mag 2014 Kumamoto Univ 66

Page 5: Masaomi ONO Kyushu University - aichi-edu.ac.jptakahasi/BHmag2014_pdf/Presen/...Method of MHD simulation 16 Magnetohydrodynamics (ideal MHD) Poisson eq. pseudo-Newtonian potential

Explosive Nucleosynthesis in Magnetohydrodynamical Jets

from Collapsars II

- Heavy-element Nucleosynthesis of s p r-processes -

Masaomi Ono1

Masa-aki Hashimoto1 Shin-ichiro Fujimoto2

Kei Kotake3 and Shoichi Yamada4

Kyushu University1 Komamoto Nat Coll Tech2

NAOJ(Fukuoka Univ)3 Waseda Univ4

20140304 BH-mag 2014 Kumamoto Univ 5

MO+2012 PTP 128 741

Origin of heavy elements

20140304 BH-mag 2014 Kumamoto Univ 6

Anderse amp Grevesse 1989

Solar system abundances

Nucleosynthesis

processes that

makes elements

heavier than iron

Neutron capture

processes

世界で一番美しい元素図鑑 (セオドアグレイ)より

Two-neutron capture processes

20140304 BH-mag 2014 Kumamoto Univ 7

bull r (rapid)-process explosive environments

bull s (slow)-process) stellar evolution

20140304 BH-mag 2014 Kumamoto Univ 8

Key physical parameters for the r-process

bull Low electron fraction Ye

bull High Entropy S prop T 3ρ

bull Short Dynamical time scale

low Ye is essential for the r-process

neutron-rich Ye lt 05

Ye ~ 01

119884119890 = 119883119894119860119894

119894

119885119894 ~ 119899119901119899119899 + 119899119901

Entropy S prop T 3ρ Hoffman et al 1997

[kBbaryon]

20140304 BH-mag 2014 Kumamoto Univ 9

What is the site of the r-process

bull Neutron star mergers (NSM)

ndash Difficult to explain the early enrichment of

r-process elements in galaxies

ndash But we should carefully investigate

bull Magnetohydrodynamical (MHD) jets

20140304 BH-mag 2014 Kumamoto Univ 10

Neutron star mergers (NSM) are the main source of

the r-process elements

Argast et al 2004

ejected r-element mass 10-3 M8

coalescence time 106 yr

NSM rate 2times10-4 yr-1

inhomogeneous galactic chemical evolution model

Inputs and method

11

Input

bull Results of stellar evolution

calculation

(Hashimoto 1995)

ndash 32 M8 He core (Mms = 70 M8)

ndash Only 30 nuclei Mms = 70 M8

n p 4He 12C 14N 1618O 20-22Ne 23Na 24-26Mg

2627Al 28-30Si 3031P 31-34S 35Cl 3638Ar 39K 40Ca

Method

bull Using time evolution of

bull ρ T

bull Convective region

bull Nuclear reaction network (464 nuclei up to Kr)

20140304 BH-mag 2014 Kumamoto Univ

Nuclear reaction network

12

Thermonuclear reaction rates

Nucleosynthesis calculation in Lagrange mesh with a relatively large nuclear reaction network (464 nuclei up to 94Kr)

Reaction rates based on experimental values and REACLIB compilation

20140304 BH-mag 2014 Kumamoto Univ

Treatment of convective region

13

bull Initial abundance

ndash Solar system abundance H rarr He 12C16O rarr 14N (CNO cycle)

bull Convective region

ndash Stellar evolution calculation

bull Criterion of convection

ndash Schwarzschild

c

A c

( )

( )

i i

n

X X m dm M

m N v dm M

Convective region one zone

He burn

rad ad rad

rad

ln

ln

d T

d P

ad

ad

ln

ln

d T

d P

20140304 BH-mag 2014 Kumamoto Univ

Mass fraction at the pre-collapse

14 20140304 BH-mag 2014 Kumamoto Univ

MHD simulations of Collapsar model

15 20140304 BH-mag 2014 Kumamoto Univ

Method of MHD simulation

16

Magnetohydrodynamics (ideal MHD)

Poisson eq

pseudo-Newtonian potential

Equation of State(EoS)

Shen et al 1998

Code ZEUS-2D

Stone amp Norman 1992

BH

Self gravity

0D

Dt

v

1( ) ( )

4

DP

Dt

vB B

D eP q

Dt

v

( )t

Bv B

2 4 G

BH BH

2

2 g

g

GM GMr

r r c

Magnetic field lines

ldquo frozen in

Fluid particle

20140304 BH-mag 2014 Kumamoto Univ

20140304 BH-mag 2014 Kumamoto Univ 17

Nucleosynthesis in the MHD jet from a

collapsar including weak s- p- and r-processes

MO+12

20140304 BH-mag 2014 Kumamoto Univ 18

r-process nucleosynthesis (movie)

MO+12

20140304 BH-mag 2014 Kumamoto Univ 19

Comparison with abundances of the solar and

metal-poor stars

bull Weak r-process

bull Primary synthesis of

Sr-Y-Zr

darr

Lighter element

primary process

(LEPP)

MO+12

Universality of the r-process (eg Sneden et al 2003)

Future collaboration with nuclear physics groups in

RIKEN

bull RIBF (beam factory)

bull Theoretical nuclear physics

group

bull Impact of uncertainties of

nuclear physics inputs

on nucleosynthesis in

astrophysical sites

20140304 BH-mag 2014 Kumamoto Univ 20

A lsquoKilonovarsquo associated with the short-duration

GRB 130603B (z = 0356)

bull Optical near-IR afterglow

ndash kilonova (1040 -1042 erg s-1)

bull r-process powered transient

(eg Li amp Paczyński 1998

Metzger et al 2010)

bull Electromagnetic counterpart

of GW

bull Robust r-process in NS merger

(Korobkin et al 2012)

bull Recent numerical study

ndash Wanajo et al 2013 (arXiv14027317)

20140304 BH-mag 2014 Kumamoto Univ 21

Tanvir et al 2013 Nature 500 547

Matter mixing in aspherical core-collapse supernovae

- A search for possible conditions for conveying 56Ni into high

velocity regions

Masaomi Ono1

Shigehiro Nagataki2 Hirotaka Ito2 Shiu-Hang Lee2 Jirong

Mao2 Masa-aki Hashimoto1 Tolstov Alexey2

Kyushu University

Astrophysical Big Bang Laboratory RIKEN

20140304 BH-mag 2014 Kumamoto Univ 22

MO+2013 ApJ 773 161

20140304 BH-mag 2014 Kumamoto Univ 23

Introduction observational evidence of mixing

in supernovae bull SN 1987A

ndash Early detection of X-rays (Dotani et al 1987)

γ-rays lines from 56Co (Matz et al 1988)

ndash Sudden development of the fine structure of Ha

(Hanuschik et al 1988)

ndash Line profiles of [Fe II]

(Spyromilo+90 Haas+90)

Fe (56Ni) is mixed into high velocity regions

56Ni rarr 56Co rarr 56Fe

20140304 BH-mag 2014 Kumamoto Univ 24

Broadened line profile of [Fe II] in SN 1987A

[Fe II] line profile (Haas et al 1990)

56Ni rarr 56Co rarr 56Fe

4000 km s-1

SN 1987A

Doppler velocity

T12 = 61 d T12 = 77 d

20140304 BH-mag 2014 Kumamoto Univ 25

Matter mixing in supernova explosions

HeH C+OHe

Synthesized 56Ni by

explosive

nucleosynthesis Mixing

56Ni is mixed up into high

velocity regions

radial velocity HeH

56Ni

Distance from the center

20140304 BH-mag 2014 Kumamoto Univ 26

What is the mechanism of the mixing

bull Fluid instabilities

ndash Rayleigh-Taylor (RT) instability

ndash Kelvin-Helmholtz (KH) instability

ndash Richtmyer-Meshkov (RM) instability

bull Aspherical supernova explosion

ndash Neutrino heating aided by SASI

(Standing Accretion Shock Instability)

ndash MHD Jets

Wongwathanarat et al 2010

Entropy per baryon

20140304 BH-mag 2014 Kumamoto Univ 27

Early previous study of hydrodynamic models of

the late time shock wave propagation

bull 2D3D hydrodynamic simulations

bull Add hoc initiation of spherical supernova explosion

bull RT mixing at OHe HeH interfaces

bull Maximum 56Ni velocity around 2000 km s-1

Arnett et al 1989 Fryxell et al 1991 Mueller et al 1991bac Hachisu et al

1990 1991 1992 1994 Herant amp Benz 1991 Herant amp Benz 1992

Hachisu et al 1992

Spherical explosion + RT instability could not explain

the observed high velocity of 56Ni

bull Recent study on mixing

ndash 2D (Kifonidis et al 2003 2006 Gawryszczak et al 2010)

20140304 BH-mag 2014 Kumamoto Univ 28

Simulations of non-spherical supernova explosions

bull Neutrino-driven explosion

(Kifonidis et al 2006 Gawryszczak et al 2010)

Solid circle 10-4 M8

Open circle 10-5 M8

Density 7days after the explosion

Maximum ~ 4000 km s-1

bull Jet like explosions (Yamada amp Sato 1991 Nagataki et al 2000)

bull 3D (Hammer et al 2010)

bull SPH (Hungerford et al 20032005 Ellinger et al 2012)

Motivation

bull Multidimensional high resolution hydrodynamics

simulations of the propagation of supernova shock wave

+ Nucleosynthesis calculation and advections of

synthesized nuclear species

20140304 BH-mag 2014 Kumamoto Univ 29

The conditions for reproducing the observed high

velocity of 56Ni are still unclear

To clarify the key conditions for reproducing such

high velocity of 56Ni we revisit matter mixing in

aspherical core-collapse supernova explosions

Methods

20140304 BH-mag 2014 Kumamoto Univ 30

20140304 BH-mag 2014 Kumamoto Univ 31

Methods

bull 2D hydrodynamic simulation

ndash AMR hydrodynamic code (FLASH Fryxell et al 2000)

ndash Parallel computing (SR16000 in YITP)

ndash Nuclear reaction network 1H 4He 12C hellip 54Fe 56Ni (19 nuclei)

ndash Spherical point mass and self gravity

ndash Spherical coordinate effective maximum grid r (3027) x q (768)

ndash Initial computational domain 109 cm ndash stellar surface 3x1012 cm

ndash How to initiate the explosionIntroduce aspherical initial radial

velocity and inject thermal energy around FeSi surface

ndash Perturbations of presupernova origins

httpflashuchicagoedusite

20140304 BH-mag 2014 Kumamoto Univ 32

FLASH Code

bull Eulerian hydrodynamic code

ndash Piecewise Parabolic Method (PPM)

ndash Unsplit solver MHD RHD

bull AMR (Adaptive mesh refinement)

ndash Reduce numerical costs

bull Many optional units

ndash Nuclear reaction networks

(7-19 nuclei)

The FLASH code is a modular parallel multiphysics simulation code

capable of handling general compressible flow problems found in many astrophysical environment (Fryxell et al 2000)

Type Ia SN

explosion

Jordan et al 2008

20140304 BH-mag 2014 Kumamoto Univ 33

Rayleigh-Taylor (RT) instability

120571120588 ∙ 120571119901 lt 0 (Chevalier 1979)

120588 1199033 rarr accelerate

Kifonidis et al 2006

Shengtai Li amp Hui Li 2006

RT unstable condition

1205882

1205881

g

Spherical explosions + RT

instabilities have not explained

the high velocity 56Ni

if 1205881 gt 1205882 120588 1199033 rarr decelerate

20140304 BH-mag 2014 Kumamoto Univ 34

Presupernova structure and introduced

perturbations

120571120588 ∙ 120571119901 lt 0 (Chavalier 1979)

120588 1199033 rarr shock wave tend

to be decelerated

Progenitor model 6 M8

helium core (Nomoto amp Hashimoto

1988) + 103 M8 hydrogen envelope

Si C+O He H

Rayleigh-Taylor unstable

Random

Sinusoidal

Perturbations are introduced at 6times109 cm (C+OHe) 5times1010 cm (HeH)

Models

20140304 BH-mag 2014 Kumamoto Univ 35

Parametersasphericity timing of the introduction

of perturbations

1 Spherical explosion models

2 Bipolar explosion models

3 Explosion models mimicking neutrino-driven

explosion

Results of models

20140304 BH-mag 2014 Kumamoto Univ 36

Spherical explosion models

20140304 BH-mag 2014 Kumamoto Univ 37

Density distributions

Perturbations

at C+OHe

Perturbations

at HeH

Perturbations

at both

Growth factor of instability

20140304 BH-mag 2014 Kumamoto Univ 38

Growth factors at the end of

simulation time

Growth rate for incompressible fluid

Growth rate for compressible fluid

Growth factors

Based on pure 1d spherical simulation

Radial velocity distribution of elements for

spherical explosion models

20140304 BH-mag 2014 Kumamoto Univ 39

Timing of the perturbations hardly affect

the maximum velocity of 56Ni

Maximum velocity of 56Ni lt 1600 km s-1

Different asphericity of bipolar explosions

20140304 BH-mag 2014 Kumamoto Univ 40

Bipolar explosion slightly enhance the mixing

length along the polar axis but maximum velocity

of 56Ni is still the level of lt 1700 km s-1

milder asphericity stronger asphericity

Revisiting Nagataki et al 2000 (jetlike explosion)

only initial large amplitude of perturbations

20140304 BH-mag 2014 Kumamoto Univ 41

with amplitude of 30 and m = 20

Initial relatively large sale of perturbations can not survive in later phase due to KH instabilities

Mimicking the neutrino-driven explosions

20140304 BH-mag 2014 Kumamoto Univ 42

Initial radial velocity

Scheck+04

Gawryszczak+10

Mechanism of the core-collapse supernova

explosions

bull Neutrino heating

20140304 BH-mag 2014 Kumamoto Univ 43

Taken from Janka et al 2012 (PTEP 1 A309)

Bethe 1990 (Rev Mod Phys 62 801) Taken from Liebendofer et al 2001

Convections and Standing Accretion Shock

Instability (SASI)

bull Convection around PNS surface

bull Neutrino-driven convection

bull Standing Accretion Shock Instability (SASI) (Blondin et al )

ndash Acoustic-vorticity cycle

20140304 BH-mag 2014 Kumamoto Univ 44

Ledoux criterion

Ledoux criterion

Taken from Liebendofer et al 2001

20140304 BH-mag 2014 Kumamoto Univ 45

Aspherical explosion with clumpy structure in the

explosion (movie)

20140304 BH-mag 2014 Kumamoto Univ 46

Aspherical explosion with clumpy structure + RT

instability

053 s 288 s 5752 s

20140304 BH-mag 2014 Kumamoto Univ 47

Maximum 3000 km s-1

56Ni

Radial velocity distributions of the best model in

this study

bull Relatively high velocity

(3000 km s-1) of 56Ni

bull Mass of 56Ni with ~ 3000

km s-1 14 x 10-3 M8

20140304 BH-mag 2014 Kumamoto Univ 48

Summary

bull To reproduce the high velocity of 56Ni both aspherical

explosion with clumpy structure and perturbations of

presupernova origins may be necessary

bull There are still missing ingredients to explain the observed

high velocity of 56Ni in SN 1987A

bull Possible missing ingredients

ndash More realistic explosion model (eg Kifonidis et al 2006)

ndash Lager perturbations in presupernova structure (Arnett amp Meakin 2011)

ndash Long simulation time

bull Heating due to the decay of 56Co (Herant amp Benz 1991)

ndash 3D effect (Hammer et al 2010)

Possible seeds of perturbations

bull Dynamical stellar evolution calculation

bull Density fluctuations

around the composition

interfaces

20140304 BH-mag 2014 Kumamoto Univ 49

Arnett amp Meakin 2011

20140304 BH-mag 2014 Kumamoto Univ 50

3D simulations of mixing instabilities in SN

explosions

Hammer et al 2010

56Ni 56Ni

2D 3D

Entropy per baryon Red Oxygen

Blue Nickel

Green Carbon

Direct-escape lines of 44Ti from SNR 1987A

bull lines from 44Ti 679 keV and 784 keV

bull Estimated 44Ti mass (31plusmn08) x 10-4 M8

20140304 BH-mag 2014 Kumamoto Univ 51

Grebenev+12 Nature 490 373

44Ti rarr 44Sc rarr 44Ca T12 = 60 d T12 = 4 h

Asymmetries in core-collapse supernovae from

maps of radioactive 44Ti in Cas A

20140304 BH-mag 2014 Kumamoto Univ 52

Grefenstette+14 Nature 506 339

Aspherical explosion enhance 44Ti

20140304 BH-mag 2014 Kumamoto Univ 53

56Ni 4He 44Ti

Alpha-rich freeze-out enhance the production of 44Ti in the

explosive nucleosynthesis

Aspherical explosion enhance the ratio of M(44Ti)M(56Ni)

096 s after the initiation of the explosion

Toward full 3D radiative transfer

bull 爆発形状を仮定した

輻射輸送計算

ndash 形状で偏光度が異なる

ndash 元素によっても異なる

bull 3次元物質混合計算を

インプットにした輻射

輸送計算

20140304 BH-mag 2014 Kumamoto Univ 54

Tanaka et al 2012 bipolar

clumpy

爆発形状のプローブ

20140304 BH-mag 2014 Kumamoto Univ 55

3D MHD simulation of a SNR

Introduction

bull Acceleration of cosmic-rays in SNRs

ndash Up to ~ 1015 eV or more

ndash Magnetic field is key ingredient

20140304 BH-mag 2014 Kumamoto Univ 56

SN1006 (Chandra X-ray)

Amplified strong magnetic field

20140304 BH-mag 2014 Kumamoto Univ 57

Uchiyama et al 2007 Nature 4469 576

Bohm-diffusion limit

Variations of X-ray hot

spots on a 1 yr timescale

Strong amplified

magnetic field

3D MHD simulation of a SNR

20140304 BH-mag 2014 Kumamoto Univ 58

3 pc

Preliminary

20140304 BH-mag 2014 Kumamoto Univ 59

Amplified magnetic field

20121015 - 17 SNSNR12 59

~ 50 μ G

1 μ G Preliminary

20140304 BH-mag 2014 Kumamoto Univ 60

3D structure of Cas A

Delaney et al 2010

Chandra lsquos X-rays

Spitzer lsquos infrared

Green X-ray Fe-K

Red IR [Ar II]

Blue high [Ne II][Ar II] ratio

Yellow optical outer ejecta

Grey IR [Si II]

Black X-ray Si XIII

20140304 BH-mag 2014 Kumamoto Univ 61

ASTRO-H

bull New exploration X-ray

Telescope

ndash First right will be

2015 yr

ndash 10 times larger

energy resolution

httpastro-hisasjaxajpgallerysatelite02html

High resolution spectrum

of X-ray from SNRs is

expected

3D simulation of the thermal X-ray emission from young

SNRs including efficient particle acceleration

bull 3D simulation

bull Diffusive Shock Acceleration

bull Back reaction from

accelerated particle

bull Non-equilibrium ionization

bull Thermal X-ray emission

20140304 BH-mag 2014 Kumamoto Univ 62

Ferrand et al 2012

To go further than

Ferrand et al

Test 1D calculation

bull Two energy equation for ions and electrons respectively

bull Energy equilibration between ions and electrons

bull Ionization

20140304 BH-mag 2014 Kumamoto Univ 63

20140304 BH-mag 2014 Kumamoto Univ 64

Density contour

Preliminary

Emission from deferent regions

20140304 BH-mag 2014 Kumamoto Univ 65

Preliminary

Summary

bull Aspherical nature of core-collapse supernova

explosions

bull Origin of heavy elements

ndash NS merger

ndash Magnetically driven jets

bull Mixing in CCSN explosion

bull Supernova explosions to Supernova remnant

20140304 BH-mag 2014 Kumamoto Univ 66

Page 6: Masaomi ONO Kyushu University - aichi-edu.ac.jptakahasi/BHmag2014_pdf/Presen/...Method of MHD simulation 16 Magnetohydrodynamics (ideal MHD) Poisson eq. pseudo-Newtonian potential

Origin of heavy elements

20140304 BH-mag 2014 Kumamoto Univ 6

Anderse amp Grevesse 1989

Solar system abundances

Nucleosynthesis

processes that

makes elements

heavier than iron

Neutron capture

processes

世界で一番美しい元素図鑑 (セオドアグレイ)より

Two-neutron capture processes

20140304 BH-mag 2014 Kumamoto Univ 7

bull r (rapid)-process explosive environments

bull s (slow)-process) stellar evolution

20140304 BH-mag 2014 Kumamoto Univ 8

Key physical parameters for the r-process

bull Low electron fraction Ye

bull High Entropy S prop T 3ρ

bull Short Dynamical time scale

low Ye is essential for the r-process

neutron-rich Ye lt 05

Ye ~ 01

119884119890 = 119883119894119860119894

119894

119885119894 ~ 119899119901119899119899 + 119899119901

Entropy S prop T 3ρ Hoffman et al 1997

[kBbaryon]

20140304 BH-mag 2014 Kumamoto Univ 9

What is the site of the r-process

bull Neutron star mergers (NSM)

ndash Difficult to explain the early enrichment of

r-process elements in galaxies

ndash But we should carefully investigate

bull Magnetohydrodynamical (MHD) jets

20140304 BH-mag 2014 Kumamoto Univ 10

Neutron star mergers (NSM) are the main source of

the r-process elements

Argast et al 2004

ejected r-element mass 10-3 M8

coalescence time 106 yr

NSM rate 2times10-4 yr-1

inhomogeneous galactic chemical evolution model

Inputs and method

11

Input

bull Results of stellar evolution

calculation

(Hashimoto 1995)

ndash 32 M8 He core (Mms = 70 M8)

ndash Only 30 nuclei Mms = 70 M8

n p 4He 12C 14N 1618O 20-22Ne 23Na 24-26Mg

2627Al 28-30Si 3031P 31-34S 35Cl 3638Ar 39K 40Ca

Method

bull Using time evolution of

bull ρ T

bull Convective region

bull Nuclear reaction network (464 nuclei up to Kr)

20140304 BH-mag 2014 Kumamoto Univ

Nuclear reaction network

12

Thermonuclear reaction rates

Nucleosynthesis calculation in Lagrange mesh with a relatively large nuclear reaction network (464 nuclei up to 94Kr)

Reaction rates based on experimental values and REACLIB compilation

20140304 BH-mag 2014 Kumamoto Univ

Treatment of convective region

13

bull Initial abundance

ndash Solar system abundance H rarr He 12C16O rarr 14N (CNO cycle)

bull Convective region

ndash Stellar evolution calculation

bull Criterion of convection

ndash Schwarzschild

c

A c

( )

( )

i i

n

X X m dm M

m N v dm M

Convective region one zone

He burn

rad ad rad

rad

ln

ln

d T

d P

ad

ad

ln

ln

d T

d P

20140304 BH-mag 2014 Kumamoto Univ

Mass fraction at the pre-collapse

14 20140304 BH-mag 2014 Kumamoto Univ

MHD simulations of Collapsar model

15 20140304 BH-mag 2014 Kumamoto Univ

Method of MHD simulation

16

Magnetohydrodynamics (ideal MHD)

Poisson eq

pseudo-Newtonian potential

Equation of State(EoS)

Shen et al 1998

Code ZEUS-2D

Stone amp Norman 1992

BH

Self gravity

0D

Dt

v

1( ) ( )

4

DP

Dt

vB B

D eP q

Dt

v

( )t

Bv B

2 4 G

BH BH

2

2 g

g

GM GMr

r r c

Magnetic field lines

ldquo frozen in

Fluid particle

20140304 BH-mag 2014 Kumamoto Univ

20140304 BH-mag 2014 Kumamoto Univ 17

Nucleosynthesis in the MHD jet from a

collapsar including weak s- p- and r-processes

MO+12

20140304 BH-mag 2014 Kumamoto Univ 18

r-process nucleosynthesis (movie)

MO+12

20140304 BH-mag 2014 Kumamoto Univ 19

Comparison with abundances of the solar and

metal-poor stars

bull Weak r-process

bull Primary synthesis of

Sr-Y-Zr

darr

Lighter element

primary process

(LEPP)

MO+12

Universality of the r-process (eg Sneden et al 2003)

Future collaboration with nuclear physics groups in

RIKEN

bull RIBF (beam factory)

bull Theoretical nuclear physics

group

bull Impact of uncertainties of

nuclear physics inputs

on nucleosynthesis in

astrophysical sites

20140304 BH-mag 2014 Kumamoto Univ 20

A lsquoKilonovarsquo associated with the short-duration

GRB 130603B (z = 0356)

bull Optical near-IR afterglow

ndash kilonova (1040 -1042 erg s-1)

bull r-process powered transient

(eg Li amp Paczyński 1998

Metzger et al 2010)

bull Electromagnetic counterpart

of GW

bull Robust r-process in NS merger

(Korobkin et al 2012)

bull Recent numerical study

ndash Wanajo et al 2013 (arXiv14027317)

20140304 BH-mag 2014 Kumamoto Univ 21

Tanvir et al 2013 Nature 500 547

Matter mixing in aspherical core-collapse supernovae

- A search for possible conditions for conveying 56Ni into high

velocity regions

Masaomi Ono1

Shigehiro Nagataki2 Hirotaka Ito2 Shiu-Hang Lee2 Jirong

Mao2 Masa-aki Hashimoto1 Tolstov Alexey2

Kyushu University

Astrophysical Big Bang Laboratory RIKEN

20140304 BH-mag 2014 Kumamoto Univ 22

MO+2013 ApJ 773 161

20140304 BH-mag 2014 Kumamoto Univ 23

Introduction observational evidence of mixing

in supernovae bull SN 1987A

ndash Early detection of X-rays (Dotani et al 1987)

γ-rays lines from 56Co (Matz et al 1988)

ndash Sudden development of the fine structure of Ha

(Hanuschik et al 1988)

ndash Line profiles of [Fe II]

(Spyromilo+90 Haas+90)

Fe (56Ni) is mixed into high velocity regions

56Ni rarr 56Co rarr 56Fe

20140304 BH-mag 2014 Kumamoto Univ 24

Broadened line profile of [Fe II] in SN 1987A

[Fe II] line profile (Haas et al 1990)

56Ni rarr 56Co rarr 56Fe

4000 km s-1

SN 1987A

Doppler velocity

T12 = 61 d T12 = 77 d

20140304 BH-mag 2014 Kumamoto Univ 25

Matter mixing in supernova explosions

HeH C+OHe

Synthesized 56Ni by

explosive

nucleosynthesis Mixing

56Ni is mixed up into high

velocity regions

radial velocity HeH

56Ni

Distance from the center

20140304 BH-mag 2014 Kumamoto Univ 26

What is the mechanism of the mixing

bull Fluid instabilities

ndash Rayleigh-Taylor (RT) instability

ndash Kelvin-Helmholtz (KH) instability

ndash Richtmyer-Meshkov (RM) instability

bull Aspherical supernova explosion

ndash Neutrino heating aided by SASI

(Standing Accretion Shock Instability)

ndash MHD Jets

Wongwathanarat et al 2010

Entropy per baryon

20140304 BH-mag 2014 Kumamoto Univ 27

Early previous study of hydrodynamic models of

the late time shock wave propagation

bull 2D3D hydrodynamic simulations

bull Add hoc initiation of spherical supernova explosion

bull RT mixing at OHe HeH interfaces

bull Maximum 56Ni velocity around 2000 km s-1

Arnett et al 1989 Fryxell et al 1991 Mueller et al 1991bac Hachisu et al

1990 1991 1992 1994 Herant amp Benz 1991 Herant amp Benz 1992

Hachisu et al 1992

Spherical explosion + RT instability could not explain

the observed high velocity of 56Ni

bull Recent study on mixing

ndash 2D (Kifonidis et al 2003 2006 Gawryszczak et al 2010)

20140304 BH-mag 2014 Kumamoto Univ 28

Simulations of non-spherical supernova explosions

bull Neutrino-driven explosion

(Kifonidis et al 2006 Gawryszczak et al 2010)

Solid circle 10-4 M8

Open circle 10-5 M8

Density 7days after the explosion

Maximum ~ 4000 km s-1

bull Jet like explosions (Yamada amp Sato 1991 Nagataki et al 2000)

bull 3D (Hammer et al 2010)

bull SPH (Hungerford et al 20032005 Ellinger et al 2012)

Motivation

bull Multidimensional high resolution hydrodynamics

simulations of the propagation of supernova shock wave

+ Nucleosynthesis calculation and advections of

synthesized nuclear species

20140304 BH-mag 2014 Kumamoto Univ 29

The conditions for reproducing the observed high

velocity of 56Ni are still unclear

To clarify the key conditions for reproducing such

high velocity of 56Ni we revisit matter mixing in

aspherical core-collapse supernova explosions

Methods

20140304 BH-mag 2014 Kumamoto Univ 30

20140304 BH-mag 2014 Kumamoto Univ 31

Methods

bull 2D hydrodynamic simulation

ndash AMR hydrodynamic code (FLASH Fryxell et al 2000)

ndash Parallel computing (SR16000 in YITP)

ndash Nuclear reaction network 1H 4He 12C hellip 54Fe 56Ni (19 nuclei)

ndash Spherical point mass and self gravity

ndash Spherical coordinate effective maximum grid r (3027) x q (768)

ndash Initial computational domain 109 cm ndash stellar surface 3x1012 cm

ndash How to initiate the explosionIntroduce aspherical initial radial

velocity and inject thermal energy around FeSi surface

ndash Perturbations of presupernova origins

httpflashuchicagoedusite

20140304 BH-mag 2014 Kumamoto Univ 32

FLASH Code

bull Eulerian hydrodynamic code

ndash Piecewise Parabolic Method (PPM)

ndash Unsplit solver MHD RHD

bull AMR (Adaptive mesh refinement)

ndash Reduce numerical costs

bull Many optional units

ndash Nuclear reaction networks

(7-19 nuclei)

The FLASH code is a modular parallel multiphysics simulation code

capable of handling general compressible flow problems found in many astrophysical environment (Fryxell et al 2000)

Type Ia SN

explosion

Jordan et al 2008

20140304 BH-mag 2014 Kumamoto Univ 33

Rayleigh-Taylor (RT) instability

120571120588 ∙ 120571119901 lt 0 (Chevalier 1979)

120588 1199033 rarr accelerate

Kifonidis et al 2006

Shengtai Li amp Hui Li 2006

RT unstable condition

1205882

1205881

g

Spherical explosions + RT

instabilities have not explained

the high velocity 56Ni

if 1205881 gt 1205882 120588 1199033 rarr decelerate

20140304 BH-mag 2014 Kumamoto Univ 34

Presupernova structure and introduced

perturbations

120571120588 ∙ 120571119901 lt 0 (Chavalier 1979)

120588 1199033 rarr shock wave tend

to be decelerated

Progenitor model 6 M8

helium core (Nomoto amp Hashimoto

1988) + 103 M8 hydrogen envelope

Si C+O He H

Rayleigh-Taylor unstable

Random

Sinusoidal

Perturbations are introduced at 6times109 cm (C+OHe) 5times1010 cm (HeH)

Models

20140304 BH-mag 2014 Kumamoto Univ 35

Parametersasphericity timing of the introduction

of perturbations

1 Spherical explosion models

2 Bipolar explosion models

3 Explosion models mimicking neutrino-driven

explosion

Results of models

20140304 BH-mag 2014 Kumamoto Univ 36

Spherical explosion models

20140304 BH-mag 2014 Kumamoto Univ 37

Density distributions

Perturbations

at C+OHe

Perturbations

at HeH

Perturbations

at both

Growth factor of instability

20140304 BH-mag 2014 Kumamoto Univ 38

Growth factors at the end of

simulation time

Growth rate for incompressible fluid

Growth rate for compressible fluid

Growth factors

Based on pure 1d spherical simulation

Radial velocity distribution of elements for

spherical explosion models

20140304 BH-mag 2014 Kumamoto Univ 39

Timing of the perturbations hardly affect

the maximum velocity of 56Ni

Maximum velocity of 56Ni lt 1600 km s-1

Different asphericity of bipolar explosions

20140304 BH-mag 2014 Kumamoto Univ 40

Bipolar explosion slightly enhance the mixing

length along the polar axis but maximum velocity

of 56Ni is still the level of lt 1700 km s-1

milder asphericity stronger asphericity

Revisiting Nagataki et al 2000 (jetlike explosion)

only initial large amplitude of perturbations

20140304 BH-mag 2014 Kumamoto Univ 41

with amplitude of 30 and m = 20

Initial relatively large sale of perturbations can not survive in later phase due to KH instabilities

Mimicking the neutrino-driven explosions

20140304 BH-mag 2014 Kumamoto Univ 42

Initial radial velocity

Scheck+04

Gawryszczak+10

Mechanism of the core-collapse supernova

explosions

bull Neutrino heating

20140304 BH-mag 2014 Kumamoto Univ 43

Taken from Janka et al 2012 (PTEP 1 A309)

Bethe 1990 (Rev Mod Phys 62 801) Taken from Liebendofer et al 2001

Convections and Standing Accretion Shock

Instability (SASI)

bull Convection around PNS surface

bull Neutrino-driven convection

bull Standing Accretion Shock Instability (SASI) (Blondin et al )

ndash Acoustic-vorticity cycle

20140304 BH-mag 2014 Kumamoto Univ 44

Ledoux criterion

Ledoux criterion

Taken from Liebendofer et al 2001

20140304 BH-mag 2014 Kumamoto Univ 45

Aspherical explosion with clumpy structure in the

explosion (movie)

20140304 BH-mag 2014 Kumamoto Univ 46

Aspherical explosion with clumpy structure + RT

instability

053 s 288 s 5752 s

20140304 BH-mag 2014 Kumamoto Univ 47

Maximum 3000 km s-1

56Ni

Radial velocity distributions of the best model in

this study

bull Relatively high velocity

(3000 km s-1) of 56Ni

bull Mass of 56Ni with ~ 3000

km s-1 14 x 10-3 M8

20140304 BH-mag 2014 Kumamoto Univ 48

Summary

bull To reproduce the high velocity of 56Ni both aspherical

explosion with clumpy structure and perturbations of

presupernova origins may be necessary

bull There are still missing ingredients to explain the observed

high velocity of 56Ni in SN 1987A

bull Possible missing ingredients

ndash More realistic explosion model (eg Kifonidis et al 2006)

ndash Lager perturbations in presupernova structure (Arnett amp Meakin 2011)

ndash Long simulation time

bull Heating due to the decay of 56Co (Herant amp Benz 1991)

ndash 3D effect (Hammer et al 2010)

Possible seeds of perturbations

bull Dynamical stellar evolution calculation

bull Density fluctuations

around the composition

interfaces

20140304 BH-mag 2014 Kumamoto Univ 49

Arnett amp Meakin 2011

20140304 BH-mag 2014 Kumamoto Univ 50

3D simulations of mixing instabilities in SN

explosions

Hammer et al 2010

56Ni 56Ni

2D 3D

Entropy per baryon Red Oxygen

Blue Nickel

Green Carbon

Direct-escape lines of 44Ti from SNR 1987A

bull lines from 44Ti 679 keV and 784 keV

bull Estimated 44Ti mass (31plusmn08) x 10-4 M8

20140304 BH-mag 2014 Kumamoto Univ 51

Grebenev+12 Nature 490 373

44Ti rarr 44Sc rarr 44Ca T12 = 60 d T12 = 4 h

Asymmetries in core-collapse supernovae from

maps of radioactive 44Ti in Cas A

20140304 BH-mag 2014 Kumamoto Univ 52

Grefenstette+14 Nature 506 339

Aspherical explosion enhance 44Ti

20140304 BH-mag 2014 Kumamoto Univ 53

56Ni 4He 44Ti

Alpha-rich freeze-out enhance the production of 44Ti in the

explosive nucleosynthesis

Aspherical explosion enhance the ratio of M(44Ti)M(56Ni)

096 s after the initiation of the explosion

Toward full 3D radiative transfer

bull 爆発形状を仮定した

輻射輸送計算

ndash 形状で偏光度が異なる

ndash 元素によっても異なる

bull 3次元物質混合計算を

インプットにした輻射

輸送計算

20140304 BH-mag 2014 Kumamoto Univ 54

Tanaka et al 2012 bipolar

clumpy

爆発形状のプローブ

20140304 BH-mag 2014 Kumamoto Univ 55

3D MHD simulation of a SNR

Introduction

bull Acceleration of cosmic-rays in SNRs

ndash Up to ~ 1015 eV or more

ndash Magnetic field is key ingredient

20140304 BH-mag 2014 Kumamoto Univ 56

SN1006 (Chandra X-ray)

Amplified strong magnetic field

20140304 BH-mag 2014 Kumamoto Univ 57

Uchiyama et al 2007 Nature 4469 576

Bohm-diffusion limit

Variations of X-ray hot

spots on a 1 yr timescale

Strong amplified

magnetic field

3D MHD simulation of a SNR

20140304 BH-mag 2014 Kumamoto Univ 58

3 pc

Preliminary

20140304 BH-mag 2014 Kumamoto Univ 59

Amplified magnetic field

20121015 - 17 SNSNR12 59

~ 50 μ G

1 μ G Preliminary

20140304 BH-mag 2014 Kumamoto Univ 60

3D structure of Cas A

Delaney et al 2010

Chandra lsquos X-rays

Spitzer lsquos infrared

Green X-ray Fe-K

Red IR [Ar II]

Blue high [Ne II][Ar II] ratio

Yellow optical outer ejecta

Grey IR [Si II]

Black X-ray Si XIII

20140304 BH-mag 2014 Kumamoto Univ 61

ASTRO-H

bull New exploration X-ray

Telescope

ndash First right will be

2015 yr

ndash 10 times larger

energy resolution

httpastro-hisasjaxajpgallerysatelite02html

High resolution spectrum

of X-ray from SNRs is

expected

3D simulation of the thermal X-ray emission from young

SNRs including efficient particle acceleration

bull 3D simulation

bull Diffusive Shock Acceleration

bull Back reaction from

accelerated particle

bull Non-equilibrium ionization

bull Thermal X-ray emission

20140304 BH-mag 2014 Kumamoto Univ 62

Ferrand et al 2012

To go further than

Ferrand et al

Test 1D calculation

bull Two energy equation for ions and electrons respectively

bull Energy equilibration between ions and electrons

bull Ionization

20140304 BH-mag 2014 Kumamoto Univ 63

20140304 BH-mag 2014 Kumamoto Univ 64

Density contour

Preliminary

Emission from deferent regions

20140304 BH-mag 2014 Kumamoto Univ 65

Preliminary

Summary

bull Aspherical nature of core-collapse supernova

explosions

bull Origin of heavy elements

ndash NS merger

ndash Magnetically driven jets

bull Mixing in CCSN explosion

bull Supernova explosions to Supernova remnant

20140304 BH-mag 2014 Kumamoto Univ 66

Page 7: Masaomi ONO Kyushu University - aichi-edu.ac.jptakahasi/BHmag2014_pdf/Presen/...Method of MHD simulation 16 Magnetohydrodynamics (ideal MHD) Poisson eq. pseudo-Newtonian potential

Two-neutron capture processes

20140304 BH-mag 2014 Kumamoto Univ 7

bull r (rapid)-process explosive environments

bull s (slow)-process) stellar evolution

20140304 BH-mag 2014 Kumamoto Univ 8

Key physical parameters for the r-process

bull Low electron fraction Ye

bull High Entropy S prop T 3ρ

bull Short Dynamical time scale

low Ye is essential for the r-process

neutron-rich Ye lt 05

Ye ~ 01

119884119890 = 119883119894119860119894

119894

119885119894 ~ 119899119901119899119899 + 119899119901

Entropy S prop T 3ρ Hoffman et al 1997

[kBbaryon]

20140304 BH-mag 2014 Kumamoto Univ 9

What is the site of the r-process

bull Neutron star mergers (NSM)

ndash Difficult to explain the early enrichment of

r-process elements in galaxies

ndash But we should carefully investigate

bull Magnetohydrodynamical (MHD) jets

20140304 BH-mag 2014 Kumamoto Univ 10

Neutron star mergers (NSM) are the main source of

the r-process elements

Argast et al 2004

ejected r-element mass 10-3 M8

coalescence time 106 yr

NSM rate 2times10-4 yr-1

inhomogeneous galactic chemical evolution model

Inputs and method

11

Input

bull Results of stellar evolution

calculation

(Hashimoto 1995)

ndash 32 M8 He core (Mms = 70 M8)

ndash Only 30 nuclei Mms = 70 M8

n p 4He 12C 14N 1618O 20-22Ne 23Na 24-26Mg

2627Al 28-30Si 3031P 31-34S 35Cl 3638Ar 39K 40Ca

Method

bull Using time evolution of

bull ρ T

bull Convective region

bull Nuclear reaction network (464 nuclei up to Kr)

20140304 BH-mag 2014 Kumamoto Univ

Nuclear reaction network

12

Thermonuclear reaction rates

Nucleosynthesis calculation in Lagrange mesh with a relatively large nuclear reaction network (464 nuclei up to 94Kr)

Reaction rates based on experimental values and REACLIB compilation

20140304 BH-mag 2014 Kumamoto Univ

Treatment of convective region

13

bull Initial abundance

ndash Solar system abundance H rarr He 12C16O rarr 14N (CNO cycle)

bull Convective region

ndash Stellar evolution calculation

bull Criterion of convection

ndash Schwarzschild

c

A c

( )

( )

i i

n

X X m dm M

m N v dm M

Convective region one zone

He burn

rad ad rad

rad

ln

ln

d T

d P

ad

ad

ln

ln

d T

d P

20140304 BH-mag 2014 Kumamoto Univ

Mass fraction at the pre-collapse

14 20140304 BH-mag 2014 Kumamoto Univ

MHD simulations of Collapsar model

15 20140304 BH-mag 2014 Kumamoto Univ

Method of MHD simulation

16

Magnetohydrodynamics (ideal MHD)

Poisson eq

pseudo-Newtonian potential

Equation of State(EoS)

Shen et al 1998

Code ZEUS-2D

Stone amp Norman 1992

BH

Self gravity

0D

Dt

v

1( ) ( )

4

DP

Dt

vB B

D eP q

Dt

v

( )t

Bv B

2 4 G

BH BH

2

2 g

g

GM GMr

r r c

Magnetic field lines

ldquo frozen in

Fluid particle

20140304 BH-mag 2014 Kumamoto Univ

20140304 BH-mag 2014 Kumamoto Univ 17

Nucleosynthesis in the MHD jet from a

collapsar including weak s- p- and r-processes

MO+12

20140304 BH-mag 2014 Kumamoto Univ 18

r-process nucleosynthesis (movie)

MO+12

20140304 BH-mag 2014 Kumamoto Univ 19

Comparison with abundances of the solar and

metal-poor stars

bull Weak r-process

bull Primary synthesis of

Sr-Y-Zr

darr

Lighter element

primary process

(LEPP)

MO+12

Universality of the r-process (eg Sneden et al 2003)

Future collaboration with nuclear physics groups in

RIKEN

bull RIBF (beam factory)

bull Theoretical nuclear physics

group

bull Impact of uncertainties of

nuclear physics inputs

on nucleosynthesis in

astrophysical sites

20140304 BH-mag 2014 Kumamoto Univ 20

A lsquoKilonovarsquo associated with the short-duration

GRB 130603B (z = 0356)

bull Optical near-IR afterglow

ndash kilonova (1040 -1042 erg s-1)

bull r-process powered transient

(eg Li amp Paczyński 1998

Metzger et al 2010)

bull Electromagnetic counterpart

of GW

bull Robust r-process in NS merger

(Korobkin et al 2012)

bull Recent numerical study

ndash Wanajo et al 2013 (arXiv14027317)

20140304 BH-mag 2014 Kumamoto Univ 21

Tanvir et al 2013 Nature 500 547

Matter mixing in aspherical core-collapse supernovae

- A search for possible conditions for conveying 56Ni into high

velocity regions

Masaomi Ono1

Shigehiro Nagataki2 Hirotaka Ito2 Shiu-Hang Lee2 Jirong

Mao2 Masa-aki Hashimoto1 Tolstov Alexey2

Kyushu University

Astrophysical Big Bang Laboratory RIKEN

20140304 BH-mag 2014 Kumamoto Univ 22

MO+2013 ApJ 773 161

20140304 BH-mag 2014 Kumamoto Univ 23

Introduction observational evidence of mixing

in supernovae bull SN 1987A

ndash Early detection of X-rays (Dotani et al 1987)

γ-rays lines from 56Co (Matz et al 1988)

ndash Sudden development of the fine structure of Ha

(Hanuschik et al 1988)

ndash Line profiles of [Fe II]

(Spyromilo+90 Haas+90)

Fe (56Ni) is mixed into high velocity regions

56Ni rarr 56Co rarr 56Fe

20140304 BH-mag 2014 Kumamoto Univ 24

Broadened line profile of [Fe II] in SN 1987A

[Fe II] line profile (Haas et al 1990)

56Ni rarr 56Co rarr 56Fe

4000 km s-1

SN 1987A

Doppler velocity

T12 = 61 d T12 = 77 d

20140304 BH-mag 2014 Kumamoto Univ 25

Matter mixing in supernova explosions

HeH C+OHe

Synthesized 56Ni by

explosive

nucleosynthesis Mixing

56Ni is mixed up into high

velocity regions

radial velocity HeH

56Ni

Distance from the center

20140304 BH-mag 2014 Kumamoto Univ 26

What is the mechanism of the mixing

bull Fluid instabilities

ndash Rayleigh-Taylor (RT) instability

ndash Kelvin-Helmholtz (KH) instability

ndash Richtmyer-Meshkov (RM) instability

bull Aspherical supernova explosion

ndash Neutrino heating aided by SASI

(Standing Accretion Shock Instability)

ndash MHD Jets

Wongwathanarat et al 2010

Entropy per baryon

20140304 BH-mag 2014 Kumamoto Univ 27

Early previous study of hydrodynamic models of

the late time shock wave propagation

bull 2D3D hydrodynamic simulations

bull Add hoc initiation of spherical supernova explosion

bull RT mixing at OHe HeH interfaces

bull Maximum 56Ni velocity around 2000 km s-1

Arnett et al 1989 Fryxell et al 1991 Mueller et al 1991bac Hachisu et al

1990 1991 1992 1994 Herant amp Benz 1991 Herant amp Benz 1992

Hachisu et al 1992

Spherical explosion + RT instability could not explain

the observed high velocity of 56Ni

bull Recent study on mixing

ndash 2D (Kifonidis et al 2003 2006 Gawryszczak et al 2010)

20140304 BH-mag 2014 Kumamoto Univ 28

Simulations of non-spherical supernova explosions

bull Neutrino-driven explosion

(Kifonidis et al 2006 Gawryszczak et al 2010)

Solid circle 10-4 M8

Open circle 10-5 M8

Density 7days after the explosion

Maximum ~ 4000 km s-1

bull Jet like explosions (Yamada amp Sato 1991 Nagataki et al 2000)

bull 3D (Hammer et al 2010)

bull SPH (Hungerford et al 20032005 Ellinger et al 2012)

Motivation

bull Multidimensional high resolution hydrodynamics

simulations of the propagation of supernova shock wave

+ Nucleosynthesis calculation and advections of

synthesized nuclear species

20140304 BH-mag 2014 Kumamoto Univ 29

The conditions for reproducing the observed high

velocity of 56Ni are still unclear

To clarify the key conditions for reproducing such

high velocity of 56Ni we revisit matter mixing in

aspherical core-collapse supernova explosions

Methods

20140304 BH-mag 2014 Kumamoto Univ 30

20140304 BH-mag 2014 Kumamoto Univ 31

Methods

bull 2D hydrodynamic simulation

ndash AMR hydrodynamic code (FLASH Fryxell et al 2000)

ndash Parallel computing (SR16000 in YITP)

ndash Nuclear reaction network 1H 4He 12C hellip 54Fe 56Ni (19 nuclei)

ndash Spherical point mass and self gravity

ndash Spherical coordinate effective maximum grid r (3027) x q (768)

ndash Initial computational domain 109 cm ndash stellar surface 3x1012 cm

ndash How to initiate the explosionIntroduce aspherical initial radial

velocity and inject thermal energy around FeSi surface

ndash Perturbations of presupernova origins

httpflashuchicagoedusite

20140304 BH-mag 2014 Kumamoto Univ 32

FLASH Code

bull Eulerian hydrodynamic code

ndash Piecewise Parabolic Method (PPM)

ndash Unsplit solver MHD RHD

bull AMR (Adaptive mesh refinement)

ndash Reduce numerical costs

bull Many optional units

ndash Nuclear reaction networks

(7-19 nuclei)

The FLASH code is a modular parallel multiphysics simulation code

capable of handling general compressible flow problems found in many astrophysical environment (Fryxell et al 2000)

Type Ia SN

explosion

Jordan et al 2008

20140304 BH-mag 2014 Kumamoto Univ 33

Rayleigh-Taylor (RT) instability

120571120588 ∙ 120571119901 lt 0 (Chevalier 1979)

120588 1199033 rarr accelerate

Kifonidis et al 2006

Shengtai Li amp Hui Li 2006

RT unstable condition

1205882

1205881

g

Spherical explosions + RT

instabilities have not explained

the high velocity 56Ni

if 1205881 gt 1205882 120588 1199033 rarr decelerate

20140304 BH-mag 2014 Kumamoto Univ 34

Presupernova structure and introduced

perturbations

120571120588 ∙ 120571119901 lt 0 (Chavalier 1979)

120588 1199033 rarr shock wave tend

to be decelerated

Progenitor model 6 M8

helium core (Nomoto amp Hashimoto

1988) + 103 M8 hydrogen envelope

Si C+O He H

Rayleigh-Taylor unstable

Random

Sinusoidal

Perturbations are introduced at 6times109 cm (C+OHe) 5times1010 cm (HeH)

Models

20140304 BH-mag 2014 Kumamoto Univ 35

Parametersasphericity timing of the introduction

of perturbations

1 Spherical explosion models

2 Bipolar explosion models

3 Explosion models mimicking neutrino-driven

explosion

Results of models

20140304 BH-mag 2014 Kumamoto Univ 36

Spherical explosion models

20140304 BH-mag 2014 Kumamoto Univ 37

Density distributions

Perturbations

at C+OHe

Perturbations

at HeH

Perturbations

at both

Growth factor of instability

20140304 BH-mag 2014 Kumamoto Univ 38

Growth factors at the end of

simulation time

Growth rate for incompressible fluid

Growth rate for compressible fluid

Growth factors

Based on pure 1d spherical simulation

Radial velocity distribution of elements for

spherical explosion models

20140304 BH-mag 2014 Kumamoto Univ 39

Timing of the perturbations hardly affect

the maximum velocity of 56Ni

Maximum velocity of 56Ni lt 1600 km s-1

Different asphericity of bipolar explosions

20140304 BH-mag 2014 Kumamoto Univ 40

Bipolar explosion slightly enhance the mixing

length along the polar axis but maximum velocity

of 56Ni is still the level of lt 1700 km s-1

milder asphericity stronger asphericity

Revisiting Nagataki et al 2000 (jetlike explosion)

only initial large amplitude of perturbations

20140304 BH-mag 2014 Kumamoto Univ 41

with amplitude of 30 and m = 20

Initial relatively large sale of perturbations can not survive in later phase due to KH instabilities

Mimicking the neutrino-driven explosions

20140304 BH-mag 2014 Kumamoto Univ 42

Initial radial velocity

Scheck+04

Gawryszczak+10

Mechanism of the core-collapse supernova

explosions

bull Neutrino heating

20140304 BH-mag 2014 Kumamoto Univ 43

Taken from Janka et al 2012 (PTEP 1 A309)

Bethe 1990 (Rev Mod Phys 62 801) Taken from Liebendofer et al 2001

Convections and Standing Accretion Shock

Instability (SASI)

bull Convection around PNS surface

bull Neutrino-driven convection

bull Standing Accretion Shock Instability (SASI) (Blondin et al )

ndash Acoustic-vorticity cycle

20140304 BH-mag 2014 Kumamoto Univ 44

Ledoux criterion

Ledoux criterion

Taken from Liebendofer et al 2001

20140304 BH-mag 2014 Kumamoto Univ 45

Aspherical explosion with clumpy structure in the

explosion (movie)

20140304 BH-mag 2014 Kumamoto Univ 46

Aspherical explosion with clumpy structure + RT

instability

053 s 288 s 5752 s

20140304 BH-mag 2014 Kumamoto Univ 47

Maximum 3000 km s-1

56Ni

Radial velocity distributions of the best model in

this study

bull Relatively high velocity

(3000 km s-1) of 56Ni

bull Mass of 56Ni with ~ 3000

km s-1 14 x 10-3 M8

20140304 BH-mag 2014 Kumamoto Univ 48

Summary

bull To reproduce the high velocity of 56Ni both aspherical

explosion with clumpy structure and perturbations of

presupernova origins may be necessary

bull There are still missing ingredients to explain the observed

high velocity of 56Ni in SN 1987A

bull Possible missing ingredients

ndash More realistic explosion model (eg Kifonidis et al 2006)

ndash Lager perturbations in presupernova structure (Arnett amp Meakin 2011)

ndash Long simulation time

bull Heating due to the decay of 56Co (Herant amp Benz 1991)

ndash 3D effect (Hammer et al 2010)

Possible seeds of perturbations

bull Dynamical stellar evolution calculation

bull Density fluctuations

around the composition

interfaces

20140304 BH-mag 2014 Kumamoto Univ 49

Arnett amp Meakin 2011

20140304 BH-mag 2014 Kumamoto Univ 50

3D simulations of mixing instabilities in SN

explosions

Hammer et al 2010

56Ni 56Ni

2D 3D

Entropy per baryon Red Oxygen

Blue Nickel

Green Carbon

Direct-escape lines of 44Ti from SNR 1987A

bull lines from 44Ti 679 keV and 784 keV

bull Estimated 44Ti mass (31plusmn08) x 10-4 M8

20140304 BH-mag 2014 Kumamoto Univ 51

Grebenev+12 Nature 490 373

44Ti rarr 44Sc rarr 44Ca T12 = 60 d T12 = 4 h

Asymmetries in core-collapse supernovae from

maps of radioactive 44Ti in Cas A

20140304 BH-mag 2014 Kumamoto Univ 52

Grefenstette+14 Nature 506 339

Aspherical explosion enhance 44Ti

20140304 BH-mag 2014 Kumamoto Univ 53

56Ni 4He 44Ti

Alpha-rich freeze-out enhance the production of 44Ti in the

explosive nucleosynthesis

Aspherical explosion enhance the ratio of M(44Ti)M(56Ni)

096 s after the initiation of the explosion

Toward full 3D radiative transfer

bull 爆発形状を仮定した

輻射輸送計算

ndash 形状で偏光度が異なる

ndash 元素によっても異なる

bull 3次元物質混合計算を

インプットにした輻射

輸送計算

20140304 BH-mag 2014 Kumamoto Univ 54

Tanaka et al 2012 bipolar

clumpy

爆発形状のプローブ

20140304 BH-mag 2014 Kumamoto Univ 55

3D MHD simulation of a SNR

Introduction

bull Acceleration of cosmic-rays in SNRs

ndash Up to ~ 1015 eV or more

ndash Magnetic field is key ingredient

20140304 BH-mag 2014 Kumamoto Univ 56

SN1006 (Chandra X-ray)

Amplified strong magnetic field

20140304 BH-mag 2014 Kumamoto Univ 57

Uchiyama et al 2007 Nature 4469 576

Bohm-diffusion limit

Variations of X-ray hot

spots on a 1 yr timescale

Strong amplified

magnetic field

3D MHD simulation of a SNR

20140304 BH-mag 2014 Kumamoto Univ 58

3 pc

Preliminary

20140304 BH-mag 2014 Kumamoto Univ 59

Amplified magnetic field

20121015 - 17 SNSNR12 59

~ 50 μ G

1 μ G Preliminary

20140304 BH-mag 2014 Kumamoto Univ 60

3D structure of Cas A

Delaney et al 2010

Chandra lsquos X-rays

Spitzer lsquos infrared

Green X-ray Fe-K

Red IR [Ar II]

Blue high [Ne II][Ar II] ratio

Yellow optical outer ejecta

Grey IR [Si II]

Black X-ray Si XIII

20140304 BH-mag 2014 Kumamoto Univ 61

ASTRO-H

bull New exploration X-ray

Telescope

ndash First right will be

2015 yr

ndash 10 times larger

energy resolution

httpastro-hisasjaxajpgallerysatelite02html

High resolution spectrum

of X-ray from SNRs is

expected

3D simulation of the thermal X-ray emission from young

SNRs including efficient particle acceleration

bull 3D simulation

bull Diffusive Shock Acceleration

bull Back reaction from

accelerated particle

bull Non-equilibrium ionization

bull Thermal X-ray emission

20140304 BH-mag 2014 Kumamoto Univ 62

Ferrand et al 2012

To go further than

Ferrand et al

Test 1D calculation

bull Two energy equation for ions and electrons respectively

bull Energy equilibration between ions and electrons

bull Ionization

20140304 BH-mag 2014 Kumamoto Univ 63

20140304 BH-mag 2014 Kumamoto Univ 64

Density contour

Preliminary

Emission from deferent regions

20140304 BH-mag 2014 Kumamoto Univ 65

Preliminary

Summary

bull Aspherical nature of core-collapse supernova

explosions

bull Origin of heavy elements

ndash NS merger

ndash Magnetically driven jets

bull Mixing in CCSN explosion

bull Supernova explosions to Supernova remnant

20140304 BH-mag 2014 Kumamoto Univ 66

Page 8: Masaomi ONO Kyushu University - aichi-edu.ac.jptakahasi/BHmag2014_pdf/Presen/...Method of MHD simulation 16 Magnetohydrodynamics (ideal MHD) Poisson eq. pseudo-Newtonian potential

20140304 BH-mag 2014 Kumamoto Univ 8

Key physical parameters for the r-process

bull Low electron fraction Ye

bull High Entropy S prop T 3ρ

bull Short Dynamical time scale

low Ye is essential for the r-process

neutron-rich Ye lt 05

Ye ~ 01

119884119890 = 119883119894119860119894

119894

119885119894 ~ 119899119901119899119899 + 119899119901

Entropy S prop T 3ρ Hoffman et al 1997

[kBbaryon]

20140304 BH-mag 2014 Kumamoto Univ 9

What is the site of the r-process

bull Neutron star mergers (NSM)

ndash Difficult to explain the early enrichment of

r-process elements in galaxies

ndash But we should carefully investigate

bull Magnetohydrodynamical (MHD) jets

20140304 BH-mag 2014 Kumamoto Univ 10

Neutron star mergers (NSM) are the main source of

the r-process elements

Argast et al 2004

ejected r-element mass 10-3 M8

coalescence time 106 yr

NSM rate 2times10-4 yr-1

inhomogeneous galactic chemical evolution model

Inputs and method

11

Input

bull Results of stellar evolution

calculation

(Hashimoto 1995)

ndash 32 M8 He core (Mms = 70 M8)

ndash Only 30 nuclei Mms = 70 M8

n p 4He 12C 14N 1618O 20-22Ne 23Na 24-26Mg

2627Al 28-30Si 3031P 31-34S 35Cl 3638Ar 39K 40Ca

Method

bull Using time evolution of

bull ρ T

bull Convective region

bull Nuclear reaction network (464 nuclei up to Kr)

20140304 BH-mag 2014 Kumamoto Univ

Nuclear reaction network

12

Thermonuclear reaction rates

Nucleosynthesis calculation in Lagrange mesh with a relatively large nuclear reaction network (464 nuclei up to 94Kr)

Reaction rates based on experimental values and REACLIB compilation

20140304 BH-mag 2014 Kumamoto Univ

Treatment of convective region

13

bull Initial abundance

ndash Solar system abundance H rarr He 12C16O rarr 14N (CNO cycle)

bull Convective region

ndash Stellar evolution calculation

bull Criterion of convection

ndash Schwarzschild

c

A c

( )

( )

i i

n

X X m dm M

m N v dm M

Convective region one zone

He burn

rad ad rad

rad

ln

ln

d T

d P

ad

ad

ln

ln

d T

d P

20140304 BH-mag 2014 Kumamoto Univ

Mass fraction at the pre-collapse

14 20140304 BH-mag 2014 Kumamoto Univ

MHD simulations of Collapsar model

15 20140304 BH-mag 2014 Kumamoto Univ

Method of MHD simulation

16

Magnetohydrodynamics (ideal MHD)

Poisson eq

pseudo-Newtonian potential

Equation of State(EoS)

Shen et al 1998

Code ZEUS-2D

Stone amp Norman 1992

BH

Self gravity

0D

Dt

v

1( ) ( )

4

DP

Dt

vB B

D eP q

Dt

v

( )t

Bv B

2 4 G

BH BH

2

2 g

g

GM GMr

r r c

Magnetic field lines

ldquo frozen in

Fluid particle

20140304 BH-mag 2014 Kumamoto Univ

20140304 BH-mag 2014 Kumamoto Univ 17

Nucleosynthesis in the MHD jet from a

collapsar including weak s- p- and r-processes

MO+12

20140304 BH-mag 2014 Kumamoto Univ 18

r-process nucleosynthesis (movie)

MO+12

20140304 BH-mag 2014 Kumamoto Univ 19

Comparison with abundances of the solar and

metal-poor stars

bull Weak r-process

bull Primary synthesis of

Sr-Y-Zr

darr

Lighter element

primary process

(LEPP)

MO+12

Universality of the r-process (eg Sneden et al 2003)

Future collaboration with nuclear physics groups in

RIKEN

bull RIBF (beam factory)

bull Theoretical nuclear physics

group

bull Impact of uncertainties of

nuclear physics inputs

on nucleosynthesis in

astrophysical sites

20140304 BH-mag 2014 Kumamoto Univ 20

A lsquoKilonovarsquo associated with the short-duration

GRB 130603B (z = 0356)

bull Optical near-IR afterglow

ndash kilonova (1040 -1042 erg s-1)

bull r-process powered transient

(eg Li amp Paczyński 1998

Metzger et al 2010)

bull Electromagnetic counterpart

of GW

bull Robust r-process in NS merger

(Korobkin et al 2012)

bull Recent numerical study

ndash Wanajo et al 2013 (arXiv14027317)

20140304 BH-mag 2014 Kumamoto Univ 21

Tanvir et al 2013 Nature 500 547

Matter mixing in aspherical core-collapse supernovae

- A search for possible conditions for conveying 56Ni into high

velocity regions

Masaomi Ono1

Shigehiro Nagataki2 Hirotaka Ito2 Shiu-Hang Lee2 Jirong

Mao2 Masa-aki Hashimoto1 Tolstov Alexey2

Kyushu University

Astrophysical Big Bang Laboratory RIKEN

20140304 BH-mag 2014 Kumamoto Univ 22

MO+2013 ApJ 773 161

20140304 BH-mag 2014 Kumamoto Univ 23

Introduction observational evidence of mixing

in supernovae bull SN 1987A

ndash Early detection of X-rays (Dotani et al 1987)

γ-rays lines from 56Co (Matz et al 1988)

ndash Sudden development of the fine structure of Ha

(Hanuschik et al 1988)

ndash Line profiles of [Fe II]

(Spyromilo+90 Haas+90)

Fe (56Ni) is mixed into high velocity regions

56Ni rarr 56Co rarr 56Fe

20140304 BH-mag 2014 Kumamoto Univ 24

Broadened line profile of [Fe II] in SN 1987A

[Fe II] line profile (Haas et al 1990)

56Ni rarr 56Co rarr 56Fe

4000 km s-1

SN 1987A

Doppler velocity

T12 = 61 d T12 = 77 d

20140304 BH-mag 2014 Kumamoto Univ 25

Matter mixing in supernova explosions

HeH C+OHe

Synthesized 56Ni by

explosive

nucleosynthesis Mixing

56Ni is mixed up into high

velocity regions

radial velocity HeH

56Ni

Distance from the center

20140304 BH-mag 2014 Kumamoto Univ 26

What is the mechanism of the mixing

bull Fluid instabilities

ndash Rayleigh-Taylor (RT) instability

ndash Kelvin-Helmholtz (KH) instability

ndash Richtmyer-Meshkov (RM) instability

bull Aspherical supernova explosion

ndash Neutrino heating aided by SASI

(Standing Accretion Shock Instability)

ndash MHD Jets

Wongwathanarat et al 2010

Entropy per baryon

20140304 BH-mag 2014 Kumamoto Univ 27

Early previous study of hydrodynamic models of

the late time shock wave propagation

bull 2D3D hydrodynamic simulations

bull Add hoc initiation of spherical supernova explosion

bull RT mixing at OHe HeH interfaces

bull Maximum 56Ni velocity around 2000 km s-1

Arnett et al 1989 Fryxell et al 1991 Mueller et al 1991bac Hachisu et al

1990 1991 1992 1994 Herant amp Benz 1991 Herant amp Benz 1992

Hachisu et al 1992

Spherical explosion + RT instability could not explain

the observed high velocity of 56Ni

bull Recent study on mixing

ndash 2D (Kifonidis et al 2003 2006 Gawryszczak et al 2010)

20140304 BH-mag 2014 Kumamoto Univ 28

Simulations of non-spherical supernova explosions

bull Neutrino-driven explosion

(Kifonidis et al 2006 Gawryszczak et al 2010)

Solid circle 10-4 M8

Open circle 10-5 M8

Density 7days after the explosion

Maximum ~ 4000 km s-1

bull Jet like explosions (Yamada amp Sato 1991 Nagataki et al 2000)

bull 3D (Hammer et al 2010)

bull SPH (Hungerford et al 20032005 Ellinger et al 2012)

Motivation

bull Multidimensional high resolution hydrodynamics

simulations of the propagation of supernova shock wave

+ Nucleosynthesis calculation and advections of

synthesized nuclear species

20140304 BH-mag 2014 Kumamoto Univ 29

The conditions for reproducing the observed high

velocity of 56Ni are still unclear

To clarify the key conditions for reproducing such

high velocity of 56Ni we revisit matter mixing in

aspherical core-collapse supernova explosions

Methods

20140304 BH-mag 2014 Kumamoto Univ 30

20140304 BH-mag 2014 Kumamoto Univ 31

Methods

bull 2D hydrodynamic simulation

ndash AMR hydrodynamic code (FLASH Fryxell et al 2000)

ndash Parallel computing (SR16000 in YITP)

ndash Nuclear reaction network 1H 4He 12C hellip 54Fe 56Ni (19 nuclei)

ndash Spherical point mass and self gravity

ndash Spherical coordinate effective maximum grid r (3027) x q (768)

ndash Initial computational domain 109 cm ndash stellar surface 3x1012 cm

ndash How to initiate the explosionIntroduce aspherical initial radial

velocity and inject thermal energy around FeSi surface

ndash Perturbations of presupernova origins

httpflashuchicagoedusite

20140304 BH-mag 2014 Kumamoto Univ 32

FLASH Code

bull Eulerian hydrodynamic code

ndash Piecewise Parabolic Method (PPM)

ndash Unsplit solver MHD RHD

bull AMR (Adaptive mesh refinement)

ndash Reduce numerical costs

bull Many optional units

ndash Nuclear reaction networks

(7-19 nuclei)

The FLASH code is a modular parallel multiphysics simulation code

capable of handling general compressible flow problems found in many astrophysical environment (Fryxell et al 2000)

Type Ia SN

explosion

Jordan et al 2008

20140304 BH-mag 2014 Kumamoto Univ 33

Rayleigh-Taylor (RT) instability

120571120588 ∙ 120571119901 lt 0 (Chevalier 1979)

120588 1199033 rarr accelerate

Kifonidis et al 2006

Shengtai Li amp Hui Li 2006

RT unstable condition

1205882

1205881

g

Spherical explosions + RT

instabilities have not explained

the high velocity 56Ni

if 1205881 gt 1205882 120588 1199033 rarr decelerate

20140304 BH-mag 2014 Kumamoto Univ 34

Presupernova structure and introduced

perturbations

120571120588 ∙ 120571119901 lt 0 (Chavalier 1979)

120588 1199033 rarr shock wave tend

to be decelerated

Progenitor model 6 M8

helium core (Nomoto amp Hashimoto

1988) + 103 M8 hydrogen envelope

Si C+O He H

Rayleigh-Taylor unstable

Random

Sinusoidal

Perturbations are introduced at 6times109 cm (C+OHe) 5times1010 cm (HeH)

Models

20140304 BH-mag 2014 Kumamoto Univ 35

Parametersasphericity timing of the introduction

of perturbations

1 Spherical explosion models

2 Bipolar explosion models

3 Explosion models mimicking neutrino-driven

explosion

Results of models

20140304 BH-mag 2014 Kumamoto Univ 36

Spherical explosion models

20140304 BH-mag 2014 Kumamoto Univ 37

Density distributions

Perturbations

at C+OHe

Perturbations

at HeH

Perturbations

at both

Growth factor of instability

20140304 BH-mag 2014 Kumamoto Univ 38

Growth factors at the end of

simulation time

Growth rate for incompressible fluid

Growth rate for compressible fluid

Growth factors

Based on pure 1d spherical simulation

Radial velocity distribution of elements for

spherical explosion models

20140304 BH-mag 2014 Kumamoto Univ 39

Timing of the perturbations hardly affect

the maximum velocity of 56Ni

Maximum velocity of 56Ni lt 1600 km s-1

Different asphericity of bipolar explosions

20140304 BH-mag 2014 Kumamoto Univ 40

Bipolar explosion slightly enhance the mixing

length along the polar axis but maximum velocity

of 56Ni is still the level of lt 1700 km s-1

milder asphericity stronger asphericity

Revisiting Nagataki et al 2000 (jetlike explosion)

only initial large amplitude of perturbations

20140304 BH-mag 2014 Kumamoto Univ 41

with amplitude of 30 and m = 20

Initial relatively large sale of perturbations can not survive in later phase due to KH instabilities

Mimicking the neutrino-driven explosions

20140304 BH-mag 2014 Kumamoto Univ 42

Initial radial velocity

Scheck+04

Gawryszczak+10

Mechanism of the core-collapse supernova

explosions

bull Neutrino heating

20140304 BH-mag 2014 Kumamoto Univ 43

Taken from Janka et al 2012 (PTEP 1 A309)

Bethe 1990 (Rev Mod Phys 62 801) Taken from Liebendofer et al 2001

Convections and Standing Accretion Shock

Instability (SASI)

bull Convection around PNS surface

bull Neutrino-driven convection

bull Standing Accretion Shock Instability (SASI) (Blondin et al )

ndash Acoustic-vorticity cycle

20140304 BH-mag 2014 Kumamoto Univ 44

Ledoux criterion

Ledoux criterion

Taken from Liebendofer et al 2001

20140304 BH-mag 2014 Kumamoto Univ 45

Aspherical explosion with clumpy structure in the

explosion (movie)

20140304 BH-mag 2014 Kumamoto Univ 46

Aspherical explosion with clumpy structure + RT

instability

053 s 288 s 5752 s

20140304 BH-mag 2014 Kumamoto Univ 47

Maximum 3000 km s-1

56Ni

Radial velocity distributions of the best model in

this study

bull Relatively high velocity

(3000 km s-1) of 56Ni

bull Mass of 56Ni with ~ 3000

km s-1 14 x 10-3 M8

20140304 BH-mag 2014 Kumamoto Univ 48

Summary

bull To reproduce the high velocity of 56Ni both aspherical

explosion with clumpy structure and perturbations of

presupernova origins may be necessary

bull There are still missing ingredients to explain the observed

high velocity of 56Ni in SN 1987A

bull Possible missing ingredients

ndash More realistic explosion model (eg Kifonidis et al 2006)

ndash Lager perturbations in presupernova structure (Arnett amp Meakin 2011)

ndash Long simulation time

bull Heating due to the decay of 56Co (Herant amp Benz 1991)

ndash 3D effect (Hammer et al 2010)

Possible seeds of perturbations

bull Dynamical stellar evolution calculation

bull Density fluctuations

around the composition

interfaces

20140304 BH-mag 2014 Kumamoto Univ 49

Arnett amp Meakin 2011

20140304 BH-mag 2014 Kumamoto Univ 50

3D simulations of mixing instabilities in SN

explosions

Hammer et al 2010

56Ni 56Ni

2D 3D

Entropy per baryon Red Oxygen

Blue Nickel

Green Carbon

Direct-escape lines of 44Ti from SNR 1987A

bull lines from 44Ti 679 keV and 784 keV

bull Estimated 44Ti mass (31plusmn08) x 10-4 M8

20140304 BH-mag 2014 Kumamoto Univ 51

Grebenev+12 Nature 490 373

44Ti rarr 44Sc rarr 44Ca T12 = 60 d T12 = 4 h

Asymmetries in core-collapse supernovae from

maps of radioactive 44Ti in Cas A

20140304 BH-mag 2014 Kumamoto Univ 52

Grefenstette+14 Nature 506 339

Aspherical explosion enhance 44Ti

20140304 BH-mag 2014 Kumamoto Univ 53

56Ni 4He 44Ti

Alpha-rich freeze-out enhance the production of 44Ti in the

explosive nucleosynthesis

Aspherical explosion enhance the ratio of M(44Ti)M(56Ni)

096 s after the initiation of the explosion

Toward full 3D radiative transfer

bull 爆発形状を仮定した

輻射輸送計算

ndash 形状で偏光度が異なる

ndash 元素によっても異なる

bull 3次元物質混合計算を

インプットにした輻射

輸送計算

20140304 BH-mag 2014 Kumamoto Univ 54

Tanaka et al 2012 bipolar

clumpy

爆発形状のプローブ

20140304 BH-mag 2014 Kumamoto Univ 55

3D MHD simulation of a SNR

Introduction

bull Acceleration of cosmic-rays in SNRs

ndash Up to ~ 1015 eV or more

ndash Magnetic field is key ingredient

20140304 BH-mag 2014 Kumamoto Univ 56

SN1006 (Chandra X-ray)

Amplified strong magnetic field

20140304 BH-mag 2014 Kumamoto Univ 57

Uchiyama et al 2007 Nature 4469 576

Bohm-diffusion limit

Variations of X-ray hot

spots on a 1 yr timescale

Strong amplified

magnetic field

3D MHD simulation of a SNR

20140304 BH-mag 2014 Kumamoto Univ 58

3 pc

Preliminary

20140304 BH-mag 2014 Kumamoto Univ 59

Amplified magnetic field

20121015 - 17 SNSNR12 59

~ 50 μ G

1 μ G Preliminary

20140304 BH-mag 2014 Kumamoto Univ 60

3D structure of Cas A

Delaney et al 2010

Chandra lsquos X-rays

Spitzer lsquos infrared

Green X-ray Fe-K

Red IR [Ar II]

Blue high [Ne II][Ar II] ratio

Yellow optical outer ejecta

Grey IR [Si II]

Black X-ray Si XIII

20140304 BH-mag 2014 Kumamoto Univ 61

ASTRO-H

bull New exploration X-ray

Telescope

ndash First right will be

2015 yr

ndash 10 times larger

energy resolution

httpastro-hisasjaxajpgallerysatelite02html

High resolution spectrum

of X-ray from SNRs is

expected

3D simulation of the thermal X-ray emission from young

SNRs including efficient particle acceleration

bull 3D simulation

bull Diffusive Shock Acceleration

bull Back reaction from

accelerated particle

bull Non-equilibrium ionization

bull Thermal X-ray emission

20140304 BH-mag 2014 Kumamoto Univ 62

Ferrand et al 2012

To go further than

Ferrand et al

Test 1D calculation

bull Two energy equation for ions and electrons respectively

bull Energy equilibration between ions and electrons

bull Ionization

20140304 BH-mag 2014 Kumamoto Univ 63

20140304 BH-mag 2014 Kumamoto Univ 64

Density contour

Preliminary

Emission from deferent regions

20140304 BH-mag 2014 Kumamoto Univ 65

Preliminary

Summary

bull Aspherical nature of core-collapse supernova

explosions

bull Origin of heavy elements

ndash NS merger

ndash Magnetically driven jets

bull Mixing in CCSN explosion

bull Supernova explosions to Supernova remnant

20140304 BH-mag 2014 Kumamoto Univ 66

Page 9: Masaomi ONO Kyushu University - aichi-edu.ac.jptakahasi/BHmag2014_pdf/Presen/...Method of MHD simulation 16 Magnetohydrodynamics (ideal MHD) Poisson eq. pseudo-Newtonian potential

20140304 BH-mag 2014 Kumamoto Univ 9

What is the site of the r-process

bull Neutron star mergers (NSM)

ndash Difficult to explain the early enrichment of

r-process elements in galaxies

ndash But we should carefully investigate

bull Magnetohydrodynamical (MHD) jets

20140304 BH-mag 2014 Kumamoto Univ 10

Neutron star mergers (NSM) are the main source of

the r-process elements

Argast et al 2004

ejected r-element mass 10-3 M8

coalescence time 106 yr

NSM rate 2times10-4 yr-1

inhomogeneous galactic chemical evolution model

Inputs and method

11

Input

bull Results of stellar evolution

calculation

(Hashimoto 1995)

ndash 32 M8 He core (Mms = 70 M8)

ndash Only 30 nuclei Mms = 70 M8

n p 4He 12C 14N 1618O 20-22Ne 23Na 24-26Mg

2627Al 28-30Si 3031P 31-34S 35Cl 3638Ar 39K 40Ca

Method

bull Using time evolution of

bull ρ T

bull Convective region

bull Nuclear reaction network (464 nuclei up to Kr)

20140304 BH-mag 2014 Kumamoto Univ

Nuclear reaction network

12

Thermonuclear reaction rates

Nucleosynthesis calculation in Lagrange mesh with a relatively large nuclear reaction network (464 nuclei up to 94Kr)

Reaction rates based on experimental values and REACLIB compilation

20140304 BH-mag 2014 Kumamoto Univ

Treatment of convective region

13

bull Initial abundance

ndash Solar system abundance H rarr He 12C16O rarr 14N (CNO cycle)

bull Convective region

ndash Stellar evolution calculation

bull Criterion of convection

ndash Schwarzschild

c

A c

( )

( )

i i

n

X X m dm M

m N v dm M

Convective region one zone

He burn

rad ad rad

rad

ln

ln

d T

d P

ad

ad

ln

ln

d T

d P

20140304 BH-mag 2014 Kumamoto Univ

Mass fraction at the pre-collapse

14 20140304 BH-mag 2014 Kumamoto Univ

MHD simulations of Collapsar model

15 20140304 BH-mag 2014 Kumamoto Univ

Method of MHD simulation

16

Magnetohydrodynamics (ideal MHD)

Poisson eq

pseudo-Newtonian potential

Equation of State(EoS)

Shen et al 1998

Code ZEUS-2D

Stone amp Norman 1992

BH

Self gravity

0D

Dt

v

1( ) ( )

4

DP

Dt

vB B

D eP q

Dt

v

( )t

Bv B

2 4 G

BH BH

2

2 g

g

GM GMr

r r c

Magnetic field lines

ldquo frozen in

Fluid particle

20140304 BH-mag 2014 Kumamoto Univ

20140304 BH-mag 2014 Kumamoto Univ 17

Nucleosynthesis in the MHD jet from a

collapsar including weak s- p- and r-processes

MO+12

20140304 BH-mag 2014 Kumamoto Univ 18

r-process nucleosynthesis (movie)

MO+12

20140304 BH-mag 2014 Kumamoto Univ 19

Comparison with abundances of the solar and

metal-poor stars

bull Weak r-process

bull Primary synthesis of

Sr-Y-Zr

darr

Lighter element

primary process

(LEPP)

MO+12

Universality of the r-process (eg Sneden et al 2003)

Future collaboration with nuclear physics groups in

RIKEN

bull RIBF (beam factory)

bull Theoretical nuclear physics

group

bull Impact of uncertainties of

nuclear physics inputs

on nucleosynthesis in

astrophysical sites

20140304 BH-mag 2014 Kumamoto Univ 20

A lsquoKilonovarsquo associated with the short-duration

GRB 130603B (z = 0356)

bull Optical near-IR afterglow

ndash kilonova (1040 -1042 erg s-1)

bull r-process powered transient

(eg Li amp Paczyński 1998

Metzger et al 2010)

bull Electromagnetic counterpart

of GW

bull Robust r-process in NS merger

(Korobkin et al 2012)

bull Recent numerical study

ndash Wanajo et al 2013 (arXiv14027317)

20140304 BH-mag 2014 Kumamoto Univ 21

Tanvir et al 2013 Nature 500 547

Matter mixing in aspherical core-collapse supernovae

- A search for possible conditions for conveying 56Ni into high

velocity regions

Masaomi Ono1

Shigehiro Nagataki2 Hirotaka Ito2 Shiu-Hang Lee2 Jirong

Mao2 Masa-aki Hashimoto1 Tolstov Alexey2

Kyushu University

Astrophysical Big Bang Laboratory RIKEN

20140304 BH-mag 2014 Kumamoto Univ 22

MO+2013 ApJ 773 161

20140304 BH-mag 2014 Kumamoto Univ 23

Introduction observational evidence of mixing

in supernovae bull SN 1987A

ndash Early detection of X-rays (Dotani et al 1987)

γ-rays lines from 56Co (Matz et al 1988)

ndash Sudden development of the fine structure of Ha

(Hanuschik et al 1988)

ndash Line profiles of [Fe II]

(Spyromilo+90 Haas+90)

Fe (56Ni) is mixed into high velocity regions

56Ni rarr 56Co rarr 56Fe

20140304 BH-mag 2014 Kumamoto Univ 24

Broadened line profile of [Fe II] in SN 1987A

[Fe II] line profile (Haas et al 1990)

56Ni rarr 56Co rarr 56Fe

4000 km s-1

SN 1987A

Doppler velocity

T12 = 61 d T12 = 77 d

20140304 BH-mag 2014 Kumamoto Univ 25

Matter mixing in supernova explosions

HeH C+OHe

Synthesized 56Ni by

explosive

nucleosynthesis Mixing

56Ni is mixed up into high

velocity regions

radial velocity HeH

56Ni

Distance from the center

20140304 BH-mag 2014 Kumamoto Univ 26

What is the mechanism of the mixing

bull Fluid instabilities

ndash Rayleigh-Taylor (RT) instability

ndash Kelvin-Helmholtz (KH) instability

ndash Richtmyer-Meshkov (RM) instability

bull Aspherical supernova explosion

ndash Neutrino heating aided by SASI

(Standing Accretion Shock Instability)

ndash MHD Jets

Wongwathanarat et al 2010

Entropy per baryon

20140304 BH-mag 2014 Kumamoto Univ 27

Early previous study of hydrodynamic models of

the late time shock wave propagation

bull 2D3D hydrodynamic simulations

bull Add hoc initiation of spherical supernova explosion

bull RT mixing at OHe HeH interfaces

bull Maximum 56Ni velocity around 2000 km s-1

Arnett et al 1989 Fryxell et al 1991 Mueller et al 1991bac Hachisu et al

1990 1991 1992 1994 Herant amp Benz 1991 Herant amp Benz 1992

Hachisu et al 1992

Spherical explosion + RT instability could not explain

the observed high velocity of 56Ni

bull Recent study on mixing

ndash 2D (Kifonidis et al 2003 2006 Gawryszczak et al 2010)

20140304 BH-mag 2014 Kumamoto Univ 28

Simulations of non-spherical supernova explosions

bull Neutrino-driven explosion

(Kifonidis et al 2006 Gawryszczak et al 2010)

Solid circle 10-4 M8

Open circle 10-5 M8

Density 7days after the explosion

Maximum ~ 4000 km s-1

bull Jet like explosions (Yamada amp Sato 1991 Nagataki et al 2000)

bull 3D (Hammer et al 2010)

bull SPH (Hungerford et al 20032005 Ellinger et al 2012)

Motivation

bull Multidimensional high resolution hydrodynamics

simulations of the propagation of supernova shock wave

+ Nucleosynthesis calculation and advections of

synthesized nuclear species

20140304 BH-mag 2014 Kumamoto Univ 29

The conditions for reproducing the observed high

velocity of 56Ni are still unclear

To clarify the key conditions for reproducing such

high velocity of 56Ni we revisit matter mixing in

aspherical core-collapse supernova explosions

Methods

20140304 BH-mag 2014 Kumamoto Univ 30

20140304 BH-mag 2014 Kumamoto Univ 31

Methods

bull 2D hydrodynamic simulation

ndash AMR hydrodynamic code (FLASH Fryxell et al 2000)

ndash Parallel computing (SR16000 in YITP)

ndash Nuclear reaction network 1H 4He 12C hellip 54Fe 56Ni (19 nuclei)

ndash Spherical point mass and self gravity

ndash Spherical coordinate effective maximum grid r (3027) x q (768)

ndash Initial computational domain 109 cm ndash stellar surface 3x1012 cm

ndash How to initiate the explosionIntroduce aspherical initial radial

velocity and inject thermal energy around FeSi surface

ndash Perturbations of presupernova origins

httpflashuchicagoedusite

20140304 BH-mag 2014 Kumamoto Univ 32

FLASH Code

bull Eulerian hydrodynamic code

ndash Piecewise Parabolic Method (PPM)

ndash Unsplit solver MHD RHD

bull AMR (Adaptive mesh refinement)

ndash Reduce numerical costs

bull Many optional units

ndash Nuclear reaction networks

(7-19 nuclei)

The FLASH code is a modular parallel multiphysics simulation code

capable of handling general compressible flow problems found in many astrophysical environment (Fryxell et al 2000)

Type Ia SN

explosion

Jordan et al 2008

20140304 BH-mag 2014 Kumamoto Univ 33

Rayleigh-Taylor (RT) instability

120571120588 ∙ 120571119901 lt 0 (Chevalier 1979)

120588 1199033 rarr accelerate

Kifonidis et al 2006

Shengtai Li amp Hui Li 2006

RT unstable condition

1205882

1205881

g

Spherical explosions + RT

instabilities have not explained

the high velocity 56Ni

if 1205881 gt 1205882 120588 1199033 rarr decelerate

20140304 BH-mag 2014 Kumamoto Univ 34

Presupernova structure and introduced

perturbations

120571120588 ∙ 120571119901 lt 0 (Chavalier 1979)

120588 1199033 rarr shock wave tend

to be decelerated

Progenitor model 6 M8

helium core (Nomoto amp Hashimoto

1988) + 103 M8 hydrogen envelope

Si C+O He H

Rayleigh-Taylor unstable

Random

Sinusoidal

Perturbations are introduced at 6times109 cm (C+OHe) 5times1010 cm (HeH)

Models

20140304 BH-mag 2014 Kumamoto Univ 35

Parametersasphericity timing of the introduction

of perturbations

1 Spherical explosion models

2 Bipolar explosion models

3 Explosion models mimicking neutrino-driven

explosion

Results of models

20140304 BH-mag 2014 Kumamoto Univ 36

Spherical explosion models

20140304 BH-mag 2014 Kumamoto Univ 37

Density distributions

Perturbations

at C+OHe

Perturbations

at HeH

Perturbations

at both

Growth factor of instability

20140304 BH-mag 2014 Kumamoto Univ 38

Growth factors at the end of

simulation time

Growth rate for incompressible fluid

Growth rate for compressible fluid

Growth factors

Based on pure 1d spherical simulation

Radial velocity distribution of elements for

spherical explosion models

20140304 BH-mag 2014 Kumamoto Univ 39

Timing of the perturbations hardly affect

the maximum velocity of 56Ni

Maximum velocity of 56Ni lt 1600 km s-1

Different asphericity of bipolar explosions

20140304 BH-mag 2014 Kumamoto Univ 40

Bipolar explosion slightly enhance the mixing

length along the polar axis but maximum velocity

of 56Ni is still the level of lt 1700 km s-1

milder asphericity stronger asphericity

Revisiting Nagataki et al 2000 (jetlike explosion)

only initial large amplitude of perturbations

20140304 BH-mag 2014 Kumamoto Univ 41

with amplitude of 30 and m = 20

Initial relatively large sale of perturbations can not survive in later phase due to KH instabilities

Mimicking the neutrino-driven explosions

20140304 BH-mag 2014 Kumamoto Univ 42

Initial radial velocity

Scheck+04

Gawryszczak+10

Mechanism of the core-collapse supernova

explosions

bull Neutrino heating

20140304 BH-mag 2014 Kumamoto Univ 43

Taken from Janka et al 2012 (PTEP 1 A309)

Bethe 1990 (Rev Mod Phys 62 801) Taken from Liebendofer et al 2001

Convections and Standing Accretion Shock

Instability (SASI)

bull Convection around PNS surface

bull Neutrino-driven convection

bull Standing Accretion Shock Instability (SASI) (Blondin et al )

ndash Acoustic-vorticity cycle

20140304 BH-mag 2014 Kumamoto Univ 44

Ledoux criterion

Ledoux criterion

Taken from Liebendofer et al 2001

20140304 BH-mag 2014 Kumamoto Univ 45

Aspherical explosion with clumpy structure in the

explosion (movie)

20140304 BH-mag 2014 Kumamoto Univ 46

Aspherical explosion with clumpy structure + RT

instability

053 s 288 s 5752 s

20140304 BH-mag 2014 Kumamoto Univ 47

Maximum 3000 km s-1

56Ni

Radial velocity distributions of the best model in

this study

bull Relatively high velocity

(3000 km s-1) of 56Ni

bull Mass of 56Ni with ~ 3000

km s-1 14 x 10-3 M8

20140304 BH-mag 2014 Kumamoto Univ 48

Summary

bull To reproduce the high velocity of 56Ni both aspherical

explosion with clumpy structure and perturbations of

presupernova origins may be necessary

bull There are still missing ingredients to explain the observed

high velocity of 56Ni in SN 1987A

bull Possible missing ingredients

ndash More realistic explosion model (eg Kifonidis et al 2006)

ndash Lager perturbations in presupernova structure (Arnett amp Meakin 2011)

ndash Long simulation time

bull Heating due to the decay of 56Co (Herant amp Benz 1991)

ndash 3D effect (Hammer et al 2010)

Possible seeds of perturbations

bull Dynamical stellar evolution calculation

bull Density fluctuations

around the composition

interfaces

20140304 BH-mag 2014 Kumamoto Univ 49

Arnett amp Meakin 2011

20140304 BH-mag 2014 Kumamoto Univ 50

3D simulations of mixing instabilities in SN

explosions

Hammer et al 2010

56Ni 56Ni

2D 3D

Entropy per baryon Red Oxygen

Blue Nickel

Green Carbon

Direct-escape lines of 44Ti from SNR 1987A

bull lines from 44Ti 679 keV and 784 keV

bull Estimated 44Ti mass (31plusmn08) x 10-4 M8

20140304 BH-mag 2014 Kumamoto Univ 51

Grebenev+12 Nature 490 373

44Ti rarr 44Sc rarr 44Ca T12 = 60 d T12 = 4 h

Asymmetries in core-collapse supernovae from

maps of radioactive 44Ti in Cas A

20140304 BH-mag 2014 Kumamoto Univ 52

Grefenstette+14 Nature 506 339

Aspherical explosion enhance 44Ti

20140304 BH-mag 2014 Kumamoto Univ 53

56Ni 4He 44Ti

Alpha-rich freeze-out enhance the production of 44Ti in the

explosive nucleosynthesis

Aspherical explosion enhance the ratio of M(44Ti)M(56Ni)

096 s after the initiation of the explosion

Toward full 3D radiative transfer

bull 爆発形状を仮定した

輻射輸送計算

ndash 形状で偏光度が異なる

ndash 元素によっても異なる

bull 3次元物質混合計算を

インプットにした輻射

輸送計算

20140304 BH-mag 2014 Kumamoto Univ 54

Tanaka et al 2012 bipolar

clumpy

爆発形状のプローブ

20140304 BH-mag 2014 Kumamoto Univ 55

3D MHD simulation of a SNR

Introduction

bull Acceleration of cosmic-rays in SNRs

ndash Up to ~ 1015 eV or more

ndash Magnetic field is key ingredient

20140304 BH-mag 2014 Kumamoto Univ 56

SN1006 (Chandra X-ray)

Amplified strong magnetic field

20140304 BH-mag 2014 Kumamoto Univ 57

Uchiyama et al 2007 Nature 4469 576

Bohm-diffusion limit

Variations of X-ray hot

spots on a 1 yr timescale

Strong amplified

magnetic field

3D MHD simulation of a SNR

20140304 BH-mag 2014 Kumamoto Univ 58

3 pc

Preliminary

20140304 BH-mag 2014 Kumamoto Univ 59

Amplified magnetic field

20121015 - 17 SNSNR12 59

~ 50 μ G

1 μ G Preliminary

20140304 BH-mag 2014 Kumamoto Univ 60

3D structure of Cas A

Delaney et al 2010

Chandra lsquos X-rays

Spitzer lsquos infrared

Green X-ray Fe-K

Red IR [Ar II]

Blue high [Ne II][Ar II] ratio

Yellow optical outer ejecta

Grey IR [Si II]

Black X-ray Si XIII

20140304 BH-mag 2014 Kumamoto Univ 61

ASTRO-H

bull New exploration X-ray

Telescope

ndash First right will be

2015 yr

ndash 10 times larger

energy resolution

httpastro-hisasjaxajpgallerysatelite02html

High resolution spectrum

of X-ray from SNRs is

expected

3D simulation of the thermal X-ray emission from young

SNRs including efficient particle acceleration

bull 3D simulation

bull Diffusive Shock Acceleration

bull Back reaction from

accelerated particle

bull Non-equilibrium ionization

bull Thermal X-ray emission

20140304 BH-mag 2014 Kumamoto Univ 62

Ferrand et al 2012

To go further than

Ferrand et al

Test 1D calculation

bull Two energy equation for ions and electrons respectively

bull Energy equilibration between ions and electrons

bull Ionization

20140304 BH-mag 2014 Kumamoto Univ 63

20140304 BH-mag 2014 Kumamoto Univ 64

Density contour

Preliminary

Emission from deferent regions

20140304 BH-mag 2014 Kumamoto Univ 65

Preliminary

Summary

bull Aspherical nature of core-collapse supernova

explosions

bull Origin of heavy elements

ndash NS merger

ndash Magnetically driven jets

bull Mixing in CCSN explosion

bull Supernova explosions to Supernova remnant

20140304 BH-mag 2014 Kumamoto Univ 66

Page 10: Masaomi ONO Kyushu University - aichi-edu.ac.jptakahasi/BHmag2014_pdf/Presen/...Method of MHD simulation 16 Magnetohydrodynamics (ideal MHD) Poisson eq. pseudo-Newtonian potential

20140304 BH-mag 2014 Kumamoto Univ 10

Neutron star mergers (NSM) are the main source of

the r-process elements

Argast et al 2004

ejected r-element mass 10-3 M8

coalescence time 106 yr

NSM rate 2times10-4 yr-1

inhomogeneous galactic chemical evolution model

Inputs and method

11

Input

bull Results of stellar evolution

calculation

(Hashimoto 1995)

ndash 32 M8 He core (Mms = 70 M8)

ndash Only 30 nuclei Mms = 70 M8

n p 4He 12C 14N 1618O 20-22Ne 23Na 24-26Mg

2627Al 28-30Si 3031P 31-34S 35Cl 3638Ar 39K 40Ca

Method

bull Using time evolution of

bull ρ T

bull Convective region

bull Nuclear reaction network (464 nuclei up to Kr)

20140304 BH-mag 2014 Kumamoto Univ

Nuclear reaction network

12

Thermonuclear reaction rates

Nucleosynthesis calculation in Lagrange mesh with a relatively large nuclear reaction network (464 nuclei up to 94Kr)

Reaction rates based on experimental values and REACLIB compilation

20140304 BH-mag 2014 Kumamoto Univ

Treatment of convective region

13

bull Initial abundance

ndash Solar system abundance H rarr He 12C16O rarr 14N (CNO cycle)

bull Convective region

ndash Stellar evolution calculation

bull Criterion of convection

ndash Schwarzschild

c

A c

( )

( )

i i

n

X X m dm M

m N v dm M

Convective region one zone

He burn

rad ad rad

rad

ln

ln

d T

d P

ad

ad

ln

ln

d T

d P

20140304 BH-mag 2014 Kumamoto Univ

Mass fraction at the pre-collapse

14 20140304 BH-mag 2014 Kumamoto Univ

MHD simulations of Collapsar model

15 20140304 BH-mag 2014 Kumamoto Univ

Method of MHD simulation

16

Magnetohydrodynamics (ideal MHD)

Poisson eq

pseudo-Newtonian potential

Equation of State(EoS)

Shen et al 1998

Code ZEUS-2D

Stone amp Norman 1992

BH

Self gravity

0D

Dt

v

1( ) ( )

4

DP

Dt

vB B

D eP q

Dt

v

( )t

Bv B

2 4 G

BH BH

2

2 g

g

GM GMr

r r c

Magnetic field lines

ldquo frozen in

Fluid particle

20140304 BH-mag 2014 Kumamoto Univ

20140304 BH-mag 2014 Kumamoto Univ 17

Nucleosynthesis in the MHD jet from a

collapsar including weak s- p- and r-processes

MO+12

20140304 BH-mag 2014 Kumamoto Univ 18

r-process nucleosynthesis (movie)

MO+12

20140304 BH-mag 2014 Kumamoto Univ 19

Comparison with abundances of the solar and

metal-poor stars

bull Weak r-process

bull Primary synthesis of

Sr-Y-Zr

darr

Lighter element

primary process

(LEPP)

MO+12

Universality of the r-process (eg Sneden et al 2003)

Future collaboration with nuclear physics groups in

RIKEN

bull RIBF (beam factory)

bull Theoretical nuclear physics

group

bull Impact of uncertainties of

nuclear physics inputs

on nucleosynthesis in

astrophysical sites

20140304 BH-mag 2014 Kumamoto Univ 20

A lsquoKilonovarsquo associated with the short-duration

GRB 130603B (z = 0356)

bull Optical near-IR afterglow

ndash kilonova (1040 -1042 erg s-1)

bull r-process powered transient

(eg Li amp Paczyński 1998

Metzger et al 2010)

bull Electromagnetic counterpart

of GW

bull Robust r-process in NS merger

(Korobkin et al 2012)

bull Recent numerical study

ndash Wanajo et al 2013 (arXiv14027317)

20140304 BH-mag 2014 Kumamoto Univ 21

Tanvir et al 2013 Nature 500 547

Matter mixing in aspherical core-collapse supernovae

- A search for possible conditions for conveying 56Ni into high

velocity regions

Masaomi Ono1

Shigehiro Nagataki2 Hirotaka Ito2 Shiu-Hang Lee2 Jirong

Mao2 Masa-aki Hashimoto1 Tolstov Alexey2

Kyushu University

Astrophysical Big Bang Laboratory RIKEN

20140304 BH-mag 2014 Kumamoto Univ 22

MO+2013 ApJ 773 161

20140304 BH-mag 2014 Kumamoto Univ 23

Introduction observational evidence of mixing

in supernovae bull SN 1987A

ndash Early detection of X-rays (Dotani et al 1987)

γ-rays lines from 56Co (Matz et al 1988)

ndash Sudden development of the fine structure of Ha

(Hanuschik et al 1988)

ndash Line profiles of [Fe II]

(Spyromilo+90 Haas+90)

Fe (56Ni) is mixed into high velocity regions

56Ni rarr 56Co rarr 56Fe

20140304 BH-mag 2014 Kumamoto Univ 24

Broadened line profile of [Fe II] in SN 1987A

[Fe II] line profile (Haas et al 1990)

56Ni rarr 56Co rarr 56Fe

4000 km s-1

SN 1987A

Doppler velocity

T12 = 61 d T12 = 77 d

20140304 BH-mag 2014 Kumamoto Univ 25

Matter mixing in supernova explosions

HeH C+OHe

Synthesized 56Ni by

explosive

nucleosynthesis Mixing

56Ni is mixed up into high

velocity regions

radial velocity HeH

56Ni

Distance from the center

20140304 BH-mag 2014 Kumamoto Univ 26

What is the mechanism of the mixing

bull Fluid instabilities

ndash Rayleigh-Taylor (RT) instability

ndash Kelvin-Helmholtz (KH) instability

ndash Richtmyer-Meshkov (RM) instability

bull Aspherical supernova explosion

ndash Neutrino heating aided by SASI

(Standing Accretion Shock Instability)

ndash MHD Jets

Wongwathanarat et al 2010

Entropy per baryon

20140304 BH-mag 2014 Kumamoto Univ 27

Early previous study of hydrodynamic models of

the late time shock wave propagation

bull 2D3D hydrodynamic simulations

bull Add hoc initiation of spherical supernova explosion

bull RT mixing at OHe HeH interfaces

bull Maximum 56Ni velocity around 2000 km s-1

Arnett et al 1989 Fryxell et al 1991 Mueller et al 1991bac Hachisu et al

1990 1991 1992 1994 Herant amp Benz 1991 Herant amp Benz 1992

Hachisu et al 1992

Spherical explosion + RT instability could not explain

the observed high velocity of 56Ni

bull Recent study on mixing

ndash 2D (Kifonidis et al 2003 2006 Gawryszczak et al 2010)

20140304 BH-mag 2014 Kumamoto Univ 28

Simulations of non-spherical supernova explosions

bull Neutrino-driven explosion

(Kifonidis et al 2006 Gawryszczak et al 2010)

Solid circle 10-4 M8

Open circle 10-5 M8

Density 7days after the explosion

Maximum ~ 4000 km s-1

bull Jet like explosions (Yamada amp Sato 1991 Nagataki et al 2000)

bull 3D (Hammer et al 2010)

bull SPH (Hungerford et al 20032005 Ellinger et al 2012)

Motivation

bull Multidimensional high resolution hydrodynamics

simulations of the propagation of supernova shock wave

+ Nucleosynthesis calculation and advections of

synthesized nuclear species

20140304 BH-mag 2014 Kumamoto Univ 29

The conditions for reproducing the observed high

velocity of 56Ni are still unclear

To clarify the key conditions for reproducing such

high velocity of 56Ni we revisit matter mixing in

aspherical core-collapse supernova explosions

Methods

20140304 BH-mag 2014 Kumamoto Univ 30

20140304 BH-mag 2014 Kumamoto Univ 31

Methods

bull 2D hydrodynamic simulation

ndash AMR hydrodynamic code (FLASH Fryxell et al 2000)

ndash Parallel computing (SR16000 in YITP)

ndash Nuclear reaction network 1H 4He 12C hellip 54Fe 56Ni (19 nuclei)

ndash Spherical point mass and self gravity

ndash Spherical coordinate effective maximum grid r (3027) x q (768)

ndash Initial computational domain 109 cm ndash stellar surface 3x1012 cm

ndash How to initiate the explosionIntroduce aspherical initial radial

velocity and inject thermal energy around FeSi surface

ndash Perturbations of presupernova origins

httpflashuchicagoedusite

20140304 BH-mag 2014 Kumamoto Univ 32

FLASH Code

bull Eulerian hydrodynamic code

ndash Piecewise Parabolic Method (PPM)

ndash Unsplit solver MHD RHD

bull AMR (Adaptive mesh refinement)

ndash Reduce numerical costs

bull Many optional units

ndash Nuclear reaction networks

(7-19 nuclei)

The FLASH code is a modular parallel multiphysics simulation code

capable of handling general compressible flow problems found in many astrophysical environment (Fryxell et al 2000)

Type Ia SN

explosion

Jordan et al 2008

20140304 BH-mag 2014 Kumamoto Univ 33

Rayleigh-Taylor (RT) instability

120571120588 ∙ 120571119901 lt 0 (Chevalier 1979)

120588 1199033 rarr accelerate

Kifonidis et al 2006

Shengtai Li amp Hui Li 2006

RT unstable condition

1205882

1205881

g

Spherical explosions + RT

instabilities have not explained

the high velocity 56Ni

if 1205881 gt 1205882 120588 1199033 rarr decelerate

20140304 BH-mag 2014 Kumamoto Univ 34

Presupernova structure and introduced

perturbations

120571120588 ∙ 120571119901 lt 0 (Chavalier 1979)

120588 1199033 rarr shock wave tend

to be decelerated

Progenitor model 6 M8

helium core (Nomoto amp Hashimoto

1988) + 103 M8 hydrogen envelope

Si C+O He H

Rayleigh-Taylor unstable

Random

Sinusoidal

Perturbations are introduced at 6times109 cm (C+OHe) 5times1010 cm (HeH)

Models

20140304 BH-mag 2014 Kumamoto Univ 35

Parametersasphericity timing of the introduction

of perturbations

1 Spherical explosion models

2 Bipolar explosion models

3 Explosion models mimicking neutrino-driven

explosion

Results of models

20140304 BH-mag 2014 Kumamoto Univ 36

Spherical explosion models

20140304 BH-mag 2014 Kumamoto Univ 37

Density distributions

Perturbations

at C+OHe

Perturbations

at HeH

Perturbations

at both

Growth factor of instability

20140304 BH-mag 2014 Kumamoto Univ 38

Growth factors at the end of

simulation time

Growth rate for incompressible fluid

Growth rate for compressible fluid

Growth factors

Based on pure 1d spherical simulation

Radial velocity distribution of elements for

spherical explosion models

20140304 BH-mag 2014 Kumamoto Univ 39

Timing of the perturbations hardly affect

the maximum velocity of 56Ni

Maximum velocity of 56Ni lt 1600 km s-1

Different asphericity of bipolar explosions

20140304 BH-mag 2014 Kumamoto Univ 40

Bipolar explosion slightly enhance the mixing

length along the polar axis but maximum velocity

of 56Ni is still the level of lt 1700 km s-1

milder asphericity stronger asphericity

Revisiting Nagataki et al 2000 (jetlike explosion)

only initial large amplitude of perturbations

20140304 BH-mag 2014 Kumamoto Univ 41

with amplitude of 30 and m = 20

Initial relatively large sale of perturbations can not survive in later phase due to KH instabilities

Mimicking the neutrino-driven explosions

20140304 BH-mag 2014 Kumamoto Univ 42

Initial radial velocity

Scheck+04

Gawryszczak+10

Mechanism of the core-collapse supernova

explosions

bull Neutrino heating

20140304 BH-mag 2014 Kumamoto Univ 43

Taken from Janka et al 2012 (PTEP 1 A309)

Bethe 1990 (Rev Mod Phys 62 801) Taken from Liebendofer et al 2001

Convections and Standing Accretion Shock

Instability (SASI)

bull Convection around PNS surface

bull Neutrino-driven convection

bull Standing Accretion Shock Instability (SASI) (Blondin et al )

ndash Acoustic-vorticity cycle

20140304 BH-mag 2014 Kumamoto Univ 44

Ledoux criterion

Ledoux criterion

Taken from Liebendofer et al 2001

20140304 BH-mag 2014 Kumamoto Univ 45

Aspherical explosion with clumpy structure in the

explosion (movie)

20140304 BH-mag 2014 Kumamoto Univ 46

Aspherical explosion with clumpy structure + RT

instability

053 s 288 s 5752 s

20140304 BH-mag 2014 Kumamoto Univ 47

Maximum 3000 km s-1

56Ni

Radial velocity distributions of the best model in

this study

bull Relatively high velocity

(3000 km s-1) of 56Ni

bull Mass of 56Ni with ~ 3000

km s-1 14 x 10-3 M8

20140304 BH-mag 2014 Kumamoto Univ 48

Summary

bull To reproduce the high velocity of 56Ni both aspherical

explosion with clumpy structure and perturbations of

presupernova origins may be necessary

bull There are still missing ingredients to explain the observed

high velocity of 56Ni in SN 1987A

bull Possible missing ingredients

ndash More realistic explosion model (eg Kifonidis et al 2006)

ndash Lager perturbations in presupernova structure (Arnett amp Meakin 2011)

ndash Long simulation time

bull Heating due to the decay of 56Co (Herant amp Benz 1991)

ndash 3D effect (Hammer et al 2010)

Possible seeds of perturbations

bull Dynamical stellar evolution calculation

bull Density fluctuations

around the composition

interfaces

20140304 BH-mag 2014 Kumamoto Univ 49

Arnett amp Meakin 2011

20140304 BH-mag 2014 Kumamoto Univ 50

3D simulations of mixing instabilities in SN

explosions

Hammer et al 2010

56Ni 56Ni

2D 3D

Entropy per baryon Red Oxygen

Blue Nickel

Green Carbon

Direct-escape lines of 44Ti from SNR 1987A

bull lines from 44Ti 679 keV and 784 keV

bull Estimated 44Ti mass (31plusmn08) x 10-4 M8

20140304 BH-mag 2014 Kumamoto Univ 51

Grebenev+12 Nature 490 373

44Ti rarr 44Sc rarr 44Ca T12 = 60 d T12 = 4 h

Asymmetries in core-collapse supernovae from

maps of radioactive 44Ti in Cas A

20140304 BH-mag 2014 Kumamoto Univ 52

Grefenstette+14 Nature 506 339

Aspherical explosion enhance 44Ti

20140304 BH-mag 2014 Kumamoto Univ 53

56Ni 4He 44Ti

Alpha-rich freeze-out enhance the production of 44Ti in the

explosive nucleosynthesis

Aspherical explosion enhance the ratio of M(44Ti)M(56Ni)

096 s after the initiation of the explosion

Toward full 3D radiative transfer

bull 爆発形状を仮定した

輻射輸送計算

ndash 形状で偏光度が異なる

ndash 元素によっても異なる

bull 3次元物質混合計算を

インプットにした輻射

輸送計算

20140304 BH-mag 2014 Kumamoto Univ 54

Tanaka et al 2012 bipolar

clumpy

爆発形状のプローブ

20140304 BH-mag 2014 Kumamoto Univ 55

3D MHD simulation of a SNR

Introduction

bull Acceleration of cosmic-rays in SNRs

ndash Up to ~ 1015 eV or more

ndash Magnetic field is key ingredient

20140304 BH-mag 2014 Kumamoto Univ 56

SN1006 (Chandra X-ray)

Amplified strong magnetic field

20140304 BH-mag 2014 Kumamoto Univ 57

Uchiyama et al 2007 Nature 4469 576

Bohm-diffusion limit

Variations of X-ray hot

spots on a 1 yr timescale

Strong amplified

magnetic field

3D MHD simulation of a SNR

20140304 BH-mag 2014 Kumamoto Univ 58

3 pc

Preliminary

20140304 BH-mag 2014 Kumamoto Univ 59

Amplified magnetic field

20121015 - 17 SNSNR12 59

~ 50 μ G

1 μ G Preliminary

20140304 BH-mag 2014 Kumamoto Univ 60

3D structure of Cas A

Delaney et al 2010

Chandra lsquos X-rays

Spitzer lsquos infrared

Green X-ray Fe-K

Red IR [Ar II]

Blue high [Ne II][Ar II] ratio

Yellow optical outer ejecta

Grey IR [Si II]

Black X-ray Si XIII

20140304 BH-mag 2014 Kumamoto Univ 61

ASTRO-H

bull New exploration X-ray

Telescope

ndash First right will be

2015 yr

ndash 10 times larger

energy resolution

httpastro-hisasjaxajpgallerysatelite02html

High resolution spectrum

of X-ray from SNRs is

expected

3D simulation of the thermal X-ray emission from young

SNRs including efficient particle acceleration

bull 3D simulation

bull Diffusive Shock Acceleration

bull Back reaction from

accelerated particle

bull Non-equilibrium ionization

bull Thermal X-ray emission

20140304 BH-mag 2014 Kumamoto Univ 62

Ferrand et al 2012

To go further than

Ferrand et al

Test 1D calculation

bull Two energy equation for ions and electrons respectively

bull Energy equilibration between ions and electrons

bull Ionization

20140304 BH-mag 2014 Kumamoto Univ 63

20140304 BH-mag 2014 Kumamoto Univ 64

Density contour

Preliminary

Emission from deferent regions

20140304 BH-mag 2014 Kumamoto Univ 65

Preliminary

Summary

bull Aspherical nature of core-collapse supernova

explosions

bull Origin of heavy elements

ndash NS merger

ndash Magnetically driven jets

bull Mixing in CCSN explosion

bull Supernova explosions to Supernova remnant

20140304 BH-mag 2014 Kumamoto Univ 66

Page 11: Masaomi ONO Kyushu University - aichi-edu.ac.jptakahasi/BHmag2014_pdf/Presen/...Method of MHD simulation 16 Magnetohydrodynamics (ideal MHD) Poisson eq. pseudo-Newtonian potential

Inputs and method

11

Input

bull Results of stellar evolution

calculation

(Hashimoto 1995)

ndash 32 M8 He core (Mms = 70 M8)

ndash Only 30 nuclei Mms = 70 M8

n p 4He 12C 14N 1618O 20-22Ne 23Na 24-26Mg

2627Al 28-30Si 3031P 31-34S 35Cl 3638Ar 39K 40Ca

Method

bull Using time evolution of

bull ρ T

bull Convective region

bull Nuclear reaction network (464 nuclei up to Kr)

20140304 BH-mag 2014 Kumamoto Univ

Nuclear reaction network

12

Thermonuclear reaction rates

Nucleosynthesis calculation in Lagrange mesh with a relatively large nuclear reaction network (464 nuclei up to 94Kr)

Reaction rates based on experimental values and REACLIB compilation

20140304 BH-mag 2014 Kumamoto Univ

Treatment of convective region

13

bull Initial abundance

ndash Solar system abundance H rarr He 12C16O rarr 14N (CNO cycle)

bull Convective region

ndash Stellar evolution calculation

bull Criterion of convection

ndash Schwarzschild

c

A c

( )

( )

i i

n

X X m dm M

m N v dm M

Convective region one zone

He burn

rad ad rad

rad

ln

ln

d T

d P

ad

ad

ln

ln

d T

d P

20140304 BH-mag 2014 Kumamoto Univ

Mass fraction at the pre-collapse

14 20140304 BH-mag 2014 Kumamoto Univ

MHD simulations of Collapsar model

15 20140304 BH-mag 2014 Kumamoto Univ

Method of MHD simulation

16

Magnetohydrodynamics (ideal MHD)

Poisson eq

pseudo-Newtonian potential

Equation of State(EoS)

Shen et al 1998

Code ZEUS-2D

Stone amp Norman 1992

BH

Self gravity

0D

Dt

v

1( ) ( )

4

DP

Dt

vB B

D eP q

Dt

v

( )t

Bv B

2 4 G

BH BH

2

2 g

g

GM GMr

r r c

Magnetic field lines

ldquo frozen in

Fluid particle

20140304 BH-mag 2014 Kumamoto Univ

20140304 BH-mag 2014 Kumamoto Univ 17

Nucleosynthesis in the MHD jet from a

collapsar including weak s- p- and r-processes

MO+12

20140304 BH-mag 2014 Kumamoto Univ 18

r-process nucleosynthesis (movie)

MO+12

20140304 BH-mag 2014 Kumamoto Univ 19

Comparison with abundances of the solar and

metal-poor stars

bull Weak r-process

bull Primary synthesis of

Sr-Y-Zr

darr

Lighter element

primary process

(LEPP)

MO+12

Universality of the r-process (eg Sneden et al 2003)

Future collaboration with nuclear physics groups in

RIKEN

bull RIBF (beam factory)

bull Theoretical nuclear physics

group

bull Impact of uncertainties of

nuclear physics inputs

on nucleosynthesis in

astrophysical sites

20140304 BH-mag 2014 Kumamoto Univ 20

A lsquoKilonovarsquo associated with the short-duration

GRB 130603B (z = 0356)

bull Optical near-IR afterglow

ndash kilonova (1040 -1042 erg s-1)

bull r-process powered transient

(eg Li amp Paczyński 1998

Metzger et al 2010)

bull Electromagnetic counterpart

of GW

bull Robust r-process in NS merger

(Korobkin et al 2012)

bull Recent numerical study

ndash Wanajo et al 2013 (arXiv14027317)

20140304 BH-mag 2014 Kumamoto Univ 21

Tanvir et al 2013 Nature 500 547

Matter mixing in aspherical core-collapse supernovae

- A search for possible conditions for conveying 56Ni into high

velocity regions

Masaomi Ono1

Shigehiro Nagataki2 Hirotaka Ito2 Shiu-Hang Lee2 Jirong

Mao2 Masa-aki Hashimoto1 Tolstov Alexey2

Kyushu University

Astrophysical Big Bang Laboratory RIKEN

20140304 BH-mag 2014 Kumamoto Univ 22

MO+2013 ApJ 773 161

20140304 BH-mag 2014 Kumamoto Univ 23

Introduction observational evidence of mixing

in supernovae bull SN 1987A

ndash Early detection of X-rays (Dotani et al 1987)

γ-rays lines from 56Co (Matz et al 1988)

ndash Sudden development of the fine structure of Ha

(Hanuschik et al 1988)

ndash Line profiles of [Fe II]

(Spyromilo+90 Haas+90)

Fe (56Ni) is mixed into high velocity regions

56Ni rarr 56Co rarr 56Fe

20140304 BH-mag 2014 Kumamoto Univ 24

Broadened line profile of [Fe II] in SN 1987A

[Fe II] line profile (Haas et al 1990)

56Ni rarr 56Co rarr 56Fe

4000 km s-1

SN 1987A

Doppler velocity

T12 = 61 d T12 = 77 d

20140304 BH-mag 2014 Kumamoto Univ 25

Matter mixing in supernova explosions

HeH C+OHe

Synthesized 56Ni by

explosive

nucleosynthesis Mixing

56Ni is mixed up into high

velocity regions

radial velocity HeH

56Ni

Distance from the center

20140304 BH-mag 2014 Kumamoto Univ 26

What is the mechanism of the mixing

bull Fluid instabilities

ndash Rayleigh-Taylor (RT) instability

ndash Kelvin-Helmholtz (KH) instability

ndash Richtmyer-Meshkov (RM) instability

bull Aspherical supernova explosion

ndash Neutrino heating aided by SASI

(Standing Accretion Shock Instability)

ndash MHD Jets

Wongwathanarat et al 2010

Entropy per baryon

20140304 BH-mag 2014 Kumamoto Univ 27

Early previous study of hydrodynamic models of

the late time shock wave propagation

bull 2D3D hydrodynamic simulations

bull Add hoc initiation of spherical supernova explosion

bull RT mixing at OHe HeH interfaces

bull Maximum 56Ni velocity around 2000 km s-1

Arnett et al 1989 Fryxell et al 1991 Mueller et al 1991bac Hachisu et al

1990 1991 1992 1994 Herant amp Benz 1991 Herant amp Benz 1992

Hachisu et al 1992

Spherical explosion + RT instability could not explain

the observed high velocity of 56Ni

bull Recent study on mixing

ndash 2D (Kifonidis et al 2003 2006 Gawryszczak et al 2010)

20140304 BH-mag 2014 Kumamoto Univ 28

Simulations of non-spherical supernova explosions

bull Neutrino-driven explosion

(Kifonidis et al 2006 Gawryszczak et al 2010)

Solid circle 10-4 M8

Open circle 10-5 M8

Density 7days after the explosion

Maximum ~ 4000 km s-1

bull Jet like explosions (Yamada amp Sato 1991 Nagataki et al 2000)

bull 3D (Hammer et al 2010)

bull SPH (Hungerford et al 20032005 Ellinger et al 2012)

Motivation

bull Multidimensional high resolution hydrodynamics

simulations of the propagation of supernova shock wave

+ Nucleosynthesis calculation and advections of

synthesized nuclear species

20140304 BH-mag 2014 Kumamoto Univ 29

The conditions for reproducing the observed high

velocity of 56Ni are still unclear

To clarify the key conditions for reproducing such

high velocity of 56Ni we revisit matter mixing in

aspherical core-collapse supernova explosions

Methods

20140304 BH-mag 2014 Kumamoto Univ 30

20140304 BH-mag 2014 Kumamoto Univ 31

Methods

bull 2D hydrodynamic simulation

ndash AMR hydrodynamic code (FLASH Fryxell et al 2000)

ndash Parallel computing (SR16000 in YITP)

ndash Nuclear reaction network 1H 4He 12C hellip 54Fe 56Ni (19 nuclei)

ndash Spherical point mass and self gravity

ndash Spherical coordinate effective maximum grid r (3027) x q (768)

ndash Initial computational domain 109 cm ndash stellar surface 3x1012 cm

ndash How to initiate the explosionIntroduce aspherical initial radial

velocity and inject thermal energy around FeSi surface

ndash Perturbations of presupernova origins

httpflashuchicagoedusite

20140304 BH-mag 2014 Kumamoto Univ 32

FLASH Code

bull Eulerian hydrodynamic code

ndash Piecewise Parabolic Method (PPM)

ndash Unsplit solver MHD RHD

bull AMR (Adaptive mesh refinement)

ndash Reduce numerical costs

bull Many optional units

ndash Nuclear reaction networks

(7-19 nuclei)

The FLASH code is a modular parallel multiphysics simulation code

capable of handling general compressible flow problems found in many astrophysical environment (Fryxell et al 2000)

Type Ia SN

explosion

Jordan et al 2008

20140304 BH-mag 2014 Kumamoto Univ 33

Rayleigh-Taylor (RT) instability

120571120588 ∙ 120571119901 lt 0 (Chevalier 1979)

120588 1199033 rarr accelerate

Kifonidis et al 2006

Shengtai Li amp Hui Li 2006

RT unstable condition

1205882

1205881

g

Spherical explosions + RT

instabilities have not explained

the high velocity 56Ni

if 1205881 gt 1205882 120588 1199033 rarr decelerate

20140304 BH-mag 2014 Kumamoto Univ 34

Presupernova structure and introduced

perturbations

120571120588 ∙ 120571119901 lt 0 (Chavalier 1979)

120588 1199033 rarr shock wave tend

to be decelerated

Progenitor model 6 M8

helium core (Nomoto amp Hashimoto

1988) + 103 M8 hydrogen envelope

Si C+O He H

Rayleigh-Taylor unstable

Random

Sinusoidal

Perturbations are introduced at 6times109 cm (C+OHe) 5times1010 cm (HeH)

Models

20140304 BH-mag 2014 Kumamoto Univ 35

Parametersasphericity timing of the introduction

of perturbations

1 Spherical explosion models

2 Bipolar explosion models

3 Explosion models mimicking neutrino-driven

explosion

Results of models

20140304 BH-mag 2014 Kumamoto Univ 36

Spherical explosion models

20140304 BH-mag 2014 Kumamoto Univ 37

Density distributions

Perturbations

at C+OHe

Perturbations

at HeH

Perturbations

at both

Growth factor of instability

20140304 BH-mag 2014 Kumamoto Univ 38

Growth factors at the end of

simulation time

Growth rate for incompressible fluid

Growth rate for compressible fluid

Growth factors

Based on pure 1d spherical simulation

Radial velocity distribution of elements for

spherical explosion models

20140304 BH-mag 2014 Kumamoto Univ 39

Timing of the perturbations hardly affect

the maximum velocity of 56Ni

Maximum velocity of 56Ni lt 1600 km s-1

Different asphericity of bipolar explosions

20140304 BH-mag 2014 Kumamoto Univ 40

Bipolar explosion slightly enhance the mixing

length along the polar axis but maximum velocity

of 56Ni is still the level of lt 1700 km s-1

milder asphericity stronger asphericity

Revisiting Nagataki et al 2000 (jetlike explosion)

only initial large amplitude of perturbations

20140304 BH-mag 2014 Kumamoto Univ 41

with amplitude of 30 and m = 20

Initial relatively large sale of perturbations can not survive in later phase due to KH instabilities

Mimicking the neutrino-driven explosions

20140304 BH-mag 2014 Kumamoto Univ 42

Initial radial velocity

Scheck+04

Gawryszczak+10

Mechanism of the core-collapse supernova

explosions

bull Neutrino heating

20140304 BH-mag 2014 Kumamoto Univ 43

Taken from Janka et al 2012 (PTEP 1 A309)

Bethe 1990 (Rev Mod Phys 62 801) Taken from Liebendofer et al 2001

Convections and Standing Accretion Shock

Instability (SASI)

bull Convection around PNS surface

bull Neutrino-driven convection

bull Standing Accretion Shock Instability (SASI) (Blondin et al )

ndash Acoustic-vorticity cycle

20140304 BH-mag 2014 Kumamoto Univ 44

Ledoux criterion

Ledoux criterion

Taken from Liebendofer et al 2001

20140304 BH-mag 2014 Kumamoto Univ 45

Aspherical explosion with clumpy structure in the

explosion (movie)

20140304 BH-mag 2014 Kumamoto Univ 46

Aspherical explosion with clumpy structure + RT

instability

053 s 288 s 5752 s

20140304 BH-mag 2014 Kumamoto Univ 47

Maximum 3000 km s-1

56Ni

Radial velocity distributions of the best model in

this study

bull Relatively high velocity

(3000 km s-1) of 56Ni

bull Mass of 56Ni with ~ 3000

km s-1 14 x 10-3 M8

20140304 BH-mag 2014 Kumamoto Univ 48

Summary

bull To reproduce the high velocity of 56Ni both aspherical

explosion with clumpy structure and perturbations of

presupernova origins may be necessary

bull There are still missing ingredients to explain the observed

high velocity of 56Ni in SN 1987A

bull Possible missing ingredients

ndash More realistic explosion model (eg Kifonidis et al 2006)

ndash Lager perturbations in presupernova structure (Arnett amp Meakin 2011)

ndash Long simulation time

bull Heating due to the decay of 56Co (Herant amp Benz 1991)

ndash 3D effect (Hammer et al 2010)

Possible seeds of perturbations

bull Dynamical stellar evolution calculation

bull Density fluctuations

around the composition

interfaces

20140304 BH-mag 2014 Kumamoto Univ 49

Arnett amp Meakin 2011

20140304 BH-mag 2014 Kumamoto Univ 50

3D simulations of mixing instabilities in SN

explosions

Hammer et al 2010

56Ni 56Ni

2D 3D

Entropy per baryon Red Oxygen

Blue Nickel

Green Carbon

Direct-escape lines of 44Ti from SNR 1987A

bull lines from 44Ti 679 keV and 784 keV

bull Estimated 44Ti mass (31plusmn08) x 10-4 M8

20140304 BH-mag 2014 Kumamoto Univ 51

Grebenev+12 Nature 490 373

44Ti rarr 44Sc rarr 44Ca T12 = 60 d T12 = 4 h

Asymmetries in core-collapse supernovae from

maps of radioactive 44Ti in Cas A

20140304 BH-mag 2014 Kumamoto Univ 52

Grefenstette+14 Nature 506 339

Aspherical explosion enhance 44Ti

20140304 BH-mag 2014 Kumamoto Univ 53

56Ni 4He 44Ti

Alpha-rich freeze-out enhance the production of 44Ti in the

explosive nucleosynthesis

Aspherical explosion enhance the ratio of M(44Ti)M(56Ni)

096 s after the initiation of the explosion

Toward full 3D radiative transfer

bull 爆発形状を仮定した

輻射輸送計算

ndash 形状で偏光度が異なる

ndash 元素によっても異なる

bull 3次元物質混合計算を

インプットにした輻射

輸送計算

20140304 BH-mag 2014 Kumamoto Univ 54

Tanaka et al 2012 bipolar

clumpy

爆発形状のプローブ

20140304 BH-mag 2014 Kumamoto Univ 55

3D MHD simulation of a SNR

Introduction

bull Acceleration of cosmic-rays in SNRs

ndash Up to ~ 1015 eV or more

ndash Magnetic field is key ingredient

20140304 BH-mag 2014 Kumamoto Univ 56

SN1006 (Chandra X-ray)

Amplified strong magnetic field

20140304 BH-mag 2014 Kumamoto Univ 57

Uchiyama et al 2007 Nature 4469 576

Bohm-diffusion limit

Variations of X-ray hot

spots on a 1 yr timescale

Strong amplified

magnetic field

3D MHD simulation of a SNR

20140304 BH-mag 2014 Kumamoto Univ 58

3 pc

Preliminary

20140304 BH-mag 2014 Kumamoto Univ 59

Amplified magnetic field

20121015 - 17 SNSNR12 59

~ 50 μ G

1 μ G Preliminary

20140304 BH-mag 2014 Kumamoto Univ 60

3D structure of Cas A

Delaney et al 2010

Chandra lsquos X-rays

Spitzer lsquos infrared

Green X-ray Fe-K

Red IR [Ar II]

Blue high [Ne II][Ar II] ratio

Yellow optical outer ejecta

Grey IR [Si II]

Black X-ray Si XIII

20140304 BH-mag 2014 Kumamoto Univ 61

ASTRO-H

bull New exploration X-ray

Telescope

ndash First right will be

2015 yr

ndash 10 times larger

energy resolution

httpastro-hisasjaxajpgallerysatelite02html

High resolution spectrum

of X-ray from SNRs is

expected

3D simulation of the thermal X-ray emission from young

SNRs including efficient particle acceleration

bull 3D simulation

bull Diffusive Shock Acceleration

bull Back reaction from

accelerated particle

bull Non-equilibrium ionization

bull Thermal X-ray emission

20140304 BH-mag 2014 Kumamoto Univ 62

Ferrand et al 2012

To go further than

Ferrand et al

Test 1D calculation

bull Two energy equation for ions and electrons respectively

bull Energy equilibration between ions and electrons

bull Ionization

20140304 BH-mag 2014 Kumamoto Univ 63

20140304 BH-mag 2014 Kumamoto Univ 64

Density contour

Preliminary

Emission from deferent regions

20140304 BH-mag 2014 Kumamoto Univ 65

Preliminary

Summary

bull Aspherical nature of core-collapse supernova

explosions

bull Origin of heavy elements

ndash NS merger

ndash Magnetically driven jets

bull Mixing in CCSN explosion

bull Supernova explosions to Supernova remnant

20140304 BH-mag 2014 Kumamoto Univ 66

Page 12: Masaomi ONO Kyushu University - aichi-edu.ac.jptakahasi/BHmag2014_pdf/Presen/...Method of MHD simulation 16 Magnetohydrodynamics (ideal MHD) Poisson eq. pseudo-Newtonian potential

Nuclear reaction network

12

Thermonuclear reaction rates

Nucleosynthesis calculation in Lagrange mesh with a relatively large nuclear reaction network (464 nuclei up to 94Kr)

Reaction rates based on experimental values and REACLIB compilation

20140304 BH-mag 2014 Kumamoto Univ

Treatment of convective region

13

bull Initial abundance

ndash Solar system abundance H rarr He 12C16O rarr 14N (CNO cycle)

bull Convective region

ndash Stellar evolution calculation

bull Criterion of convection

ndash Schwarzschild

c

A c

( )

( )

i i

n

X X m dm M

m N v dm M

Convective region one zone

He burn

rad ad rad

rad

ln

ln

d T

d P

ad

ad

ln

ln

d T

d P

20140304 BH-mag 2014 Kumamoto Univ

Mass fraction at the pre-collapse

14 20140304 BH-mag 2014 Kumamoto Univ

MHD simulations of Collapsar model

15 20140304 BH-mag 2014 Kumamoto Univ

Method of MHD simulation

16

Magnetohydrodynamics (ideal MHD)

Poisson eq

pseudo-Newtonian potential

Equation of State(EoS)

Shen et al 1998

Code ZEUS-2D

Stone amp Norman 1992

BH

Self gravity

0D

Dt

v

1( ) ( )

4

DP

Dt

vB B

D eP q

Dt

v

( )t

Bv B

2 4 G

BH BH

2

2 g

g

GM GMr

r r c

Magnetic field lines

ldquo frozen in

Fluid particle

20140304 BH-mag 2014 Kumamoto Univ

20140304 BH-mag 2014 Kumamoto Univ 17

Nucleosynthesis in the MHD jet from a

collapsar including weak s- p- and r-processes

MO+12

20140304 BH-mag 2014 Kumamoto Univ 18

r-process nucleosynthesis (movie)

MO+12

20140304 BH-mag 2014 Kumamoto Univ 19

Comparison with abundances of the solar and

metal-poor stars

bull Weak r-process

bull Primary synthesis of

Sr-Y-Zr

darr

Lighter element

primary process

(LEPP)

MO+12

Universality of the r-process (eg Sneden et al 2003)

Future collaboration with nuclear physics groups in

RIKEN

bull RIBF (beam factory)

bull Theoretical nuclear physics

group

bull Impact of uncertainties of

nuclear physics inputs

on nucleosynthesis in

astrophysical sites

20140304 BH-mag 2014 Kumamoto Univ 20

A lsquoKilonovarsquo associated with the short-duration

GRB 130603B (z = 0356)

bull Optical near-IR afterglow

ndash kilonova (1040 -1042 erg s-1)

bull r-process powered transient

(eg Li amp Paczyński 1998

Metzger et al 2010)

bull Electromagnetic counterpart

of GW

bull Robust r-process in NS merger

(Korobkin et al 2012)

bull Recent numerical study

ndash Wanajo et al 2013 (arXiv14027317)

20140304 BH-mag 2014 Kumamoto Univ 21

Tanvir et al 2013 Nature 500 547

Matter mixing in aspherical core-collapse supernovae

- A search for possible conditions for conveying 56Ni into high

velocity regions

Masaomi Ono1

Shigehiro Nagataki2 Hirotaka Ito2 Shiu-Hang Lee2 Jirong

Mao2 Masa-aki Hashimoto1 Tolstov Alexey2

Kyushu University

Astrophysical Big Bang Laboratory RIKEN

20140304 BH-mag 2014 Kumamoto Univ 22

MO+2013 ApJ 773 161

20140304 BH-mag 2014 Kumamoto Univ 23

Introduction observational evidence of mixing

in supernovae bull SN 1987A

ndash Early detection of X-rays (Dotani et al 1987)

γ-rays lines from 56Co (Matz et al 1988)

ndash Sudden development of the fine structure of Ha

(Hanuschik et al 1988)

ndash Line profiles of [Fe II]

(Spyromilo+90 Haas+90)

Fe (56Ni) is mixed into high velocity regions

56Ni rarr 56Co rarr 56Fe

20140304 BH-mag 2014 Kumamoto Univ 24

Broadened line profile of [Fe II] in SN 1987A

[Fe II] line profile (Haas et al 1990)

56Ni rarr 56Co rarr 56Fe

4000 km s-1

SN 1987A

Doppler velocity

T12 = 61 d T12 = 77 d

20140304 BH-mag 2014 Kumamoto Univ 25

Matter mixing in supernova explosions

HeH C+OHe

Synthesized 56Ni by

explosive

nucleosynthesis Mixing

56Ni is mixed up into high

velocity regions

radial velocity HeH

56Ni

Distance from the center

20140304 BH-mag 2014 Kumamoto Univ 26

What is the mechanism of the mixing

bull Fluid instabilities

ndash Rayleigh-Taylor (RT) instability

ndash Kelvin-Helmholtz (KH) instability

ndash Richtmyer-Meshkov (RM) instability

bull Aspherical supernova explosion

ndash Neutrino heating aided by SASI

(Standing Accretion Shock Instability)

ndash MHD Jets

Wongwathanarat et al 2010

Entropy per baryon

20140304 BH-mag 2014 Kumamoto Univ 27

Early previous study of hydrodynamic models of

the late time shock wave propagation

bull 2D3D hydrodynamic simulations

bull Add hoc initiation of spherical supernova explosion

bull RT mixing at OHe HeH interfaces

bull Maximum 56Ni velocity around 2000 km s-1

Arnett et al 1989 Fryxell et al 1991 Mueller et al 1991bac Hachisu et al

1990 1991 1992 1994 Herant amp Benz 1991 Herant amp Benz 1992

Hachisu et al 1992

Spherical explosion + RT instability could not explain

the observed high velocity of 56Ni

bull Recent study on mixing

ndash 2D (Kifonidis et al 2003 2006 Gawryszczak et al 2010)

20140304 BH-mag 2014 Kumamoto Univ 28

Simulations of non-spherical supernova explosions

bull Neutrino-driven explosion

(Kifonidis et al 2006 Gawryszczak et al 2010)

Solid circle 10-4 M8

Open circle 10-5 M8

Density 7days after the explosion

Maximum ~ 4000 km s-1

bull Jet like explosions (Yamada amp Sato 1991 Nagataki et al 2000)

bull 3D (Hammer et al 2010)

bull SPH (Hungerford et al 20032005 Ellinger et al 2012)

Motivation

bull Multidimensional high resolution hydrodynamics

simulations of the propagation of supernova shock wave

+ Nucleosynthesis calculation and advections of

synthesized nuclear species

20140304 BH-mag 2014 Kumamoto Univ 29

The conditions for reproducing the observed high

velocity of 56Ni are still unclear

To clarify the key conditions for reproducing such

high velocity of 56Ni we revisit matter mixing in

aspherical core-collapse supernova explosions

Methods

20140304 BH-mag 2014 Kumamoto Univ 30

20140304 BH-mag 2014 Kumamoto Univ 31

Methods

bull 2D hydrodynamic simulation

ndash AMR hydrodynamic code (FLASH Fryxell et al 2000)

ndash Parallel computing (SR16000 in YITP)

ndash Nuclear reaction network 1H 4He 12C hellip 54Fe 56Ni (19 nuclei)

ndash Spherical point mass and self gravity

ndash Spherical coordinate effective maximum grid r (3027) x q (768)

ndash Initial computational domain 109 cm ndash stellar surface 3x1012 cm

ndash How to initiate the explosionIntroduce aspherical initial radial

velocity and inject thermal energy around FeSi surface

ndash Perturbations of presupernova origins

httpflashuchicagoedusite

20140304 BH-mag 2014 Kumamoto Univ 32

FLASH Code

bull Eulerian hydrodynamic code

ndash Piecewise Parabolic Method (PPM)

ndash Unsplit solver MHD RHD

bull AMR (Adaptive mesh refinement)

ndash Reduce numerical costs

bull Many optional units

ndash Nuclear reaction networks

(7-19 nuclei)

The FLASH code is a modular parallel multiphysics simulation code

capable of handling general compressible flow problems found in many astrophysical environment (Fryxell et al 2000)

Type Ia SN

explosion

Jordan et al 2008

20140304 BH-mag 2014 Kumamoto Univ 33

Rayleigh-Taylor (RT) instability

120571120588 ∙ 120571119901 lt 0 (Chevalier 1979)

120588 1199033 rarr accelerate

Kifonidis et al 2006

Shengtai Li amp Hui Li 2006

RT unstable condition

1205882

1205881

g

Spherical explosions + RT

instabilities have not explained

the high velocity 56Ni

if 1205881 gt 1205882 120588 1199033 rarr decelerate

20140304 BH-mag 2014 Kumamoto Univ 34

Presupernova structure and introduced

perturbations

120571120588 ∙ 120571119901 lt 0 (Chavalier 1979)

120588 1199033 rarr shock wave tend

to be decelerated

Progenitor model 6 M8

helium core (Nomoto amp Hashimoto

1988) + 103 M8 hydrogen envelope

Si C+O He H

Rayleigh-Taylor unstable

Random

Sinusoidal

Perturbations are introduced at 6times109 cm (C+OHe) 5times1010 cm (HeH)

Models

20140304 BH-mag 2014 Kumamoto Univ 35

Parametersasphericity timing of the introduction

of perturbations

1 Spherical explosion models

2 Bipolar explosion models

3 Explosion models mimicking neutrino-driven

explosion

Results of models

20140304 BH-mag 2014 Kumamoto Univ 36

Spherical explosion models

20140304 BH-mag 2014 Kumamoto Univ 37

Density distributions

Perturbations

at C+OHe

Perturbations

at HeH

Perturbations

at both

Growth factor of instability

20140304 BH-mag 2014 Kumamoto Univ 38

Growth factors at the end of

simulation time

Growth rate for incompressible fluid

Growth rate for compressible fluid

Growth factors

Based on pure 1d spherical simulation

Radial velocity distribution of elements for

spherical explosion models

20140304 BH-mag 2014 Kumamoto Univ 39

Timing of the perturbations hardly affect

the maximum velocity of 56Ni

Maximum velocity of 56Ni lt 1600 km s-1

Different asphericity of bipolar explosions

20140304 BH-mag 2014 Kumamoto Univ 40

Bipolar explosion slightly enhance the mixing

length along the polar axis but maximum velocity

of 56Ni is still the level of lt 1700 km s-1

milder asphericity stronger asphericity

Revisiting Nagataki et al 2000 (jetlike explosion)

only initial large amplitude of perturbations

20140304 BH-mag 2014 Kumamoto Univ 41

with amplitude of 30 and m = 20

Initial relatively large sale of perturbations can not survive in later phase due to KH instabilities

Mimicking the neutrino-driven explosions

20140304 BH-mag 2014 Kumamoto Univ 42

Initial radial velocity

Scheck+04

Gawryszczak+10

Mechanism of the core-collapse supernova

explosions

bull Neutrino heating

20140304 BH-mag 2014 Kumamoto Univ 43

Taken from Janka et al 2012 (PTEP 1 A309)

Bethe 1990 (Rev Mod Phys 62 801) Taken from Liebendofer et al 2001

Convections and Standing Accretion Shock

Instability (SASI)

bull Convection around PNS surface

bull Neutrino-driven convection

bull Standing Accretion Shock Instability (SASI) (Blondin et al )

ndash Acoustic-vorticity cycle

20140304 BH-mag 2014 Kumamoto Univ 44

Ledoux criterion

Ledoux criterion

Taken from Liebendofer et al 2001

20140304 BH-mag 2014 Kumamoto Univ 45

Aspherical explosion with clumpy structure in the

explosion (movie)

20140304 BH-mag 2014 Kumamoto Univ 46

Aspherical explosion with clumpy structure + RT

instability

053 s 288 s 5752 s

20140304 BH-mag 2014 Kumamoto Univ 47

Maximum 3000 km s-1

56Ni

Radial velocity distributions of the best model in

this study

bull Relatively high velocity

(3000 km s-1) of 56Ni

bull Mass of 56Ni with ~ 3000

km s-1 14 x 10-3 M8

20140304 BH-mag 2014 Kumamoto Univ 48

Summary

bull To reproduce the high velocity of 56Ni both aspherical

explosion with clumpy structure and perturbations of

presupernova origins may be necessary

bull There are still missing ingredients to explain the observed

high velocity of 56Ni in SN 1987A

bull Possible missing ingredients

ndash More realistic explosion model (eg Kifonidis et al 2006)

ndash Lager perturbations in presupernova structure (Arnett amp Meakin 2011)

ndash Long simulation time

bull Heating due to the decay of 56Co (Herant amp Benz 1991)

ndash 3D effect (Hammer et al 2010)

Possible seeds of perturbations

bull Dynamical stellar evolution calculation

bull Density fluctuations

around the composition

interfaces

20140304 BH-mag 2014 Kumamoto Univ 49

Arnett amp Meakin 2011

20140304 BH-mag 2014 Kumamoto Univ 50

3D simulations of mixing instabilities in SN

explosions

Hammer et al 2010

56Ni 56Ni

2D 3D

Entropy per baryon Red Oxygen

Blue Nickel

Green Carbon

Direct-escape lines of 44Ti from SNR 1987A

bull lines from 44Ti 679 keV and 784 keV

bull Estimated 44Ti mass (31plusmn08) x 10-4 M8

20140304 BH-mag 2014 Kumamoto Univ 51

Grebenev+12 Nature 490 373

44Ti rarr 44Sc rarr 44Ca T12 = 60 d T12 = 4 h

Asymmetries in core-collapse supernovae from

maps of radioactive 44Ti in Cas A

20140304 BH-mag 2014 Kumamoto Univ 52

Grefenstette+14 Nature 506 339

Aspherical explosion enhance 44Ti

20140304 BH-mag 2014 Kumamoto Univ 53

56Ni 4He 44Ti

Alpha-rich freeze-out enhance the production of 44Ti in the

explosive nucleosynthesis

Aspherical explosion enhance the ratio of M(44Ti)M(56Ni)

096 s after the initiation of the explosion

Toward full 3D radiative transfer

bull 爆発形状を仮定した

輻射輸送計算

ndash 形状で偏光度が異なる

ndash 元素によっても異なる

bull 3次元物質混合計算を

インプットにした輻射

輸送計算

20140304 BH-mag 2014 Kumamoto Univ 54

Tanaka et al 2012 bipolar

clumpy

爆発形状のプローブ

20140304 BH-mag 2014 Kumamoto Univ 55

3D MHD simulation of a SNR

Introduction

bull Acceleration of cosmic-rays in SNRs

ndash Up to ~ 1015 eV or more

ndash Magnetic field is key ingredient

20140304 BH-mag 2014 Kumamoto Univ 56

SN1006 (Chandra X-ray)

Amplified strong magnetic field

20140304 BH-mag 2014 Kumamoto Univ 57

Uchiyama et al 2007 Nature 4469 576

Bohm-diffusion limit

Variations of X-ray hot

spots on a 1 yr timescale

Strong amplified

magnetic field

3D MHD simulation of a SNR

20140304 BH-mag 2014 Kumamoto Univ 58

3 pc

Preliminary

20140304 BH-mag 2014 Kumamoto Univ 59

Amplified magnetic field

20121015 - 17 SNSNR12 59

~ 50 μ G

1 μ G Preliminary

20140304 BH-mag 2014 Kumamoto Univ 60

3D structure of Cas A

Delaney et al 2010

Chandra lsquos X-rays

Spitzer lsquos infrared

Green X-ray Fe-K

Red IR [Ar II]

Blue high [Ne II][Ar II] ratio

Yellow optical outer ejecta

Grey IR [Si II]

Black X-ray Si XIII

20140304 BH-mag 2014 Kumamoto Univ 61

ASTRO-H

bull New exploration X-ray

Telescope

ndash First right will be

2015 yr

ndash 10 times larger

energy resolution

httpastro-hisasjaxajpgallerysatelite02html

High resolution spectrum

of X-ray from SNRs is

expected

3D simulation of the thermal X-ray emission from young

SNRs including efficient particle acceleration

bull 3D simulation

bull Diffusive Shock Acceleration

bull Back reaction from

accelerated particle

bull Non-equilibrium ionization

bull Thermal X-ray emission

20140304 BH-mag 2014 Kumamoto Univ 62

Ferrand et al 2012

To go further than

Ferrand et al

Test 1D calculation

bull Two energy equation for ions and electrons respectively

bull Energy equilibration between ions and electrons

bull Ionization

20140304 BH-mag 2014 Kumamoto Univ 63

20140304 BH-mag 2014 Kumamoto Univ 64

Density contour

Preliminary

Emission from deferent regions

20140304 BH-mag 2014 Kumamoto Univ 65

Preliminary

Summary

bull Aspherical nature of core-collapse supernova

explosions

bull Origin of heavy elements

ndash NS merger

ndash Magnetically driven jets

bull Mixing in CCSN explosion

bull Supernova explosions to Supernova remnant

20140304 BH-mag 2014 Kumamoto Univ 66

Page 13: Masaomi ONO Kyushu University - aichi-edu.ac.jptakahasi/BHmag2014_pdf/Presen/...Method of MHD simulation 16 Magnetohydrodynamics (ideal MHD) Poisson eq. pseudo-Newtonian potential

Treatment of convective region

13

bull Initial abundance

ndash Solar system abundance H rarr He 12C16O rarr 14N (CNO cycle)

bull Convective region

ndash Stellar evolution calculation

bull Criterion of convection

ndash Schwarzschild

c

A c

( )

( )

i i

n

X X m dm M

m N v dm M

Convective region one zone

He burn

rad ad rad

rad

ln

ln

d T

d P

ad

ad

ln

ln

d T

d P

20140304 BH-mag 2014 Kumamoto Univ

Mass fraction at the pre-collapse

14 20140304 BH-mag 2014 Kumamoto Univ

MHD simulations of Collapsar model

15 20140304 BH-mag 2014 Kumamoto Univ

Method of MHD simulation

16

Magnetohydrodynamics (ideal MHD)

Poisson eq

pseudo-Newtonian potential

Equation of State(EoS)

Shen et al 1998

Code ZEUS-2D

Stone amp Norman 1992

BH

Self gravity

0D

Dt

v

1( ) ( )

4

DP

Dt

vB B

D eP q

Dt

v

( )t

Bv B

2 4 G

BH BH

2

2 g

g

GM GMr

r r c

Magnetic field lines

ldquo frozen in

Fluid particle

20140304 BH-mag 2014 Kumamoto Univ

20140304 BH-mag 2014 Kumamoto Univ 17

Nucleosynthesis in the MHD jet from a

collapsar including weak s- p- and r-processes

MO+12

20140304 BH-mag 2014 Kumamoto Univ 18

r-process nucleosynthesis (movie)

MO+12

20140304 BH-mag 2014 Kumamoto Univ 19

Comparison with abundances of the solar and

metal-poor stars

bull Weak r-process

bull Primary synthesis of

Sr-Y-Zr

darr

Lighter element

primary process

(LEPP)

MO+12

Universality of the r-process (eg Sneden et al 2003)

Future collaboration with nuclear physics groups in

RIKEN

bull RIBF (beam factory)

bull Theoretical nuclear physics

group

bull Impact of uncertainties of

nuclear physics inputs

on nucleosynthesis in

astrophysical sites

20140304 BH-mag 2014 Kumamoto Univ 20

A lsquoKilonovarsquo associated with the short-duration

GRB 130603B (z = 0356)

bull Optical near-IR afterglow

ndash kilonova (1040 -1042 erg s-1)

bull r-process powered transient

(eg Li amp Paczyński 1998

Metzger et al 2010)

bull Electromagnetic counterpart

of GW

bull Robust r-process in NS merger

(Korobkin et al 2012)

bull Recent numerical study

ndash Wanajo et al 2013 (arXiv14027317)

20140304 BH-mag 2014 Kumamoto Univ 21

Tanvir et al 2013 Nature 500 547

Matter mixing in aspherical core-collapse supernovae

- A search for possible conditions for conveying 56Ni into high

velocity regions

Masaomi Ono1

Shigehiro Nagataki2 Hirotaka Ito2 Shiu-Hang Lee2 Jirong

Mao2 Masa-aki Hashimoto1 Tolstov Alexey2

Kyushu University

Astrophysical Big Bang Laboratory RIKEN

20140304 BH-mag 2014 Kumamoto Univ 22

MO+2013 ApJ 773 161

20140304 BH-mag 2014 Kumamoto Univ 23

Introduction observational evidence of mixing

in supernovae bull SN 1987A

ndash Early detection of X-rays (Dotani et al 1987)

γ-rays lines from 56Co (Matz et al 1988)

ndash Sudden development of the fine structure of Ha

(Hanuschik et al 1988)

ndash Line profiles of [Fe II]

(Spyromilo+90 Haas+90)

Fe (56Ni) is mixed into high velocity regions

56Ni rarr 56Co rarr 56Fe

20140304 BH-mag 2014 Kumamoto Univ 24

Broadened line profile of [Fe II] in SN 1987A

[Fe II] line profile (Haas et al 1990)

56Ni rarr 56Co rarr 56Fe

4000 km s-1

SN 1987A

Doppler velocity

T12 = 61 d T12 = 77 d

20140304 BH-mag 2014 Kumamoto Univ 25

Matter mixing in supernova explosions

HeH C+OHe

Synthesized 56Ni by

explosive

nucleosynthesis Mixing

56Ni is mixed up into high

velocity regions

radial velocity HeH

56Ni

Distance from the center

20140304 BH-mag 2014 Kumamoto Univ 26

What is the mechanism of the mixing

bull Fluid instabilities

ndash Rayleigh-Taylor (RT) instability

ndash Kelvin-Helmholtz (KH) instability

ndash Richtmyer-Meshkov (RM) instability

bull Aspherical supernova explosion

ndash Neutrino heating aided by SASI

(Standing Accretion Shock Instability)

ndash MHD Jets

Wongwathanarat et al 2010

Entropy per baryon

20140304 BH-mag 2014 Kumamoto Univ 27

Early previous study of hydrodynamic models of

the late time shock wave propagation

bull 2D3D hydrodynamic simulations

bull Add hoc initiation of spherical supernova explosion

bull RT mixing at OHe HeH interfaces

bull Maximum 56Ni velocity around 2000 km s-1

Arnett et al 1989 Fryxell et al 1991 Mueller et al 1991bac Hachisu et al

1990 1991 1992 1994 Herant amp Benz 1991 Herant amp Benz 1992

Hachisu et al 1992

Spherical explosion + RT instability could not explain

the observed high velocity of 56Ni

bull Recent study on mixing

ndash 2D (Kifonidis et al 2003 2006 Gawryszczak et al 2010)

20140304 BH-mag 2014 Kumamoto Univ 28

Simulations of non-spherical supernova explosions

bull Neutrino-driven explosion

(Kifonidis et al 2006 Gawryszczak et al 2010)

Solid circle 10-4 M8

Open circle 10-5 M8

Density 7days after the explosion

Maximum ~ 4000 km s-1

bull Jet like explosions (Yamada amp Sato 1991 Nagataki et al 2000)

bull 3D (Hammer et al 2010)

bull SPH (Hungerford et al 20032005 Ellinger et al 2012)

Motivation

bull Multidimensional high resolution hydrodynamics

simulations of the propagation of supernova shock wave

+ Nucleosynthesis calculation and advections of

synthesized nuclear species

20140304 BH-mag 2014 Kumamoto Univ 29

The conditions for reproducing the observed high

velocity of 56Ni are still unclear

To clarify the key conditions for reproducing such

high velocity of 56Ni we revisit matter mixing in

aspherical core-collapse supernova explosions

Methods

20140304 BH-mag 2014 Kumamoto Univ 30

20140304 BH-mag 2014 Kumamoto Univ 31

Methods

bull 2D hydrodynamic simulation

ndash AMR hydrodynamic code (FLASH Fryxell et al 2000)

ndash Parallel computing (SR16000 in YITP)

ndash Nuclear reaction network 1H 4He 12C hellip 54Fe 56Ni (19 nuclei)

ndash Spherical point mass and self gravity

ndash Spherical coordinate effective maximum grid r (3027) x q (768)

ndash Initial computational domain 109 cm ndash stellar surface 3x1012 cm

ndash How to initiate the explosionIntroduce aspherical initial radial

velocity and inject thermal energy around FeSi surface

ndash Perturbations of presupernova origins

httpflashuchicagoedusite

20140304 BH-mag 2014 Kumamoto Univ 32

FLASH Code

bull Eulerian hydrodynamic code

ndash Piecewise Parabolic Method (PPM)

ndash Unsplit solver MHD RHD

bull AMR (Adaptive mesh refinement)

ndash Reduce numerical costs

bull Many optional units

ndash Nuclear reaction networks

(7-19 nuclei)

The FLASH code is a modular parallel multiphysics simulation code

capable of handling general compressible flow problems found in many astrophysical environment (Fryxell et al 2000)

Type Ia SN

explosion

Jordan et al 2008

20140304 BH-mag 2014 Kumamoto Univ 33

Rayleigh-Taylor (RT) instability

120571120588 ∙ 120571119901 lt 0 (Chevalier 1979)

120588 1199033 rarr accelerate

Kifonidis et al 2006

Shengtai Li amp Hui Li 2006

RT unstable condition

1205882

1205881

g

Spherical explosions + RT

instabilities have not explained

the high velocity 56Ni

if 1205881 gt 1205882 120588 1199033 rarr decelerate

20140304 BH-mag 2014 Kumamoto Univ 34

Presupernova structure and introduced

perturbations

120571120588 ∙ 120571119901 lt 0 (Chavalier 1979)

120588 1199033 rarr shock wave tend

to be decelerated

Progenitor model 6 M8

helium core (Nomoto amp Hashimoto

1988) + 103 M8 hydrogen envelope

Si C+O He H

Rayleigh-Taylor unstable

Random

Sinusoidal

Perturbations are introduced at 6times109 cm (C+OHe) 5times1010 cm (HeH)

Models

20140304 BH-mag 2014 Kumamoto Univ 35

Parametersasphericity timing of the introduction

of perturbations

1 Spherical explosion models

2 Bipolar explosion models

3 Explosion models mimicking neutrino-driven

explosion

Results of models

20140304 BH-mag 2014 Kumamoto Univ 36

Spherical explosion models

20140304 BH-mag 2014 Kumamoto Univ 37

Density distributions

Perturbations

at C+OHe

Perturbations

at HeH

Perturbations

at both

Growth factor of instability

20140304 BH-mag 2014 Kumamoto Univ 38

Growth factors at the end of

simulation time

Growth rate for incompressible fluid

Growth rate for compressible fluid

Growth factors

Based on pure 1d spherical simulation

Radial velocity distribution of elements for

spherical explosion models

20140304 BH-mag 2014 Kumamoto Univ 39

Timing of the perturbations hardly affect

the maximum velocity of 56Ni

Maximum velocity of 56Ni lt 1600 km s-1

Different asphericity of bipolar explosions

20140304 BH-mag 2014 Kumamoto Univ 40

Bipolar explosion slightly enhance the mixing

length along the polar axis but maximum velocity

of 56Ni is still the level of lt 1700 km s-1

milder asphericity stronger asphericity

Revisiting Nagataki et al 2000 (jetlike explosion)

only initial large amplitude of perturbations

20140304 BH-mag 2014 Kumamoto Univ 41

with amplitude of 30 and m = 20

Initial relatively large sale of perturbations can not survive in later phase due to KH instabilities

Mimicking the neutrino-driven explosions

20140304 BH-mag 2014 Kumamoto Univ 42

Initial radial velocity

Scheck+04

Gawryszczak+10

Mechanism of the core-collapse supernova

explosions

bull Neutrino heating

20140304 BH-mag 2014 Kumamoto Univ 43

Taken from Janka et al 2012 (PTEP 1 A309)

Bethe 1990 (Rev Mod Phys 62 801) Taken from Liebendofer et al 2001

Convections and Standing Accretion Shock

Instability (SASI)

bull Convection around PNS surface

bull Neutrino-driven convection

bull Standing Accretion Shock Instability (SASI) (Blondin et al )

ndash Acoustic-vorticity cycle

20140304 BH-mag 2014 Kumamoto Univ 44

Ledoux criterion

Ledoux criterion

Taken from Liebendofer et al 2001

20140304 BH-mag 2014 Kumamoto Univ 45

Aspherical explosion with clumpy structure in the

explosion (movie)

20140304 BH-mag 2014 Kumamoto Univ 46

Aspherical explosion with clumpy structure + RT

instability

053 s 288 s 5752 s

20140304 BH-mag 2014 Kumamoto Univ 47

Maximum 3000 km s-1

56Ni

Radial velocity distributions of the best model in

this study

bull Relatively high velocity

(3000 km s-1) of 56Ni

bull Mass of 56Ni with ~ 3000

km s-1 14 x 10-3 M8

20140304 BH-mag 2014 Kumamoto Univ 48

Summary

bull To reproduce the high velocity of 56Ni both aspherical

explosion with clumpy structure and perturbations of

presupernova origins may be necessary

bull There are still missing ingredients to explain the observed

high velocity of 56Ni in SN 1987A

bull Possible missing ingredients

ndash More realistic explosion model (eg Kifonidis et al 2006)

ndash Lager perturbations in presupernova structure (Arnett amp Meakin 2011)

ndash Long simulation time

bull Heating due to the decay of 56Co (Herant amp Benz 1991)

ndash 3D effect (Hammer et al 2010)

Possible seeds of perturbations

bull Dynamical stellar evolution calculation

bull Density fluctuations

around the composition

interfaces

20140304 BH-mag 2014 Kumamoto Univ 49

Arnett amp Meakin 2011

20140304 BH-mag 2014 Kumamoto Univ 50

3D simulations of mixing instabilities in SN

explosions

Hammer et al 2010

56Ni 56Ni

2D 3D

Entropy per baryon Red Oxygen

Blue Nickel

Green Carbon

Direct-escape lines of 44Ti from SNR 1987A

bull lines from 44Ti 679 keV and 784 keV

bull Estimated 44Ti mass (31plusmn08) x 10-4 M8

20140304 BH-mag 2014 Kumamoto Univ 51

Grebenev+12 Nature 490 373

44Ti rarr 44Sc rarr 44Ca T12 = 60 d T12 = 4 h

Asymmetries in core-collapse supernovae from

maps of radioactive 44Ti in Cas A

20140304 BH-mag 2014 Kumamoto Univ 52

Grefenstette+14 Nature 506 339

Aspherical explosion enhance 44Ti

20140304 BH-mag 2014 Kumamoto Univ 53

56Ni 4He 44Ti

Alpha-rich freeze-out enhance the production of 44Ti in the

explosive nucleosynthesis

Aspherical explosion enhance the ratio of M(44Ti)M(56Ni)

096 s after the initiation of the explosion

Toward full 3D radiative transfer

bull 爆発形状を仮定した

輻射輸送計算

ndash 形状で偏光度が異なる

ndash 元素によっても異なる

bull 3次元物質混合計算を

インプットにした輻射

輸送計算

20140304 BH-mag 2014 Kumamoto Univ 54

Tanaka et al 2012 bipolar

clumpy

爆発形状のプローブ

20140304 BH-mag 2014 Kumamoto Univ 55

3D MHD simulation of a SNR

Introduction

bull Acceleration of cosmic-rays in SNRs

ndash Up to ~ 1015 eV or more

ndash Magnetic field is key ingredient

20140304 BH-mag 2014 Kumamoto Univ 56

SN1006 (Chandra X-ray)

Amplified strong magnetic field

20140304 BH-mag 2014 Kumamoto Univ 57

Uchiyama et al 2007 Nature 4469 576

Bohm-diffusion limit

Variations of X-ray hot

spots on a 1 yr timescale

Strong amplified

magnetic field

3D MHD simulation of a SNR

20140304 BH-mag 2014 Kumamoto Univ 58

3 pc

Preliminary

20140304 BH-mag 2014 Kumamoto Univ 59

Amplified magnetic field

20121015 - 17 SNSNR12 59

~ 50 μ G

1 μ G Preliminary

20140304 BH-mag 2014 Kumamoto Univ 60

3D structure of Cas A

Delaney et al 2010

Chandra lsquos X-rays

Spitzer lsquos infrared

Green X-ray Fe-K

Red IR [Ar II]

Blue high [Ne II][Ar II] ratio

Yellow optical outer ejecta

Grey IR [Si II]

Black X-ray Si XIII

20140304 BH-mag 2014 Kumamoto Univ 61

ASTRO-H

bull New exploration X-ray

Telescope

ndash First right will be

2015 yr

ndash 10 times larger

energy resolution

httpastro-hisasjaxajpgallerysatelite02html

High resolution spectrum

of X-ray from SNRs is

expected

3D simulation of the thermal X-ray emission from young

SNRs including efficient particle acceleration

bull 3D simulation

bull Diffusive Shock Acceleration

bull Back reaction from

accelerated particle

bull Non-equilibrium ionization

bull Thermal X-ray emission

20140304 BH-mag 2014 Kumamoto Univ 62

Ferrand et al 2012

To go further than

Ferrand et al

Test 1D calculation

bull Two energy equation for ions and electrons respectively

bull Energy equilibration between ions and electrons

bull Ionization

20140304 BH-mag 2014 Kumamoto Univ 63

20140304 BH-mag 2014 Kumamoto Univ 64

Density contour

Preliminary

Emission from deferent regions

20140304 BH-mag 2014 Kumamoto Univ 65

Preliminary

Summary

bull Aspherical nature of core-collapse supernova

explosions

bull Origin of heavy elements

ndash NS merger

ndash Magnetically driven jets

bull Mixing in CCSN explosion

bull Supernova explosions to Supernova remnant

20140304 BH-mag 2014 Kumamoto Univ 66

Page 14: Masaomi ONO Kyushu University - aichi-edu.ac.jptakahasi/BHmag2014_pdf/Presen/...Method of MHD simulation 16 Magnetohydrodynamics (ideal MHD) Poisson eq. pseudo-Newtonian potential

Mass fraction at the pre-collapse

14 20140304 BH-mag 2014 Kumamoto Univ

MHD simulations of Collapsar model

15 20140304 BH-mag 2014 Kumamoto Univ

Method of MHD simulation

16

Magnetohydrodynamics (ideal MHD)

Poisson eq

pseudo-Newtonian potential

Equation of State(EoS)

Shen et al 1998

Code ZEUS-2D

Stone amp Norman 1992

BH

Self gravity

0D

Dt

v

1( ) ( )

4

DP

Dt

vB B

D eP q

Dt

v

( )t

Bv B

2 4 G

BH BH

2

2 g

g

GM GMr

r r c

Magnetic field lines

ldquo frozen in

Fluid particle

20140304 BH-mag 2014 Kumamoto Univ

20140304 BH-mag 2014 Kumamoto Univ 17

Nucleosynthesis in the MHD jet from a

collapsar including weak s- p- and r-processes

MO+12

20140304 BH-mag 2014 Kumamoto Univ 18

r-process nucleosynthesis (movie)

MO+12

20140304 BH-mag 2014 Kumamoto Univ 19

Comparison with abundances of the solar and

metal-poor stars

bull Weak r-process

bull Primary synthesis of

Sr-Y-Zr

darr

Lighter element

primary process

(LEPP)

MO+12

Universality of the r-process (eg Sneden et al 2003)

Future collaboration with nuclear physics groups in

RIKEN

bull RIBF (beam factory)

bull Theoretical nuclear physics

group

bull Impact of uncertainties of

nuclear physics inputs

on nucleosynthesis in

astrophysical sites

20140304 BH-mag 2014 Kumamoto Univ 20

A lsquoKilonovarsquo associated with the short-duration

GRB 130603B (z = 0356)

bull Optical near-IR afterglow

ndash kilonova (1040 -1042 erg s-1)

bull r-process powered transient

(eg Li amp Paczyński 1998

Metzger et al 2010)

bull Electromagnetic counterpart

of GW

bull Robust r-process in NS merger

(Korobkin et al 2012)

bull Recent numerical study

ndash Wanajo et al 2013 (arXiv14027317)

20140304 BH-mag 2014 Kumamoto Univ 21

Tanvir et al 2013 Nature 500 547

Matter mixing in aspherical core-collapse supernovae

- A search for possible conditions for conveying 56Ni into high

velocity regions

Masaomi Ono1

Shigehiro Nagataki2 Hirotaka Ito2 Shiu-Hang Lee2 Jirong

Mao2 Masa-aki Hashimoto1 Tolstov Alexey2

Kyushu University

Astrophysical Big Bang Laboratory RIKEN

20140304 BH-mag 2014 Kumamoto Univ 22

MO+2013 ApJ 773 161

20140304 BH-mag 2014 Kumamoto Univ 23

Introduction observational evidence of mixing

in supernovae bull SN 1987A

ndash Early detection of X-rays (Dotani et al 1987)

γ-rays lines from 56Co (Matz et al 1988)

ndash Sudden development of the fine structure of Ha

(Hanuschik et al 1988)

ndash Line profiles of [Fe II]

(Spyromilo+90 Haas+90)

Fe (56Ni) is mixed into high velocity regions

56Ni rarr 56Co rarr 56Fe

20140304 BH-mag 2014 Kumamoto Univ 24

Broadened line profile of [Fe II] in SN 1987A

[Fe II] line profile (Haas et al 1990)

56Ni rarr 56Co rarr 56Fe

4000 km s-1

SN 1987A

Doppler velocity

T12 = 61 d T12 = 77 d

20140304 BH-mag 2014 Kumamoto Univ 25

Matter mixing in supernova explosions

HeH C+OHe

Synthesized 56Ni by

explosive

nucleosynthesis Mixing

56Ni is mixed up into high

velocity regions

radial velocity HeH

56Ni

Distance from the center

20140304 BH-mag 2014 Kumamoto Univ 26

What is the mechanism of the mixing

bull Fluid instabilities

ndash Rayleigh-Taylor (RT) instability

ndash Kelvin-Helmholtz (KH) instability

ndash Richtmyer-Meshkov (RM) instability

bull Aspherical supernova explosion

ndash Neutrino heating aided by SASI

(Standing Accretion Shock Instability)

ndash MHD Jets

Wongwathanarat et al 2010

Entropy per baryon

20140304 BH-mag 2014 Kumamoto Univ 27

Early previous study of hydrodynamic models of

the late time shock wave propagation

bull 2D3D hydrodynamic simulations

bull Add hoc initiation of spherical supernova explosion

bull RT mixing at OHe HeH interfaces

bull Maximum 56Ni velocity around 2000 km s-1

Arnett et al 1989 Fryxell et al 1991 Mueller et al 1991bac Hachisu et al

1990 1991 1992 1994 Herant amp Benz 1991 Herant amp Benz 1992

Hachisu et al 1992

Spherical explosion + RT instability could not explain

the observed high velocity of 56Ni

bull Recent study on mixing

ndash 2D (Kifonidis et al 2003 2006 Gawryszczak et al 2010)

20140304 BH-mag 2014 Kumamoto Univ 28

Simulations of non-spherical supernova explosions

bull Neutrino-driven explosion

(Kifonidis et al 2006 Gawryszczak et al 2010)

Solid circle 10-4 M8

Open circle 10-5 M8

Density 7days after the explosion

Maximum ~ 4000 km s-1

bull Jet like explosions (Yamada amp Sato 1991 Nagataki et al 2000)

bull 3D (Hammer et al 2010)

bull SPH (Hungerford et al 20032005 Ellinger et al 2012)

Motivation

bull Multidimensional high resolution hydrodynamics

simulations of the propagation of supernova shock wave

+ Nucleosynthesis calculation and advections of

synthesized nuclear species

20140304 BH-mag 2014 Kumamoto Univ 29

The conditions for reproducing the observed high

velocity of 56Ni are still unclear

To clarify the key conditions for reproducing such

high velocity of 56Ni we revisit matter mixing in

aspherical core-collapse supernova explosions

Methods

20140304 BH-mag 2014 Kumamoto Univ 30

20140304 BH-mag 2014 Kumamoto Univ 31

Methods

bull 2D hydrodynamic simulation

ndash AMR hydrodynamic code (FLASH Fryxell et al 2000)

ndash Parallel computing (SR16000 in YITP)

ndash Nuclear reaction network 1H 4He 12C hellip 54Fe 56Ni (19 nuclei)

ndash Spherical point mass and self gravity

ndash Spherical coordinate effective maximum grid r (3027) x q (768)

ndash Initial computational domain 109 cm ndash stellar surface 3x1012 cm

ndash How to initiate the explosionIntroduce aspherical initial radial

velocity and inject thermal energy around FeSi surface

ndash Perturbations of presupernova origins

httpflashuchicagoedusite

20140304 BH-mag 2014 Kumamoto Univ 32

FLASH Code

bull Eulerian hydrodynamic code

ndash Piecewise Parabolic Method (PPM)

ndash Unsplit solver MHD RHD

bull AMR (Adaptive mesh refinement)

ndash Reduce numerical costs

bull Many optional units

ndash Nuclear reaction networks

(7-19 nuclei)

The FLASH code is a modular parallel multiphysics simulation code

capable of handling general compressible flow problems found in many astrophysical environment (Fryxell et al 2000)

Type Ia SN

explosion

Jordan et al 2008

20140304 BH-mag 2014 Kumamoto Univ 33

Rayleigh-Taylor (RT) instability

120571120588 ∙ 120571119901 lt 0 (Chevalier 1979)

120588 1199033 rarr accelerate

Kifonidis et al 2006

Shengtai Li amp Hui Li 2006

RT unstable condition

1205882

1205881

g

Spherical explosions + RT

instabilities have not explained

the high velocity 56Ni

if 1205881 gt 1205882 120588 1199033 rarr decelerate

20140304 BH-mag 2014 Kumamoto Univ 34

Presupernova structure and introduced

perturbations

120571120588 ∙ 120571119901 lt 0 (Chavalier 1979)

120588 1199033 rarr shock wave tend

to be decelerated

Progenitor model 6 M8

helium core (Nomoto amp Hashimoto

1988) + 103 M8 hydrogen envelope

Si C+O He H

Rayleigh-Taylor unstable

Random

Sinusoidal

Perturbations are introduced at 6times109 cm (C+OHe) 5times1010 cm (HeH)

Models

20140304 BH-mag 2014 Kumamoto Univ 35

Parametersasphericity timing of the introduction

of perturbations

1 Spherical explosion models

2 Bipolar explosion models

3 Explosion models mimicking neutrino-driven

explosion

Results of models

20140304 BH-mag 2014 Kumamoto Univ 36

Spherical explosion models

20140304 BH-mag 2014 Kumamoto Univ 37

Density distributions

Perturbations

at C+OHe

Perturbations

at HeH

Perturbations

at both

Growth factor of instability

20140304 BH-mag 2014 Kumamoto Univ 38

Growth factors at the end of

simulation time

Growth rate for incompressible fluid

Growth rate for compressible fluid

Growth factors

Based on pure 1d spherical simulation

Radial velocity distribution of elements for

spherical explosion models

20140304 BH-mag 2014 Kumamoto Univ 39

Timing of the perturbations hardly affect

the maximum velocity of 56Ni

Maximum velocity of 56Ni lt 1600 km s-1

Different asphericity of bipolar explosions

20140304 BH-mag 2014 Kumamoto Univ 40

Bipolar explosion slightly enhance the mixing

length along the polar axis but maximum velocity

of 56Ni is still the level of lt 1700 km s-1

milder asphericity stronger asphericity

Revisiting Nagataki et al 2000 (jetlike explosion)

only initial large amplitude of perturbations

20140304 BH-mag 2014 Kumamoto Univ 41

with amplitude of 30 and m = 20

Initial relatively large sale of perturbations can not survive in later phase due to KH instabilities

Mimicking the neutrino-driven explosions

20140304 BH-mag 2014 Kumamoto Univ 42

Initial radial velocity

Scheck+04

Gawryszczak+10

Mechanism of the core-collapse supernova

explosions

bull Neutrino heating

20140304 BH-mag 2014 Kumamoto Univ 43

Taken from Janka et al 2012 (PTEP 1 A309)

Bethe 1990 (Rev Mod Phys 62 801) Taken from Liebendofer et al 2001

Convections and Standing Accretion Shock

Instability (SASI)

bull Convection around PNS surface

bull Neutrino-driven convection

bull Standing Accretion Shock Instability (SASI) (Blondin et al )

ndash Acoustic-vorticity cycle

20140304 BH-mag 2014 Kumamoto Univ 44

Ledoux criterion

Ledoux criterion

Taken from Liebendofer et al 2001

20140304 BH-mag 2014 Kumamoto Univ 45

Aspherical explosion with clumpy structure in the

explosion (movie)

20140304 BH-mag 2014 Kumamoto Univ 46

Aspherical explosion with clumpy structure + RT

instability

053 s 288 s 5752 s

20140304 BH-mag 2014 Kumamoto Univ 47

Maximum 3000 km s-1

56Ni

Radial velocity distributions of the best model in

this study

bull Relatively high velocity

(3000 km s-1) of 56Ni

bull Mass of 56Ni with ~ 3000

km s-1 14 x 10-3 M8

20140304 BH-mag 2014 Kumamoto Univ 48

Summary

bull To reproduce the high velocity of 56Ni both aspherical

explosion with clumpy structure and perturbations of

presupernova origins may be necessary

bull There are still missing ingredients to explain the observed

high velocity of 56Ni in SN 1987A

bull Possible missing ingredients

ndash More realistic explosion model (eg Kifonidis et al 2006)

ndash Lager perturbations in presupernova structure (Arnett amp Meakin 2011)

ndash Long simulation time

bull Heating due to the decay of 56Co (Herant amp Benz 1991)

ndash 3D effect (Hammer et al 2010)

Possible seeds of perturbations

bull Dynamical stellar evolution calculation

bull Density fluctuations

around the composition

interfaces

20140304 BH-mag 2014 Kumamoto Univ 49

Arnett amp Meakin 2011

20140304 BH-mag 2014 Kumamoto Univ 50

3D simulations of mixing instabilities in SN

explosions

Hammer et al 2010

56Ni 56Ni

2D 3D

Entropy per baryon Red Oxygen

Blue Nickel

Green Carbon

Direct-escape lines of 44Ti from SNR 1987A

bull lines from 44Ti 679 keV and 784 keV

bull Estimated 44Ti mass (31plusmn08) x 10-4 M8

20140304 BH-mag 2014 Kumamoto Univ 51

Grebenev+12 Nature 490 373

44Ti rarr 44Sc rarr 44Ca T12 = 60 d T12 = 4 h

Asymmetries in core-collapse supernovae from

maps of radioactive 44Ti in Cas A

20140304 BH-mag 2014 Kumamoto Univ 52

Grefenstette+14 Nature 506 339

Aspherical explosion enhance 44Ti

20140304 BH-mag 2014 Kumamoto Univ 53

56Ni 4He 44Ti

Alpha-rich freeze-out enhance the production of 44Ti in the

explosive nucleosynthesis

Aspherical explosion enhance the ratio of M(44Ti)M(56Ni)

096 s after the initiation of the explosion

Toward full 3D radiative transfer

bull 爆発形状を仮定した

輻射輸送計算

ndash 形状で偏光度が異なる

ndash 元素によっても異なる

bull 3次元物質混合計算を

インプットにした輻射

輸送計算

20140304 BH-mag 2014 Kumamoto Univ 54

Tanaka et al 2012 bipolar

clumpy

爆発形状のプローブ

20140304 BH-mag 2014 Kumamoto Univ 55

3D MHD simulation of a SNR

Introduction

bull Acceleration of cosmic-rays in SNRs

ndash Up to ~ 1015 eV or more

ndash Magnetic field is key ingredient

20140304 BH-mag 2014 Kumamoto Univ 56

SN1006 (Chandra X-ray)

Amplified strong magnetic field

20140304 BH-mag 2014 Kumamoto Univ 57

Uchiyama et al 2007 Nature 4469 576

Bohm-diffusion limit

Variations of X-ray hot

spots on a 1 yr timescale

Strong amplified

magnetic field

3D MHD simulation of a SNR

20140304 BH-mag 2014 Kumamoto Univ 58

3 pc

Preliminary

20140304 BH-mag 2014 Kumamoto Univ 59

Amplified magnetic field

20121015 - 17 SNSNR12 59

~ 50 μ G

1 μ G Preliminary

20140304 BH-mag 2014 Kumamoto Univ 60

3D structure of Cas A

Delaney et al 2010

Chandra lsquos X-rays

Spitzer lsquos infrared

Green X-ray Fe-K

Red IR [Ar II]

Blue high [Ne II][Ar II] ratio

Yellow optical outer ejecta

Grey IR [Si II]

Black X-ray Si XIII

20140304 BH-mag 2014 Kumamoto Univ 61

ASTRO-H

bull New exploration X-ray

Telescope

ndash First right will be

2015 yr

ndash 10 times larger

energy resolution

httpastro-hisasjaxajpgallerysatelite02html

High resolution spectrum

of X-ray from SNRs is

expected

3D simulation of the thermal X-ray emission from young

SNRs including efficient particle acceleration

bull 3D simulation

bull Diffusive Shock Acceleration

bull Back reaction from

accelerated particle

bull Non-equilibrium ionization

bull Thermal X-ray emission

20140304 BH-mag 2014 Kumamoto Univ 62

Ferrand et al 2012

To go further than

Ferrand et al

Test 1D calculation

bull Two energy equation for ions and electrons respectively

bull Energy equilibration between ions and electrons

bull Ionization

20140304 BH-mag 2014 Kumamoto Univ 63

20140304 BH-mag 2014 Kumamoto Univ 64

Density contour

Preliminary

Emission from deferent regions

20140304 BH-mag 2014 Kumamoto Univ 65

Preliminary

Summary

bull Aspherical nature of core-collapse supernova

explosions

bull Origin of heavy elements

ndash NS merger

ndash Magnetically driven jets

bull Mixing in CCSN explosion

bull Supernova explosions to Supernova remnant

20140304 BH-mag 2014 Kumamoto Univ 66

Page 15: Masaomi ONO Kyushu University - aichi-edu.ac.jptakahasi/BHmag2014_pdf/Presen/...Method of MHD simulation 16 Magnetohydrodynamics (ideal MHD) Poisson eq. pseudo-Newtonian potential

MHD simulations of Collapsar model

15 20140304 BH-mag 2014 Kumamoto Univ

Method of MHD simulation

16

Magnetohydrodynamics (ideal MHD)

Poisson eq

pseudo-Newtonian potential

Equation of State(EoS)

Shen et al 1998

Code ZEUS-2D

Stone amp Norman 1992

BH

Self gravity

0D

Dt

v

1( ) ( )

4

DP

Dt

vB B

D eP q

Dt

v

( )t

Bv B

2 4 G

BH BH

2

2 g

g

GM GMr

r r c

Magnetic field lines

ldquo frozen in

Fluid particle

20140304 BH-mag 2014 Kumamoto Univ

20140304 BH-mag 2014 Kumamoto Univ 17

Nucleosynthesis in the MHD jet from a

collapsar including weak s- p- and r-processes

MO+12

20140304 BH-mag 2014 Kumamoto Univ 18

r-process nucleosynthesis (movie)

MO+12

20140304 BH-mag 2014 Kumamoto Univ 19

Comparison with abundances of the solar and

metal-poor stars

bull Weak r-process

bull Primary synthesis of

Sr-Y-Zr

darr

Lighter element

primary process

(LEPP)

MO+12

Universality of the r-process (eg Sneden et al 2003)

Future collaboration with nuclear physics groups in

RIKEN

bull RIBF (beam factory)

bull Theoretical nuclear physics

group

bull Impact of uncertainties of

nuclear physics inputs

on nucleosynthesis in

astrophysical sites

20140304 BH-mag 2014 Kumamoto Univ 20

A lsquoKilonovarsquo associated with the short-duration

GRB 130603B (z = 0356)

bull Optical near-IR afterglow

ndash kilonova (1040 -1042 erg s-1)

bull r-process powered transient

(eg Li amp Paczyński 1998

Metzger et al 2010)

bull Electromagnetic counterpart

of GW

bull Robust r-process in NS merger

(Korobkin et al 2012)

bull Recent numerical study

ndash Wanajo et al 2013 (arXiv14027317)

20140304 BH-mag 2014 Kumamoto Univ 21

Tanvir et al 2013 Nature 500 547

Matter mixing in aspherical core-collapse supernovae

- A search for possible conditions for conveying 56Ni into high

velocity regions

Masaomi Ono1

Shigehiro Nagataki2 Hirotaka Ito2 Shiu-Hang Lee2 Jirong

Mao2 Masa-aki Hashimoto1 Tolstov Alexey2

Kyushu University

Astrophysical Big Bang Laboratory RIKEN

20140304 BH-mag 2014 Kumamoto Univ 22

MO+2013 ApJ 773 161

20140304 BH-mag 2014 Kumamoto Univ 23

Introduction observational evidence of mixing

in supernovae bull SN 1987A

ndash Early detection of X-rays (Dotani et al 1987)

γ-rays lines from 56Co (Matz et al 1988)

ndash Sudden development of the fine structure of Ha

(Hanuschik et al 1988)

ndash Line profiles of [Fe II]

(Spyromilo+90 Haas+90)

Fe (56Ni) is mixed into high velocity regions

56Ni rarr 56Co rarr 56Fe

20140304 BH-mag 2014 Kumamoto Univ 24

Broadened line profile of [Fe II] in SN 1987A

[Fe II] line profile (Haas et al 1990)

56Ni rarr 56Co rarr 56Fe

4000 km s-1

SN 1987A

Doppler velocity

T12 = 61 d T12 = 77 d

20140304 BH-mag 2014 Kumamoto Univ 25

Matter mixing in supernova explosions

HeH C+OHe

Synthesized 56Ni by

explosive

nucleosynthesis Mixing

56Ni is mixed up into high

velocity regions

radial velocity HeH

56Ni

Distance from the center

20140304 BH-mag 2014 Kumamoto Univ 26

What is the mechanism of the mixing

bull Fluid instabilities

ndash Rayleigh-Taylor (RT) instability

ndash Kelvin-Helmholtz (KH) instability

ndash Richtmyer-Meshkov (RM) instability

bull Aspherical supernova explosion

ndash Neutrino heating aided by SASI

(Standing Accretion Shock Instability)

ndash MHD Jets

Wongwathanarat et al 2010

Entropy per baryon

20140304 BH-mag 2014 Kumamoto Univ 27

Early previous study of hydrodynamic models of

the late time shock wave propagation

bull 2D3D hydrodynamic simulations

bull Add hoc initiation of spherical supernova explosion

bull RT mixing at OHe HeH interfaces

bull Maximum 56Ni velocity around 2000 km s-1

Arnett et al 1989 Fryxell et al 1991 Mueller et al 1991bac Hachisu et al

1990 1991 1992 1994 Herant amp Benz 1991 Herant amp Benz 1992

Hachisu et al 1992

Spherical explosion + RT instability could not explain

the observed high velocity of 56Ni

bull Recent study on mixing

ndash 2D (Kifonidis et al 2003 2006 Gawryszczak et al 2010)

20140304 BH-mag 2014 Kumamoto Univ 28

Simulations of non-spherical supernova explosions

bull Neutrino-driven explosion

(Kifonidis et al 2006 Gawryszczak et al 2010)

Solid circle 10-4 M8

Open circle 10-5 M8

Density 7days after the explosion

Maximum ~ 4000 km s-1

bull Jet like explosions (Yamada amp Sato 1991 Nagataki et al 2000)

bull 3D (Hammer et al 2010)

bull SPH (Hungerford et al 20032005 Ellinger et al 2012)

Motivation

bull Multidimensional high resolution hydrodynamics

simulations of the propagation of supernova shock wave

+ Nucleosynthesis calculation and advections of

synthesized nuclear species

20140304 BH-mag 2014 Kumamoto Univ 29

The conditions for reproducing the observed high

velocity of 56Ni are still unclear

To clarify the key conditions for reproducing such

high velocity of 56Ni we revisit matter mixing in

aspherical core-collapse supernova explosions

Methods

20140304 BH-mag 2014 Kumamoto Univ 30

20140304 BH-mag 2014 Kumamoto Univ 31

Methods

bull 2D hydrodynamic simulation

ndash AMR hydrodynamic code (FLASH Fryxell et al 2000)

ndash Parallel computing (SR16000 in YITP)

ndash Nuclear reaction network 1H 4He 12C hellip 54Fe 56Ni (19 nuclei)

ndash Spherical point mass and self gravity

ndash Spherical coordinate effective maximum grid r (3027) x q (768)

ndash Initial computational domain 109 cm ndash stellar surface 3x1012 cm

ndash How to initiate the explosionIntroduce aspherical initial radial

velocity and inject thermal energy around FeSi surface

ndash Perturbations of presupernova origins

httpflashuchicagoedusite

20140304 BH-mag 2014 Kumamoto Univ 32

FLASH Code

bull Eulerian hydrodynamic code

ndash Piecewise Parabolic Method (PPM)

ndash Unsplit solver MHD RHD

bull AMR (Adaptive mesh refinement)

ndash Reduce numerical costs

bull Many optional units

ndash Nuclear reaction networks

(7-19 nuclei)

The FLASH code is a modular parallel multiphysics simulation code

capable of handling general compressible flow problems found in many astrophysical environment (Fryxell et al 2000)

Type Ia SN

explosion

Jordan et al 2008

20140304 BH-mag 2014 Kumamoto Univ 33

Rayleigh-Taylor (RT) instability

120571120588 ∙ 120571119901 lt 0 (Chevalier 1979)

120588 1199033 rarr accelerate

Kifonidis et al 2006

Shengtai Li amp Hui Li 2006

RT unstable condition

1205882

1205881

g

Spherical explosions + RT

instabilities have not explained

the high velocity 56Ni

if 1205881 gt 1205882 120588 1199033 rarr decelerate

20140304 BH-mag 2014 Kumamoto Univ 34

Presupernova structure and introduced

perturbations

120571120588 ∙ 120571119901 lt 0 (Chavalier 1979)

120588 1199033 rarr shock wave tend

to be decelerated

Progenitor model 6 M8

helium core (Nomoto amp Hashimoto

1988) + 103 M8 hydrogen envelope

Si C+O He H

Rayleigh-Taylor unstable

Random

Sinusoidal

Perturbations are introduced at 6times109 cm (C+OHe) 5times1010 cm (HeH)

Models

20140304 BH-mag 2014 Kumamoto Univ 35

Parametersasphericity timing of the introduction

of perturbations

1 Spherical explosion models

2 Bipolar explosion models

3 Explosion models mimicking neutrino-driven

explosion

Results of models

20140304 BH-mag 2014 Kumamoto Univ 36

Spherical explosion models

20140304 BH-mag 2014 Kumamoto Univ 37

Density distributions

Perturbations

at C+OHe

Perturbations

at HeH

Perturbations

at both

Growth factor of instability

20140304 BH-mag 2014 Kumamoto Univ 38

Growth factors at the end of

simulation time

Growth rate for incompressible fluid

Growth rate for compressible fluid

Growth factors

Based on pure 1d spherical simulation

Radial velocity distribution of elements for

spherical explosion models

20140304 BH-mag 2014 Kumamoto Univ 39

Timing of the perturbations hardly affect

the maximum velocity of 56Ni

Maximum velocity of 56Ni lt 1600 km s-1

Different asphericity of bipolar explosions

20140304 BH-mag 2014 Kumamoto Univ 40

Bipolar explosion slightly enhance the mixing

length along the polar axis but maximum velocity

of 56Ni is still the level of lt 1700 km s-1

milder asphericity stronger asphericity

Revisiting Nagataki et al 2000 (jetlike explosion)

only initial large amplitude of perturbations

20140304 BH-mag 2014 Kumamoto Univ 41

with amplitude of 30 and m = 20

Initial relatively large sale of perturbations can not survive in later phase due to KH instabilities

Mimicking the neutrino-driven explosions

20140304 BH-mag 2014 Kumamoto Univ 42

Initial radial velocity

Scheck+04

Gawryszczak+10

Mechanism of the core-collapse supernova

explosions

bull Neutrino heating

20140304 BH-mag 2014 Kumamoto Univ 43

Taken from Janka et al 2012 (PTEP 1 A309)

Bethe 1990 (Rev Mod Phys 62 801) Taken from Liebendofer et al 2001

Convections and Standing Accretion Shock

Instability (SASI)

bull Convection around PNS surface

bull Neutrino-driven convection

bull Standing Accretion Shock Instability (SASI) (Blondin et al )

ndash Acoustic-vorticity cycle

20140304 BH-mag 2014 Kumamoto Univ 44

Ledoux criterion

Ledoux criterion

Taken from Liebendofer et al 2001

20140304 BH-mag 2014 Kumamoto Univ 45

Aspherical explosion with clumpy structure in the

explosion (movie)

20140304 BH-mag 2014 Kumamoto Univ 46

Aspherical explosion with clumpy structure + RT

instability

053 s 288 s 5752 s

20140304 BH-mag 2014 Kumamoto Univ 47

Maximum 3000 km s-1

56Ni

Radial velocity distributions of the best model in

this study

bull Relatively high velocity

(3000 km s-1) of 56Ni

bull Mass of 56Ni with ~ 3000

km s-1 14 x 10-3 M8

20140304 BH-mag 2014 Kumamoto Univ 48

Summary

bull To reproduce the high velocity of 56Ni both aspherical

explosion with clumpy structure and perturbations of

presupernova origins may be necessary

bull There are still missing ingredients to explain the observed

high velocity of 56Ni in SN 1987A

bull Possible missing ingredients

ndash More realistic explosion model (eg Kifonidis et al 2006)

ndash Lager perturbations in presupernova structure (Arnett amp Meakin 2011)

ndash Long simulation time

bull Heating due to the decay of 56Co (Herant amp Benz 1991)

ndash 3D effect (Hammer et al 2010)

Possible seeds of perturbations

bull Dynamical stellar evolution calculation

bull Density fluctuations

around the composition

interfaces

20140304 BH-mag 2014 Kumamoto Univ 49

Arnett amp Meakin 2011

20140304 BH-mag 2014 Kumamoto Univ 50

3D simulations of mixing instabilities in SN

explosions

Hammer et al 2010

56Ni 56Ni

2D 3D

Entropy per baryon Red Oxygen

Blue Nickel

Green Carbon

Direct-escape lines of 44Ti from SNR 1987A

bull lines from 44Ti 679 keV and 784 keV

bull Estimated 44Ti mass (31plusmn08) x 10-4 M8

20140304 BH-mag 2014 Kumamoto Univ 51

Grebenev+12 Nature 490 373

44Ti rarr 44Sc rarr 44Ca T12 = 60 d T12 = 4 h

Asymmetries in core-collapse supernovae from

maps of radioactive 44Ti in Cas A

20140304 BH-mag 2014 Kumamoto Univ 52

Grefenstette+14 Nature 506 339

Aspherical explosion enhance 44Ti

20140304 BH-mag 2014 Kumamoto Univ 53

56Ni 4He 44Ti

Alpha-rich freeze-out enhance the production of 44Ti in the

explosive nucleosynthesis

Aspherical explosion enhance the ratio of M(44Ti)M(56Ni)

096 s after the initiation of the explosion

Toward full 3D radiative transfer

bull 爆発形状を仮定した

輻射輸送計算

ndash 形状で偏光度が異なる

ndash 元素によっても異なる

bull 3次元物質混合計算を

インプットにした輻射

輸送計算

20140304 BH-mag 2014 Kumamoto Univ 54

Tanaka et al 2012 bipolar

clumpy

爆発形状のプローブ

20140304 BH-mag 2014 Kumamoto Univ 55

3D MHD simulation of a SNR

Introduction

bull Acceleration of cosmic-rays in SNRs

ndash Up to ~ 1015 eV or more

ndash Magnetic field is key ingredient

20140304 BH-mag 2014 Kumamoto Univ 56

SN1006 (Chandra X-ray)

Amplified strong magnetic field

20140304 BH-mag 2014 Kumamoto Univ 57

Uchiyama et al 2007 Nature 4469 576

Bohm-diffusion limit

Variations of X-ray hot

spots on a 1 yr timescale

Strong amplified

magnetic field

3D MHD simulation of a SNR

20140304 BH-mag 2014 Kumamoto Univ 58

3 pc

Preliminary

20140304 BH-mag 2014 Kumamoto Univ 59

Amplified magnetic field

20121015 - 17 SNSNR12 59

~ 50 μ G

1 μ G Preliminary

20140304 BH-mag 2014 Kumamoto Univ 60

3D structure of Cas A

Delaney et al 2010

Chandra lsquos X-rays

Spitzer lsquos infrared

Green X-ray Fe-K

Red IR [Ar II]

Blue high [Ne II][Ar II] ratio

Yellow optical outer ejecta

Grey IR [Si II]

Black X-ray Si XIII

20140304 BH-mag 2014 Kumamoto Univ 61

ASTRO-H

bull New exploration X-ray

Telescope

ndash First right will be

2015 yr

ndash 10 times larger

energy resolution

httpastro-hisasjaxajpgallerysatelite02html

High resolution spectrum

of X-ray from SNRs is

expected

3D simulation of the thermal X-ray emission from young

SNRs including efficient particle acceleration

bull 3D simulation

bull Diffusive Shock Acceleration

bull Back reaction from

accelerated particle

bull Non-equilibrium ionization

bull Thermal X-ray emission

20140304 BH-mag 2014 Kumamoto Univ 62

Ferrand et al 2012

To go further than

Ferrand et al

Test 1D calculation

bull Two energy equation for ions and electrons respectively

bull Energy equilibration between ions and electrons

bull Ionization

20140304 BH-mag 2014 Kumamoto Univ 63

20140304 BH-mag 2014 Kumamoto Univ 64

Density contour

Preliminary

Emission from deferent regions

20140304 BH-mag 2014 Kumamoto Univ 65

Preliminary

Summary

bull Aspherical nature of core-collapse supernova

explosions

bull Origin of heavy elements

ndash NS merger

ndash Magnetically driven jets

bull Mixing in CCSN explosion

bull Supernova explosions to Supernova remnant

20140304 BH-mag 2014 Kumamoto Univ 66

Page 16: Masaomi ONO Kyushu University - aichi-edu.ac.jptakahasi/BHmag2014_pdf/Presen/...Method of MHD simulation 16 Magnetohydrodynamics (ideal MHD) Poisson eq. pseudo-Newtonian potential

Method of MHD simulation

16

Magnetohydrodynamics (ideal MHD)

Poisson eq

pseudo-Newtonian potential

Equation of State(EoS)

Shen et al 1998

Code ZEUS-2D

Stone amp Norman 1992

BH

Self gravity

0D

Dt

v

1( ) ( )

4

DP

Dt

vB B

D eP q

Dt

v

( )t

Bv B

2 4 G

BH BH

2

2 g

g

GM GMr

r r c

Magnetic field lines

ldquo frozen in

Fluid particle

20140304 BH-mag 2014 Kumamoto Univ

20140304 BH-mag 2014 Kumamoto Univ 17

Nucleosynthesis in the MHD jet from a

collapsar including weak s- p- and r-processes

MO+12

20140304 BH-mag 2014 Kumamoto Univ 18

r-process nucleosynthesis (movie)

MO+12

20140304 BH-mag 2014 Kumamoto Univ 19

Comparison with abundances of the solar and

metal-poor stars

bull Weak r-process

bull Primary synthesis of

Sr-Y-Zr

darr

Lighter element

primary process

(LEPP)

MO+12

Universality of the r-process (eg Sneden et al 2003)

Future collaboration with nuclear physics groups in

RIKEN

bull RIBF (beam factory)

bull Theoretical nuclear physics

group

bull Impact of uncertainties of

nuclear physics inputs

on nucleosynthesis in

astrophysical sites

20140304 BH-mag 2014 Kumamoto Univ 20

A lsquoKilonovarsquo associated with the short-duration

GRB 130603B (z = 0356)

bull Optical near-IR afterglow

ndash kilonova (1040 -1042 erg s-1)

bull r-process powered transient

(eg Li amp Paczyński 1998

Metzger et al 2010)

bull Electromagnetic counterpart

of GW

bull Robust r-process in NS merger

(Korobkin et al 2012)

bull Recent numerical study

ndash Wanajo et al 2013 (arXiv14027317)

20140304 BH-mag 2014 Kumamoto Univ 21

Tanvir et al 2013 Nature 500 547

Matter mixing in aspherical core-collapse supernovae

- A search for possible conditions for conveying 56Ni into high

velocity regions

Masaomi Ono1

Shigehiro Nagataki2 Hirotaka Ito2 Shiu-Hang Lee2 Jirong

Mao2 Masa-aki Hashimoto1 Tolstov Alexey2

Kyushu University

Astrophysical Big Bang Laboratory RIKEN

20140304 BH-mag 2014 Kumamoto Univ 22

MO+2013 ApJ 773 161

20140304 BH-mag 2014 Kumamoto Univ 23

Introduction observational evidence of mixing

in supernovae bull SN 1987A

ndash Early detection of X-rays (Dotani et al 1987)

γ-rays lines from 56Co (Matz et al 1988)

ndash Sudden development of the fine structure of Ha

(Hanuschik et al 1988)

ndash Line profiles of [Fe II]

(Spyromilo+90 Haas+90)

Fe (56Ni) is mixed into high velocity regions

56Ni rarr 56Co rarr 56Fe

20140304 BH-mag 2014 Kumamoto Univ 24

Broadened line profile of [Fe II] in SN 1987A

[Fe II] line profile (Haas et al 1990)

56Ni rarr 56Co rarr 56Fe

4000 km s-1

SN 1987A

Doppler velocity

T12 = 61 d T12 = 77 d

20140304 BH-mag 2014 Kumamoto Univ 25

Matter mixing in supernova explosions

HeH C+OHe

Synthesized 56Ni by

explosive

nucleosynthesis Mixing

56Ni is mixed up into high

velocity regions

radial velocity HeH

56Ni

Distance from the center

20140304 BH-mag 2014 Kumamoto Univ 26

What is the mechanism of the mixing

bull Fluid instabilities

ndash Rayleigh-Taylor (RT) instability

ndash Kelvin-Helmholtz (KH) instability

ndash Richtmyer-Meshkov (RM) instability

bull Aspherical supernova explosion

ndash Neutrino heating aided by SASI

(Standing Accretion Shock Instability)

ndash MHD Jets

Wongwathanarat et al 2010

Entropy per baryon

20140304 BH-mag 2014 Kumamoto Univ 27

Early previous study of hydrodynamic models of

the late time shock wave propagation

bull 2D3D hydrodynamic simulations

bull Add hoc initiation of spherical supernova explosion

bull RT mixing at OHe HeH interfaces

bull Maximum 56Ni velocity around 2000 km s-1

Arnett et al 1989 Fryxell et al 1991 Mueller et al 1991bac Hachisu et al

1990 1991 1992 1994 Herant amp Benz 1991 Herant amp Benz 1992

Hachisu et al 1992

Spherical explosion + RT instability could not explain

the observed high velocity of 56Ni

bull Recent study on mixing

ndash 2D (Kifonidis et al 2003 2006 Gawryszczak et al 2010)

20140304 BH-mag 2014 Kumamoto Univ 28

Simulations of non-spherical supernova explosions

bull Neutrino-driven explosion

(Kifonidis et al 2006 Gawryszczak et al 2010)

Solid circle 10-4 M8

Open circle 10-5 M8

Density 7days after the explosion

Maximum ~ 4000 km s-1

bull Jet like explosions (Yamada amp Sato 1991 Nagataki et al 2000)

bull 3D (Hammer et al 2010)

bull SPH (Hungerford et al 20032005 Ellinger et al 2012)

Motivation

bull Multidimensional high resolution hydrodynamics

simulations of the propagation of supernova shock wave

+ Nucleosynthesis calculation and advections of

synthesized nuclear species

20140304 BH-mag 2014 Kumamoto Univ 29

The conditions for reproducing the observed high

velocity of 56Ni are still unclear

To clarify the key conditions for reproducing such

high velocity of 56Ni we revisit matter mixing in

aspherical core-collapse supernova explosions

Methods

20140304 BH-mag 2014 Kumamoto Univ 30

20140304 BH-mag 2014 Kumamoto Univ 31

Methods

bull 2D hydrodynamic simulation

ndash AMR hydrodynamic code (FLASH Fryxell et al 2000)

ndash Parallel computing (SR16000 in YITP)

ndash Nuclear reaction network 1H 4He 12C hellip 54Fe 56Ni (19 nuclei)

ndash Spherical point mass and self gravity

ndash Spherical coordinate effective maximum grid r (3027) x q (768)

ndash Initial computational domain 109 cm ndash stellar surface 3x1012 cm

ndash How to initiate the explosionIntroduce aspherical initial radial

velocity and inject thermal energy around FeSi surface

ndash Perturbations of presupernova origins

httpflashuchicagoedusite

20140304 BH-mag 2014 Kumamoto Univ 32

FLASH Code

bull Eulerian hydrodynamic code

ndash Piecewise Parabolic Method (PPM)

ndash Unsplit solver MHD RHD

bull AMR (Adaptive mesh refinement)

ndash Reduce numerical costs

bull Many optional units

ndash Nuclear reaction networks

(7-19 nuclei)

The FLASH code is a modular parallel multiphysics simulation code

capable of handling general compressible flow problems found in many astrophysical environment (Fryxell et al 2000)

Type Ia SN

explosion

Jordan et al 2008

20140304 BH-mag 2014 Kumamoto Univ 33

Rayleigh-Taylor (RT) instability

120571120588 ∙ 120571119901 lt 0 (Chevalier 1979)

120588 1199033 rarr accelerate

Kifonidis et al 2006

Shengtai Li amp Hui Li 2006

RT unstable condition

1205882

1205881

g

Spherical explosions + RT

instabilities have not explained

the high velocity 56Ni

if 1205881 gt 1205882 120588 1199033 rarr decelerate

20140304 BH-mag 2014 Kumamoto Univ 34

Presupernova structure and introduced

perturbations

120571120588 ∙ 120571119901 lt 0 (Chavalier 1979)

120588 1199033 rarr shock wave tend

to be decelerated

Progenitor model 6 M8

helium core (Nomoto amp Hashimoto

1988) + 103 M8 hydrogen envelope

Si C+O He H

Rayleigh-Taylor unstable

Random

Sinusoidal

Perturbations are introduced at 6times109 cm (C+OHe) 5times1010 cm (HeH)

Models

20140304 BH-mag 2014 Kumamoto Univ 35

Parametersasphericity timing of the introduction

of perturbations

1 Spherical explosion models

2 Bipolar explosion models

3 Explosion models mimicking neutrino-driven

explosion

Results of models

20140304 BH-mag 2014 Kumamoto Univ 36

Spherical explosion models

20140304 BH-mag 2014 Kumamoto Univ 37

Density distributions

Perturbations

at C+OHe

Perturbations

at HeH

Perturbations

at both

Growth factor of instability

20140304 BH-mag 2014 Kumamoto Univ 38

Growth factors at the end of

simulation time

Growth rate for incompressible fluid

Growth rate for compressible fluid

Growth factors

Based on pure 1d spherical simulation

Radial velocity distribution of elements for

spherical explosion models

20140304 BH-mag 2014 Kumamoto Univ 39

Timing of the perturbations hardly affect

the maximum velocity of 56Ni

Maximum velocity of 56Ni lt 1600 km s-1

Different asphericity of bipolar explosions

20140304 BH-mag 2014 Kumamoto Univ 40

Bipolar explosion slightly enhance the mixing

length along the polar axis but maximum velocity

of 56Ni is still the level of lt 1700 km s-1

milder asphericity stronger asphericity

Revisiting Nagataki et al 2000 (jetlike explosion)

only initial large amplitude of perturbations

20140304 BH-mag 2014 Kumamoto Univ 41

with amplitude of 30 and m = 20

Initial relatively large sale of perturbations can not survive in later phase due to KH instabilities

Mimicking the neutrino-driven explosions

20140304 BH-mag 2014 Kumamoto Univ 42

Initial radial velocity

Scheck+04

Gawryszczak+10

Mechanism of the core-collapse supernova

explosions

bull Neutrino heating

20140304 BH-mag 2014 Kumamoto Univ 43

Taken from Janka et al 2012 (PTEP 1 A309)

Bethe 1990 (Rev Mod Phys 62 801) Taken from Liebendofer et al 2001

Convections and Standing Accretion Shock

Instability (SASI)

bull Convection around PNS surface

bull Neutrino-driven convection

bull Standing Accretion Shock Instability (SASI) (Blondin et al )

ndash Acoustic-vorticity cycle

20140304 BH-mag 2014 Kumamoto Univ 44

Ledoux criterion

Ledoux criterion

Taken from Liebendofer et al 2001

20140304 BH-mag 2014 Kumamoto Univ 45

Aspherical explosion with clumpy structure in the

explosion (movie)

20140304 BH-mag 2014 Kumamoto Univ 46

Aspherical explosion with clumpy structure + RT

instability

053 s 288 s 5752 s

20140304 BH-mag 2014 Kumamoto Univ 47

Maximum 3000 km s-1

56Ni

Radial velocity distributions of the best model in

this study

bull Relatively high velocity

(3000 km s-1) of 56Ni

bull Mass of 56Ni with ~ 3000

km s-1 14 x 10-3 M8

20140304 BH-mag 2014 Kumamoto Univ 48

Summary

bull To reproduce the high velocity of 56Ni both aspherical

explosion with clumpy structure and perturbations of

presupernova origins may be necessary

bull There are still missing ingredients to explain the observed

high velocity of 56Ni in SN 1987A

bull Possible missing ingredients

ndash More realistic explosion model (eg Kifonidis et al 2006)

ndash Lager perturbations in presupernova structure (Arnett amp Meakin 2011)

ndash Long simulation time

bull Heating due to the decay of 56Co (Herant amp Benz 1991)

ndash 3D effect (Hammer et al 2010)

Possible seeds of perturbations

bull Dynamical stellar evolution calculation

bull Density fluctuations

around the composition

interfaces

20140304 BH-mag 2014 Kumamoto Univ 49

Arnett amp Meakin 2011

20140304 BH-mag 2014 Kumamoto Univ 50

3D simulations of mixing instabilities in SN

explosions

Hammer et al 2010

56Ni 56Ni

2D 3D

Entropy per baryon Red Oxygen

Blue Nickel

Green Carbon

Direct-escape lines of 44Ti from SNR 1987A

bull lines from 44Ti 679 keV and 784 keV

bull Estimated 44Ti mass (31plusmn08) x 10-4 M8

20140304 BH-mag 2014 Kumamoto Univ 51

Grebenev+12 Nature 490 373

44Ti rarr 44Sc rarr 44Ca T12 = 60 d T12 = 4 h

Asymmetries in core-collapse supernovae from

maps of radioactive 44Ti in Cas A

20140304 BH-mag 2014 Kumamoto Univ 52

Grefenstette+14 Nature 506 339

Aspherical explosion enhance 44Ti

20140304 BH-mag 2014 Kumamoto Univ 53

56Ni 4He 44Ti

Alpha-rich freeze-out enhance the production of 44Ti in the

explosive nucleosynthesis

Aspherical explosion enhance the ratio of M(44Ti)M(56Ni)

096 s after the initiation of the explosion

Toward full 3D radiative transfer

bull 爆発形状を仮定した

輻射輸送計算

ndash 形状で偏光度が異なる

ndash 元素によっても異なる

bull 3次元物質混合計算を

インプットにした輻射

輸送計算

20140304 BH-mag 2014 Kumamoto Univ 54

Tanaka et al 2012 bipolar

clumpy

爆発形状のプローブ

20140304 BH-mag 2014 Kumamoto Univ 55

3D MHD simulation of a SNR

Introduction

bull Acceleration of cosmic-rays in SNRs

ndash Up to ~ 1015 eV or more

ndash Magnetic field is key ingredient

20140304 BH-mag 2014 Kumamoto Univ 56

SN1006 (Chandra X-ray)

Amplified strong magnetic field

20140304 BH-mag 2014 Kumamoto Univ 57

Uchiyama et al 2007 Nature 4469 576

Bohm-diffusion limit

Variations of X-ray hot

spots on a 1 yr timescale

Strong amplified

magnetic field

3D MHD simulation of a SNR

20140304 BH-mag 2014 Kumamoto Univ 58

3 pc

Preliminary

20140304 BH-mag 2014 Kumamoto Univ 59

Amplified magnetic field

20121015 - 17 SNSNR12 59

~ 50 μ G

1 μ G Preliminary

20140304 BH-mag 2014 Kumamoto Univ 60

3D structure of Cas A

Delaney et al 2010

Chandra lsquos X-rays

Spitzer lsquos infrared

Green X-ray Fe-K

Red IR [Ar II]

Blue high [Ne II][Ar II] ratio

Yellow optical outer ejecta

Grey IR [Si II]

Black X-ray Si XIII

20140304 BH-mag 2014 Kumamoto Univ 61

ASTRO-H

bull New exploration X-ray

Telescope

ndash First right will be

2015 yr

ndash 10 times larger

energy resolution

httpastro-hisasjaxajpgallerysatelite02html

High resolution spectrum

of X-ray from SNRs is

expected

3D simulation of the thermal X-ray emission from young

SNRs including efficient particle acceleration

bull 3D simulation

bull Diffusive Shock Acceleration

bull Back reaction from

accelerated particle

bull Non-equilibrium ionization

bull Thermal X-ray emission

20140304 BH-mag 2014 Kumamoto Univ 62

Ferrand et al 2012

To go further than

Ferrand et al

Test 1D calculation

bull Two energy equation for ions and electrons respectively

bull Energy equilibration between ions and electrons

bull Ionization

20140304 BH-mag 2014 Kumamoto Univ 63

20140304 BH-mag 2014 Kumamoto Univ 64

Density contour

Preliminary

Emission from deferent regions

20140304 BH-mag 2014 Kumamoto Univ 65

Preliminary

Summary

bull Aspherical nature of core-collapse supernova

explosions

bull Origin of heavy elements

ndash NS merger

ndash Magnetically driven jets

bull Mixing in CCSN explosion

bull Supernova explosions to Supernova remnant

20140304 BH-mag 2014 Kumamoto Univ 66

Page 17: Masaomi ONO Kyushu University - aichi-edu.ac.jptakahasi/BHmag2014_pdf/Presen/...Method of MHD simulation 16 Magnetohydrodynamics (ideal MHD) Poisson eq. pseudo-Newtonian potential

20140304 BH-mag 2014 Kumamoto Univ 17

Nucleosynthesis in the MHD jet from a

collapsar including weak s- p- and r-processes

MO+12

20140304 BH-mag 2014 Kumamoto Univ 18

r-process nucleosynthesis (movie)

MO+12

20140304 BH-mag 2014 Kumamoto Univ 19

Comparison with abundances of the solar and

metal-poor stars

bull Weak r-process

bull Primary synthesis of

Sr-Y-Zr

darr

Lighter element

primary process

(LEPP)

MO+12

Universality of the r-process (eg Sneden et al 2003)

Future collaboration with nuclear physics groups in

RIKEN

bull RIBF (beam factory)

bull Theoretical nuclear physics

group

bull Impact of uncertainties of

nuclear physics inputs

on nucleosynthesis in

astrophysical sites

20140304 BH-mag 2014 Kumamoto Univ 20

A lsquoKilonovarsquo associated with the short-duration

GRB 130603B (z = 0356)

bull Optical near-IR afterglow

ndash kilonova (1040 -1042 erg s-1)

bull r-process powered transient

(eg Li amp Paczyński 1998

Metzger et al 2010)

bull Electromagnetic counterpart

of GW

bull Robust r-process in NS merger

(Korobkin et al 2012)

bull Recent numerical study

ndash Wanajo et al 2013 (arXiv14027317)

20140304 BH-mag 2014 Kumamoto Univ 21

Tanvir et al 2013 Nature 500 547

Matter mixing in aspherical core-collapse supernovae

- A search for possible conditions for conveying 56Ni into high

velocity regions

Masaomi Ono1

Shigehiro Nagataki2 Hirotaka Ito2 Shiu-Hang Lee2 Jirong

Mao2 Masa-aki Hashimoto1 Tolstov Alexey2

Kyushu University

Astrophysical Big Bang Laboratory RIKEN

20140304 BH-mag 2014 Kumamoto Univ 22

MO+2013 ApJ 773 161

20140304 BH-mag 2014 Kumamoto Univ 23

Introduction observational evidence of mixing

in supernovae bull SN 1987A

ndash Early detection of X-rays (Dotani et al 1987)

γ-rays lines from 56Co (Matz et al 1988)

ndash Sudden development of the fine structure of Ha

(Hanuschik et al 1988)

ndash Line profiles of [Fe II]

(Spyromilo+90 Haas+90)

Fe (56Ni) is mixed into high velocity regions

56Ni rarr 56Co rarr 56Fe

20140304 BH-mag 2014 Kumamoto Univ 24

Broadened line profile of [Fe II] in SN 1987A

[Fe II] line profile (Haas et al 1990)

56Ni rarr 56Co rarr 56Fe

4000 km s-1

SN 1987A

Doppler velocity

T12 = 61 d T12 = 77 d

20140304 BH-mag 2014 Kumamoto Univ 25

Matter mixing in supernova explosions

HeH C+OHe

Synthesized 56Ni by

explosive

nucleosynthesis Mixing

56Ni is mixed up into high

velocity regions

radial velocity HeH

56Ni

Distance from the center

20140304 BH-mag 2014 Kumamoto Univ 26

What is the mechanism of the mixing

bull Fluid instabilities

ndash Rayleigh-Taylor (RT) instability

ndash Kelvin-Helmholtz (KH) instability

ndash Richtmyer-Meshkov (RM) instability

bull Aspherical supernova explosion

ndash Neutrino heating aided by SASI

(Standing Accretion Shock Instability)

ndash MHD Jets

Wongwathanarat et al 2010

Entropy per baryon

20140304 BH-mag 2014 Kumamoto Univ 27

Early previous study of hydrodynamic models of

the late time shock wave propagation

bull 2D3D hydrodynamic simulations

bull Add hoc initiation of spherical supernova explosion

bull RT mixing at OHe HeH interfaces

bull Maximum 56Ni velocity around 2000 km s-1

Arnett et al 1989 Fryxell et al 1991 Mueller et al 1991bac Hachisu et al

1990 1991 1992 1994 Herant amp Benz 1991 Herant amp Benz 1992

Hachisu et al 1992

Spherical explosion + RT instability could not explain

the observed high velocity of 56Ni

bull Recent study on mixing

ndash 2D (Kifonidis et al 2003 2006 Gawryszczak et al 2010)

20140304 BH-mag 2014 Kumamoto Univ 28

Simulations of non-spherical supernova explosions

bull Neutrino-driven explosion

(Kifonidis et al 2006 Gawryszczak et al 2010)

Solid circle 10-4 M8

Open circle 10-5 M8

Density 7days after the explosion

Maximum ~ 4000 km s-1

bull Jet like explosions (Yamada amp Sato 1991 Nagataki et al 2000)

bull 3D (Hammer et al 2010)

bull SPH (Hungerford et al 20032005 Ellinger et al 2012)

Motivation

bull Multidimensional high resolution hydrodynamics

simulations of the propagation of supernova shock wave

+ Nucleosynthesis calculation and advections of

synthesized nuclear species

20140304 BH-mag 2014 Kumamoto Univ 29

The conditions for reproducing the observed high

velocity of 56Ni are still unclear

To clarify the key conditions for reproducing such

high velocity of 56Ni we revisit matter mixing in

aspherical core-collapse supernova explosions

Methods

20140304 BH-mag 2014 Kumamoto Univ 30

20140304 BH-mag 2014 Kumamoto Univ 31

Methods

bull 2D hydrodynamic simulation

ndash AMR hydrodynamic code (FLASH Fryxell et al 2000)

ndash Parallel computing (SR16000 in YITP)

ndash Nuclear reaction network 1H 4He 12C hellip 54Fe 56Ni (19 nuclei)

ndash Spherical point mass and self gravity

ndash Spherical coordinate effective maximum grid r (3027) x q (768)

ndash Initial computational domain 109 cm ndash stellar surface 3x1012 cm

ndash How to initiate the explosionIntroduce aspherical initial radial

velocity and inject thermal energy around FeSi surface

ndash Perturbations of presupernova origins

httpflashuchicagoedusite

20140304 BH-mag 2014 Kumamoto Univ 32

FLASH Code

bull Eulerian hydrodynamic code

ndash Piecewise Parabolic Method (PPM)

ndash Unsplit solver MHD RHD

bull AMR (Adaptive mesh refinement)

ndash Reduce numerical costs

bull Many optional units

ndash Nuclear reaction networks

(7-19 nuclei)

The FLASH code is a modular parallel multiphysics simulation code

capable of handling general compressible flow problems found in many astrophysical environment (Fryxell et al 2000)

Type Ia SN

explosion

Jordan et al 2008

20140304 BH-mag 2014 Kumamoto Univ 33

Rayleigh-Taylor (RT) instability

120571120588 ∙ 120571119901 lt 0 (Chevalier 1979)

120588 1199033 rarr accelerate

Kifonidis et al 2006

Shengtai Li amp Hui Li 2006

RT unstable condition

1205882

1205881

g

Spherical explosions + RT

instabilities have not explained

the high velocity 56Ni

if 1205881 gt 1205882 120588 1199033 rarr decelerate

20140304 BH-mag 2014 Kumamoto Univ 34

Presupernova structure and introduced

perturbations

120571120588 ∙ 120571119901 lt 0 (Chavalier 1979)

120588 1199033 rarr shock wave tend

to be decelerated

Progenitor model 6 M8

helium core (Nomoto amp Hashimoto

1988) + 103 M8 hydrogen envelope

Si C+O He H

Rayleigh-Taylor unstable

Random

Sinusoidal

Perturbations are introduced at 6times109 cm (C+OHe) 5times1010 cm (HeH)

Models

20140304 BH-mag 2014 Kumamoto Univ 35

Parametersasphericity timing of the introduction

of perturbations

1 Spherical explosion models

2 Bipolar explosion models

3 Explosion models mimicking neutrino-driven

explosion

Results of models

20140304 BH-mag 2014 Kumamoto Univ 36

Spherical explosion models

20140304 BH-mag 2014 Kumamoto Univ 37

Density distributions

Perturbations

at C+OHe

Perturbations

at HeH

Perturbations

at both

Growth factor of instability

20140304 BH-mag 2014 Kumamoto Univ 38

Growth factors at the end of

simulation time

Growth rate for incompressible fluid

Growth rate for compressible fluid

Growth factors

Based on pure 1d spherical simulation

Radial velocity distribution of elements for

spherical explosion models

20140304 BH-mag 2014 Kumamoto Univ 39

Timing of the perturbations hardly affect

the maximum velocity of 56Ni

Maximum velocity of 56Ni lt 1600 km s-1

Different asphericity of bipolar explosions

20140304 BH-mag 2014 Kumamoto Univ 40

Bipolar explosion slightly enhance the mixing

length along the polar axis but maximum velocity

of 56Ni is still the level of lt 1700 km s-1

milder asphericity stronger asphericity

Revisiting Nagataki et al 2000 (jetlike explosion)

only initial large amplitude of perturbations

20140304 BH-mag 2014 Kumamoto Univ 41

with amplitude of 30 and m = 20

Initial relatively large sale of perturbations can not survive in later phase due to KH instabilities

Mimicking the neutrino-driven explosions

20140304 BH-mag 2014 Kumamoto Univ 42

Initial radial velocity

Scheck+04

Gawryszczak+10

Mechanism of the core-collapse supernova

explosions

bull Neutrino heating

20140304 BH-mag 2014 Kumamoto Univ 43

Taken from Janka et al 2012 (PTEP 1 A309)

Bethe 1990 (Rev Mod Phys 62 801) Taken from Liebendofer et al 2001

Convections and Standing Accretion Shock

Instability (SASI)

bull Convection around PNS surface

bull Neutrino-driven convection

bull Standing Accretion Shock Instability (SASI) (Blondin et al )

ndash Acoustic-vorticity cycle

20140304 BH-mag 2014 Kumamoto Univ 44

Ledoux criterion

Ledoux criterion

Taken from Liebendofer et al 2001

20140304 BH-mag 2014 Kumamoto Univ 45

Aspherical explosion with clumpy structure in the

explosion (movie)

20140304 BH-mag 2014 Kumamoto Univ 46

Aspherical explosion with clumpy structure + RT

instability

053 s 288 s 5752 s

20140304 BH-mag 2014 Kumamoto Univ 47

Maximum 3000 km s-1

56Ni

Radial velocity distributions of the best model in

this study

bull Relatively high velocity

(3000 km s-1) of 56Ni

bull Mass of 56Ni with ~ 3000

km s-1 14 x 10-3 M8

20140304 BH-mag 2014 Kumamoto Univ 48

Summary

bull To reproduce the high velocity of 56Ni both aspherical

explosion with clumpy structure and perturbations of

presupernova origins may be necessary

bull There are still missing ingredients to explain the observed

high velocity of 56Ni in SN 1987A

bull Possible missing ingredients

ndash More realistic explosion model (eg Kifonidis et al 2006)

ndash Lager perturbations in presupernova structure (Arnett amp Meakin 2011)

ndash Long simulation time

bull Heating due to the decay of 56Co (Herant amp Benz 1991)

ndash 3D effect (Hammer et al 2010)

Possible seeds of perturbations

bull Dynamical stellar evolution calculation

bull Density fluctuations

around the composition

interfaces

20140304 BH-mag 2014 Kumamoto Univ 49

Arnett amp Meakin 2011

20140304 BH-mag 2014 Kumamoto Univ 50

3D simulations of mixing instabilities in SN

explosions

Hammer et al 2010

56Ni 56Ni

2D 3D

Entropy per baryon Red Oxygen

Blue Nickel

Green Carbon

Direct-escape lines of 44Ti from SNR 1987A

bull lines from 44Ti 679 keV and 784 keV

bull Estimated 44Ti mass (31plusmn08) x 10-4 M8

20140304 BH-mag 2014 Kumamoto Univ 51

Grebenev+12 Nature 490 373

44Ti rarr 44Sc rarr 44Ca T12 = 60 d T12 = 4 h

Asymmetries in core-collapse supernovae from

maps of radioactive 44Ti in Cas A

20140304 BH-mag 2014 Kumamoto Univ 52

Grefenstette+14 Nature 506 339

Aspherical explosion enhance 44Ti

20140304 BH-mag 2014 Kumamoto Univ 53

56Ni 4He 44Ti

Alpha-rich freeze-out enhance the production of 44Ti in the

explosive nucleosynthesis

Aspherical explosion enhance the ratio of M(44Ti)M(56Ni)

096 s after the initiation of the explosion

Toward full 3D radiative transfer

bull 爆発形状を仮定した

輻射輸送計算

ndash 形状で偏光度が異なる

ndash 元素によっても異なる

bull 3次元物質混合計算を

インプットにした輻射

輸送計算

20140304 BH-mag 2014 Kumamoto Univ 54

Tanaka et al 2012 bipolar

clumpy

爆発形状のプローブ

20140304 BH-mag 2014 Kumamoto Univ 55

3D MHD simulation of a SNR

Introduction

bull Acceleration of cosmic-rays in SNRs

ndash Up to ~ 1015 eV or more

ndash Magnetic field is key ingredient

20140304 BH-mag 2014 Kumamoto Univ 56

SN1006 (Chandra X-ray)

Amplified strong magnetic field

20140304 BH-mag 2014 Kumamoto Univ 57

Uchiyama et al 2007 Nature 4469 576

Bohm-diffusion limit

Variations of X-ray hot

spots on a 1 yr timescale

Strong amplified

magnetic field

3D MHD simulation of a SNR

20140304 BH-mag 2014 Kumamoto Univ 58

3 pc

Preliminary

20140304 BH-mag 2014 Kumamoto Univ 59

Amplified magnetic field

20121015 - 17 SNSNR12 59

~ 50 μ G

1 μ G Preliminary

20140304 BH-mag 2014 Kumamoto Univ 60

3D structure of Cas A

Delaney et al 2010

Chandra lsquos X-rays

Spitzer lsquos infrared

Green X-ray Fe-K

Red IR [Ar II]

Blue high [Ne II][Ar II] ratio

Yellow optical outer ejecta

Grey IR [Si II]

Black X-ray Si XIII

20140304 BH-mag 2014 Kumamoto Univ 61

ASTRO-H

bull New exploration X-ray

Telescope

ndash First right will be

2015 yr

ndash 10 times larger

energy resolution

httpastro-hisasjaxajpgallerysatelite02html

High resolution spectrum

of X-ray from SNRs is

expected

3D simulation of the thermal X-ray emission from young

SNRs including efficient particle acceleration

bull 3D simulation

bull Diffusive Shock Acceleration

bull Back reaction from

accelerated particle

bull Non-equilibrium ionization

bull Thermal X-ray emission

20140304 BH-mag 2014 Kumamoto Univ 62

Ferrand et al 2012

To go further than

Ferrand et al

Test 1D calculation

bull Two energy equation for ions and electrons respectively

bull Energy equilibration between ions and electrons

bull Ionization

20140304 BH-mag 2014 Kumamoto Univ 63

20140304 BH-mag 2014 Kumamoto Univ 64

Density contour

Preliminary

Emission from deferent regions

20140304 BH-mag 2014 Kumamoto Univ 65

Preliminary

Summary

bull Aspherical nature of core-collapse supernova

explosions

bull Origin of heavy elements

ndash NS merger

ndash Magnetically driven jets

bull Mixing in CCSN explosion

bull Supernova explosions to Supernova remnant

20140304 BH-mag 2014 Kumamoto Univ 66

Page 18: Masaomi ONO Kyushu University - aichi-edu.ac.jptakahasi/BHmag2014_pdf/Presen/...Method of MHD simulation 16 Magnetohydrodynamics (ideal MHD) Poisson eq. pseudo-Newtonian potential

20140304 BH-mag 2014 Kumamoto Univ 18

r-process nucleosynthesis (movie)

MO+12

20140304 BH-mag 2014 Kumamoto Univ 19

Comparison with abundances of the solar and

metal-poor stars

bull Weak r-process

bull Primary synthesis of

Sr-Y-Zr

darr

Lighter element

primary process

(LEPP)

MO+12

Universality of the r-process (eg Sneden et al 2003)

Future collaboration with nuclear physics groups in

RIKEN

bull RIBF (beam factory)

bull Theoretical nuclear physics

group

bull Impact of uncertainties of

nuclear physics inputs

on nucleosynthesis in

astrophysical sites

20140304 BH-mag 2014 Kumamoto Univ 20

A lsquoKilonovarsquo associated with the short-duration

GRB 130603B (z = 0356)

bull Optical near-IR afterglow

ndash kilonova (1040 -1042 erg s-1)

bull r-process powered transient

(eg Li amp Paczyński 1998

Metzger et al 2010)

bull Electromagnetic counterpart

of GW

bull Robust r-process in NS merger

(Korobkin et al 2012)

bull Recent numerical study

ndash Wanajo et al 2013 (arXiv14027317)

20140304 BH-mag 2014 Kumamoto Univ 21

Tanvir et al 2013 Nature 500 547

Matter mixing in aspherical core-collapse supernovae

- A search for possible conditions for conveying 56Ni into high

velocity regions

Masaomi Ono1

Shigehiro Nagataki2 Hirotaka Ito2 Shiu-Hang Lee2 Jirong

Mao2 Masa-aki Hashimoto1 Tolstov Alexey2

Kyushu University

Astrophysical Big Bang Laboratory RIKEN

20140304 BH-mag 2014 Kumamoto Univ 22

MO+2013 ApJ 773 161

20140304 BH-mag 2014 Kumamoto Univ 23

Introduction observational evidence of mixing

in supernovae bull SN 1987A

ndash Early detection of X-rays (Dotani et al 1987)

γ-rays lines from 56Co (Matz et al 1988)

ndash Sudden development of the fine structure of Ha

(Hanuschik et al 1988)

ndash Line profiles of [Fe II]

(Spyromilo+90 Haas+90)

Fe (56Ni) is mixed into high velocity regions

56Ni rarr 56Co rarr 56Fe

20140304 BH-mag 2014 Kumamoto Univ 24

Broadened line profile of [Fe II] in SN 1987A

[Fe II] line profile (Haas et al 1990)

56Ni rarr 56Co rarr 56Fe

4000 km s-1

SN 1987A

Doppler velocity

T12 = 61 d T12 = 77 d

20140304 BH-mag 2014 Kumamoto Univ 25

Matter mixing in supernova explosions

HeH C+OHe

Synthesized 56Ni by

explosive

nucleosynthesis Mixing

56Ni is mixed up into high

velocity regions

radial velocity HeH

56Ni

Distance from the center

20140304 BH-mag 2014 Kumamoto Univ 26

What is the mechanism of the mixing

bull Fluid instabilities

ndash Rayleigh-Taylor (RT) instability

ndash Kelvin-Helmholtz (KH) instability

ndash Richtmyer-Meshkov (RM) instability

bull Aspherical supernova explosion

ndash Neutrino heating aided by SASI

(Standing Accretion Shock Instability)

ndash MHD Jets

Wongwathanarat et al 2010

Entropy per baryon

20140304 BH-mag 2014 Kumamoto Univ 27

Early previous study of hydrodynamic models of

the late time shock wave propagation

bull 2D3D hydrodynamic simulations

bull Add hoc initiation of spherical supernova explosion

bull RT mixing at OHe HeH interfaces

bull Maximum 56Ni velocity around 2000 km s-1

Arnett et al 1989 Fryxell et al 1991 Mueller et al 1991bac Hachisu et al

1990 1991 1992 1994 Herant amp Benz 1991 Herant amp Benz 1992

Hachisu et al 1992

Spherical explosion + RT instability could not explain

the observed high velocity of 56Ni

bull Recent study on mixing

ndash 2D (Kifonidis et al 2003 2006 Gawryszczak et al 2010)

20140304 BH-mag 2014 Kumamoto Univ 28

Simulations of non-spherical supernova explosions

bull Neutrino-driven explosion

(Kifonidis et al 2006 Gawryszczak et al 2010)

Solid circle 10-4 M8

Open circle 10-5 M8

Density 7days after the explosion

Maximum ~ 4000 km s-1

bull Jet like explosions (Yamada amp Sato 1991 Nagataki et al 2000)

bull 3D (Hammer et al 2010)

bull SPH (Hungerford et al 20032005 Ellinger et al 2012)

Motivation

bull Multidimensional high resolution hydrodynamics

simulations of the propagation of supernova shock wave

+ Nucleosynthesis calculation and advections of

synthesized nuclear species

20140304 BH-mag 2014 Kumamoto Univ 29

The conditions for reproducing the observed high

velocity of 56Ni are still unclear

To clarify the key conditions for reproducing such

high velocity of 56Ni we revisit matter mixing in

aspherical core-collapse supernova explosions

Methods

20140304 BH-mag 2014 Kumamoto Univ 30

20140304 BH-mag 2014 Kumamoto Univ 31

Methods

bull 2D hydrodynamic simulation

ndash AMR hydrodynamic code (FLASH Fryxell et al 2000)

ndash Parallel computing (SR16000 in YITP)

ndash Nuclear reaction network 1H 4He 12C hellip 54Fe 56Ni (19 nuclei)

ndash Spherical point mass and self gravity

ndash Spherical coordinate effective maximum grid r (3027) x q (768)

ndash Initial computational domain 109 cm ndash stellar surface 3x1012 cm

ndash How to initiate the explosionIntroduce aspherical initial radial

velocity and inject thermal energy around FeSi surface

ndash Perturbations of presupernova origins

httpflashuchicagoedusite

20140304 BH-mag 2014 Kumamoto Univ 32

FLASH Code

bull Eulerian hydrodynamic code

ndash Piecewise Parabolic Method (PPM)

ndash Unsplit solver MHD RHD

bull AMR (Adaptive mesh refinement)

ndash Reduce numerical costs

bull Many optional units

ndash Nuclear reaction networks

(7-19 nuclei)

The FLASH code is a modular parallel multiphysics simulation code

capable of handling general compressible flow problems found in many astrophysical environment (Fryxell et al 2000)

Type Ia SN

explosion

Jordan et al 2008

20140304 BH-mag 2014 Kumamoto Univ 33

Rayleigh-Taylor (RT) instability

120571120588 ∙ 120571119901 lt 0 (Chevalier 1979)

120588 1199033 rarr accelerate

Kifonidis et al 2006

Shengtai Li amp Hui Li 2006

RT unstable condition

1205882

1205881

g

Spherical explosions + RT

instabilities have not explained

the high velocity 56Ni

if 1205881 gt 1205882 120588 1199033 rarr decelerate

20140304 BH-mag 2014 Kumamoto Univ 34

Presupernova structure and introduced

perturbations

120571120588 ∙ 120571119901 lt 0 (Chavalier 1979)

120588 1199033 rarr shock wave tend

to be decelerated

Progenitor model 6 M8

helium core (Nomoto amp Hashimoto

1988) + 103 M8 hydrogen envelope

Si C+O He H

Rayleigh-Taylor unstable

Random

Sinusoidal

Perturbations are introduced at 6times109 cm (C+OHe) 5times1010 cm (HeH)

Models

20140304 BH-mag 2014 Kumamoto Univ 35

Parametersasphericity timing of the introduction

of perturbations

1 Spherical explosion models

2 Bipolar explosion models

3 Explosion models mimicking neutrino-driven

explosion

Results of models

20140304 BH-mag 2014 Kumamoto Univ 36

Spherical explosion models

20140304 BH-mag 2014 Kumamoto Univ 37

Density distributions

Perturbations

at C+OHe

Perturbations

at HeH

Perturbations

at both

Growth factor of instability

20140304 BH-mag 2014 Kumamoto Univ 38

Growth factors at the end of

simulation time

Growth rate for incompressible fluid

Growth rate for compressible fluid

Growth factors

Based on pure 1d spherical simulation

Radial velocity distribution of elements for

spherical explosion models

20140304 BH-mag 2014 Kumamoto Univ 39

Timing of the perturbations hardly affect

the maximum velocity of 56Ni

Maximum velocity of 56Ni lt 1600 km s-1

Different asphericity of bipolar explosions

20140304 BH-mag 2014 Kumamoto Univ 40

Bipolar explosion slightly enhance the mixing

length along the polar axis but maximum velocity

of 56Ni is still the level of lt 1700 km s-1

milder asphericity stronger asphericity

Revisiting Nagataki et al 2000 (jetlike explosion)

only initial large amplitude of perturbations

20140304 BH-mag 2014 Kumamoto Univ 41

with amplitude of 30 and m = 20

Initial relatively large sale of perturbations can not survive in later phase due to KH instabilities

Mimicking the neutrino-driven explosions

20140304 BH-mag 2014 Kumamoto Univ 42

Initial radial velocity

Scheck+04

Gawryszczak+10

Mechanism of the core-collapse supernova

explosions

bull Neutrino heating

20140304 BH-mag 2014 Kumamoto Univ 43

Taken from Janka et al 2012 (PTEP 1 A309)

Bethe 1990 (Rev Mod Phys 62 801) Taken from Liebendofer et al 2001

Convections and Standing Accretion Shock

Instability (SASI)

bull Convection around PNS surface

bull Neutrino-driven convection

bull Standing Accretion Shock Instability (SASI) (Blondin et al )

ndash Acoustic-vorticity cycle

20140304 BH-mag 2014 Kumamoto Univ 44

Ledoux criterion

Ledoux criterion

Taken from Liebendofer et al 2001

20140304 BH-mag 2014 Kumamoto Univ 45

Aspherical explosion with clumpy structure in the

explosion (movie)

20140304 BH-mag 2014 Kumamoto Univ 46

Aspherical explosion with clumpy structure + RT

instability

053 s 288 s 5752 s

20140304 BH-mag 2014 Kumamoto Univ 47

Maximum 3000 km s-1

56Ni

Radial velocity distributions of the best model in

this study

bull Relatively high velocity

(3000 km s-1) of 56Ni

bull Mass of 56Ni with ~ 3000

km s-1 14 x 10-3 M8

20140304 BH-mag 2014 Kumamoto Univ 48

Summary

bull To reproduce the high velocity of 56Ni both aspherical

explosion with clumpy structure and perturbations of

presupernova origins may be necessary

bull There are still missing ingredients to explain the observed

high velocity of 56Ni in SN 1987A

bull Possible missing ingredients

ndash More realistic explosion model (eg Kifonidis et al 2006)

ndash Lager perturbations in presupernova structure (Arnett amp Meakin 2011)

ndash Long simulation time

bull Heating due to the decay of 56Co (Herant amp Benz 1991)

ndash 3D effect (Hammer et al 2010)

Possible seeds of perturbations

bull Dynamical stellar evolution calculation

bull Density fluctuations

around the composition

interfaces

20140304 BH-mag 2014 Kumamoto Univ 49

Arnett amp Meakin 2011

20140304 BH-mag 2014 Kumamoto Univ 50

3D simulations of mixing instabilities in SN

explosions

Hammer et al 2010

56Ni 56Ni

2D 3D

Entropy per baryon Red Oxygen

Blue Nickel

Green Carbon

Direct-escape lines of 44Ti from SNR 1987A

bull lines from 44Ti 679 keV and 784 keV

bull Estimated 44Ti mass (31plusmn08) x 10-4 M8

20140304 BH-mag 2014 Kumamoto Univ 51

Grebenev+12 Nature 490 373

44Ti rarr 44Sc rarr 44Ca T12 = 60 d T12 = 4 h

Asymmetries in core-collapse supernovae from

maps of radioactive 44Ti in Cas A

20140304 BH-mag 2014 Kumamoto Univ 52

Grefenstette+14 Nature 506 339

Aspherical explosion enhance 44Ti

20140304 BH-mag 2014 Kumamoto Univ 53

56Ni 4He 44Ti

Alpha-rich freeze-out enhance the production of 44Ti in the

explosive nucleosynthesis

Aspherical explosion enhance the ratio of M(44Ti)M(56Ni)

096 s after the initiation of the explosion

Toward full 3D radiative transfer

bull 爆発形状を仮定した

輻射輸送計算

ndash 形状で偏光度が異なる

ndash 元素によっても異なる

bull 3次元物質混合計算を

インプットにした輻射

輸送計算

20140304 BH-mag 2014 Kumamoto Univ 54

Tanaka et al 2012 bipolar

clumpy

爆発形状のプローブ

20140304 BH-mag 2014 Kumamoto Univ 55

3D MHD simulation of a SNR

Introduction

bull Acceleration of cosmic-rays in SNRs

ndash Up to ~ 1015 eV or more

ndash Magnetic field is key ingredient

20140304 BH-mag 2014 Kumamoto Univ 56

SN1006 (Chandra X-ray)

Amplified strong magnetic field

20140304 BH-mag 2014 Kumamoto Univ 57

Uchiyama et al 2007 Nature 4469 576

Bohm-diffusion limit

Variations of X-ray hot

spots on a 1 yr timescale

Strong amplified

magnetic field

3D MHD simulation of a SNR

20140304 BH-mag 2014 Kumamoto Univ 58

3 pc

Preliminary

20140304 BH-mag 2014 Kumamoto Univ 59

Amplified magnetic field

20121015 - 17 SNSNR12 59

~ 50 μ G

1 μ G Preliminary

20140304 BH-mag 2014 Kumamoto Univ 60

3D structure of Cas A

Delaney et al 2010

Chandra lsquos X-rays

Spitzer lsquos infrared

Green X-ray Fe-K

Red IR [Ar II]

Blue high [Ne II][Ar II] ratio

Yellow optical outer ejecta

Grey IR [Si II]

Black X-ray Si XIII

20140304 BH-mag 2014 Kumamoto Univ 61

ASTRO-H

bull New exploration X-ray

Telescope

ndash First right will be

2015 yr

ndash 10 times larger

energy resolution

httpastro-hisasjaxajpgallerysatelite02html

High resolution spectrum

of X-ray from SNRs is

expected

3D simulation of the thermal X-ray emission from young

SNRs including efficient particle acceleration

bull 3D simulation

bull Diffusive Shock Acceleration

bull Back reaction from

accelerated particle

bull Non-equilibrium ionization

bull Thermal X-ray emission

20140304 BH-mag 2014 Kumamoto Univ 62

Ferrand et al 2012

To go further than

Ferrand et al

Test 1D calculation

bull Two energy equation for ions and electrons respectively

bull Energy equilibration between ions and electrons

bull Ionization

20140304 BH-mag 2014 Kumamoto Univ 63

20140304 BH-mag 2014 Kumamoto Univ 64

Density contour

Preliminary

Emission from deferent regions

20140304 BH-mag 2014 Kumamoto Univ 65

Preliminary

Summary

bull Aspherical nature of core-collapse supernova

explosions

bull Origin of heavy elements

ndash NS merger

ndash Magnetically driven jets

bull Mixing in CCSN explosion

bull Supernova explosions to Supernova remnant

20140304 BH-mag 2014 Kumamoto Univ 66

Page 19: Masaomi ONO Kyushu University - aichi-edu.ac.jptakahasi/BHmag2014_pdf/Presen/...Method of MHD simulation 16 Magnetohydrodynamics (ideal MHD) Poisson eq. pseudo-Newtonian potential

20140304 BH-mag 2014 Kumamoto Univ 19

Comparison with abundances of the solar and

metal-poor stars

bull Weak r-process

bull Primary synthesis of

Sr-Y-Zr

darr

Lighter element

primary process

(LEPP)

MO+12

Universality of the r-process (eg Sneden et al 2003)

Future collaboration with nuclear physics groups in

RIKEN

bull RIBF (beam factory)

bull Theoretical nuclear physics

group

bull Impact of uncertainties of

nuclear physics inputs

on nucleosynthesis in

astrophysical sites

20140304 BH-mag 2014 Kumamoto Univ 20

A lsquoKilonovarsquo associated with the short-duration

GRB 130603B (z = 0356)

bull Optical near-IR afterglow

ndash kilonova (1040 -1042 erg s-1)

bull r-process powered transient

(eg Li amp Paczyński 1998

Metzger et al 2010)

bull Electromagnetic counterpart

of GW

bull Robust r-process in NS merger

(Korobkin et al 2012)

bull Recent numerical study

ndash Wanajo et al 2013 (arXiv14027317)

20140304 BH-mag 2014 Kumamoto Univ 21

Tanvir et al 2013 Nature 500 547

Matter mixing in aspherical core-collapse supernovae

- A search for possible conditions for conveying 56Ni into high

velocity regions

Masaomi Ono1

Shigehiro Nagataki2 Hirotaka Ito2 Shiu-Hang Lee2 Jirong

Mao2 Masa-aki Hashimoto1 Tolstov Alexey2

Kyushu University

Astrophysical Big Bang Laboratory RIKEN

20140304 BH-mag 2014 Kumamoto Univ 22

MO+2013 ApJ 773 161

20140304 BH-mag 2014 Kumamoto Univ 23

Introduction observational evidence of mixing

in supernovae bull SN 1987A

ndash Early detection of X-rays (Dotani et al 1987)

γ-rays lines from 56Co (Matz et al 1988)

ndash Sudden development of the fine structure of Ha

(Hanuschik et al 1988)

ndash Line profiles of [Fe II]

(Spyromilo+90 Haas+90)

Fe (56Ni) is mixed into high velocity regions

56Ni rarr 56Co rarr 56Fe

20140304 BH-mag 2014 Kumamoto Univ 24

Broadened line profile of [Fe II] in SN 1987A

[Fe II] line profile (Haas et al 1990)

56Ni rarr 56Co rarr 56Fe

4000 km s-1

SN 1987A

Doppler velocity

T12 = 61 d T12 = 77 d

20140304 BH-mag 2014 Kumamoto Univ 25

Matter mixing in supernova explosions

HeH C+OHe

Synthesized 56Ni by

explosive

nucleosynthesis Mixing

56Ni is mixed up into high

velocity regions

radial velocity HeH

56Ni

Distance from the center

20140304 BH-mag 2014 Kumamoto Univ 26

What is the mechanism of the mixing

bull Fluid instabilities

ndash Rayleigh-Taylor (RT) instability

ndash Kelvin-Helmholtz (KH) instability

ndash Richtmyer-Meshkov (RM) instability

bull Aspherical supernova explosion

ndash Neutrino heating aided by SASI

(Standing Accretion Shock Instability)

ndash MHD Jets

Wongwathanarat et al 2010

Entropy per baryon

20140304 BH-mag 2014 Kumamoto Univ 27

Early previous study of hydrodynamic models of

the late time shock wave propagation

bull 2D3D hydrodynamic simulations

bull Add hoc initiation of spherical supernova explosion

bull RT mixing at OHe HeH interfaces

bull Maximum 56Ni velocity around 2000 km s-1

Arnett et al 1989 Fryxell et al 1991 Mueller et al 1991bac Hachisu et al

1990 1991 1992 1994 Herant amp Benz 1991 Herant amp Benz 1992

Hachisu et al 1992

Spherical explosion + RT instability could not explain

the observed high velocity of 56Ni

bull Recent study on mixing

ndash 2D (Kifonidis et al 2003 2006 Gawryszczak et al 2010)

20140304 BH-mag 2014 Kumamoto Univ 28

Simulations of non-spherical supernova explosions

bull Neutrino-driven explosion

(Kifonidis et al 2006 Gawryszczak et al 2010)

Solid circle 10-4 M8

Open circle 10-5 M8

Density 7days after the explosion

Maximum ~ 4000 km s-1

bull Jet like explosions (Yamada amp Sato 1991 Nagataki et al 2000)

bull 3D (Hammer et al 2010)

bull SPH (Hungerford et al 20032005 Ellinger et al 2012)

Motivation

bull Multidimensional high resolution hydrodynamics

simulations of the propagation of supernova shock wave

+ Nucleosynthesis calculation and advections of

synthesized nuclear species

20140304 BH-mag 2014 Kumamoto Univ 29

The conditions for reproducing the observed high

velocity of 56Ni are still unclear

To clarify the key conditions for reproducing such

high velocity of 56Ni we revisit matter mixing in

aspherical core-collapse supernova explosions

Methods

20140304 BH-mag 2014 Kumamoto Univ 30

20140304 BH-mag 2014 Kumamoto Univ 31

Methods

bull 2D hydrodynamic simulation

ndash AMR hydrodynamic code (FLASH Fryxell et al 2000)

ndash Parallel computing (SR16000 in YITP)

ndash Nuclear reaction network 1H 4He 12C hellip 54Fe 56Ni (19 nuclei)

ndash Spherical point mass and self gravity

ndash Spherical coordinate effective maximum grid r (3027) x q (768)

ndash Initial computational domain 109 cm ndash stellar surface 3x1012 cm

ndash How to initiate the explosionIntroduce aspherical initial radial

velocity and inject thermal energy around FeSi surface

ndash Perturbations of presupernova origins

httpflashuchicagoedusite

20140304 BH-mag 2014 Kumamoto Univ 32

FLASH Code

bull Eulerian hydrodynamic code

ndash Piecewise Parabolic Method (PPM)

ndash Unsplit solver MHD RHD

bull AMR (Adaptive mesh refinement)

ndash Reduce numerical costs

bull Many optional units

ndash Nuclear reaction networks

(7-19 nuclei)

The FLASH code is a modular parallel multiphysics simulation code

capable of handling general compressible flow problems found in many astrophysical environment (Fryxell et al 2000)

Type Ia SN

explosion

Jordan et al 2008

20140304 BH-mag 2014 Kumamoto Univ 33

Rayleigh-Taylor (RT) instability

120571120588 ∙ 120571119901 lt 0 (Chevalier 1979)

120588 1199033 rarr accelerate

Kifonidis et al 2006

Shengtai Li amp Hui Li 2006

RT unstable condition

1205882

1205881

g

Spherical explosions + RT

instabilities have not explained

the high velocity 56Ni

if 1205881 gt 1205882 120588 1199033 rarr decelerate

20140304 BH-mag 2014 Kumamoto Univ 34

Presupernova structure and introduced

perturbations

120571120588 ∙ 120571119901 lt 0 (Chavalier 1979)

120588 1199033 rarr shock wave tend

to be decelerated

Progenitor model 6 M8

helium core (Nomoto amp Hashimoto

1988) + 103 M8 hydrogen envelope

Si C+O He H

Rayleigh-Taylor unstable

Random

Sinusoidal

Perturbations are introduced at 6times109 cm (C+OHe) 5times1010 cm (HeH)

Models

20140304 BH-mag 2014 Kumamoto Univ 35

Parametersasphericity timing of the introduction

of perturbations

1 Spherical explosion models

2 Bipolar explosion models

3 Explosion models mimicking neutrino-driven

explosion

Results of models

20140304 BH-mag 2014 Kumamoto Univ 36

Spherical explosion models

20140304 BH-mag 2014 Kumamoto Univ 37

Density distributions

Perturbations

at C+OHe

Perturbations

at HeH

Perturbations

at both

Growth factor of instability

20140304 BH-mag 2014 Kumamoto Univ 38

Growth factors at the end of

simulation time

Growth rate for incompressible fluid

Growth rate for compressible fluid

Growth factors

Based on pure 1d spherical simulation

Radial velocity distribution of elements for

spherical explosion models

20140304 BH-mag 2014 Kumamoto Univ 39

Timing of the perturbations hardly affect

the maximum velocity of 56Ni

Maximum velocity of 56Ni lt 1600 km s-1

Different asphericity of bipolar explosions

20140304 BH-mag 2014 Kumamoto Univ 40

Bipolar explosion slightly enhance the mixing

length along the polar axis but maximum velocity

of 56Ni is still the level of lt 1700 km s-1

milder asphericity stronger asphericity

Revisiting Nagataki et al 2000 (jetlike explosion)

only initial large amplitude of perturbations

20140304 BH-mag 2014 Kumamoto Univ 41

with amplitude of 30 and m = 20

Initial relatively large sale of perturbations can not survive in later phase due to KH instabilities

Mimicking the neutrino-driven explosions

20140304 BH-mag 2014 Kumamoto Univ 42

Initial radial velocity

Scheck+04

Gawryszczak+10

Mechanism of the core-collapse supernova

explosions

bull Neutrino heating

20140304 BH-mag 2014 Kumamoto Univ 43

Taken from Janka et al 2012 (PTEP 1 A309)

Bethe 1990 (Rev Mod Phys 62 801) Taken from Liebendofer et al 2001

Convections and Standing Accretion Shock

Instability (SASI)

bull Convection around PNS surface

bull Neutrino-driven convection

bull Standing Accretion Shock Instability (SASI) (Blondin et al )

ndash Acoustic-vorticity cycle

20140304 BH-mag 2014 Kumamoto Univ 44

Ledoux criterion

Ledoux criterion

Taken from Liebendofer et al 2001

20140304 BH-mag 2014 Kumamoto Univ 45

Aspherical explosion with clumpy structure in the

explosion (movie)

20140304 BH-mag 2014 Kumamoto Univ 46

Aspherical explosion with clumpy structure + RT

instability

053 s 288 s 5752 s

20140304 BH-mag 2014 Kumamoto Univ 47

Maximum 3000 km s-1

56Ni

Radial velocity distributions of the best model in

this study

bull Relatively high velocity

(3000 km s-1) of 56Ni

bull Mass of 56Ni with ~ 3000

km s-1 14 x 10-3 M8

20140304 BH-mag 2014 Kumamoto Univ 48

Summary

bull To reproduce the high velocity of 56Ni both aspherical

explosion with clumpy structure and perturbations of

presupernova origins may be necessary

bull There are still missing ingredients to explain the observed

high velocity of 56Ni in SN 1987A

bull Possible missing ingredients

ndash More realistic explosion model (eg Kifonidis et al 2006)

ndash Lager perturbations in presupernova structure (Arnett amp Meakin 2011)

ndash Long simulation time

bull Heating due to the decay of 56Co (Herant amp Benz 1991)

ndash 3D effect (Hammer et al 2010)

Possible seeds of perturbations

bull Dynamical stellar evolution calculation

bull Density fluctuations

around the composition

interfaces

20140304 BH-mag 2014 Kumamoto Univ 49

Arnett amp Meakin 2011

20140304 BH-mag 2014 Kumamoto Univ 50

3D simulations of mixing instabilities in SN

explosions

Hammer et al 2010

56Ni 56Ni

2D 3D

Entropy per baryon Red Oxygen

Blue Nickel

Green Carbon

Direct-escape lines of 44Ti from SNR 1987A

bull lines from 44Ti 679 keV and 784 keV

bull Estimated 44Ti mass (31plusmn08) x 10-4 M8

20140304 BH-mag 2014 Kumamoto Univ 51

Grebenev+12 Nature 490 373

44Ti rarr 44Sc rarr 44Ca T12 = 60 d T12 = 4 h

Asymmetries in core-collapse supernovae from

maps of radioactive 44Ti in Cas A

20140304 BH-mag 2014 Kumamoto Univ 52

Grefenstette+14 Nature 506 339

Aspherical explosion enhance 44Ti

20140304 BH-mag 2014 Kumamoto Univ 53

56Ni 4He 44Ti

Alpha-rich freeze-out enhance the production of 44Ti in the

explosive nucleosynthesis

Aspherical explosion enhance the ratio of M(44Ti)M(56Ni)

096 s after the initiation of the explosion

Toward full 3D radiative transfer

bull 爆発形状を仮定した

輻射輸送計算

ndash 形状で偏光度が異なる

ndash 元素によっても異なる

bull 3次元物質混合計算を

インプットにした輻射

輸送計算

20140304 BH-mag 2014 Kumamoto Univ 54

Tanaka et al 2012 bipolar

clumpy

爆発形状のプローブ

20140304 BH-mag 2014 Kumamoto Univ 55

3D MHD simulation of a SNR

Introduction

bull Acceleration of cosmic-rays in SNRs

ndash Up to ~ 1015 eV or more

ndash Magnetic field is key ingredient

20140304 BH-mag 2014 Kumamoto Univ 56

SN1006 (Chandra X-ray)

Amplified strong magnetic field

20140304 BH-mag 2014 Kumamoto Univ 57

Uchiyama et al 2007 Nature 4469 576

Bohm-diffusion limit

Variations of X-ray hot

spots on a 1 yr timescale

Strong amplified

magnetic field

3D MHD simulation of a SNR

20140304 BH-mag 2014 Kumamoto Univ 58

3 pc

Preliminary

20140304 BH-mag 2014 Kumamoto Univ 59

Amplified magnetic field

20121015 - 17 SNSNR12 59

~ 50 μ G

1 μ G Preliminary

20140304 BH-mag 2014 Kumamoto Univ 60

3D structure of Cas A

Delaney et al 2010

Chandra lsquos X-rays

Spitzer lsquos infrared

Green X-ray Fe-K

Red IR [Ar II]

Blue high [Ne II][Ar II] ratio

Yellow optical outer ejecta

Grey IR [Si II]

Black X-ray Si XIII

20140304 BH-mag 2014 Kumamoto Univ 61

ASTRO-H

bull New exploration X-ray

Telescope

ndash First right will be

2015 yr

ndash 10 times larger

energy resolution

httpastro-hisasjaxajpgallerysatelite02html

High resolution spectrum

of X-ray from SNRs is

expected

3D simulation of the thermal X-ray emission from young

SNRs including efficient particle acceleration

bull 3D simulation

bull Diffusive Shock Acceleration

bull Back reaction from

accelerated particle

bull Non-equilibrium ionization

bull Thermal X-ray emission

20140304 BH-mag 2014 Kumamoto Univ 62

Ferrand et al 2012

To go further than

Ferrand et al

Test 1D calculation

bull Two energy equation for ions and electrons respectively

bull Energy equilibration between ions and electrons

bull Ionization

20140304 BH-mag 2014 Kumamoto Univ 63

20140304 BH-mag 2014 Kumamoto Univ 64

Density contour

Preliminary

Emission from deferent regions

20140304 BH-mag 2014 Kumamoto Univ 65

Preliminary

Summary

bull Aspherical nature of core-collapse supernova

explosions

bull Origin of heavy elements

ndash NS merger

ndash Magnetically driven jets

bull Mixing in CCSN explosion

bull Supernova explosions to Supernova remnant

20140304 BH-mag 2014 Kumamoto Univ 66

Page 20: Masaomi ONO Kyushu University - aichi-edu.ac.jptakahasi/BHmag2014_pdf/Presen/...Method of MHD simulation 16 Magnetohydrodynamics (ideal MHD) Poisson eq. pseudo-Newtonian potential

Future collaboration with nuclear physics groups in

RIKEN

bull RIBF (beam factory)

bull Theoretical nuclear physics

group

bull Impact of uncertainties of

nuclear physics inputs

on nucleosynthesis in

astrophysical sites

20140304 BH-mag 2014 Kumamoto Univ 20

A lsquoKilonovarsquo associated with the short-duration

GRB 130603B (z = 0356)

bull Optical near-IR afterglow

ndash kilonova (1040 -1042 erg s-1)

bull r-process powered transient

(eg Li amp Paczyński 1998

Metzger et al 2010)

bull Electromagnetic counterpart

of GW

bull Robust r-process in NS merger

(Korobkin et al 2012)

bull Recent numerical study

ndash Wanajo et al 2013 (arXiv14027317)

20140304 BH-mag 2014 Kumamoto Univ 21

Tanvir et al 2013 Nature 500 547

Matter mixing in aspherical core-collapse supernovae

- A search for possible conditions for conveying 56Ni into high

velocity regions

Masaomi Ono1

Shigehiro Nagataki2 Hirotaka Ito2 Shiu-Hang Lee2 Jirong

Mao2 Masa-aki Hashimoto1 Tolstov Alexey2

Kyushu University

Astrophysical Big Bang Laboratory RIKEN

20140304 BH-mag 2014 Kumamoto Univ 22

MO+2013 ApJ 773 161

20140304 BH-mag 2014 Kumamoto Univ 23

Introduction observational evidence of mixing

in supernovae bull SN 1987A

ndash Early detection of X-rays (Dotani et al 1987)

γ-rays lines from 56Co (Matz et al 1988)

ndash Sudden development of the fine structure of Ha

(Hanuschik et al 1988)

ndash Line profiles of [Fe II]

(Spyromilo+90 Haas+90)

Fe (56Ni) is mixed into high velocity regions

56Ni rarr 56Co rarr 56Fe

20140304 BH-mag 2014 Kumamoto Univ 24

Broadened line profile of [Fe II] in SN 1987A

[Fe II] line profile (Haas et al 1990)

56Ni rarr 56Co rarr 56Fe

4000 km s-1

SN 1987A

Doppler velocity

T12 = 61 d T12 = 77 d

20140304 BH-mag 2014 Kumamoto Univ 25

Matter mixing in supernova explosions

HeH C+OHe

Synthesized 56Ni by

explosive

nucleosynthesis Mixing

56Ni is mixed up into high

velocity regions

radial velocity HeH

56Ni

Distance from the center

20140304 BH-mag 2014 Kumamoto Univ 26

What is the mechanism of the mixing

bull Fluid instabilities

ndash Rayleigh-Taylor (RT) instability

ndash Kelvin-Helmholtz (KH) instability

ndash Richtmyer-Meshkov (RM) instability

bull Aspherical supernova explosion

ndash Neutrino heating aided by SASI

(Standing Accretion Shock Instability)

ndash MHD Jets

Wongwathanarat et al 2010

Entropy per baryon

20140304 BH-mag 2014 Kumamoto Univ 27

Early previous study of hydrodynamic models of

the late time shock wave propagation

bull 2D3D hydrodynamic simulations

bull Add hoc initiation of spherical supernova explosion

bull RT mixing at OHe HeH interfaces

bull Maximum 56Ni velocity around 2000 km s-1

Arnett et al 1989 Fryxell et al 1991 Mueller et al 1991bac Hachisu et al

1990 1991 1992 1994 Herant amp Benz 1991 Herant amp Benz 1992

Hachisu et al 1992

Spherical explosion + RT instability could not explain

the observed high velocity of 56Ni

bull Recent study on mixing

ndash 2D (Kifonidis et al 2003 2006 Gawryszczak et al 2010)

20140304 BH-mag 2014 Kumamoto Univ 28

Simulations of non-spherical supernova explosions

bull Neutrino-driven explosion

(Kifonidis et al 2006 Gawryszczak et al 2010)

Solid circle 10-4 M8

Open circle 10-5 M8

Density 7days after the explosion

Maximum ~ 4000 km s-1

bull Jet like explosions (Yamada amp Sato 1991 Nagataki et al 2000)

bull 3D (Hammer et al 2010)

bull SPH (Hungerford et al 20032005 Ellinger et al 2012)

Motivation

bull Multidimensional high resolution hydrodynamics

simulations of the propagation of supernova shock wave

+ Nucleosynthesis calculation and advections of

synthesized nuclear species

20140304 BH-mag 2014 Kumamoto Univ 29

The conditions for reproducing the observed high

velocity of 56Ni are still unclear

To clarify the key conditions for reproducing such

high velocity of 56Ni we revisit matter mixing in

aspherical core-collapse supernova explosions

Methods

20140304 BH-mag 2014 Kumamoto Univ 30

20140304 BH-mag 2014 Kumamoto Univ 31

Methods

bull 2D hydrodynamic simulation

ndash AMR hydrodynamic code (FLASH Fryxell et al 2000)

ndash Parallel computing (SR16000 in YITP)

ndash Nuclear reaction network 1H 4He 12C hellip 54Fe 56Ni (19 nuclei)

ndash Spherical point mass and self gravity

ndash Spherical coordinate effective maximum grid r (3027) x q (768)

ndash Initial computational domain 109 cm ndash stellar surface 3x1012 cm

ndash How to initiate the explosionIntroduce aspherical initial radial

velocity and inject thermal energy around FeSi surface

ndash Perturbations of presupernova origins

httpflashuchicagoedusite

20140304 BH-mag 2014 Kumamoto Univ 32

FLASH Code

bull Eulerian hydrodynamic code

ndash Piecewise Parabolic Method (PPM)

ndash Unsplit solver MHD RHD

bull AMR (Adaptive mesh refinement)

ndash Reduce numerical costs

bull Many optional units

ndash Nuclear reaction networks

(7-19 nuclei)

The FLASH code is a modular parallel multiphysics simulation code

capable of handling general compressible flow problems found in many astrophysical environment (Fryxell et al 2000)

Type Ia SN

explosion

Jordan et al 2008

20140304 BH-mag 2014 Kumamoto Univ 33

Rayleigh-Taylor (RT) instability

120571120588 ∙ 120571119901 lt 0 (Chevalier 1979)

120588 1199033 rarr accelerate

Kifonidis et al 2006

Shengtai Li amp Hui Li 2006

RT unstable condition

1205882

1205881

g

Spherical explosions + RT

instabilities have not explained

the high velocity 56Ni

if 1205881 gt 1205882 120588 1199033 rarr decelerate

20140304 BH-mag 2014 Kumamoto Univ 34

Presupernova structure and introduced

perturbations

120571120588 ∙ 120571119901 lt 0 (Chavalier 1979)

120588 1199033 rarr shock wave tend

to be decelerated

Progenitor model 6 M8

helium core (Nomoto amp Hashimoto

1988) + 103 M8 hydrogen envelope

Si C+O He H

Rayleigh-Taylor unstable

Random

Sinusoidal

Perturbations are introduced at 6times109 cm (C+OHe) 5times1010 cm (HeH)

Models

20140304 BH-mag 2014 Kumamoto Univ 35

Parametersasphericity timing of the introduction

of perturbations

1 Spherical explosion models

2 Bipolar explosion models

3 Explosion models mimicking neutrino-driven

explosion

Results of models

20140304 BH-mag 2014 Kumamoto Univ 36

Spherical explosion models

20140304 BH-mag 2014 Kumamoto Univ 37

Density distributions

Perturbations

at C+OHe

Perturbations

at HeH

Perturbations

at both

Growth factor of instability

20140304 BH-mag 2014 Kumamoto Univ 38

Growth factors at the end of

simulation time

Growth rate for incompressible fluid

Growth rate for compressible fluid

Growth factors

Based on pure 1d spherical simulation

Radial velocity distribution of elements for

spherical explosion models

20140304 BH-mag 2014 Kumamoto Univ 39

Timing of the perturbations hardly affect

the maximum velocity of 56Ni

Maximum velocity of 56Ni lt 1600 km s-1

Different asphericity of bipolar explosions

20140304 BH-mag 2014 Kumamoto Univ 40

Bipolar explosion slightly enhance the mixing

length along the polar axis but maximum velocity

of 56Ni is still the level of lt 1700 km s-1

milder asphericity stronger asphericity

Revisiting Nagataki et al 2000 (jetlike explosion)

only initial large amplitude of perturbations

20140304 BH-mag 2014 Kumamoto Univ 41

with amplitude of 30 and m = 20

Initial relatively large sale of perturbations can not survive in later phase due to KH instabilities

Mimicking the neutrino-driven explosions

20140304 BH-mag 2014 Kumamoto Univ 42

Initial radial velocity

Scheck+04

Gawryszczak+10

Mechanism of the core-collapse supernova

explosions

bull Neutrino heating

20140304 BH-mag 2014 Kumamoto Univ 43

Taken from Janka et al 2012 (PTEP 1 A309)

Bethe 1990 (Rev Mod Phys 62 801) Taken from Liebendofer et al 2001

Convections and Standing Accretion Shock

Instability (SASI)

bull Convection around PNS surface

bull Neutrino-driven convection

bull Standing Accretion Shock Instability (SASI) (Blondin et al )

ndash Acoustic-vorticity cycle

20140304 BH-mag 2014 Kumamoto Univ 44

Ledoux criterion

Ledoux criterion

Taken from Liebendofer et al 2001

20140304 BH-mag 2014 Kumamoto Univ 45

Aspherical explosion with clumpy structure in the

explosion (movie)

20140304 BH-mag 2014 Kumamoto Univ 46

Aspherical explosion with clumpy structure + RT

instability

053 s 288 s 5752 s

20140304 BH-mag 2014 Kumamoto Univ 47

Maximum 3000 km s-1

56Ni

Radial velocity distributions of the best model in

this study

bull Relatively high velocity

(3000 km s-1) of 56Ni

bull Mass of 56Ni with ~ 3000

km s-1 14 x 10-3 M8

20140304 BH-mag 2014 Kumamoto Univ 48

Summary

bull To reproduce the high velocity of 56Ni both aspherical

explosion with clumpy structure and perturbations of

presupernova origins may be necessary

bull There are still missing ingredients to explain the observed

high velocity of 56Ni in SN 1987A

bull Possible missing ingredients

ndash More realistic explosion model (eg Kifonidis et al 2006)

ndash Lager perturbations in presupernova structure (Arnett amp Meakin 2011)

ndash Long simulation time

bull Heating due to the decay of 56Co (Herant amp Benz 1991)

ndash 3D effect (Hammer et al 2010)

Possible seeds of perturbations

bull Dynamical stellar evolution calculation

bull Density fluctuations

around the composition

interfaces

20140304 BH-mag 2014 Kumamoto Univ 49

Arnett amp Meakin 2011

20140304 BH-mag 2014 Kumamoto Univ 50

3D simulations of mixing instabilities in SN

explosions

Hammer et al 2010

56Ni 56Ni

2D 3D

Entropy per baryon Red Oxygen

Blue Nickel

Green Carbon

Direct-escape lines of 44Ti from SNR 1987A

bull lines from 44Ti 679 keV and 784 keV

bull Estimated 44Ti mass (31plusmn08) x 10-4 M8

20140304 BH-mag 2014 Kumamoto Univ 51

Grebenev+12 Nature 490 373

44Ti rarr 44Sc rarr 44Ca T12 = 60 d T12 = 4 h

Asymmetries in core-collapse supernovae from

maps of radioactive 44Ti in Cas A

20140304 BH-mag 2014 Kumamoto Univ 52

Grefenstette+14 Nature 506 339

Aspherical explosion enhance 44Ti

20140304 BH-mag 2014 Kumamoto Univ 53

56Ni 4He 44Ti

Alpha-rich freeze-out enhance the production of 44Ti in the

explosive nucleosynthesis

Aspherical explosion enhance the ratio of M(44Ti)M(56Ni)

096 s after the initiation of the explosion

Toward full 3D radiative transfer

bull 爆発形状を仮定した

輻射輸送計算

ndash 形状で偏光度が異なる

ndash 元素によっても異なる

bull 3次元物質混合計算を

インプットにした輻射

輸送計算

20140304 BH-mag 2014 Kumamoto Univ 54

Tanaka et al 2012 bipolar

clumpy

爆発形状のプローブ

20140304 BH-mag 2014 Kumamoto Univ 55

3D MHD simulation of a SNR

Introduction

bull Acceleration of cosmic-rays in SNRs

ndash Up to ~ 1015 eV or more

ndash Magnetic field is key ingredient

20140304 BH-mag 2014 Kumamoto Univ 56

SN1006 (Chandra X-ray)

Amplified strong magnetic field

20140304 BH-mag 2014 Kumamoto Univ 57

Uchiyama et al 2007 Nature 4469 576

Bohm-diffusion limit

Variations of X-ray hot

spots on a 1 yr timescale

Strong amplified

magnetic field

3D MHD simulation of a SNR

20140304 BH-mag 2014 Kumamoto Univ 58

3 pc

Preliminary

20140304 BH-mag 2014 Kumamoto Univ 59

Amplified magnetic field

20121015 - 17 SNSNR12 59

~ 50 μ G

1 μ G Preliminary

20140304 BH-mag 2014 Kumamoto Univ 60

3D structure of Cas A

Delaney et al 2010

Chandra lsquos X-rays

Spitzer lsquos infrared

Green X-ray Fe-K

Red IR [Ar II]

Blue high [Ne II][Ar II] ratio

Yellow optical outer ejecta

Grey IR [Si II]

Black X-ray Si XIII

20140304 BH-mag 2014 Kumamoto Univ 61

ASTRO-H

bull New exploration X-ray

Telescope

ndash First right will be

2015 yr

ndash 10 times larger

energy resolution

httpastro-hisasjaxajpgallerysatelite02html

High resolution spectrum

of X-ray from SNRs is

expected

3D simulation of the thermal X-ray emission from young

SNRs including efficient particle acceleration

bull 3D simulation

bull Diffusive Shock Acceleration

bull Back reaction from

accelerated particle

bull Non-equilibrium ionization

bull Thermal X-ray emission

20140304 BH-mag 2014 Kumamoto Univ 62

Ferrand et al 2012

To go further than

Ferrand et al

Test 1D calculation

bull Two energy equation for ions and electrons respectively

bull Energy equilibration between ions and electrons

bull Ionization

20140304 BH-mag 2014 Kumamoto Univ 63

20140304 BH-mag 2014 Kumamoto Univ 64

Density contour

Preliminary

Emission from deferent regions

20140304 BH-mag 2014 Kumamoto Univ 65

Preliminary

Summary

bull Aspherical nature of core-collapse supernova

explosions

bull Origin of heavy elements

ndash NS merger

ndash Magnetically driven jets

bull Mixing in CCSN explosion

bull Supernova explosions to Supernova remnant

20140304 BH-mag 2014 Kumamoto Univ 66

Page 21: Masaomi ONO Kyushu University - aichi-edu.ac.jptakahasi/BHmag2014_pdf/Presen/...Method of MHD simulation 16 Magnetohydrodynamics (ideal MHD) Poisson eq. pseudo-Newtonian potential

A lsquoKilonovarsquo associated with the short-duration

GRB 130603B (z = 0356)

bull Optical near-IR afterglow

ndash kilonova (1040 -1042 erg s-1)

bull r-process powered transient

(eg Li amp Paczyński 1998

Metzger et al 2010)

bull Electromagnetic counterpart

of GW

bull Robust r-process in NS merger

(Korobkin et al 2012)

bull Recent numerical study

ndash Wanajo et al 2013 (arXiv14027317)

20140304 BH-mag 2014 Kumamoto Univ 21

Tanvir et al 2013 Nature 500 547

Matter mixing in aspherical core-collapse supernovae

- A search for possible conditions for conveying 56Ni into high

velocity regions

Masaomi Ono1

Shigehiro Nagataki2 Hirotaka Ito2 Shiu-Hang Lee2 Jirong

Mao2 Masa-aki Hashimoto1 Tolstov Alexey2

Kyushu University

Astrophysical Big Bang Laboratory RIKEN

20140304 BH-mag 2014 Kumamoto Univ 22

MO+2013 ApJ 773 161

20140304 BH-mag 2014 Kumamoto Univ 23

Introduction observational evidence of mixing

in supernovae bull SN 1987A

ndash Early detection of X-rays (Dotani et al 1987)

γ-rays lines from 56Co (Matz et al 1988)

ndash Sudden development of the fine structure of Ha

(Hanuschik et al 1988)

ndash Line profiles of [Fe II]

(Spyromilo+90 Haas+90)

Fe (56Ni) is mixed into high velocity regions

56Ni rarr 56Co rarr 56Fe

20140304 BH-mag 2014 Kumamoto Univ 24

Broadened line profile of [Fe II] in SN 1987A

[Fe II] line profile (Haas et al 1990)

56Ni rarr 56Co rarr 56Fe

4000 km s-1

SN 1987A

Doppler velocity

T12 = 61 d T12 = 77 d

20140304 BH-mag 2014 Kumamoto Univ 25

Matter mixing in supernova explosions

HeH C+OHe

Synthesized 56Ni by

explosive

nucleosynthesis Mixing

56Ni is mixed up into high

velocity regions

radial velocity HeH

56Ni

Distance from the center

20140304 BH-mag 2014 Kumamoto Univ 26

What is the mechanism of the mixing

bull Fluid instabilities

ndash Rayleigh-Taylor (RT) instability

ndash Kelvin-Helmholtz (KH) instability

ndash Richtmyer-Meshkov (RM) instability

bull Aspherical supernova explosion

ndash Neutrino heating aided by SASI

(Standing Accretion Shock Instability)

ndash MHD Jets

Wongwathanarat et al 2010

Entropy per baryon

20140304 BH-mag 2014 Kumamoto Univ 27

Early previous study of hydrodynamic models of

the late time shock wave propagation

bull 2D3D hydrodynamic simulations

bull Add hoc initiation of spherical supernova explosion

bull RT mixing at OHe HeH interfaces

bull Maximum 56Ni velocity around 2000 km s-1

Arnett et al 1989 Fryxell et al 1991 Mueller et al 1991bac Hachisu et al

1990 1991 1992 1994 Herant amp Benz 1991 Herant amp Benz 1992

Hachisu et al 1992

Spherical explosion + RT instability could not explain

the observed high velocity of 56Ni

bull Recent study on mixing

ndash 2D (Kifonidis et al 2003 2006 Gawryszczak et al 2010)

20140304 BH-mag 2014 Kumamoto Univ 28

Simulations of non-spherical supernova explosions

bull Neutrino-driven explosion

(Kifonidis et al 2006 Gawryszczak et al 2010)

Solid circle 10-4 M8

Open circle 10-5 M8

Density 7days after the explosion

Maximum ~ 4000 km s-1

bull Jet like explosions (Yamada amp Sato 1991 Nagataki et al 2000)

bull 3D (Hammer et al 2010)

bull SPH (Hungerford et al 20032005 Ellinger et al 2012)

Motivation

bull Multidimensional high resolution hydrodynamics

simulations of the propagation of supernova shock wave

+ Nucleosynthesis calculation and advections of

synthesized nuclear species

20140304 BH-mag 2014 Kumamoto Univ 29

The conditions for reproducing the observed high

velocity of 56Ni are still unclear

To clarify the key conditions for reproducing such

high velocity of 56Ni we revisit matter mixing in

aspherical core-collapse supernova explosions

Methods

20140304 BH-mag 2014 Kumamoto Univ 30

20140304 BH-mag 2014 Kumamoto Univ 31

Methods

bull 2D hydrodynamic simulation

ndash AMR hydrodynamic code (FLASH Fryxell et al 2000)

ndash Parallel computing (SR16000 in YITP)

ndash Nuclear reaction network 1H 4He 12C hellip 54Fe 56Ni (19 nuclei)

ndash Spherical point mass and self gravity

ndash Spherical coordinate effective maximum grid r (3027) x q (768)

ndash Initial computational domain 109 cm ndash stellar surface 3x1012 cm

ndash How to initiate the explosionIntroduce aspherical initial radial

velocity and inject thermal energy around FeSi surface

ndash Perturbations of presupernova origins

httpflashuchicagoedusite

20140304 BH-mag 2014 Kumamoto Univ 32

FLASH Code

bull Eulerian hydrodynamic code

ndash Piecewise Parabolic Method (PPM)

ndash Unsplit solver MHD RHD

bull AMR (Adaptive mesh refinement)

ndash Reduce numerical costs

bull Many optional units

ndash Nuclear reaction networks

(7-19 nuclei)

The FLASH code is a modular parallel multiphysics simulation code

capable of handling general compressible flow problems found in many astrophysical environment (Fryxell et al 2000)

Type Ia SN

explosion

Jordan et al 2008

20140304 BH-mag 2014 Kumamoto Univ 33

Rayleigh-Taylor (RT) instability

120571120588 ∙ 120571119901 lt 0 (Chevalier 1979)

120588 1199033 rarr accelerate

Kifonidis et al 2006

Shengtai Li amp Hui Li 2006

RT unstable condition

1205882

1205881

g

Spherical explosions + RT

instabilities have not explained

the high velocity 56Ni

if 1205881 gt 1205882 120588 1199033 rarr decelerate

20140304 BH-mag 2014 Kumamoto Univ 34

Presupernova structure and introduced

perturbations

120571120588 ∙ 120571119901 lt 0 (Chavalier 1979)

120588 1199033 rarr shock wave tend

to be decelerated

Progenitor model 6 M8

helium core (Nomoto amp Hashimoto

1988) + 103 M8 hydrogen envelope

Si C+O He H

Rayleigh-Taylor unstable

Random

Sinusoidal

Perturbations are introduced at 6times109 cm (C+OHe) 5times1010 cm (HeH)

Models

20140304 BH-mag 2014 Kumamoto Univ 35

Parametersasphericity timing of the introduction

of perturbations

1 Spherical explosion models

2 Bipolar explosion models

3 Explosion models mimicking neutrino-driven

explosion

Results of models

20140304 BH-mag 2014 Kumamoto Univ 36

Spherical explosion models

20140304 BH-mag 2014 Kumamoto Univ 37

Density distributions

Perturbations

at C+OHe

Perturbations

at HeH

Perturbations

at both

Growth factor of instability

20140304 BH-mag 2014 Kumamoto Univ 38

Growth factors at the end of

simulation time

Growth rate for incompressible fluid

Growth rate for compressible fluid

Growth factors

Based on pure 1d spherical simulation

Radial velocity distribution of elements for

spherical explosion models

20140304 BH-mag 2014 Kumamoto Univ 39

Timing of the perturbations hardly affect

the maximum velocity of 56Ni

Maximum velocity of 56Ni lt 1600 km s-1

Different asphericity of bipolar explosions

20140304 BH-mag 2014 Kumamoto Univ 40

Bipolar explosion slightly enhance the mixing

length along the polar axis but maximum velocity

of 56Ni is still the level of lt 1700 km s-1

milder asphericity stronger asphericity

Revisiting Nagataki et al 2000 (jetlike explosion)

only initial large amplitude of perturbations

20140304 BH-mag 2014 Kumamoto Univ 41

with amplitude of 30 and m = 20

Initial relatively large sale of perturbations can not survive in later phase due to KH instabilities

Mimicking the neutrino-driven explosions

20140304 BH-mag 2014 Kumamoto Univ 42

Initial radial velocity

Scheck+04

Gawryszczak+10

Mechanism of the core-collapse supernova

explosions

bull Neutrino heating

20140304 BH-mag 2014 Kumamoto Univ 43

Taken from Janka et al 2012 (PTEP 1 A309)

Bethe 1990 (Rev Mod Phys 62 801) Taken from Liebendofer et al 2001

Convections and Standing Accretion Shock

Instability (SASI)

bull Convection around PNS surface

bull Neutrino-driven convection

bull Standing Accretion Shock Instability (SASI) (Blondin et al )

ndash Acoustic-vorticity cycle

20140304 BH-mag 2014 Kumamoto Univ 44

Ledoux criterion

Ledoux criterion

Taken from Liebendofer et al 2001

20140304 BH-mag 2014 Kumamoto Univ 45

Aspherical explosion with clumpy structure in the

explosion (movie)

20140304 BH-mag 2014 Kumamoto Univ 46

Aspherical explosion with clumpy structure + RT

instability

053 s 288 s 5752 s

20140304 BH-mag 2014 Kumamoto Univ 47

Maximum 3000 km s-1

56Ni

Radial velocity distributions of the best model in

this study

bull Relatively high velocity

(3000 km s-1) of 56Ni

bull Mass of 56Ni with ~ 3000

km s-1 14 x 10-3 M8

20140304 BH-mag 2014 Kumamoto Univ 48

Summary

bull To reproduce the high velocity of 56Ni both aspherical

explosion with clumpy structure and perturbations of

presupernova origins may be necessary

bull There are still missing ingredients to explain the observed

high velocity of 56Ni in SN 1987A

bull Possible missing ingredients

ndash More realistic explosion model (eg Kifonidis et al 2006)

ndash Lager perturbations in presupernova structure (Arnett amp Meakin 2011)

ndash Long simulation time

bull Heating due to the decay of 56Co (Herant amp Benz 1991)

ndash 3D effect (Hammer et al 2010)

Possible seeds of perturbations

bull Dynamical stellar evolution calculation

bull Density fluctuations

around the composition

interfaces

20140304 BH-mag 2014 Kumamoto Univ 49

Arnett amp Meakin 2011

20140304 BH-mag 2014 Kumamoto Univ 50

3D simulations of mixing instabilities in SN

explosions

Hammer et al 2010

56Ni 56Ni

2D 3D

Entropy per baryon Red Oxygen

Blue Nickel

Green Carbon

Direct-escape lines of 44Ti from SNR 1987A

bull lines from 44Ti 679 keV and 784 keV

bull Estimated 44Ti mass (31plusmn08) x 10-4 M8

20140304 BH-mag 2014 Kumamoto Univ 51

Grebenev+12 Nature 490 373

44Ti rarr 44Sc rarr 44Ca T12 = 60 d T12 = 4 h

Asymmetries in core-collapse supernovae from

maps of radioactive 44Ti in Cas A

20140304 BH-mag 2014 Kumamoto Univ 52

Grefenstette+14 Nature 506 339

Aspherical explosion enhance 44Ti

20140304 BH-mag 2014 Kumamoto Univ 53

56Ni 4He 44Ti

Alpha-rich freeze-out enhance the production of 44Ti in the

explosive nucleosynthesis

Aspherical explosion enhance the ratio of M(44Ti)M(56Ni)

096 s after the initiation of the explosion

Toward full 3D radiative transfer

bull 爆発形状を仮定した

輻射輸送計算

ndash 形状で偏光度が異なる

ndash 元素によっても異なる

bull 3次元物質混合計算を

インプットにした輻射

輸送計算

20140304 BH-mag 2014 Kumamoto Univ 54

Tanaka et al 2012 bipolar

clumpy

爆発形状のプローブ

20140304 BH-mag 2014 Kumamoto Univ 55

3D MHD simulation of a SNR

Introduction

bull Acceleration of cosmic-rays in SNRs

ndash Up to ~ 1015 eV or more

ndash Magnetic field is key ingredient

20140304 BH-mag 2014 Kumamoto Univ 56

SN1006 (Chandra X-ray)

Amplified strong magnetic field

20140304 BH-mag 2014 Kumamoto Univ 57

Uchiyama et al 2007 Nature 4469 576

Bohm-diffusion limit

Variations of X-ray hot

spots on a 1 yr timescale

Strong amplified

magnetic field

3D MHD simulation of a SNR

20140304 BH-mag 2014 Kumamoto Univ 58

3 pc

Preliminary

20140304 BH-mag 2014 Kumamoto Univ 59

Amplified magnetic field

20121015 - 17 SNSNR12 59

~ 50 μ G

1 μ G Preliminary

20140304 BH-mag 2014 Kumamoto Univ 60

3D structure of Cas A

Delaney et al 2010

Chandra lsquos X-rays

Spitzer lsquos infrared

Green X-ray Fe-K

Red IR [Ar II]

Blue high [Ne II][Ar II] ratio

Yellow optical outer ejecta

Grey IR [Si II]

Black X-ray Si XIII

20140304 BH-mag 2014 Kumamoto Univ 61

ASTRO-H

bull New exploration X-ray

Telescope

ndash First right will be

2015 yr

ndash 10 times larger

energy resolution

httpastro-hisasjaxajpgallerysatelite02html

High resolution spectrum

of X-ray from SNRs is

expected

3D simulation of the thermal X-ray emission from young

SNRs including efficient particle acceleration

bull 3D simulation

bull Diffusive Shock Acceleration

bull Back reaction from

accelerated particle

bull Non-equilibrium ionization

bull Thermal X-ray emission

20140304 BH-mag 2014 Kumamoto Univ 62

Ferrand et al 2012

To go further than

Ferrand et al

Test 1D calculation

bull Two energy equation for ions and electrons respectively

bull Energy equilibration between ions and electrons

bull Ionization

20140304 BH-mag 2014 Kumamoto Univ 63

20140304 BH-mag 2014 Kumamoto Univ 64

Density contour

Preliminary

Emission from deferent regions

20140304 BH-mag 2014 Kumamoto Univ 65

Preliminary

Summary

bull Aspherical nature of core-collapse supernova

explosions

bull Origin of heavy elements

ndash NS merger

ndash Magnetically driven jets

bull Mixing in CCSN explosion

bull Supernova explosions to Supernova remnant

20140304 BH-mag 2014 Kumamoto Univ 66

Page 22: Masaomi ONO Kyushu University - aichi-edu.ac.jptakahasi/BHmag2014_pdf/Presen/...Method of MHD simulation 16 Magnetohydrodynamics (ideal MHD) Poisson eq. pseudo-Newtonian potential

Matter mixing in aspherical core-collapse supernovae

- A search for possible conditions for conveying 56Ni into high

velocity regions

Masaomi Ono1

Shigehiro Nagataki2 Hirotaka Ito2 Shiu-Hang Lee2 Jirong

Mao2 Masa-aki Hashimoto1 Tolstov Alexey2

Kyushu University

Astrophysical Big Bang Laboratory RIKEN

20140304 BH-mag 2014 Kumamoto Univ 22

MO+2013 ApJ 773 161

20140304 BH-mag 2014 Kumamoto Univ 23

Introduction observational evidence of mixing

in supernovae bull SN 1987A

ndash Early detection of X-rays (Dotani et al 1987)

γ-rays lines from 56Co (Matz et al 1988)

ndash Sudden development of the fine structure of Ha

(Hanuschik et al 1988)

ndash Line profiles of [Fe II]

(Spyromilo+90 Haas+90)

Fe (56Ni) is mixed into high velocity regions

56Ni rarr 56Co rarr 56Fe

20140304 BH-mag 2014 Kumamoto Univ 24

Broadened line profile of [Fe II] in SN 1987A

[Fe II] line profile (Haas et al 1990)

56Ni rarr 56Co rarr 56Fe

4000 km s-1

SN 1987A

Doppler velocity

T12 = 61 d T12 = 77 d

20140304 BH-mag 2014 Kumamoto Univ 25

Matter mixing in supernova explosions

HeH C+OHe

Synthesized 56Ni by

explosive

nucleosynthesis Mixing

56Ni is mixed up into high

velocity regions

radial velocity HeH

56Ni

Distance from the center

20140304 BH-mag 2014 Kumamoto Univ 26

What is the mechanism of the mixing

bull Fluid instabilities

ndash Rayleigh-Taylor (RT) instability

ndash Kelvin-Helmholtz (KH) instability

ndash Richtmyer-Meshkov (RM) instability

bull Aspherical supernova explosion

ndash Neutrino heating aided by SASI

(Standing Accretion Shock Instability)

ndash MHD Jets

Wongwathanarat et al 2010

Entropy per baryon

20140304 BH-mag 2014 Kumamoto Univ 27

Early previous study of hydrodynamic models of

the late time shock wave propagation

bull 2D3D hydrodynamic simulations

bull Add hoc initiation of spherical supernova explosion

bull RT mixing at OHe HeH interfaces

bull Maximum 56Ni velocity around 2000 km s-1

Arnett et al 1989 Fryxell et al 1991 Mueller et al 1991bac Hachisu et al

1990 1991 1992 1994 Herant amp Benz 1991 Herant amp Benz 1992

Hachisu et al 1992

Spherical explosion + RT instability could not explain

the observed high velocity of 56Ni

bull Recent study on mixing

ndash 2D (Kifonidis et al 2003 2006 Gawryszczak et al 2010)

20140304 BH-mag 2014 Kumamoto Univ 28

Simulations of non-spherical supernova explosions

bull Neutrino-driven explosion

(Kifonidis et al 2006 Gawryszczak et al 2010)

Solid circle 10-4 M8

Open circle 10-5 M8

Density 7days after the explosion

Maximum ~ 4000 km s-1

bull Jet like explosions (Yamada amp Sato 1991 Nagataki et al 2000)

bull 3D (Hammer et al 2010)

bull SPH (Hungerford et al 20032005 Ellinger et al 2012)

Motivation

bull Multidimensional high resolution hydrodynamics

simulations of the propagation of supernova shock wave

+ Nucleosynthesis calculation and advections of

synthesized nuclear species

20140304 BH-mag 2014 Kumamoto Univ 29

The conditions for reproducing the observed high

velocity of 56Ni are still unclear

To clarify the key conditions for reproducing such

high velocity of 56Ni we revisit matter mixing in

aspherical core-collapse supernova explosions

Methods

20140304 BH-mag 2014 Kumamoto Univ 30

20140304 BH-mag 2014 Kumamoto Univ 31

Methods

bull 2D hydrodynamic simulation

ndash AMR hydrodynamic code (FLASH Fryxell et al 2000)

ndash Parallel computing (SR16000 in YITP)

ndash Nuclear reaction network 1H 4He 12C hellip 54Fe 56Ni (19 nuclei)

ndash Spherical point mass and self gravity

ndash Spherical coordinate effective maximum grid r (3027) x q (768)

ndash Initial computational domain 109 cm ndash stellar surface 3x1012 cm

ndash How to initiate the explosionIntroduce aspherical initial radial

velocity and inject thermal energy around FeSi surface

ndash Perturbations of presupernova origins

httpflashuchicagoedusite

20140304 BH-mag 2014 Kumamoto Univ 32

FLASH Code

bull Eulerian hydrodynamic code

ndash Piecewise Parabolic Method (PPM)

ndash Unsplit solver MHD RHD

bull AMR (Adaptive mesh refinement)

ndash Reduce numerical costs

bull Many optional units

ndash Nuclear reaction networks

(7-19 nuclei)

The FLASH code is a modular parallel multiphysics simulation code

capable of handling general compressible flow problems found in many astrophysical environment (Fryxell et al 2000)

Type Ia SN

explosion

Jordan et al 2008

20140304 BH-mag 2014 Kumamoto Univ 33

Rayleigh-Taylor (RT) instability

120571120588 ∙ 120571119901 lt 0 (Chevalier 1979)

120588 1199033 rarr accelerate

Kifonidis et al 2006

Shengtai Li amp Hui Li 2006

RT unstable condition

1205882

1205881

g

Spherical explosions + RT

instabilities have not explained

the high velocity 56Ni

if 1205881 gt 1205882 120588 1199033 rarr decelerate

20140304 BH-mag 2014 Kumamoto Univ 34

Presupernova structure and introduced

perturbations

120571120588 ∙ 120571119901 lt 0 (Chavalier 1979)

120588 1199033 rarr shock wave tend

to be decelerated

Progenitor model 6 M8

helium core (Nomoto amp Hashimoto

1988) + 103 M8 hydrogen envelope

Si C+O He H

Rayleigh-Taylor unstable

Random

Sinusoidal

Perturbations are introduced at 6times109 cm (C+OHe) 5times1010 cm (HeH)

Models

20140304 BH-mag 2014 Kumamoto Univ 35

Parametersasphericity timing of the introduction

of perturbations

1 Spherical explosion models

2 Bipolar explosion models

3 Explosion models mimicking neutrino-driven

explosion

Results of models

20140304 BH-mag 2014 Kumamoto Univ 36

Spherical explosion models

20140304 BH-mag 2014 Kumamoto Univ 37

Density distributions

Perturbations

at C+OHe

Perturbations

at HeH

Perturbations

at both

Growth factor of instability

20140304 BH-mag 2014 Kumamoto Univ 38

Growth factors at the end of

simulation time

Growth rate for incompressible fluid

Growth rate for compressible fluid

Growth factors

Based on pure 1d spherical simulation

Radial velocity distribution of elements for

spherical explosion models

20140304 BH-mag 2014 Kumamoto Univ 39

Timing of the perturbations hardly affect

the maximum velocity of 56Ni

Maximum velocity of 56Ni lt 1600 km s-1

Different asphericity of bipolar explosions

20140304 BH-mag 2014 Kumamoto Univ 40

Bipolar explosion slightly enhance the mixing

length along the polar axis but maximum velocity

of 56Ni is still the level of lt 1700 km s-1

milder asphericity stronger asphericity

Revisiting Nagataki et al 2000 (jetlike explosion)

only initial large amplitude of perturbations

20140304 BH-mag 2014 Kumamoto Univ 41

with amplitude of 30 and m = 20

Initial relatively large sale of perturbations can not survive in later phase due to KH instabilities

Mimicking the neutrino-driven explosions

20140304 BH-mag 2014 Kumamoto Univ 42

Initial radial velocity

Scheck+04

Gawryszczak+10

Mechanism of the core-collapse supernova

explosions

bull Neutrino heating

20140304 BH-mag 2014 Kumamoto Univ 43

Taken from Janka et al 2012 (PTEP 1 A309)

Bethe 1990 (Rev Mod Phys 62 801) Taken from Liebendofer et al 2001

Convections and Standing Accretion Shock

Instability (SASI)

bull Convection around PNS surface

bull Neutrino-driven convection

bull Standing Accretion Shock Instability (SASI) (Blondin et al )

ndash Acoustic-vorticity cycle

20140304 BH-mag 2014 Kumamoto Univ 44

Ledoux criterion

Ledoux criterion

Taken from Liebendofer et al 2001

20140304 BH-mag 2014 Kumamoto Univ 45

Aspherical explosion with clumpy structure in the

explosion (movie)

20140304 BH-mag 2014 Kumamoto Univ 46

Aspherical explosion with clumpy structure + RT

instability

053 s 288 s 5752 s

20140304 BH-mag 2014 Kumamoto Univ 47

Maximum 3000 km s-1

56Ni

Radial velocity distributions of the best model in

this study

bull Relatively high velocity

(3000 km s-1) of 56Ni

bull Mass of 56Ni with ~ 3000

km s-1 14 x 10-3 M8

20140304 BH-mag 2014 Kumamoto Univ 48

Summary

bull To reproduce the high velocity of 56Ni both aspherical

explosion with clumpy structure and perturbations of

presupernova origins may be necessary

bull There are still missing ingredients to explain the observed

high velocity of 56Ni in SN 1987A

bull Possible missing ingredients

ndash More realistic explosion model (eg Kifonidis et al 2006)

ndash Lager perturbations in presupernova structure (Arnett amp Meakin 2011)

ndash Long simulation time

bull Heating due to the decay of 56Co (Herant amp Benz 1991)

ndash 3D effect (Hammer et al 2010)

Possible seeds of perturbations

bull Dynamical stellar evolution calculation

bull Density fluctuations

around the composition

interfaces

20140304 BH-mag 2014 Kumamoto Univ 49

Arnett amp Meakin 2011

20140304 BH-mag 2014 Kumamoto Univ 50

3D simulations of mixing instabilities in SN

explosions

Hammer et al 2010

56Ni 56Ni

2D 3D

Entropy per baryon Red Oxygen

Blue Nickel

Green Carbon

Direct-escape lines of 44Ti from SNR 1987A

bull lines from 44Ti 679 keV and 784 keV

bull Estimated 44Ti mass (31plusmn08) x 10-4 M8

20140304 BH-mag 2014 Kumamoto Univ 51

Grebenev+12 Nature 490 373

44Ti rarr 44Sc rarr 44Ca T12 = 60 d T12 = 4 h

Asymmetries in core-collapse supernovae from

maps of radioactive 44Ti in Cas A

20140304 BH-mag 2014 Kumamoto Univ 52

Grefenstette+14 Nature 506 339

Aspherical explosion enhance 44Ti

20140304 BH-mag 2014 Kumamoto Univ 53

56Ni 4He 44Ti

Alpha-rich freeze-out enhance the production of 44Ti in the

explosive nucleosynthesis

Aspherical explosion enhance the ratio of M(44Ti)M(56Ni)

096 s after the initiation of the explosion

Toward full 3D radiative transfer

bull 爆発形状を仮定した

輻射輸送計算

ndash 形状で偏光度が異なる

ndash 元素によっても異なる

bull 3次元物質混合計算を

インプットにした輻射

輸送計算

20140304 BH-mag 2014 Kumamoto Univ 54

Tanaka et al 2012 bipolar

clumpy

爆発形状のプローブ

20140304 BH-mag 2014 Kumamoto Univ 55

3D MHD simulation of a SNR

Introduction

bull Acceleration of cosmic-rays in SNRs

ndash Up to ~ 1015 eV or more

ndash Magnetic field is key ingredient

20140304 BH-mag 2014 Kumamoto Univ 56

SN1006 (Chandra X-ray)

Amplified strong magnetic field

20140304 BH-mag 2014 Kumamoto Univ 57

Uchiyama et al 2007 Nature 4469 576

Bohm-diffusion limit

Variations of X-ray hot

spots on a 1 yr timescale

Strong amplified

magnetic field

3D MHD simulation of a SNR

20140304 BH-mag 2014 Kumamoto Univ 58

3 pc

Preliminary

20140304 BH-mag 2014 Kumamoto Univ 59

Amplified magnetic field

20121015 - 17 SNSNR12 59

~ 50 μ G

1 μ G Preliminary

20140304 BH-mag 2014 Kumamoto Univ 60

3D structure of Cas A

Delaney et al 2010

Chandra lsquos X-rays

Spitzer lsquos infrared

Green X-ray Fe-K

Red IR [Ar II]

Blue high [Ne II][Ar II] ratio

Yellow optical outer ejecta

Grey IR [Si II]

Black X-ray Si XIII

20140304 BH-mag 2014 Kumamoto Univ 61

ASTRO-H

bull New exploration X-ray

Telescope

ndash First right will be

2015 yr

ndash 10 times larger

energy resolution

httpastro-hisasjaxajpgallerysatelite02html

High resolution spectrum

of X-ray from SNRs is

expected

3D simulation of the thermal X-ray emission from young

SNRs including efficient particle acceleration

bull 3D simulation

bull Diffusive Shock Acceleration

bull Back reaction from

accelerated particle

bull Non-equilibrium ionization

bull Thermal X-ray emission

20140304 BH-mag 2014 Kumamoto Univ 62

Ferrand et al 2012

To go further than

Ferrand et al

Test 1D calculation

bull Two energy equation for ions and electrons respectively

bull Energy equilibration between ions and electrons

bull Ionization

20140304 BH-mag 2014 Kumamoto Univ 63

20140304 BH-mag 2014 Kumamoto Univ 64

Density contour

Preliminary

Emission from deferent regions

20140304 BH-mag 2014 Kumamoto Univ 65

Preliminary

Summary

bull Aspherical nature of core-collapse supernova

explosions

bull Origin of heavy elements

ndash NS merger

ndash Magnetically driven jets

bull Mixing in CCSN explosion

bull Supernova explosions to Supernova remnant

20140304 BH-mag 2014 Kumamoto Univ 66

Page 23: Masaomi ONO Kyushu University - aichi-edu.ac.jptakahasi/BHmag2014_pdf/Presen/...Method of MHD simulation 16 Magnetohydrodynamics (ideal MHD) Poisson eq. pseudo-Newtonian potential

20140304 BH-mag 2014 Kumamoto Univ 23

Introduction observational evidence of mixing

in supernovae bull SN 1987A

ndash Early detection of X-rays (Dotani et al 1987)

γ-rays lines from 56Co (Matz et al 1988)

ndash Sudden development of the fine structure of Ha

(Hanuschik et al 1988)

ndash Line profiles of [Fe II]

(Spyromilo+90 Haas+90)

Fe (56Ni) is mixed into high velocity regions

56Ni rarr 56Co rarr 56Fe

20140304 BH-mag 2014 Kumamoto Univ 24

Broadened line profile of [Fe II] in SN 1987A

[Fe II] line profile (Haas et al 1990)

56Ni rarr 56Co rarr 56Fe

4000 km s-1

SN 1987A

Doppler velocity

T12 = 61 d T12 = 77 d

20140304 BH-mag 2014 Kumamoto Univ 25

Matter mixing in supernova explosions

HeH C+OHe

Synthesized 56Ni by

explosive

nucleosynthesis Mixing

56Ni is mixed up into high

velocity regions

radial velocity HeH

56Ni

Distance from the center

20140304 BH-mag 2014 Kumamoto Univ 26

What is the mechanism of the mixing

bull Fluid instabilities

ndash Rayleigh-Taylor (RT) instability

ndash Kelvin-Helmholtz (KH) instability

ndash Richtmyer-Meshkov (RM) instability

bull Aspherical supernova explosion

ndash Neutrino heating aided by SASI

(Standing Accretion Shock Instability)

ndash MHD Jets

Wongwathanarat et al 2010

Entropy per baryon

20140304 BH-mag 2014 Kumamoto Univ 27

Early previous study of hydrodynamic models of

the late time shock wave propagation

bull 2D3D hydrodynamic simulations

bull Add hoc initiation of spherical supernova explosion

bull RT mixing at OHe HeH interfaces

bull Maximum 56Ni velocity around 2000 km s-1

Arnett et al 1989 Fryxell et al 1991 Mueller et al 1991bac Hachisu et al

1990 1991 1992 1994 Herant amp Benz 1991 Herant amp Benz 1992

Hachisu et al 1992

Spherical explosion + RT instability could not explain

the observed high velocity of 56Ni

bull Recent study on mixing

ndash 2D (Kifonidis et al 2003 2006 Gawryszczak et al 2010)

20140304 BH-mag 2014 Kumamoto Univ 28

Simulations of non-spherical supernova explosions

bull Neutrino-driven explosion

(Kifonidis et al 2006 Gawryszczak et al 2010)

Solid circle 10-4 M8

Open circle 10-5 M8

Density 7days after the explosion

Maximum ~ 4000 km s-1

bull Jet like explosions (Yamada amp Sato 1991 Nagataki et al 2000)

bull 3D (Hammer et al 2010)

bull SPH (Hungerford et al 20032005 Ellinger et al 2012)

Motivation

bull Multidimensional high resolution hydrodynamics

simulations of the propagation of supernova shock wave

+ Nucleosynthesis calculation and advections of

synthesized nuclear species

20140304 BH-mag 2014 Kumamoto Univ 29

The conditions for reproducing the observed high

velocity of 56Ni are still unclear

To clarify the key conditions for reproducing such

high velocity of 56Ni we revisit matter mixing in

aspherical core-collapse supernova explosions

Methods

20140304 BH-mag 2014 Kumamoto Univ 30

20140304 BH-mag 2014 Kumamoto Univ 31

Methods

bull 2D hydrodynamic simulation

ndash AMR hydrodynamic code (FLASH Fryxell et al 2000)

ndash Parallel computing (SR16000 in YITP)

ndash Nuclear reaction network 1H 4He 12C hellip 54Fe 56Ni (19 nuclei)

ndash Spherical point mass and self gravity

ndash Spherical coordinate effective maximum grid r (3027) x q (768)

ndash Initial computational domain 109 cm ndash stellar surface 3x1012 cm

ndash How to initiate the explosionIntroduce aspherical initial radial

velocity and inject thermal energy around FeSi surface

ndash Perturbations of presupernova origins

httpflashuchicagoedusite

20140304 BH-mag 2014 Kumamoto Univ 32

FLASH Code

bull Eulerian hydrodynamic code

ndash Piecewise Parabolic Method (PPM)

ndash Unsplit solver MHD RHD

bull AMR (Adaptive mesh refinement)

ndash Reduce numerical costs

bull Many optional units

ndash Nuclear reaction networks

(7-19 nuclei)

The FLASH code is a modular parallel multiphysics simulation code

capable of handling general compressible flow problems found in many astrophysical environment (Fryxell et al 2000)

Type Ia SN

explosion

Jordan et al 2008

20140304 BH-mag 2014 Kumamoto Univ 33

Rayleigh-Taylor (RT) instability

120571120588 ∙ 120571119901 lt 0 (Chevalier 1979)

120588 1199033 rarr accelerate

Kifonidis et al 2006

Shengtai Li amp Hui Li 2006

RT unstable condition

1205882

1205881

g

Spherical explosions + RT

instabilities have not explained

the high velocity 56Ni

if 1205881 gt 1205882 120588 1199033 rarr decelerate

20140304 BH-mag 2014 Kumamoto Univ 34

Presupernova structure and introduced

perturbations

120571120588 ∙ 120571119901 lt 0 (Chavalier 1979)

120588 1199033 rarr shock wave tend

to be decelerated

Progenitor model 6 M8

helium core (Nomoto amp Hashimoto

1988) + 103 M8 hydrogen envelope

Si C+O He H

Rayleigh-Taylor unstable

Random

Sinusoidal

Perturbations are introduced at 6times109 cm (C+OHe) 5times1010 cm (HeH)

Models

20140304 BH-mag 2014 Kumamoto Univ 35

Parametersasphericity timing of the introduction

of perturbations

1 Spherical explosion models

2 Bipolar explosion models

3 Explosion models mimicking neutrino-driven

explosion

Results of models

20140304 BH-mag 2014 Kumamoto Univ 36

Spherical explosion models

20140304 BH-mag 2014 Kumamoto Univ 37

Density distributions

Perturbations

at C+OHe

Perturbations

at HeH

Perturbations

at both

Growth factor of instability

20140304 BH-mag 2014 Kumamoto Univ 38

Growth factors at the end of

simulation time

Growth rate for incompressible fluid

Growth rate for compressible fluid

Growth factors

Based on pure 1d spherical simulation

Radial velocity distribution of elements for

spherical explosion models

20140304 BH-mag 2014 Kumamoto Univ 39

Timing of the perturbations hardly affect

the maximum velocity of 56Ni

Maximum velocity of 56Ni lt 1600 km s-1

Different asphericity of bipolar explosions

20140304 BH-mag 2014 Kumamoto Univ 40

Bipolar explosion slightly enhance the mixing

length along the polar axis but maximum velocity

of 56Ni is still the level of lt 1700 km s-1

milder asphericity stronger asphericity

Revisiting Nagataki et al 2000 (jetlike explosion)

only initial large amplitude of perturbations

20140304 BH-mag 2014 Kumamoto Univ 41

with amplitude of 30 and m = 20

Initial relatively large sale of perturbations can not survive in later phase due to KH instabilities

Mimicking the neutrino-driven explosions

20140304 BH-mag 2014 Kumamoto Univ 42

Initial radial velocity

Scheck+04

Gawryszczak+10

Mechanism of the core-collapse supernova

explosions

bull Neutrino heating

20140304 BH-mag 2014 Kumamoto Univ 43

Taken from Janka et al 2012 (PTEP 1 A309)

Bethe 1990 (Rev Mod Phys 62 801) Taken from Liebendofer et al 2001

Convections and Standing Accretion Shock

Instability (SASI)

bull Convection around PNS surface

bull Neutrino-driven convection

bull Standing Accretion Shock Instability (SASI) (Blondin et al )

ndash Acoustic-vorticity cycle

20140304 BH-mag 2014 Kumamoto Univ 44

Ledoux criterion

Ledoux criterion

Taken from Liebendofer et al 2001

20140304 BH-mag 2014 Kumamoto Univ 45

Aspherical explosion with clumpy structure in the

explosion (movie)

20140304 BH-mag 2014 Kumamoto Univ 46

Aspherical explosion with clumpy structure + RT

instability

053 s 288 s 5752 s

20140304 BH-mag 2014 Kumamoto Univ 47

Maximum 3000 km s-1

56Ni

Radial velocity distributions of the best model in

this study

bull Relatively high velocity

(3000 km s-1) of 56Ni

bull Mass of 56Ni with ~ 3000

km s-1 14 x 10-3 M8

20140304 BH-mag 2014 Kumamoto Univ 48

Summary

bull To reproduce the high velocity of 56Ni both aspherical

explosion with clumpy structure and perturbations of

presupernova origins may be necessary

bull There are still missing ingredients to explain the observed

high velocity of 56Ni in SN 1987A

bull Possible missing ingredients

ndash More realistic explosion model (eg Kifonidis et al 2006)

ndash Lager perturbations in presupernova structure (Arnett amp Meakin 2011)

ndash Long simulation time

bull Heating due to the decay of 56Co (Herant amp Benz 1991)

ndash 3D effect (Hammer et al 2010)

Possible seeds of perturbations

bull Dynamical stellar evolution calculation

bull Density fluctuations

around the composition

interfaces

20140304 BH-mag 2014 Kumamoto Univ 49

Arnett amp Meakin 2011

20140304 BH-mag 2014 Kumamoto Univ 50

3D simulations of mixing instabilities in SN

explosions

Hammer et al 2010

56Ni 56Ni

2D 3D

Entropy per baryon Red Oxygen

Blue Nickel

Green Carbon

Direct-escape lines of 44Ti from SNR 1987A

bull lines from 44Ti 679 keV and 784 keV

bull Estimated 44Ti mass (31plusmn08) x 10-4 M8

20140304 BH-mag 2014 Kumamoto Univ 51

Grebenev+12 Nature 490 373

44Ti rarr 44Sc rarr 44Ca T12 = 60 d T12 = 4 h

Asymmetries in core-collapse supernovae from

maps of radioactive 44Ti in Cas A

20140304 BH-mag 2014 Kumamoto Univ 52

Grefenstette+14 Nature 506 339

Aspherical explosion enhance 44Ti

20140304 BH-mag 2014 Kumamoto Univ 53

56Ni 4He 44Ti

Alpha-rich freeze-out enhance the production of 44Ti in the

explosive nucleosynthesis

Aspherical explosion enhance the ratio of M(44Ti)M(56Ni)

096 s after the initiation of the explosion

Toward full 3D radiative transfer

bull 爆発形状を仮定した

輻射輸送計算

ndash 形状で偏光度が異なる

ndash 元素によっても異なる

bull 3次元物質混合計算を

インプットにした輻射

輸送計算

20140304 BH-mag 2014 Kumamoto Univ 54

Tanaka et al 2012 bipolar

clumpy

爆発形状のプローブ

20140304 BH-mag 2014 Kumamoto Univ 55

3D MHD simulation of a SNR

Introduction

bull Acceleration of cosmic-rays in SNRs

ndash Up to ~ 1015 eV or more

ndash Magnetic field is key ingredient

20140304 BH-mag 2014 Kumamoto Univ 56

SN1006 (Chandra X-ray)

Amplified strong magnetic field

20140304 BH-mag 2014 Kumamoto Univ 57

Uchiyama et al 2007 Nature 4469 576

Bohm-diffusion limit

Variations of X-ray hot

spots on a 1 yr timescale

Strong amplified

magnetic field

3D MHD simulation of a SNR

20140304 BH-mag 2014 Kumamoto Univ 58

3 pc

Preliminary

20140304 BH-mag 2014 Kumamoto Univ 59

Amplified magnetic field

20121015 - 17 SNSNR12 59

~ 50 μ G

1 μ G Preliminary

20140304 BH-mag 2014 Kumamoto Univ 60

3D structure of Cas A

Delaney et al 2010

Chandra lsquos X-rays

Spitzer lsquos infrared

Green X-ray Fe-K

Red IR [Ar II]

Blue high [Ne II][Ar II] ratio

Yellow optical outer ejecta

Grey IR [Si II]

Black X-ray Si XIII

20140304 BH-mag 2014 Kumamoto Univ 61

ASTRO-H

bull New exploration X-ray

Telescope

ndash First right will be

2015 yr

ndash 10 times larger

energy resolution

httpastro-hisasjaxajpgallerysatelite02html

High resolution spectrum

of X-ray from SNRs is

expected

3D simulation of the thermal X-ray emission from young

SNRs including efficient particle acceleration

bull 3D simulation

bull Diffusive Shock Acceleration

bull Back reaction from

accelerated particle

bull Non-equilibrium ionization

bull Thermal X-ray emission

20140304 BH-mag 2014 Kumamoto Univ 62

Ferrand et al 2012

To go further than

Ferrand et al

Test 1D calculation

bull Two energy equation for ions and electrons respectively

bull Energy equilibration between ions and electrons

bull Ionization

20140304 BH-mag 2014 Kumamoto Univ 63

20140304 BH-mag 2014 Kumamoto Univ 64

Density contour

Preliminary

Emission from deferent regions

20140304 BH-mag 2014 Kumamoto Univ 65

Preliminary

Summary

bull Aspherical nature of core-collapse supernova

explosions

bull Origin of heavy elements

ndash NS merger

ndash Magnetically driven jets

bull Mixing in CCSN explosion

bull Supernova explosions to Supernova remnant

20140304 BH-mag 2014 Kumamoto Univ 66

Page 24: Masaomi ONO Kyushu University - aichi-edu.ac.jptakahasi/BHmag2014_pdf/Presen/...Method of MHD simulation 16 Magnetohydrodynamics (ideal MHD) Poisson eq. pseudo-Newtonian potential

20140304 BH-mag 2014 Kumamoto Univ 24

Broadened line profile of [Fe II] in SN 1987A

[Fe II] line profile (Haas et al 1990)

56Ni rarr 56Co rarr 56Fe

4000 km s-1

SN 1987A

Doppler velocity

T12 = 61 d T12 = 77 d

20140304 BH-mag 2014 Kumamoto Univ 25

Matter mixing in supernova explosions

HeH C+OHe

Synthesized 56Ni by

explosive

nucleosynthesis Mixing

56Ni is mixed up into high

velocity regions

radial velocity HeH

56Ni

Distance from the center

20140304 BH-mag 2014 Kumamoto Univ 26

What is the mechanism of the mixing

bull Fluid instabilities

ndash Rayleigh-Taylor (RT) instability

ndash Kelvin-Helmholtz (KH) instability

ndash Richtmyer-Meshkov (RM) instability

bull Aspherical supernova explosion

ndash Neutrino heating aided by SASI

(Standing Accretion Shock Instability)

ndash MHD Jets

Wongwathanarat et al 2010

Entropy per baryon

20140304 BH-mag 2014 Kumamoto Univ 27

Early previous study of hydrodynamic models of

the late time shock wave propagation

bull 2D3D hydrodynamic simulations

bull Add hoc initiation of spherical supernova explosion

bull RT mixing at OHe HeH interfaces

bull Maximum 56Ni velocity around 2000 km s-1

Arnett et al 1989 Fryxell et al 1991 Mueller et al 1991bac Hachisu et al

1990 1991 1992 1994 Herant amp Benz 1991 Herant amp Benz 1992

Hachisu et al 1992

Spherical explosion + RT instability could not explain

the observed high velocity of 56Ni

bull Recent study on mixing

ndash 2D (Kifonidis et al 2003 2006 Gawryszczak et al 2010)

20140304 BH-mag 2014 Kumamoto Univ 28

Simulations of non-spherical supernova explosions

bull Neutrino-driven explosion

(Kifonidis et al 2006 Gawryszczak et al 2010)

Solid circle 10-4 M8

Open circle 10-5 M8

Density 7days after the explosion

Maximum ~ 4000 km s-1

bull Jet like explosions (Yamada amp Sato 1991 Nagataki et al 2000)

bull 3D (Hammer et al 2010)

bull SPH (Hungerford et al 20032005 Ellinger et al 2012)

Motivation

bull Multidimensional high resolution hydrodynamics

simulations of the propagation of supernova shock wave

+ Nucleosynthesis calculation and advections of

synthesized nuclear species

20140304 BH-mag 2014 Kumamoto Univ 29

The conditions for reproducing the observed high

velocity of 56Ni are still unclear

To clarify the key conditions for reproducing such

high velocity of 56Ni we revisit matter mixing in

aspherical core-collapse supernova explosions

Methods

20140304 BH-mag 2014 Kumamoto Univ 30

20140304 BH-mag 2014 Kumamoto Univ 31

Methods

bull 2D hydrodynamic simulation

ndash AMR hydrodynamic code (FLASH Fryxell et al 2000)

ndash Parallel computing (SR16000 in YITP)

ndash Nuclear reaction network 1H 4He 12C hellip 54Fe 56Ni (19 nuclei)

ndash Spherical point mass and self gravity

ndash Spherical coordinate effective maximum grid r (3027) x q (768)

ndash Initial computational domain 109 cm ndash stellar surface 3x1012 cm

ndash How to initiate the explosionIntroduce aspherical initial radial

velocity and inject thermal energy around FeSi surface

ndash Perturbations of presupernova origins

httpflashuchicagoedusite

20140304 BH-mag 2014 Kumamoto Univ 32

FLASH Code

bull Eulerian hydrodynamic code

ndash Piecewise Parabolic Method (PPM)

ndash Unsplit solver MHD RHD

bull AMR (Adaptive mesh refinement)

ndash Reduce numerical costs

bull Many optional units

ndash Nuclear reaction networks

(7-19 nuclei)

The FLASH code is a modular parallel multiphysics simulation code

capable of handling general compressible flow problems found in many astrophysical environment (Fryxell et al 2000)

Type Ia SN

explosion

Jordan et al 2008

20140304 BH-mag 2014 Kumamoto Univ 33

Rayleigh-Taylor (RT) instability

120571120588 ∙ 120571119901 lt 0 (Chevalier 1979)

120588 1199033 rarr accelerate

Kifonidis et al 2006

Shengtai Li amp Hui Li 2006

RT unstable condition

1205882

1205881

g

Spherical explosions + RT

instabilities have not explained

the high velocity 56Ni

if 1205881 gt 1205882 120588 1199033 rarr decelerate

20140304 BH-mag 2014 Kumamoto Univ 34

Presupernova structure and introduced

perturbations

120571120588 ∙ 120571119901 lt 0 (Chavalier 1979)

120588 1199033 rarr shock wave tend

to be decelerated

Progenitor model 6 M8

helium core (Nomoto amp Hashimoto

1988) + 103 M8 hydrogen envelope

Si C+O He H

Rayleigh-Taylor unstable

Random

Sinusoidal

Perturbations are introduced at 6times109 cm (C+OHe) 5times1010 cm (HeH)

Models

20140304 BH-mag 2014 Kumamoto Univ 35

Parametersasphericity timing of the introduction

of perturbations

1 Spherical explosion models

2 Bipolar explosion models

3 Explosion models mimicking neutrino-driven

explosion

Results of models

20140304 BH-mag 2014 Kumamoto Univ 36

Spherical explosion models

20140304 BH-mag 2014 Kumamoto Univ 37

Density distributions

Perturbations

at C+OHe

Perturbations

at HeH

Perturbations

at both

Growth factor of instability

20140304 BH-mag 2014 Kumamoto Univ 38

Growth factors at the end of

simulation time

Growth rate for incompressible fluid

Growth rate for compressible fluid

Growth factors

Based on pure 1d spherical simulation

Radial velocity distribution of elements for

spherical explosion models

20140304 BH-mag 2014 Kumamoto Univ 39

Timing of the perturbations hardly affect

the maximum velocity of 56Ni

Maximum velocity of 56Ni lt 1600 km s-1

Different asphericity of bipolar explosions

20140304 BH-mag 2014 Kumamoto Univ 40

Bipolar explosion slightly enhance the mixing

length along the polar axis but maximum velocity

of 56Ni is still the level of lt 1700 km s-1

milder asphericity stronger asphericity

Revisiting Nagataki et al 2000 (jetlike explosion)

only initial large amplitude of perturbations

20140304 BH-mag 2014 Kumamoto Univ 41

with amplitude of 30 and m = 20

Initial relatively large sale of perturbations can not survive in later phase due to KH instabilities

Mimicking the neutrino-driven explosions

20140304 BH-mag 2014 Kumamoto Univ 42

Initial radial velocity

Scheck+04

Gawryszczak+10

Mechanism of the core-collapse supernova

explosions

bull Neutrino heating

20140304 BH-mag 2014 Kumamoto Univ 43

Taken from Janka et al 2012 (PTEP 1 A309)

Bethe 1990 (Rev Mod Phys 62 801) Taken from Liebendofer et al 2001

Convections and Standing Accretion Shock

Instability (SASI)

bull Convection around PNS surface

bull Neutrino-driven convection

bull Standing Accretion Shock Instability (SASI) (Blondin et al )

ndash Acoustic-vorticity cycle

20140304 BH-mag 2014 Kumamoto Univ 44

Ledoux criterion

Ledoux criterion

Taken from Liebendofer et al 2001

20140304 BH-mag 2014 Kumamoto Univ 45

Aspherical explosion with clumpy structure in the

explosion (movie)

20140304 BH-mag 2014 Kumamoto Univ 46

Aspherical explosion with clumpy structure + RT

instability

053 s 288 s 5752 s

20140304 BH-mag 2014 Kumamoto Univ 47

Maximum 3000 km s-1

56Ni

Radial velocity distributions of the best model in

this study

bull Relatively high velocity

(3000 km s-1) of 56Ni

bull Mass of 56Ni with ~ 3000

km s-1 14 x 10-3 M8

20140304 BH-mag 2014 Kumamoto Univ 48

Summary

bull To reproduce the high velocity of 56Ni both aspherical

explosion with clumpy structure and perturbations of

presupernova origins may be necessary

bull There are still missing ingredients to explain the observed

high velocity of 56Ni in SN 1987A

bull Possible missing ingredients

ndash More realistic explosion model (eg Kifonidis et al 2006)

ndash Lager perturbations in presupernova structure (Arnett amp Meakin 2011)

ndash Long simulation time

bull Heating due to the decay of 56Co (Herant amp Benz 1991)

ndash 3D effect (Hammer et al 2010)

Possible seeds of perturbations

bull Dynamical stellar evolution calculation

bull Density fluctuations

around the composition

interfaces

20140304 BH-mag 2014 Kumamoto Univ 49

Arnett amp Meakin 2011

20140304 BH-mag 2014 Kumamoto Univ 50

3D simulations of mixing instabilities in SN

explosions

Hammer et al 2010

56Ni 56Ni

2D 3D

Entropy per baryon Red Oxygen

Blue Nickel

Green Carbon

Direct-escape lines of 44Ti from SNR 1987A

bull lines from 44Ti 679 keV and 784 keV

bull Estimated 44Ti mass (31plusmn08) x 10-4 M8

20140304 BH-mag 2014 Kumamoto Univ 51

Grebenev+12 Nature 490 373

44Ti rarr 44Sc rarr 44Ca T12 = 60 d T12 = 4 h

Asymmetries in core-collapse supernovae from

maps of radioactive 44Ti in Cas A

20140304 BH-mag 2014 Kumamoto Univ 52

Grefenstette+14 Nature 506 339

Aspherical explosion enhance 44Ti

20140304 BH-mag 2014 Kumamoto Univ 53

56Ni 4He 44Ti

Alpha-rich freeze-out enhance the production of 44Ti in the

explosive nucleosynthesis

Aspherical explosion enhance the ratio of M(44Ti)M(56Ni)

096 s after the initiation of the explosion

Toward full 3D radiative transfer

bull 爆発形状を仮定した

輻射輸送計算

ndash 形状で偏光度が異なる

ndash 元素によっても異なる

bull 3次元物質混合計算を

インプットにした輻射

輸送計算

20140304 BH-mag 2014 Kumamoto Univ 54

Tanaka et al 2012 bipolar

clumpy

爆発形状のプローブ

20140304 BH-mag 2014 Kumamoto Univ 55

3D MHD simulation of a SNR

Introduction

bull Acceleration of cosmic-rays in SNRs

ndash Up to ~ 1015 eV or more

ndash Magnetic field is key ingredient

20140304 BH-mag 2014 Kumamoto Univ 56

SN1006 (Chandra X-ray)

Amplified strong magnetic field

20140304 BH-mag 2014 Kumamoto Univ 57

Uchiyama et al 2007 Nature 4469 576

Bohm-diffusion limit

Variations of X-ray hot

spots on a 1 yr timescale

Strong amplified

magnetic field

3D MHD simulation of a SNR

20140304 BH-mag 2014 Kumamoto Univ 58

3 pc

Preliminary

20140304 BH-mag 2014 Kumamoto Univ 59

Amplified magnetic field

20121015 - 17 SNSNR12 59

~ 50 μ G

1 μ G Preliminary

20140304 BH-mag 2014 Kumamoto Univ 60

3D structure of Cas A

Delaney et al 2010

Chandra lsquos X-rays

Spitzer lsquos infrared

Green X-ray Fe-K

Red IR [Ar II]

Blue high [Ne II][Ar II] ratio

Yellow optical outer ejecta

Grey IR [Si II]

Black X-ray Si XIII

20140304 BH-mag 2014 Kumamoto Univ 61

ASTRO-H

bull New exploration X-ray

Telescope

ndash First right will be

2015 yr

ndash 10 times larger

energy resolution

httpastro-hisasjaxajpgallerysatelite02html

High resolution spectrum

of X-ray from SNRs is

expected

3D simulation of the thermal X-ray emission from young

SNRs including efficient particle acceleration

bull 3D simulation

bull Diffusive Shock Acceleration

bull Back reaction from

accelerated particle

bull Non-equilibrium ionization

bull Thermal X-ray emission

20140304 BH-mag 2014 Kumamoto Univ 62

Ferrand et al 2012

To go further than

Ferrand et al

Test 1D calculation

bull Two energy equation for ions and electrons respectively

bull Energy equilibration between ions and electrons

bull Ionization

20140304 BH-mag 2014 Kumamoto Univ 63

20140304 BH-mag 2014 Kumamoto Univ 64

Density contour

Preliminary

Emission from deferent regions

20140304 BH-mag 2014 Kumamoto Univ 65

Preliminary

Summary

bull Aspherical nature of core-collapse supernova

explosions

bull Origin of heavy elements

ndash NS merger

ndash Magnetically driven jets

bull Mixing in CCSN explosion

bull Supernova explosions to Supernova remnant

20140304 BH-mag 2014 Kumamoto Univ 66

Page 25: Masaomi ONO Kyushu University - aichi-edu.ac.jptakahasi/BHmag2014_pdf/Presen/...Method of MHD simulation 16 Magnetohydrodynamics (ideal MHD) Poisson eq. pseudo-Newtonian potential

20140304 BH-mag 2014 Kumamoto Univ 25

Matter mixing in supernova explosions

HeH C+OHe

Synthesized 56Ni by

explosive

nucleosynthesis Mixing

56Ni is mixed up into high

velocity regions

radial velocity HeH

56Ni

Distance from the center

20140304 BH-mag 2014 Kumamoto Univ 26

What is the mechanism of the mixing

bull Fluid instabilities

ndash Rayleigh-Taylor (RT) instability

ndash Kelvin-Helmholtz (KH) instability

ndash Richtmyer-Meshkov (RM) instability

bull Aspherical supernova explosion

ndash Neutrino heating aided by SASI

(Standing Accretion Shock Instability)

ndash MHD Jets

Wongwathanarat et al 2010

Entropy per baryon

20140304 BH-mag 2014 Kumamoto Univ 27

Early previous study of hydrodynamic models of

the late time shock wave propagation

bull 2D3D hydrodynamic simulations

bull Add hoc initiation of spherical supernova explosion

bull RT mixing at OHe HeH interfaces

bull Maximum 56Ni velocity around 2000 km s-1

Arnett et al 1989 Fryxell et al 1991 Mueller et al 1991bac Hachisu et al

1990 1991 1992 1994 Herant amp Benz 1991 Herant amp Benz 1992

Hachisu et al 1992

Spherical explosion + RT instability could not explain

the observed high velocity of 56Ni

bull Recent study on mixing

ndash 2D (Kifonidis et al 2003 2006 Gawryszczak et al 2010)

20140304 BH-mag 2014 Kumamoto Univ 28

Simulations of non-spherical supernova explosions

bull Neutrino-driven explosion

(Kifonidis et al 2006 Gawryszczak et al 2010)

Solid circle 10-4 M8

Open circle 10-5 M8

Density 7days after the explosion

Maximum ~ 4000 km s-1

bull Jet like explosions (Yamada amp Sato 1991 Nagataki et al 2000)

bull 3D (Hammer et al 2010)

bull SPH (Hungerford et al 20032005 Ellinger et al 2012)

Motivation

bull Multidimensional high resolution hydrodynamics

simulations of the propagation of supernova shock wave

+ Nucleosynthesis calculation and advections of

synthesized nuclear species

20140304 BH-mag 2014 Kumamoto Univ 29

The conditions for reproducing the observed high

velocity of 56Ni are still unclear

To clarify the key conditions for reproducing such

high velocity of 56Ni we revisit matter mixing in

aspherical core-collapse supernova explosions

Methods

20140304 BH-mag 2014 Kumamoto Univ 30

20140304 BH-mag 2014 Kumamoto Univ 31

Methods

bull 2D hydrodynamic simulation

ndash AMR hydrodynamic code (FLASH Fryxell et al 2000)

ndash Parallel computing (SR16000 in YITP)

ndash Nuclear reaction network 1H 4He 12C hellip 54Fe 56Ni (19 nuclei)

ndash Spherical point mass and self gravity

ndash Spherical coordinate effective maximum grid r (3027) x q (768)

ndash Initial computational domain 109 cm ndash stellar surface 3x1012 cm

ndash How to initiate the explosionIntroduce aspherical initial radial

velocity and inject thermal energy around FeSi surface

ndash Perturbations of presupernova origins

httpflashuchicagoedusite

20140304 BH-mag 2014 Kumamoto Univ 32

FLASH Code

bull Eulerian hydrodynamic code

ndash Piecewise Parabolic Method (PPM)

ndash Unsplit solver MHD RHD

bull AMR (Adaptive mesh refinement)

ndash Reduce numerical costs

bull Many optional units

ndash Nuclear reaction networks

(7-19 nuclei)

The FLASH code is a modular parallel multiphysics simulation code

capable of handling general compressible flow problems found in many astrophysical environment (Fryxell et al 2000)

Type Ia SN

explosion

Jordan et al 2008

20140304 BH-mag 2014 Kumamoto Univ 33

Rayleigh-Taylor (RT) instability

120571120588 ∙ 120571119901 lt 0 (Chevalier 1979)

120588 1199033 rarr accelerate

Kifonidis et al 2006

Shengtai Li amp Hui Li 2006

RT unstable condition

1205882

1205881

g

Spherical explosions + RT

instabilities have not explained

the high velocity 56Ni

if 1205881 gt 1205882 120588 1199033 rarr decelerate

20140304 BH-mag 2014 Kumamoto Univ 34

Presupernova structure and introduced

perturbations

120571120588 ∙ 120571119901 lt 0 (Chavalier 1979)

120588 1199033 rarr shock wave tend

to be decelerated

Progenitor model 6 M8

helium core (Nomoto amp Hashimoto

1988) + 103 M8 hydrogen envelope

Si C+O He H

Rayleigh-Taylor unstable

Random

Sinusoidal

Perturbations are introduced at 6times109 cm (C+OHe) 5times1010 cm (HeH)

Models

20140304 BH-mag 2014 Kumamoto Univ 35

Parametersasphericity timing of the introduction

of perturbations

1 Spherical explosion models

2 Bipolar explosion models

3 Explosion models mimicking neutrino-driven

explosion

Results of models

20140304 BH-mag 2014 Kumamoto Univ 36

Spherical explosion models

20140304 BH-mag 2014 Kumamoto Univ 37

Density distributions

Perturbations

at C+OHe

Perturbations

at HeH

Perturbations

at both

Growth factor of instability

20140304 BH-mag 2014 Kumamoto Univ 38

Growth factors at the end of

simulation time

Growth rate for incompressible fluid

Growth rate for compressible fluid

Growth factors

Based on pure 1d spherical simulation

Radial velocity distribution of elements for

spherical explosion models

20140304 BH-mag 2014 Kumamoto Univ 39

Timing of the perturbations hardly affect

the maximum velocity of 56Ni

Maximum velocity of 56Ni lt 1600 km s-1

Different asphericity of bipolar explosions

20140304 BH-mag 2014 Kumamoto Univ 40

Bipolar explosion slightly enhance the mixing

length along the polar axis but maximum velocity

of 56Ni is still the level of lt 1700 km s-1

milder asphericity stronger asphericity

Revisiting Nagataki et al 2000 (jetlike explosion)

only initial large amplitude of perturbations

20140304 BH-mag 2014 Kumamoto Univ 41

with amplitude of 30 and m = 20

Initial relatively large sale of perturbations can not survive in later phase due to KH instabilities

Mimicking the neutrino-driven explosions

20140304 BH-mag 2014 Kumamoto Univ 42

Initial radial velocity

Scheck+04

Gawryszczak+10

Mechanism of the core-collapse supernova

explosions

bull Neutrino heating

20140304 BH-mag 2014 Kumamoto Univ 43

Taken from Janka et al 2012 (PTEP 1 A309)

Bethe 1990 (Rev Mod Phys 62 801) Taken from Liebendofer et al 2001

Convections and Standing Accretion Shock

Instability (SASI)

bull Convection around PNS surface

bull Neutrino-driven convection

bull Standing Accretion Shock Instability (SASI) (Blondin et al )

ndash Acoustic-vorticity cycle

20140304 BH-mag 2014 Kumamoto Univ 44

Ledoux criterion

Ledoux criterion

Taken from Liebendofer et al 2001

20140304 BH-mag 2014 Kumamoto Univ 45

Aspherical explosion with clumpy structure in the

explosion (movie)

20140304 BH-mag 2014 Kumamoto Univ 46

Aspherical explosion with clumpy structure + RT

instability

053 s 288 s 5752 s

20140304 BH-mag 2014 Kumamoto Univ 47

Maximum 3000 km s-1

56Ni

Radial velocity distributions of the best model in

this study

bull Relatively high velocity

(3000 km s-1) of 56Ni

bull Mass of 56Ni with ~ 3000

km s-1 14 x 10-3 M8

20140304 BH-mag 2014 Kumamoto Univ 48

Summary

bull To reproduce the high velocity of 56Ni both aspherical

explosion with clumpy structure and perturbations of

presupernova origins may be necessary

bull There are still missing ingredients to explain the observed

high velocity of 56Ni in SN 1987A

bull Possible missing ingredients

ndash More realistic explosion model (eg Kifonidis et al 2006)

ndash Lager perturbations in presupernova structure (Arnett amp Meakin 2011)

ndash Long simulation time

bull Heating due to the decay of 56Co (Herant amp Benz 1991)

ndash 3D effect (Hammer et al 2010)

Possible seeds of perturbations

bull Dynamical stellar evolution calculation

bull Density fluctuations

around the composition

interfaces

20140304 BH-mag 2014 Kumamoto Univ 49

Arnett amp Meakin 2011

20140304 BH-mag 2014 Kumamoto Univ 50

3D simulations of mixing instabilities in SN

explosions

Hammer et al 2010

56Ni 56Ni

2D 3D

Entropy per baryon Red Oxygen

Blue Nickel

Green Carbon

Direct-escape lines of 44Ti from SNR 1987A

bull lines from 44Ti 679 keV and 784 keV

bull Estimated 44Ti mass (31plusmn08) x 10-4 M8

20140304 BH-mag 2014 Kumamoto Univ 51

Grebenev+12 Nature 490 373

44Ti rarr 44Sc rarr 44Ca T12 = 60 d T12 = 4 h

Asymmetries in core-collapse supernovae from

maps of radioactive 44Ti in Cas A

20140304 BH-mag 2014 Kumamoto Univ 52

Grefenstette+14 Nature 506 339

Aspherical explosion enhance 44Ti

20140304 BH-mag 2014 Kumamoto Univ 53

56Ni 4He 44Ti

Alpha-rich freeze-out enhance the production of 44Ti in the

explosive nucleosynthesis

Aspherical explosion enhance the ratio of M(44Ti)M(56Ni)

096 s after the initiation of the explosion

Toward full 3D radiative transfer

bull 爆発形状を仮定した

輻射輸送計算

ndash 形状で偏光度が異なる

ndash 元素によっても異なる

bull 3次元物質混合計算を

インプットにした輻射

輸送計算

20140304 BH-mag 2014 Kumamoto Univ 54

Tanaka et al 2012 bipolar

clumpy

爆発形状のプローブ

20140304 BH-mag 2014 Kumamoto Univ 55

3D MHD simulation of a SNR

Introduction

bull Acceleration of cosmic-rays in SNRs

ndash Up to ~ 1015 eV or more

ndash Magnetic field is key ingredient

20140304 BH-mag 2014 Kumamoto Univ 56

SN1006 (Chandra X-ray)

Amplified strong magnetic field

20140304 BH-mag 2014 Kumamoto Univ 57

Uchiyama et al 2007 Nature 4469 576

Bohm-diffusion limit

Variations of X-ray hot

spots on a 1 yr timescale

Strong amplified

magnetic field

3D MHD simulation of a SNR

20140304 BH-mag 2014 Kumamoto Univ 58

3 pc

Preliminary

20140304 BH-mag 2014 Kumamoto Univ 59

Amplified magnetic field

20121015 - 17 SNSNR12 59

~ 50 μ G

1 μ G Preliminary

20140304 BH-mag 2014 Kumamoto Univ 60

3D structure of Cas A

Delaney et al 2010

Chandra lsquos X-rays

Spitzer lsquos infrared

Green X-ray Fe-K

Red IR [Ar II]

Blue high [Ne II][Ar II] ratio

Yellow optical outer ejecta

Grey IR [Si II]

Black X-ray Si XIII

20140304 BH-mag 2014 Kumamoto Univ 61

ASTRO-H

bull New exploration X-ray

Telescope

ndash First right will be

2015 yr

ndash 10 times larger

energy resolution

httpastro-hisasjaxajpgallerysatelite02html

High resolution spectrum

of X-ray from SNRs is

expected

3D simulation of the thermal X-ray emission from young

SNRs including efficient particle acceleration

bull 3D simulation

bull Diffusive Shock Acceleration

bull Back reaction from

accelerated particle

bull Non-equilibrium ionization

bull Thermal X-ray emission

20140304 BH-mag 2014 Kumamoto Univ 62

Ferrand et al 2012

To go further than

Ferrand et al

Test 1D calculation

bull Two energy equation for ions and electrons respectively

bull Energy equilibration between ions and electrons

bull Ionization

20140304 BH-mag 2014 Kumamoto Univ 63

20140304 BH-mag 2014 Kumamoto Univ 64

Density contour

Preliminary

Emission from deferent regions

20140304 BH-mag 2014 Kumamoto Univ 65

Preliminary

Summary

bull Aspherical nature of core-collapse supernova

explosions

bull Origin of heavy elements

ndash NS merger

ndash Magnetically driven jets

bull Mixing in CCSN explosion

bull Supernova explosions to Supernova remnant

20140304 BH-mag 2014 Kumamoto Univ 66

Page 26: Masaomi ONO Kyushu University - aichi-edu.ac.jptakahasi/BHmag2014_pdf/Presen/...Method of MHD simulation 16 Magnetohydrodynamics (ideal MHD) Poisson eq. pseudo-Newtonian potential

20140304 BH-mag 2014 Kumamoto Univ 26

What is the mechanism of the mixing

bull Fluid instabilities

ndash Rayleigh-Taylor (RT) instability

ndash Kelvin-Helmholtz (KH) instability

ndash Richtmyer-Meshkov (RM) instability

bull Aspherical supernova explosion

ndash Neutrino heating aided by SASI

(Standing Accretion Shock Instability)

ndash MHD Jets

Wongwathanarat et al 2010

Entropy per baryon

20140304 BH-mag 2014 Kumamoto Univ 27

Early previous study of hydrodynamic models of

the late time shock wave propagation

bull 2D3D hydrodynamic simulations

bull Add hoc initiation of spherical supernova explosion

bull RT mixing at OHe HeH interfaces

bull Maximum 56Ni velocity around 2000 km s-1

Arnett et al 1989 Fryxell et al 1991 Mueller et al 1991bac Hachisu et al

1990 1991 1992 1994 Herant amp Benz 1991 Herant amp Benz 1992

Hachisu et al 1992

Spherical explosion + RT instability could not explain

the observed high velocity of 56Ni

bull Recent study on mixing

ndash 2D (Kifonidis et al 2003 2006 Gawryszczak et al 2010)

20140304 BH-mag 2014 Kumamoto Univ 28

Simulations of non-spherical supernova explosions

bull Neutrino-driven explosion

(Kifonidis et al 2006 Gawryszczak et al 2010)

Solid circle 10-4 M8

Open circle 10-5 M8

Density 7days after the explosion

Maximum ~ 4000 km s-1

bull Jet like explosions (Yamada amp Sato 1991 Nagataki et al 2000)

bull 3D (Hammer et al 2010)

bull SPH (Hungerford et al 20032005 Ellinger et al 2012)

Motivation

bull Multidimensional high resolution hydrodynamics

simulations of the propagation of supernova shock wave

+ Nucleosynthesis calculation and advections of

synthesized nuclear species

20140304 BH-mag 2014 Kumamoto Univ 29

The conditions for reproducing the observed high

velocity of 56Ni are still unclear

To clarify the key conditions for reproducing such

high velocity of 56Ni we revisit matter mixing in

aspherical core-collapse supernova explosions

Methods

20140304 BH-mag 2014 Kumamoto Univ 30

20140304 BH-mag 2014 Kumamoto Univ 31

Methods

bull 2D hydrodynamic simulation

ndash AMR hydrodynamic code (FLASH Fryxell et al 2000)

ndash Parallel computing (SR16000 in YITP)

ndash Nuclear reaction network 1H 4He 12C hellip 54Fe 56Ni (19 nuclei)

ndash Spherical point mass and self gravity

ndash Spherical coordinate effective maximum grid r (3027) x q (768)

ndash Initial computational domain 109 cm ndash stellar surface 3x1012 cm

ndash How to initiate the explosionIntroduce aspherical initial radial

velocity and inject thermal energy around FeSi surface

ndash Perturbations of presupernova origins

httpflashuchicagoedusite

20140304 BH-mag 2014 Kumamoto Univ 32

FLASH Code

bull Eulerian hydrodynamic code

ndash Piecewise Parabolic Method (PPM)

ndash Unsplit solver MHD RHD

bull AMR (Adaptive mesh refinement)

ndash Reduce numerical costs

bull Many optional units

ndash Nuclear reaction networks

(7-19 nuclei)

The FLASH code is a modular parallel multiphysics simulation code

capable of handling general compressible flow problems found in many astrophysical environment (Fryxell et al 2000)

Type Ia SN

explosion

Jordan et al 2008

20140304 BH-mag 2014 Kumamoto Univ 33

Rayleigh-Taylor (RT) instability

120571120588 ∙ 120571119901 lt 0 (Chevalier 1979)

120588 1199033 rarr accelerate

Kifonidis et al 2006

Shengtai Li amp Hui Li 2006

RT unstable condition

1205882

1205881

g

Spherical explosions + RT

instabilities have not explained

the high velocity 56Ni

if 1205881 gt 1205882 120588 1199033 rarr decelerate

20140304 BH-mag 2014 Kumamoto Univ 34

Presupernova structure and introduced

perturbations

120571120588 ∙ 120571119901 lt 0 (Chavalier 1979)

120588 1199033 rarr shock wave tend

to be decelerated

Progenitor model 6 M8

helium core (Nomoto amp Hashimoto

1988) + 103 M8 hydrogen envelope

Si C+O He H

Rayleigh-Taylor unstable

Random

Sinusoidal

Perturbations are introduced at 6times109 cm (C+OHe) 5times1010 cm (HeH)

Models

20140304 BH-mag 2014 Kumamoto Univ 35

Parametersasphericity timing of the introduction

of perturbations

1 Spherical explosion models

2 Bipolar explosion models

3 Explosion models mimicking neutrino-driven

explosion

Results of models

20140304 BH-mag 2014 Kumamoto Univ 36

Spherical explosion models

20140304 BH-mag 2014 Kumamoto Univ 37

Density distributions

Perturbations

at C+OHe

Perturbations

at HeH

Perturbations

at both

Growth factor of instability

20140304 BH-mag 2014 Kumamoto Univ 38

Growth factors at the end of

simulation time

Growth rate for incompressible fluid

Growth rate for compressible fluid

Growth factors

Based on pure 1d spherical simulation

Radial velocity distribution of elements for

spherical explosion models

20140304 BH-mag 2014 Kumamoto Univ 39

Timing of the perturbations hardly affect

the maximum velocity of 56Ni

Maximum velocity of 56Ni lt 1600 km s-1

Different asphericity of bipolar explosions

20140304 BH-mag 2014 Kumamoto Univ 40

Bipolar explosion slightly enhance the mixing

length along the polar axis but maximum velocity

of 56Ni is still the level of lt 1700 km s-1

milder asphericity stronger asphericity

Revisiting Nagataki et al 2000 (jetlike explosion)

only initial large amplitude of perturbations

20140304 BH-mag 2014 Kumamoto Univ 41

with amplitude of 30 and m = 20

Initial relatively large sale of perturbations can not survive in later phase due to KH instabilities

Mimicking the neutrino-driven explosions

20140304 BH-mag 2014 Kumamoto Univ 42

Initial radial velocity

Scheck+04

Gawryszczak+10

Mechanism of the core-collapse supernova

explosions

bull Neutrino heating

20140304 BH-mag 2014 Kumamoto Univ 43

Taken from Janka et al 2012 (PTEP 1 A309)

Bethe 1990 (Rev Mod Phys 62 801) Taken from Liebendofer et al 2001

Convections and Standing Accretion Shock

Instability (SASI)

bull Convection around PNS surface

bull Neutrino-driven convection

bull Standing Accretion Shock Instability (SASI) (Blondin et al )

ndash Acoustic-vorticity cycle

20140304 BH-mag 2014 Kumamoto Univ 44

Ledoux criterion

Ledoux criterion

Taken from Liebendofer et al 2001

20140304 BH-mag 2014 Kumamoto Univ 45

Aspherical explosion with clumpy structure in the

explosion (movie)

20140304 BH-mag 2014 Kumamoto Univ 46

Aspherical explosion with clumpy structure + RT

instability

053 s 288 s 5752 s

20140304 BH-mag 2014 Kumamoto Univ 47

Maximum 3000 km s-1

56Ni

Radial velocity distributions of the best model in

this study

bull Relatively high velocity

(3000 km s-1) of 56Ni

bull Mass of 56Ni with ~ 3000

km s-1 14 x 10-3 M8

20140304 BH-mag 2014 Kumamoto Univ 48

Summary

bull To reproduce the high velocity of 56Ni both aspherical

explosion with clumpy structure and perturbations of

presupernova origins may be necessary

bull There are still missing ingredients to explain the observed

high velocity of 56Ni in SN 1987A

bull Possible missing ingredients

ndash More realistic explosion model (eg Kifonidis et al 2006)

ndash Lager perturbations in presupernova structure (Arnett amp Meakin 2011)

ndash Long simulation time

bull Heating due to the decay of 56Co (Herant amp Benz 1991)

ndash 3D effect (Hammer et al 2010)

Possible seeds of perturbations

bull Dynamical stellar evolution calculation

bull Density fluctuations

around the composition

interfaces

20140304 BH-mag 2014 Kumamoto Univ 49

Arnett amp Meakin 2011

20140304 BH-mag 2014 Kumamoto Univ 50

3D simulations of mixing instabilities in SN

explosions

Hammer et al 2010

56Ni 56Ni

2D 3D

Entropy per baryon Red Oxygen

Blue Nickel

Green Carbon

Direct-escape lines of 44Ti from SNR 1987A

bull lines from 44Ti 679 keV and 784 keV

bull Estimated 44Ti mass (31plusmn08) x 10-4 M8

20140304 BH-mag 2014 Kumamoto Univ 51

Grebenev+12 Nature 490 373

44Ti rarr 44Sc rarr 44Ca T12 = 60 d T12 = 4 h

Asymmetries in core-collapse supernovae from

maps of radioactive 44Ti in Cas A

20140304 BH-mag 2014 Kumamoto Univ 52

Grefenstette+14 Nature 506 339

Aspherical explosion enhance 44Ti

20140304 BH-mag 2014 Kumamoto Univ 53

56Ni 4He 44Ti

Alpha-rich freeze-out enhance the production of 44Ti in the

explosive nucleosynthesis

Aspherical explosion enhance the ratio of M(44Ti)M(56Ni)

096 s after the initiation of the explosion

Toward full 3D radiative transfer

bull 爆発形状を仮定した

輻射輸送計算

ndash 形状で偏光度が異なる

ndash 元素によっても異なる

bull 3次元物質混合計算を

インプットにした輻射

輸送計算

20140304 BH-mag 2014 Kumamoto Univ 54

Tanaka et al 2012 bipolar

clumpy

爆発形状のプローブ

20140304 BH-mag 2014 Kumamoto Univ 55

3D MHD simulation of a SNR

Introduction

bull Acceleration of cosmic-rays in SNRs

ndash Up to ~ 1015 eV or more

ndash Magnetic field is key ingredient

20140304 BH-mag 2014 Kumamoto Univ 56

SN1006 (Chandra X-ray)

Amplified strong magnetic field

20140304 BH-mag 2014 Kumamoto Univ 57

Uchiyama et al 2007 Nature 4469 576

Bohm-diffusion limit

Variations of X-ray hot

spots on a 1 yr timescale

Strong amplified

magnetic field

3D MHD simulation of a SNR

20140304 BH-mag 2014 Kumamoto Univ 58

3 pc

Preliminary

20140304 BH-mag 2014 Kumamoto Univ 59

Amplified magnetic field

20121015 - 17 SNSNR12 59

~ 50 μ G

1 μ G Preliminary

20140304 BH-mag 2014 Kumamoto Univ 60

3D structure of Cas A

Delaney et al 2010

Chandra lsquos X-rays

Spitzer lsquos infrared

Green X-ray Fe-K

Red IR [Ar II]

Blue high [Ne II][Ar II] ratio

Yellow optical outer ejecta

Grey IR [Si II]

Black X-ray Si XIII

20140304 BH-mag 2014 Kumamoto Univ 61

ASTRO-H

bull New exploration X-ray

Telescope

ndash First right will be

2015 yr

ndash 10 times larger

energy resolution

httpastro-hisasjaxajpgallerysatelite02html

High resolution spectrum

of X-ray from SNRs is

expected

3D simulation of the thermal X-ray emission from young

SNRs including efficient particle acceleration

bull 3D simulation

bull Diffusive Shock Acceleration

bull Back reaction from

accelerated particle

bull Non-equilibrium ionization

bull Thermal X-ray emission

20140304 BH-mag 2014 Kumamoto Univ 62

Ferrand et al 2012

To go further than

Ferrand et al

Test 1D calculation

bull Two energy equation for ions and electrons respectively

bull Energy equilibration between ions and electrons

bull Ionization

20140304 BH-mag 2014 Kumamoto Univ 63

20140304 BH-mag 2014 Kumamoto Univ 64

Density contour

Preliminary

Emission from deferent regions

20140304 BH-mag 2014 Kumamoto Univ 65

Preliminary

Summary

bull Aspherical nature of core-collapse supernova

explosions

bull Origin of heavy elements

ndash NS merger

ndash Magnetically driven jets

bull Mixing in CCSN explosion

bull Supernova explosions to Supernova remnant

20140304 BH-mag 2014 Kumamoto Univ 66

Page 27: Masaomi ONO Kyushu University - aichi-edu.ac.jptakahasi/BHmag2014_pdf/Presen/...Method of MHD simulation 16 Magnetohydrodynamics (ideal MHD) Poisson eq. pseudo-Newtonian potential

20140304 BH-mag 2014 Kumamoto Univ 27

Early previous study of hydrodynamic models of

the late time shock wave propagation

bull 2D3D hydrodynamic simulations

bull Add hoc initiation of spherical supernova explosion

bull RT mixing at OHe HeH interfaces

bull Maximum 56Ni velocity around 2000 km s-1

Arnett et al 1989 Fryxell et al 1991 Mueller et al 1991bac Hachisu et al

1990 1991 1992 1994 Herant amp Benz 1991 Herant amp Benz 1992

Hachisu et al 1992

Spherical explosion + RT instability could not explain

the observed high velocity of 56Ni

bull Recent study on mixing

ndash 2D (Kifonidis et al 2003 2006 Gawryszczak et al 2010)

20140304 BH-mag 2014 Kumamoto Univ 28

Simulations of non-spherical supernova explosions

bull Neutrino-driven explosion

(Kifonidis et al 2006 Gawryszczak et al 2010)

Solid circle 10-4 M8

Open circle 10-5 M8

Density 7days after the explosion

Maximum ~ 4000 km s-1

bull Jet like explosions (Yamada amp Sato 1991 Nagataki et al 2000)

bull 3D (Hammer et al 2010)

bull SPH (Hungerford et al 20032005 Ellinger et al 2012)

Motivation

bull Multidimensional high resolution hydrodynamics

simulations of the propagation of supernova shock wave

+ Nucleosynthesis calculation and advections of

synthesized nuclear species

20140304 BH-mag 2014 Kumamoto Univ 29

The conditions for reproducing the observed high

velocity of 56Ni are still unclear

To clarify the key conditions for reproducing such

high velocity of 56Ni we revisit matter mixing in

aspherical core-collapse supernova explosions

Methods

20140304 BH-mag 2014 Kumamoto Univ 30

20140304 BH-mag 2014 Kumamoto Univ 31

Methods

bull 2D hydrodynamic simulation

ndash AMR hydrodynamic code (FLASH Fryxell et al 2000)

ndash Parallel computing (SR16000 in YITP)

ndash Nuclear reaction network 1H 4He 12C hellip 54Fe 56Ni (19 nuclei)

ndash Spherical point mass and self gravity

ndash Spherical coordinate effective maximum grid r (3027) x q (768)

ndash Initial computational domain 109 cm ndash stellar surface 3x1012 cm

ndash How to initiate the explosionIntroduce aspherical initial radial

velocity and inject thermal energy around FeSi surface

ndash Perturbations of presupernova origins

httpflashuchicagoedusite

20140304 BH-mag 2014 Kumamoto Univ 32

FLASH Code

bull Eulerian hydrodynamic code

ndash Piecewise Parabolic Method (PPM)

ndash Unsplit solver MHD RHD

bull AMR (Adaptive mesh refinement)

ndash Reduce numerical costs

bull Many optional units

ndash Nuclear reaction networks

(7-19 nuclei)

The FLASH code is a modular parallel multiphysics simulation code

capable of handling general compressible flow problems found in many astrophysical environment (Fryxell et al 2000)

Type Ia SN

explosion

Jordan et al 2008

20140304 BH-mag 2014 Kumamoto Univ 33

Rayleigh-Taylor (RT) instability

120571120588 ∙ 120571119901 lt 0 (Chevalier 1979)

120588 1199033 rarr accelerate

Kifonidis et al 2006

Shengtai Li amp Hui Li 2006

RT unstable condition

1205882

1205881

g

Spherical explosions + RT

instabilities have not explained

the high velocity 56Ni

if 1205881 gt 1205882 120588 1199033 rarr decelerate

20140304 BH-mag 2014 Kumamoto Univ 34

Presupernova structure and introduced

perturbations

120571120588 ∙ 120571119901 lt 0 (Chavalier 1979)

120588 1199033 rarr shock wave tend

to be decelerated

Progenitor model 6 M8

helium core (Nomoto amp Hashimoto

1988) + 103 M8 hydrogen envelope

Si C+O He H

Rayleigh-Taylor unstable

Random

Sinusoidal

Perturbations are introduced at 6times109 cm (C+OHe) 5times1010 cm (HeH)

Models

20140304 BH-mag 2014 Kumamoto Univ 35

Parametersasphericity timing of the introduction

of perturbations

1 Spherical explosion models

2 Bipolar explosion models

3 Explosion models mimicking neutrino-driven

explosion

Results of models

20140304 BH-mag 2014 Kumamoto Univ 36

Spherical explosion models

20140304 BH-mag 2014 Kumamoto Univ 37

Density distributions

Perturbations

at C+OHe

Perturbations

at HeH

Perturbations

at both

Growth factor of instability

20140304 BH-mag 2014 Kumamoto Univ 38

Growth factors at the end of

simulation time

Growth rate for incompressible fluid

Growth rate for compressible fluid

Growth factors

Based on pure 1d spherical simulation

Radial velocity distribution of elements for

spherical explosion models

20140304 BH-mag 2014 Kumamoto Univ 39

Timing of the perturbations hardly affect

the maximum velocity of 56Ni

Maximum velocity of 56Ni lt 1600 km s-1

Different asphericity of bipolar explosions

20140304 BH-mag 2014 Kumamoto Univ 40

Bipolar explosion slightly enhance the mixing

length along the polar axis but maximum velocity

of 56Ni is still the level of lt 1700 km s-1

milder asphericity stronger asphericity

Revisiting Nagataki et al 2000 (jetlike explosion)

only initial large amplitude of perturbations

20140304 BH-mag 2014 Kumamoto Univ 41

with amplitude of 30 and m = 20

Initial relatively large sale of perturbations can not survive in later phase due to KH instabilities

Mimicking the neutrino-driven explosions

20140304 BH-mag 2014 Kumamoto Univ 42

Initial radial velocity

Scheck+04

Gawryszczak+10

Mechanism of the core-collapse supernova

explosions

bull Neutrino heating

20140304 BH-mag 2014 Kumamoto Univ 43

Taken from Janka et al 2012 (PTEP 1 A309)

Bethe 1990 (Rev Mod Phys 62 801) Taken from Liebendofer et al 2001

Convections and Standing Accretion Shock

Instability (SASI)

bull Convection around PNS surface

bull Neutrino-driven convection

bull Standing Accretion Shock Instability (SASI) (Blondin et al )

ndash Acoustic-vorticity cycle

20140304 BH-mag 2014 Kumamoto Univ 44

Ledoux criterion

Ledoux criterion

Taken from Liebendofer et al 2001

20140304 BH-mag 2014 Kumamoto Univ 45

Aspherical explosion with clumpy structure in the

explosion (movie)

20140304 BH-mag 2014 Kumamoto Univ 46

Aspherical explosion with clumpy structure + RT

instability

053 s 288 s 5752 s

20140304 BH-mag 2014 Kumamoto Univ 47

Maximum 3000 km s-1

56Ni

Radial velocity distributions of the best model in

this study

bull Relatively high velocity

(3000 km s-1) of 56Ni

bull Mass of 56Ni with ~ 3000

km s-1 14 x 10-3 M8

20140304 BH-mag 2014 Kumamoto Univ 48

Summary

bull To reproduce the high velocity of 56Ni both aspherical

explosion with clumpy structure and perturbations of

presupernova origins may be necessary

bull There are still missing ingredients to explain the observed

high velocity of 56Ni in SN 1987A

bull Possible missing ingredients

ndash More realistic explosion model (eg Kifonidis et al 2006)

ndash Lager perturbations in presupernova structure (Arnett amp Meakin 2011)

ndash Long simulation time

bull Heating due to the decay of 56Co (Herant amp Benz 1991)

ndash 3D effect (Hammer et al 2010)

Possible seeds of perturbations

bull Dynamical stellar evolution calculation

bull Density fluctuations

around the composition

interfaces

20140304 BH-mag 2014 Kumamoto Univ 49

Arnett amp Meakin 2011

20140304 BH-mag 2014 Kumamoto Univ 50

3D simulations of mixing instabilities in SN

explosions

Hammer et al 2010

56Ni 56Ni

2D 3D

Entropy per baryon Red Oxygen

Blue Nickel

Green Carbon

Direct-escape lines of 44Ti from SNR 1987A

bull lines from 44Ti 679 keV and 784 keV

bull Estimated 44Ti mass (31plusmn08) x 10-4 M8

20140304 BH-mag 2014 Kumamoto Univ 51

Grebenev+12 Nature 490 373

44Ti rarr 44Sc rarr 44Ca T12 = 60 d T12 = 4 h

Asymmetries in core-collapse supernovae from

maps of radioactive 44Ti in Cas A

20140304 BH-mag 2014 Kumamoto Univ 52

Grefenstette+14 Nature 506 339

Aspherical explosion enhance 44Ti

20140304 BH-mag 2014 Kumamoto Univ 53

56Ni 4He 44Ti

Alpha-rich freeze-out enhance the production of 44Ti in the

explosive nucleosynthesis

Aspherical explosion enhance the ratio of M(44Ti)M(56Ni)

096 s after the initiation of the explosion

Toward full 3D radiative transfer

bull 爆発形状を仮定した

輻射輸送計算

ndash 形状で偏光度が異なる

ndash 元素によっても異なる

bull 3次元物質混合計算を

インプットにした輻射

輸送計算

20140304 BH-mag 2014 Kumamoto Univ 54

Tanaka et al 2012 bipolar

clumpy

爆発形状のプローブ

20140304 BH-mag 2014 Kumamoto Univ 55

3D MHD simulation of a SNR

Introduction

bull Acceleration of cosmic-rays in SNRs

ndash Up to ~ 1015 eV or more

ndash Magnetic field is key ingredient

20140304 BH-mag 2014 Kumamoto Univ 56

SN1006 (Chandra X-ray)

Amplified strong magnetic field

20140304 BH-mag 2014 Kumamoto Univ 57

Uchiyama et al 2007 Nature 4469 576

Bohm-diffusion limit

Variations of X-ray hot

spots on a 1 yr timescale

Strong amplified

magnetic field

3D MHD simulation of a SNR

20140304 BH-mag 2014 Kumamoto Univ 58

3 pc

Preliminary

20140304 BH-mag 2014 Kumamoto Univ 59

Amplified magnetic field

20121015 - 17 SNSNR12 59

~ 50 μ G

1 μ G Preliminary

20140304 BH-mag 2014 Kumamoto Univ 60

3D structure of Cas A

Delaney et al 2010

Chandra lsquos X-rays

Spitzer lsquos infrared

Green X-ray Fe-K

Red IR [Ar II]

Blue high [Ne II][Ar II] ratio

Yellow optical outer ejecta

Grey IR [Si II]

Black X-ray Si XIII

20140304 BH-mag 2014 Kumamoto Univ 61

ASTRO-H

bull New exploration X-ray

Telescope

ndash First right will be

2015 yr

ndash 10 times larger

energy resolution

httpastro-hisasjaxajpgallerysatelite02html

High resolution spectrum

of X-ray from SNRs is

expected

3D simulation of the thermal X-ray emission from young

SNRs including efficient particle acceleration

bull 3D simulation

bull Diffusive Shock Acceleration

bull Back reaction from

accelerated particle

bull Non-equilibrium ionization

bull Thermal X-ray emission

20140304 BH-mag 2014 Kumamoto Univ 62

Ferrand et al 2012

To go further than

Ferrand et al

Test 1D calculation

bull Two energy equation for ions and electrons respectively

bull Energy equilibration between ions and electrons

bull Ionization

20140304 BH-mag 2014 Kumamoto Univ 63

20140304 BH-mag 2014 Kumamoto Univ 64

Density contour

Preliminary

Emission from deferent regions

20140304 BH-mag 2014 Kumamoto Univ 65

Preliminary

Summary

bull Aspherical nature of core-collapse supernova

explosions

bull Origin of heavy elements

ndash NS merger

ndash Magnetically driven jets

bull Mixing in CCSN explosion

bull Supernova explosions to Supernova remnant

20140304 BH-mag 2014 Kumamoto Univ 66

Page 28: Masaomi ONO Kyushu University - aichi-edu.ac.jptakahasi/BHmag2014_pdf/Presen/...Method of MHD simulation 16 Magnetohydrodynamics (ideal MHD) Poisson eq. pseudo-Newtonian potential

20140304 BH-mag 2014 Kumamoto Univ 28

Simulations of non-spherical supernova explosions

bull Neutrino-driven explosion

(Kifonidis et al 2006 Gawryszczak et al 2010)

Solid circle 10-4 M8

Open circle 10-5 M8

Density 7days after the explosion

Maximum ~ 4000 km s-1

bull Jet like explosions (Yamada amp Sato 1991 Nagataki et al 2000)

bull 3D (Hammer et al 2010)

bull SPH (Hungerford et al 20032005 Ellinger et al 2012)

Motivation

bull Multidimensional high resolution hydrodynamics

simulations of the propagation of supernova shock wave

+ Nucleosynthesis calculation and advections of

synthesized nuclear species

20140304 BH-mag 2014 Kumamoto Univ 29

The conditions for reproducing the observed high

velocity of 56Ni are still unclear

To clarify the key conditions for reproducing such

high velocity of 56Ni we revisit matter mixing in

aspherical core-collapse supernova explosions

Methods

20140304 BH-mag 2014 Kumamoto Univ 30

20140304 BH-mag 2014 Kumamoto Univ 31

Methods

bull 2D hydrodynamic simulation

ndash AMR hydrodynamic code (FLASH Fryxell et al 2000)

ndash Parallel computing (SR16000 in YITP)

ndash Nuclear reaction network 1H 4He 12C hellip 54Fe 56Ni (19 nuclei)

ndash Spherical point mass and self gravity

ndash Spherical coordinate effective maximum grid r (3027) x q (768)

ndash Initial computational domain 109 cm ndash stellar surface 3x1012 cm

ndash How to initiate the explosionIntroduce aspherical initial radial

velocity and inject thermal energy around FeSi surface

ndash Perturbations of presupernova origins

httpflashuchicagoedusite

20140304 BH-mag 2014 Kumamoto Univ 32

FLASH Code

bull Eulerian hydrodynamic code

ndash Piecewise Parabolic Method (PPM)

ndash Unsplit solver MHD RHD

bull AMR (Adaptive mesh refinement)

ndash Reduce numerical costs

bull Many optional units

ndash Nuclear reaction networks

(7-19 nuclei)

The FLASH code is a modular parallel multiphysics simulation code

capable of handling general compressible flow problems found in many astrophysical environment (Fryxell et al 2000)

Type Ia SN

explosion

Jordan et al 2008

20140304 BH-mag 2014 Kumamoto Univ 33

Rayleigh-Taylor (RT) instability

120571120588 ∙ 120571119901 lt 0 (Chevalier 1979)

120588 1199033 rarr accelerate

Kifonidis et al 2006

Shengtai Li amp Hui Li 2006

RT unstable condition

1205882

1205881

g

Spherical explosions + RT

instabilities have not explained

the high velocity 56Ni

if 1205881 gt 1205882 120588 1199033 rarr decelerate

20140304 BH-mag 2014 Kumamoto Univ 34

Presupernova structure and introduced

perturbations

120571120588 ∙ 120571119901 lt 0 (Chavalier 1979)

120588 1199033 rarr shock wave tend

to be decelerated

Progenitor model 6 M8

helium core (Nomoto amp Hashimoto

1988) + 103 M8 hydrogen envelope

Si C+O He H

Rayleigh-Taylor unstable

Random

Sinusoidal

Perturbations are introduced at 6times109 cm (C+OHe) 5times1010 cm (HeH)

Models

20140304 BH-mag 2014 Kumamoto Univ 35

Parametersasphericity timing of the introduction

of perturbations

1 Spherical explosion models

2 Bipolar explosion models

3 Explosion models mimicking neutrino-driven

explosion

Results of models

20140304 BH-mag 2014 Kumamoto Univ 36

Spherical explosion models

20140304 BH-mag 2014 Kumamoto Univ 37

Density distributions

Perturbations

at C+OHe

Perturbations

at HeH

Perturbations

at both

Growth factor of instability

20140304 BH-mag 2014 Kumamoto Univ 38

Growth factors at the end of

simulation time

Growth rate for incompressible fluid

Growth rate for compressible fluid

Growth factors

Based on pure 1d spherical simulation

Radial velocity distribution of elements for

spherical explosion models

20140304 BH-mag 2014 Kumamoto Univ 39

Timing of the perturbations hardly affect

the maximum velocity of 56Ni

Maximum velocity of 56Ni lt 1600 km s-1

Different asphericity of bipolar explosions

20140304 BH-mag 2014 Kumamoto Univ 40

Bipolar explosion slightly enhance the mixing

length along the polar axis but maximum velocity

of 56Ni is still the level of lt 1700 km s-1

milder asphericity stronger asphericity

Revisiting Nagataki et al 2000 (jetlike explosion)

only initial large amplitude of perturbations

20140304 BH-mag 2014 Kumamoto Univ 41

with amplitude of 30 and m = 20

Initial relatively large sale of perturbations can not survive in later phase due to KH instabilities

Mimicking the neutrino-driven explosions

20140304 BH-mag 2014 Kumamoto Univ 42

Initial radial velocity

Scheck+04

Gawryszczak+10

Mechanism of the core-collapse supernova

explosions

bull Neutrino heating

20140304 BH-mag 2014 Kumamoto Univ 43

Taken from Janka et al 2012 (PTEP 1 A309)

Bethe 1990 (Rev Mod Phys 62 801) Taken from Liebendofer et al 2001

Convections and Standing Accretion Shock

Instability (SASI)

bull Convection around PNS surface

bull Neutrino-driven convection

bull Standing Accretion Shock Instability (SASI) (Blondin et al )

ndash Acoustic-vorticity cycle

20140304 BH-mag 2014 Kumamoto Univ 44

Ledoux criterion

Ledoux criterion

Taken from Liebendofer et al 2001

20140304 BH-mag 2014 Kumamoto Univ 45

Aspherical explosion with clumpy structure in the

explosion (movie)

20140304 BH-mag 2014 Kumamoto Univ 46

Aspherical explosion with clumpy structure + RT

instability

053 s 288 s 5752 s

20140304 BH-mag 2014 Kumamoto Univ 47

Maximum 3000 km s-1

56Ni

Radial velocity distributions of the best model in

this study

bull Relatively high velocity

(3000 km s-1) of 56Ni

bull Mass of 56Ni with ~ 3000

km s-1 14 x 10-3 M8

20140304 BH-mag 2014 Kumamoto Univ 48

Summary

bull To reproduce the high velocity of 56Ni both aspherical

explosion with clumpy structure and perturbations of

presupernova origins may be necessary

bull There are still missing ingredients to explain the observed

high velocity of 56Ni in SN 1987A

bull Possible missing ingredients

ndash More realistic explosion model (eg Kifonidis et al 2006)

ndash Lager perturbations in presupernova structure (Arnett amp Meakin 2011)

ndash Long simulation time

bull Heating due to the decay of 56Co (Herant amp Benz 1991)

ndash 3D effect (Hammer et al 2010)

Possible seeds of perturbations

bull Dynamical stellar evolution calculation

bull Density fluctuations

around the composition

interfaces

20140304 BH-mag 2014 Kumamoto Univ 49

Arnett amp Meakin 2011

20140304 BH-mag 2014 Kumamoto Univ 50

3D simulations of mixing instabilities in SN

explosions

Hammer et al 2010

56Ni 56Ni

2D 3D

Entropy per baryon Red Oxygen

Blue Nickel

Green Carbon

Direct-escape lines of 44Ti from SNR 1987A

bull lines from 44Ti 679 keV and 784 keV

bull Estimated 44Ti mass (31plusmn08) x 10-4 M8

20140304 BH-mag 2014 Kumamoto Univ 51

Grebenev+12 Nature 490 373

44Ti rarr 44Sc rarr 44Ca T12 = 60 d T12 = 4 h

Asymmetries in core-collapse supernovae from

maps of radioactive 44Ti in Cas A

20140304 BH-mag 2014 Kumamoto Univ 52

Grefenstette+14 Nature 506 339

Aspherical explosion enhance 44Ti

20140304 BH-mag 2014 Kumamoto Univ 53

56Ni 4He 44Ti

Alpha-rich freeze-out enhance the production of 44Ti in the

explosive nucleosynthesis

Aspherical explosion enhance the ratio of M(44Ti)M(56Ni)

096 s after the initiation of the explosion

Toward full 3D radiative transfer

bull 爆発形状を仮定した

輻射輸送計算

ndash 形状で偏光度が異なる

ndash 元素によっても異なる

bull 3次元物質混合計算を

インプットにした輻射

輸送計算

20140304 BH-mag 2014 Kumamoto Univ 54

Tanaka et al 2012 bipolar

clumpy

爆発形状のプローブ

20140304 BH-mag 2014 Kumamoto Univ 55

3D MHD simulation of a SNR

Introduction

bull Acceleration of cosmic-rays in SNRs

ndash Up to ~ 1015 eV or more

ndash Magnetic field is key ingredient

20140304 BH-mag 2014 Kumamoto Univ 56

SN1006 (Chandra X-ray)

Amplified strong magnetic field

20140304 BH-mag 2014 Kumamoto Univ 57

Uchiyama et al 2007 Nature 4469 576

Bohm-diffusion limit

Variations of X-ray hot

spots on a 1 yr timescale

Strong amplified

magnetic field

3D MHD simulation of a SNR

20140304 BH-mag 2014 Kumamoto Univ 58

3 pc

Preliminary

20140304 BH-mag 2014 Kumamoto Univ 59

Amplified magnetic field

20121015 - 17 SNSNR12 59

~ 50 μ G

1 μ G Preliminary

20140304 BH-mag 2014 Kumamoto Univ 60

3D structure of Cas A

Delaney et al 2010

Chandra lsquos X-rays

Spitzer lsquos infrared

Green X-ray Fe-K

Red IR [Ar II]

Blue high [Ne II][Ar II] ratio

Yellow optical outer ejecta

Grey IR [Si II]

Black X-ray Si XIII

20140304 BH-mag 2014 Kumamoto Univ 61

ASTRO-H

bull New exploration X-ray

Telescope

ndash First right will be

2015 yr

ndash 10 times larger

energy resolution

httpastro-hisasjaxajpgallerysatelite02html

High resolution spectrum

of X-ray from SNRs is

expected

3D simulation of the thermal X-ray emission from young

SNRs including efficient particle acceleration

bull 3D simulation

bull Diffusive Shock Acceleration

bull Back reaction from

accelerated particle

bull Non-equilibrium ionization

bull Thermal X-ray emission

20140304 BH-mag 2014 Kumamoto Univ 62

Ferrand et al 2012

To go further than

Ferrand et al

Test 1D calculation

bull Two energy equation for ions and electrons respectively

bull Energy equilibration between ions and electrons

bull Ionization

20140304 BH-mag 2014 Kumamoto Univ 63

20140304 BH-mag 2014 Kumamoto Univ 64

Density contour

Preliminary

Emission from deferent regions

20140304 BH-mag 2014 Kumamoto Univ 65

Preliminary

Summary

bull Aspherical nature of core-collapse supernova

explosions

bull Origin of heavy elements

ndash NS merger

ndash Magnetically driven jets

bull Mixing in CCSN explosion

bull Supernova explosions to Supernova remnant

20140304 BH-mag 2014 Kumamoto Univ 66

Page 29: Masaomi ONO Kyushu University - aichi-edu.ac.jptakahasi/BHmag2014_pdf/Presen/...Method of MHD simulation 16 Magnetohydrodynamics (ideal MHD) Poisson eq. pseudo-Newtonian potential

Motivation

bull Multidimensional high resolution hydrodynamics

simulations of the propagation of supernova shock wave

+ Nucleosynthesis calculation and advections of

synthesized nuclear species

20140304 BH-mag 2014 Kumamoto Univ 29

The conditions for reproducing the observed high

velocity of 56Ni are still unclear

To clarify the key conditions for reproducing such

high velocity of 56Ni we revisit matter mixing in

aspherical core-collapse supernova explosions

Methods

20140304 BH-mag 2014 Kumamoto Univ 30

20140304 BH-mag 2014 Kumamoto Univ 31

Methods

bull 2D hydrodynamic simulation

ndash AMR hydrodynamic code (FLASH Fryxell et al 2000)

ndash Parallel computing (SR16000 in YITP)

ndash Nuclear reaction network 1H 4He 12C hellip 54Fe 56Ni (19 nuclei)

ndash Spherical point mass and self gravity

ndash Spherical coordinate effective maximum grid r (3027) x q (768)

ndash Initial computational domain 109 cm ndash stellar surface 3x1012 cm

ndash How to initiate the explosionIntroduce aspherical initial radial

velocity and inject thermal energy around FeSi surface

ndash Perturbations of presupernova origins

httpflashuchicagoedusite

20140304 BH-mag 2014 Kumamoto Univ 32

FLASH Code

bull Eulerian hydrodynamic code

ndash Piecewise Parabolic Method (PPM)

ndash Unsplit solver MHD RHD

bull AMR (Adaptive mesh refinement)

ndash Reduce numerical costs

bull Many optional units

ndash Nuclear reaction networks

(7-19 nuclei)

The FLASH code is a modular parallel multiphysics simulation code

capable of handling general compressible flow problems found in many astrophysical environment (Fryxell et al 2000)

Type Ia SN

explosion

Jordan et al 2008

20140304 BH-mag 2014 Kumamoto Univ 33

Rayleigh-Taylor (RT) instability

120571120588 ∙ 120571119901 lt 0 (Chevalier 1979)

120588 1199033 rarr accelerate

Kifonidis et al 2006

Shengtai Li amp Hui Li 2006

RT unstable condition

1205882

1205881

g

Spherical explosions + RT

instabilities have not explained

the high velocity 56Ni

if 1205881 gt 1205882 120588 1199033 rarr decelerate

20140304 BH-mag 2014 Kumamoto Univ 34

Presupernova structure and introduced

perturbations

120571120588 ∙ 120571119901 lt 0 (Chavalier 1979)

120588 1199033 rarr shock wave tend

to be decelerated

Progenitor model 6 M8

helium core (Nomoto amp Hashimoto

1988) + 103 M8 hydrogen envelope

Si C+O He H

Rayleigh-Taylor unstable

Random

Sinusoidal

Perturbations are introduced at 6times109 cm (C+OHe) 5times1010 cm (HeH)

Models

20140304 BH-mag 2014 Kumamoto Univ 35

Parametersasphericity timing of the introduction

of perturbations

1 Spherical explosion models

2 Bipolar explosion models

3 Explosion models mimicking neutrino-driven

explosion

Results of models

20140304 BH-mag 2014 Kumamoto Univ 36

Spherical explosion models

20140304 BH-mag 2014 Kumamoto Univ 37

Density distributions

Perturbations

at C+OHe

Perturbations

at HeH

Perturbations

at both

Growth factor of instability

20140304 BH-mag 2014 Kumamoto Univ 38

Growth factors at the end of

simulation time

Growth rate for incompressible fluid

Growth rate for compressible fluid

Growth factors

Based on pure 1d spherical simulation

Radial velocity distribution of elements for

spherical explosion models

20140304 BH-mag 2014 Kumamoto Univ 39

Timing of the perturbations hardly affect

the maximum velocity of 56Ni

Maximum velocity of 56Ni lt 1600 km s-1

Different asphericity of bipolar explosions

20140304 BH-mag 2014 Kumamoto Univ 40

Bipolar explosion slightly enhance the mixing

length along the polar axis but maximum velocity

of 56Ni is still the level of lt 1700 km s-1

milder asphericity stronger asphericity

Revisiting Nagataki et al 2000 (jetlike explosion)

only initial large amplitude of perturbations

20140304 BH-mag 2014 Kumamoto Univ 41

with amplitude of 30 and m = 20

Initial relatively large sale of perturbations can not survive in later phase due to KH instabilities

Mimicking the neutrino-driven explosions

20140304 BH-mag 2014 Kumamoto Univ 42

Initial radial velocity

Scheck+04

Gawryszczak+10

Mechanism of the core-collapse supernova

explosions

bull Neutrino heating

20140304 BH-mag 2014 Kumamoto Univ 43

Taken from Janka et al 2012 (PTEP 1 A309)

Bethe 1990 (Rev Mod Phys 62 801) Taken from Liebendofer et al 2001

Convections and Standing Accretion Shock

Instability (SASI)

bull Convection around PNS surface

bull Neutrino-driven convection

bull Standing Accretion Shock Instability (SASI) (Blondin et al )

ndash Acoustic-vorticity cycle

20140304 BH-mag 2014 Kumamoto Univ 44

Ledoux criterion

Ledoux criterion

Taken from Liebendofer et al 2001

20140304 BH-mag 2014 Kumamoto Univ 45

Aspherical explosion with clumpy structure in the

explosion (movie)

20140304 BH-mag 2014 Kumamoto Univ 46

Aspherical explosion with clumpy structure + RT

instability

053 s 288 s 5752 s

20140304 BH-mag 2014 Kumamoto Univ 47

Maximum 3000 km s-1

56Ni

Radial velocity distributions of the best model in

this study

bull Relatively high velocity

(3000 km s-1) of 56Ni

bull Mass of 56Ni with ~ 3000

km s-1 14 x 10-3 M8

20140304 BH-mag 2014 Kumamoto Univ 48

Summary

bull To reproduce the high velocity of 56Ni both aspherical

explosion with clumpy structure and perturbations of

presupernova origins may be necessary

bull There are still missing ingredients to explain the observed

high velocity of 56Ni in SN 1987A

bull Possible missing ingredients

ndash More realistic explosion model (eg Kifonidis et al 2006)

ndash Lager perturbations in presupernova structure (Arnett amp Meakin 2011)

ndash Long simulation time

bull Heating due to the decay of 56Co (Herant amp Benz 1991)

ndash 3D effect (Hammer et al 2010)

Possible seeds of perturbations

bull Dynamical stellar evolution calculation

bull Density fluctuations

around the composition

interfaces

20140304 BH-mag 2014 Kumamoto Univ 49

Arnett amp Meakin 2011

20140304 BH-mag 2014 Kumamoto Univ 50

3D simulations of mixing instabilities in SN

explosions

Hammer et al 2010

56Ni 56Ni

2D 3D

Entropy per baryon Red Oxygen

Blue Nickel

Green Carbon

Direct-escape lines of 44Ti from SNR 1987A

bull lines from 44Ti 679 keV and 784 keV

bull Estimated 44Ti mass (31plusmn08) x 10-4 M8

20140304 BH-mag 2014 Kumamoto Univ 51

Grebenev+12 Nature 490 373

44Ti rarr 44Sc rarr 44Ca T12 = 60 d T12 = 4 h

Asymmetries in core-collapse supernovae from

maps of radioactive 44Ti in Cas A

20140304 BH-mag 2014 Kumamoto Univ 52

Grefenstette+14 Nature 506 339

Aspherical explosion enhance 44Ti

20140304 BH-mag 2014 Kumamoto Univ 53

56Ni 4He 44Ti

Alpha-rich freeze-out enhance the production of 44Ti in the

explosive nucleosynthesis

Aspherical explosion enhance the ratio of M(44Ti)M(56Ni)

096 s after the initiation of the explosion

Toward full 3D radiative transfer

bull 爆発形状を仮定した

輻射輸送計算

ndash 形状で偏光度が異なる

ndash 元素によっても異なる

bull 3次元物質混合計算を

インプットにした輻射

輸送計算

20140304 BH-mag 2014 Kumamoto Univ 54

Tanaka et al 2012 bipolar

clumpy

爆発形状のプローブ

20140304 BH-mag 2014 Kumamoto Univ 55

3D MHD simulation of a SNR

Introduction

bull Acceleration of cosmic-rays in SNRs

ndash Up to ~ 1015 eV or more

ndash Magnetic field is key ingredient

20140304 BH-mag 2014 Kumamoto Univ 56

SN1006 (Chandra X-ray)

Amplified strong magnetic field

20140304 BH-mag 2014 Kumamoto Univ 57

Uchiyama et al 2007 Nature 4469 576

Bohm-diffusion limit

Variations of X-ray hot

spots on a 1 yr timescale

Strong amplified

magnetic field

3D MHD simulation of a SNR

20140304 BH-mag 2014 Kumamoto Univ 58

3 pc

Preliminary

20140304 BH-mag 2014 Kumamoto Univ 59

Amplified magnetic field

20121015 - 17 SNSNR12 59

~ 50 μ G

1 μ G Preliminary

20140304 BH-mag 2014 Kumamoto Univ 60

3D structure of Cas A

Delaney et al 2010

Chandra lsquos X-rays

Spitzer lsquos infrared

Green X-ray Fe-K

Red IR [Ar II]

Blue high [Ne II][Ar II] ratio

Yellow optical outer ejecta

Grey IR [Si II]

Black X-ray Si XIII

20140304 BH-mag 2014 Kumamoto Univ 61

ASTRO-H

bull New exploration X-ray

Telescope

ndash First right will be

2015 yr

ndash 10 times larger

energy resolution

httpastro-hisasjaxajpgallerysatelite02html

High resolution spectrum

of X-ray from SNRs is

expected

3D simulation of the thermal X-ray emission from young

SNRs including efficient particle acceleration

bull 3D simulation

bull Diffusive Shock Acceleration

bull Back reaction from

accelerated particle

bull Non-equilibrium ionization

bull Thermal X-ray emission

20140304 BH-mag 2014 Kumamoto Univ 62

Ferrand et al 2012

To go further than

Ferrand et al

Test 1D calculation

bull Two energy equation for ions and electrons respectively

bull Energy equilibration between ions and electrons

bull Ionization

20140304 BH-mag 2014 Kumamoto Univ 63

20140304 BH-mag 2014 Kumamoto Univ 64

Density contour

Preliminary

Emission from deferent regions

20140304 BH-mag 2014 Kumamoto Univ 65

Preliminary

Summary

bull Aspherical nature of core-collapse supernova

explosions

bull Origin of heavy elements

ndash NS merger

ndash Magnetically driven jets

bull Mixing in CCSN explosion

bull Supernova explosions to Supernova remnant

20140304 BH-mag 2014 Kumamoto Univ 66

Page 30: Masaomi ONO Kyushu University - aichi-edu.ac.jptakahasi/BHmag2014_pdf/Presen/...Method of MHD simulation 16 Magnetohydrodynamics (ideal MHD) Poisson eq. pseudo-Newtonian potential

Methods

20140304 BH-mag 2014 Kumamoto Univ 30

20140304 BH-mag 2014 Kumamoto Univ 31

Methods

bull 2D hydrodynamic simulation

ndash AMR hydrodynamic code (FLASH Fryxell et al 2000)

ndash Parallel computing (SR16000 in YITP)

ndash Nuclear reaction network 1H 4He 12C hellip 54Fe 56Ni (19 nuclei)

ndash Spherical point mass and self gravity

ndash Spherical coordinate effective maximum grid r (3027) x q (768)

ndash Initial computational domain 109 cm ndash stellar surface 3x1012 cm

ndash How to initiate the explosionIntroduce aspherical initial radial

velocity and inject thermal energy around FeSi surface

ndash Perturbations of presupernova origins

httpflashuchicagoedusite

20140304 BH-mag 2014 Kumamoto Univ 32

FLASH Code

bull Eulerian hydrodynamic code

ndash Piecewise Parabolic Method (PPM)

ndash Unsplit solver MHD RHD

bull AMR (Adaptive mesh refinement)

ndash Reduce numerical costs

bull Many optional units

ndash Nuclear reaction networks

(7-19 nuclei)

The FLASH code is a modular parallel multiphysics simulation code

capable of handling general compressible flow problems found in many astrophysical environment (Fryxell et al 2000)

Type Ia SN

explosion

Jordan et al 2008

20140304 BH-mag 2014 Kumamoto Univ 33

Rayleigh-Taylor (RT) instability

120571120588 ∙ 120571119901 lt 0 (Chevalier 1979)

120588 1199033 rarr accelerate

Kifonidis et al 2006

Shengtai Li amp Hui Li 2006

RT unstable condition

1205882

1205881

g

Spherical explosions + RT

instabilities have not explained

the high velocity 56Ni

if 1205881 gt 1205882 120588 1199033 rarr decelerate

20140304 BH-mag 2014 Kumamoto Univ 34

Presupernova structure and introduced

perturbations

120571120588 ∙ 120571119901 lt 0 (Chavalier 1979)

120588 1199033 rarr shock wave tend

to be decelerated

Progenitor model 6 M8

helium core (Nomoto amp Hashimoto

1988) + 103 M8 hydrogen envelope

Si C+O He H

Rayleigh-Taylor unstable

Random

Sinusoidal

Perturbations are introduced at 6times109 cm (C+OHe) 5times1010 cm (HeH)

Models

20140304 BH-mag 2014 Kumamoto Univ 35

Parametersasphericity timing of the introduction

of perturbations

1 Spherical explosion models

2 Bipolar explosion models

3 Explosion models mimicking neutrino-driven

explosion

Results of models

20140304 BH-mag 2014 Kumamoto Univ 36

Spherical explosion models

20140304 BH-mag 2014 Kumamoto Univ 37

Density distributions

Perturbations

at C+OHe

Perturbations

at HeH

Perturbations

at both

Growth factor of instability

20140304 BH-mag 2014 Kumamoto Univ 38

Growth factors at the end of

simulation time

Growth rate for incompressible fluid

Growth rate for compressible fluid

Growth factors

Based on pure 1d spherical simulation

Radial velocity distribution of elements for

spherical explosion models

20140304 BH-mag 2014 Kumamoto Univ 39

Timing of the perturbations hardly affect

the maximum velocity of 56Ni

Maximum velocity of 56Ni lt 1600 km s-1

Different asphericity of bipolar explosions

20140304 BH-mag 2014 Kumamoto Univ 40

Bipolar explosion slightly enhance the mixing

length along the polar axis but maximum velocity

of 56Ni is still the level of lt 1700 km s-1

milder asphericity stronger asphericity

Revisiting Nagataki et al 2000 (jetlike explosion)

only initial large amplitude of perturbations

20140304 BH-mag 2014 Kumamoto Univ 41

with amplitude of 30 and m = 20

Initial relatively large sale of perturbations can not survive in later phase due to KH instabilities

Mimicking the neutrino-driven explosions

20140304 BH-mag 2014 Kumamoto Univ 42

Initial radial velocity

Scheck+04

Gawryszczak+10

Mechanism of the core-collapse supernova

explosions

bull Neutrino heating

20140304 BH-mag 2014 Kumamoto Univ 43

Taken from Janka et al 2012 (PTEP 1 A309)

Bethe 1990 (Rev Mod Phys 62 801) Taken from Liebendofer et al 2001

Convections and Standing Accretion Shock

Instability (SASI)

bull Convection around PNS surface

bull Neutrino-driven convection

bull Standing Accretion Shock Instability (SASI) (Blondin et al )

ndash Acoustic-vorticity cycle

20140304 BH-mag 2014 Kumamoto Univ 44

Ledoux criterion

Ledoux criterion

Taken from Liebendofer et al 2001

20140304 BH-mag 2014 Kumamoto Univ 45

Aspherical explosion with clumpy structure in the

explosion (movie)

20140304 BH-mag 2014 Kumamoto Univ 46

Aspherical explosion with clumpy structure + RT

instability

053 s 288 s 5752 s

20140304 BH-mag 2014 Kumamoto Univ 47

Maximum 3000 km s-1

56Ni

Radial velocity distributions of the best model in

this study

bull Relatively high velocity

(3000 km s-1) of 56Ni

bull Mass of 56Ni with ~ 3000

km s-1 14 x 10-3 M8

20140304 BH-mag 2014 Kumamoto Univ 48

Summary

bull To reproduce the high velocity of 56Ni both aspherical

explosion with clumpy structure and perturbations of

presupernova origins may be necessary

bull There are still missing ingredients to explain the observed

high velocity of 56Ni in SN 1987A

bull Possible missing ingredients

ndash More realistic explosion model (eg Kifonidis et al 2006)

ndash Lager perturbations in presupernova structure (Arnett amp Meakin 2011)

ndash Long simulation time

bull Heating due to the decay of 56Co (Herant amp Benz 1991)

ndash 3D effect (Hammer et al 2010)

Possible seeds of perturbations

bull Dynamical stellar evolution calculation

bull Density fluctuations

around the composition

interfaces

20140304 BH-mag 2014 Kumamoto Univ 49

Arnett amp Meakin 2011

20140304 BH-mag 2014 Kumamoto Univ 50

3D simulations of mixing instabilities in SN

explosions

Hammer et al 2010

56Ni 56Ni

2D 3D

Entropy per baryon Red Oxygen

Blue Nickel

Green Carbon

Direct-escape lines of 44Ti from SNR 1987A

bull lines from 44Ti 679 keV and 784 keV

bull Estimated 44Ti mass (31plusmn08) x 10-4 M8

20140304 BH-mag 2014 Kumamoto Univ 51

Grebenev+12 Nature 490 373

44Ti rarr 44Sc rarr 44Ca T12 = 60 d T12 = 4 h

Asymmetries in core-collapse supernovae from

maps of radioactive 44Ti in Cas A

20140304 BH-mag 2014 Kumamoto Univ 52

Grefenstette+14 Nature 506 339

Aspherical explosion enhance 44Ti

20140304 BH-mag 2014 Kumamoto Univ 53

56Ni 4He 44Ti

Alpha-rich freeze-out enhance the production of 44Ti in the

explosive nucleosynthesis

Aspherical explosion enhance the ratio of M(44Ti)M(56Ni)

096 s after the initiation of the explosion

Toward full 3D radiative transfer

bull 爆発形状を仮定した

輻射輸送計算

ndash 形状で偏光度が異なる

ndash 元素によっても異なる

bull 3次元物質混合計算を

インプットにした輻射

輸送計算

20140304 BH-mag 2014 Kumamoto Univ 54

Tanaka et al 2012 bipolar

clumpy

爆発形状のプローブ

20140304 BH-mag 2014 Kumamoto Univ 55

3D MHD simulation of a SNR

Introduction

bull Acceleration of cosmic-rays in SNRs

ndash Up to ~ 1015 eV or more

ndash Magnetic field is key ingredient

20140304 BH-mag 2014 Kumamoto Univ 56

SN1006 (Chandra X-ray)

Amplified strong magnetic field

20140304 BH-mag 2014 Kumamoto Univ 57

Uchiyama et al 2007 Nature 4469 576

Bohm-diffusion limit

Variations of X-ray hot

spots on a 1 yr timescale

Strong amplified

magnetic field

3D MHD simulation of a SNR

20140304 BH-mag 2014 Kumamoto Univ 58

3 pc

Preliminary

20140304 BH-mag 2014 Kumamoto Univ 59

Amplified magnetic field

20121015 - 17 SNSNR12 59

~ 50 μ G

1 μ G Preliminary

20140304 BH-mag 2014 Kumamoto Univ 60

3D structure of Cas A

Delaney et al 2010

Chandra lsquos X-rays

Spitzer lsquos infrared

Green X-ray Fe-K

Red IR [Ar II]

Blue high [Ne II][Ar II] ratio

Yellow optical outer ejecta

Grey IR [Si II]

Black X-ray Si XIII

20140304 BH-mag 2014 Kumamoto Univ 61

ASTRO-H

bull New exploration X-ray

Telescope

ndash First right will be

2015 yr

ndash 10 times larger

energy resolution

httpastro-hisasjaxajpgallerysatelite02html

High resolution spectrum

of X-ray from SNRs is

expected

3D simulation of the thermal X-ray emission from young

SNRs including efficient particle acceleration

bull 3D simulation

bull Diffusive Shock Acceleration

bull Back reaction from

accelerated particle

bull Non-equilibrium ionization

bull Thermal X-ray emission

20140304 BH-mag 2014 Kumamoto Univ 62

Ferrand et al 2012

To go further than

Ferrand et al

Test 1D calculation

bull Two energy equation for ions and electrons respectively

bull Energy equilibration between ions and electrons

bull Ionization

20140304 BH-mag 2014 Kumamoto Univ 63

20140304 BH-mag 2014 Kumamoto Univ 64

Density contour

Preliminary

Emission from deferent regions

20140304 BH-mag 2014 Kumamoto Univ 65

Preliminary

Summary

bull Aspherical nature of core-collapse supernova

explosions

bull Origin of heavy elements

ndash NS merger

ndash Magnetically driven jets

bull Mixing in CCSN explosion

bull Supernova explosions to Supernova remnant

20140304 BH-mag 2014 Kumamoto Univ 66

Page 31: Masaomi ONO Kyushu University - aichi-edu.ac.jptakahasi/BHmag2014_pdf/Presen/...Method of MHD simulation 16 Magnetohydrodynamics (ideal MHD) Poisson eq. pseudo-Newtonian potential

20140304 BH-mag 2014 Kumamoto Univ 31

Methods

bull 2D hydrodynamic simulation

ndash AMR hydrodynamic code (FLASH Fryxell et al 2000)

ndash Parallel computing (SR16000 in YITP)

ndash Nuclear reaction network 1H 4He 12C hellip 54Fe 56Ni (19 nuclei)

ndash Spherical point mass and self gravity

ndash Spherical coordinate effective maximum grid r (3027) x q (768)

ndash Initial computational domain 109 cm ndash stellar surface 3x1012 cm

ndash How to initiate the explosionIntroduce aspherical initial radial

velocity and inject thermal energy around FeSi surface

ndash Perturbations of presupernova origins

httpflashuchicagoedusite

20140304 BH-mag 2014 Kumamoto Univ 32

FLASH Code

bull Eulerian hydrodynamic code

ndash Piecewise Parabolic Method (PPM)

ndash Unsplit solver MHD RHD

bull AMR (Adaptive mesh refinement)

ndash Reduce numerical costs

bull Many optional units

ndash Nuclear reaction networks

(7-19 nuclei)

The FLASH code is a modular parallel multiphysics simulation code

capable of handling general compressible flow problems found in many astrophysical environment (Fryxell et al 2000)

Type Ia SN

explosion

Jordan et al 2008

20140304 BH-mag 2014 Kumamoto Univ 33

Rayleigh-Taylor (RT) instability

120571120588 ∙ 120571119901 lt 0 (Chevalier 1979)

120588 1199033 rarr accelerate

Kifonidis et al 2006

Shengtai Li amp Hui Li 2006

RT unstable condition

1205882

1205881

g

Spherical explosions + RT

instabilities have not explained

the high velocity 56Ni

if 1205881 gt 1205882 120588 1199033 rarr decelerate

20140304 BH-mag 2014 Kumamoto Univ 34

Presupernova structure and introduced

perturbations

120571120588 ∙ 120571119901 lt 0 (Chavalier 1979)

120588 1199033 rarr shock wave tend

to be decelerated

Progenitor model 6 M8

helium core (Nomoto amp Hashimoto

1988) + 103 M8 hydrogen envelope

Si C+O He H

Rayleigh-Taylor unstable

Random

Sinusoidal

Perturbations are introduced at 6times109 cm (C+OHe) 5times1010 cm (HeH)

Models

20140304 BH-mag 2014 Kumamoto Univ 35

Parametersasphericity timing of the introduction

of perturbations

1 Spherical explosion models

2 Bipolar explosion models

3 Explosion models mimicking neutrino-driven

explosion

Results of models

20140304 BH-mag 2014 Kumamoto Univ 36

Spherical explosion models

20140304 BH-mag 2014 Kumamoto Univ 37

Density distributions

Perturbations

at C+OHe

Perturbations

at HeH

Perturbations

at both

Growth factor of instability

20140304 BH-mag 2014 Kumamoto Univ 38

Growth factors at the end of

simulation time

Growth rate for incompressible fluid

Growth rate for compressible fluid

Growth factors

Based on pure 1d spherical simulation

Radial velocity distribution of elements for

spherical explosion models

20140304 BH-mag 2014 Kumamoto Univ 39

Timing of the perturbations hardly affect

the maximum velocity of 56Ni

Maximum velocity of 56Ni lt 1600 km s-1

Different asphericity of bipolar explosions

20140304 BH-mag 2014 Kumamoto Univ 40

Bipolar explosion slightly enhance the mixing

length along the polar axis but maximum velocity

of 56Ni is still the level of lt 1700 km s-1

milder asphericity stronger asphericity

Revisiting Nagataki et al 2000 (jetlike explosion)

only initial large amplitude of perturbations

20140304 BH-mag 2014 Kumamoto Univ 41

with amplitude of 30 and m = 20

Initial relatively large sale of perturbations can not survive in later phase due to KH instabilities

Mimicking the neutrino-driven explosions

20140304 BH-mag 2014 Kumamoto Univ 42

Initial radial velocity

Scheck+04

Gawryszczak+10

Mechanism of the core-collapse supernova

explosions

bull Neutrino heating

20140304 BH-mag 2014 Kumamoto Univ 43

Taken from Janka et al 2012 (PTEP 1 A309)

Bethe 1990 (Rev Mod Phys 62 801) Taken from Liebendofer et al 2001

Convections and Standing Accretion Shock

Instability (SASI)

bull Convection around PNS surface

bull Neutrino-driven convection

bull Standing Accretion Shock Instability (SASI) (Blondin et al )

ndash Acoustic-vorticity cycle

20140304 BH-mag 2014 Kumamoto Univ 44

Ledoux criterion

Ledoux criterion

Taken from Liebendofer et al 2001

20140304 BH-mag 2014 Kumamoto Univ 45

Aspherical explosion with clumpy structure in the

explosion (movie)

20140304 BH-mag 2014 Kumamoto Univ 46

Aspherical explosion with clumpy structure + RT

instability

053 s 288 s 5752 s

20140304 BH-mag 2014 Kumamoto Univ 47

Maximum 3000 km s-1

56Ni

Radial velocity distributions of the best model in

this study

bull Relatively high velocity

(3000 km s-1) of 56Ni

bull Mass of 56Ni with ~ 3000

km s-1 14 x 10-3 M8

20140304 BH-mag 2014 Kumamoto Univ 48

Summary

bull To reproduce the high velocity of 56Ni both aspherical

explosion with clumpy structure and perturbations of

presupernova origins may be necessary

bull There are still missing ingredients to explain the observed

high velocity of 56Ni in SN 1987A

bull Possible missing ingredients

ndash More realistic explosion model (eg Kifonidis et al 2006)

ndash Lager perturbations in presupernova structure (Arnett amp Meakin 2011)

ndash Long simulation time

bull Heating due to the decay of 56Co (Herant amp Benz 1991)

ndash 3D effect (Hammer et al 2010)

Possible seeds of perturbations

bull Dynamical stellar evolution calculation

bull Density fluctuations

around the composition

interfaces

20140304 BH-mag 2014 Kumamoto Univ 49

Arnett amp Meakin 2011

20140304 BH-mag 2014 Kumamoto Univ 50

3D simulations of mixing instabilities in SN

explosions

Hammer et al 2010

56Ni 56Ni

2D 3D

Entropy per baryon Red Oxygen

Blue Nickel

Green Carbon

Direct-escape lines of 44Ti from SNR 1987A

bull lines from 44Ti 679 keV and 784 keV

bull Estimated 44Ti mass (31plusmn08) x 10-4 M8

20140304 BH-mag 2014 Kumamoto Univ 51

Grebenev+12 Nature 490 373

44Ti rarr 44Sc rarr 44Ca T12 = 60 d T12 = 4 h

Asymmetries in core-collapse supernovae from

maps of radioactive 44Ti in Cas A

20140304 BH-mag 2014 Kumamoto Univ 52

Grefenstette+14 Nature 506 339

Aspherical explosion enhance 44Ti

20140304 BH-mag 2014 Kumamoto Univ 53

56Ni 4He 44Ti

Alpha-rich freeze-out enhance the production of 44Ti in the

explosive nucleosynthesis

Aspherical explosion enhance the ratio of M(44Ti)M(56Ni)

096 s after the initiation of the explosion

Toward full 3D radiative transfer

bull 爆発形状を仮定した

輻射輸送計算

ndash 形状で偏光度が異なる

ndash 元素によっても異なる

bull 3次元物質混合計算を

インプットにした輻射

輸送計算

20140304 BH-mag 2014 Kumamoto Univ 54

Tanaka et al 2012 bipolar

clumpy

爆発形状のプローブ

20140304 BH-mag 2014 Kumamoto Univ 55

3D MHD simulation of a SNR

Introduction

bull Acceleration of cosmic-rays in SNRs

ndash Up to ~ 1015 eV or more

ndash Magnetic field is key ingredient

20140304 BH-mag 2014 Kumamoto Univ 56

SN1006 (Chandra X-ray)

Amplified strong magnetic field

20140304 BH-mag 2014 Kumamoto Univ 57

Uchiyama et al 2007 Nature 4469 576

Bohm-diffusion limit

Variations of X-ray hot

spots on a 1 yr timescale

Strong amplified

magnetic field

3D MHD simulation of a SNR

20140304 BH-mag 2014 Kumamoto Univ 58

3 pc

Preliminary

20140304 BH-mag 2014 Kumamoto Univ 59

Amplified magnetic field

20121015 - 17 SNSNR12 59

~ 50 μ G

1 μ G Preliminary

20140304 BH-mag 2014 Kumamoto Univ 60

3D structure of Cas A

Delaney et al 2010

Chandra lsquos X-rays

Spitzer lsquos infrared

Green X-ray Fe-K

Red IR [Ar II]

Blue high [Ne II][Ar II] ratio

Yellow optical outer ejecta

Grey IR [Si II]

Black X-ray Si XIII

20140304 BH-mag 2014 Kumamoto Univ 61

ASTRO-H

bull New exploration X-ray

Telescope

ndash First right will be

2015 yr

ndash 10 times larger

energy resolution

httpastro-hisasjaxajpgallerysatelite02html

High resolution spectrum

of X-ray from SNRs is

expected

3D simulation of the thermal X-ray emission from young

SNRs including efficient particle acceleration

bull 3D simulation

bull Diffusive Shock Acceleration

bull Back reaction from

accelerated particle

bull Non-equilibrium ionization

bull Thermal X-ray emission

20140304 BH-mag 2014 Kumamoto Univ 62

Ferrand et al 2012

To go further than

Ferrand et al

Test 1D calculation

bull Two energy equation for ions and electrons respectively

bull Energy equilibration between ions and electrons

bull Ionization

20140304 BH-mag 2014 Kumamoto Univ 63

20140304 BH-mag 2014 Kumamoto Univ 64

Density contour

Preliminary

Emission from deferent regions

20140304 BH-mag 2014 Kumamoto Univ 65

Preliminary

Summary

bull Aspherical nature of core-collapse supernova

explosions

bull Origin of heavy elements

ndash NS merger

ndash Magnetically driven jets

bull Mixing in CCSN explosion

bull Supernova explosions to Supernova remnant

20140304 BH-mag 2014 Kumamoto Univ 66

Page 32: Masaomi ONO Kyushu University - aichi-edu.ac.jptakahasi/BHmag2014_pdf/Presen/...Method of MHD simulation 16 Magnetohydrodynamics (ideal MHD) Poisson eq. pseudo-Newtonian potential

20140304 BH-mag 2014 Kumamoto Univ 32

FLASH Code

bull Eulerian hydrodynamic code

ndash Piecewise Parabolic Method (PPM)

ndash Unsplit solver MHD RHD

bull AMR (Adaptive mesh refinement)

ndash Reduce numerical costs

bull Many optional units

ndash Nuclear reaction networks

(7-19 nuclei)

The FLASH code is a modular parallel multiphysics simulation code

capable of handling general compressible flow problems found in many astrophysical environment (Fryxell et al 2000)

Type Ia SN

explosion

Jordan et al 2008

20140304 BH-mag 2014 Kumamoto Univ 33

Rayleigh-Taylor (RT) instability

120571120588 ∙ 120571119901 lt 0 (Chevalier 1979)

120588 1199033 rarr accelerate

Kifonidis et al 2006

Shengtai Li amp Hui Li 2006

RT unstable condition

1205882

1205881

g

Spherical explosions + RT

instabilities have not explained

the high velocity 56Ni

if 1205881 gt 1205882 120588 1199033 rarr decelerate

20140304 BH-mag 2014 Kumamoto Univ 34

Presupernova structure and introduced

perturbations

120571120588 ∙ 120571119901 lt 0 (Chavalier 1979)

120588 1199033 rarr shock wave tend

to be decelerated

Progenitor model 6 M8

helium core (Nomoto amp Hashimoto

1988) + 103 M8 hydrogen envelope

Si C+O He H

Rayleigh-Taylor unstable

Random

Sinusoidal

Perturbations are introduced at 6times109 cm (C+OHe) 5times1010 cm (HeH)

Models

20140304 BH-mag 2014 Kumamoto Univ 35

Parametersasphericity timing of the introduction

of perturbations

1 Spherical explosion models

2 Bipolar explosion models

3 Explosion models mimicking neutrino-driven

explosion

Results of models

20140304 BH-mag 2014 Kumamoto Univ 36

Spherical explosion models

20140304 BH-mag 2014 Kumamoto Univ 37

Density distributions

Perturbations

at C+OHe

Perturbations

at HeH

Perturbations

at both

Growth factor of instability

20140304 BH-mag 2014 Kumamoto Univ 38

Growth factors at the end of

simulation time

Growth rate for incompressible fluid

Growth rate for compressible fluid

Growth factors

Based on pure 1d spherical simulation

Radial velocity distribution of elements for

spherical explosion models

20140304 BH-mag 2014 Kumamoto Univ 39

Timing of the perturbations hardly affect

the maximum velocity of 56Ni

Maximum velocity of 56Ni lt 1600 km s-1

Different asphericity of bipolar explosions

20140304 BH-mag 2014 Kumamoto Univ 40

Bipolar explosion slightly enhance the mixing

length along the polar axis but maximum velocity

of 56Ni is still the level of lt 1700 km s-1

milder asphericity stronger asphericity

Revisiting Nagataki et al 2000 (jetlike explosion)

only initial large amplitude of perturbations

20140304 BH-mag 2014 Kumamoto Univ 41

with amplitude of 30 and m = 20

Initial relatively large sale of perturbations can not survive in later phase due to KH instabilities

Mimicking the neutrino-driven explosions

20140304 BH-mag 2014 Kumamoto Univ 42

Initial radial velocity

Scheck+04

Gawryszczak+10

Mechanism of the core-collapse supernova

explosions

bull Neutrino heating

20140304 BH-mag 2014 Kumamoto Univ 43

Taken from Janka et al 2012 (PTEP 1 A309)

Bethe 1990 (Rev Mod Phys 62 801) Taken from Liebendofer et al 2001

Convections and Standing Accretion Shock

Instability (SASI)

bull Convection around PNS surface

bull Neutrino-driven convection

bull Standing Accretion Shock Instability (SASI) (Blondin et al )

ndash Acoustic-vorticity cycle

20140304 BH-mag 2014 Kumamoto Univ 44

Ledoux criterion

Ledoux criterion

Taken from Liebendofer et al 2001

20140304 BH-mag 2014 Kumamoto Univ 45

Aspherical explosion with clumpy structure in the

explosion (movie)

20140304 BH-mag 2014 Kumamoto Univ 46

Aspherical explosion with clumpy structure + RT

instability

053 s 288 s 5752 s

20140304 BH-mag 2014 Kumamoto Univ 47

Maximum 3000 km s-1

56Ni

Radial velocity distributions of the best model in

this study

bull Relatively high velocity

(3000 km s-1) of 56Ni

bull Mass of 56Ni with ~ 3000

km s-1 14 x 10-3 M8

20140304 BH-mag 2014 Kumamoto Univ 48

Summary

bull To reproduce the high velocity of 56Ni both aspherical

explosion with clumpy structure and perturbations of

presupernova origins may be necessary

bull There are still missing ingredients to explain the observed

high velocity of 56Ni in SN 1987A

bull Possible missing ingredients

ndash More realistic explosion model (eg Kifonidis et al 2006)

ndash Lager perturbations in presupernova structure (Arnett amp Meakin 2011)

ndash Long simulation time

bull Heating due to the decay of 56Co (Herant amp Benz 1991)

ndash 3D effect (Hammer et al 2010)

Possible seeds of perturbations

bull Dynamical stellar evolution calculation

bull Density fluctuations

around the composition

interfaces

20140304 BH-mag 2014 Kumamoto Univ 49

Arnett amp Meakin 2011

20140304 BH-mag 2014 Kumamoto Univ 50

3D simulations of mixing instabilities in SN

explosions

Hammer et al 2010

56Ni 56Ni

2D 3D

Entropy per baryon Red Oxygen

Blue Nickel

Green Carbon

Direct-escape lines of 44Ti from SNR 1987A

bull lines from 44Ti 679 keV and 784 keV

bull Estimated 44Ti mass (31plusmn08) x 10-4 M8

20140304 BH-mag 2014 Kumamoto Univ 51

Grebenev+12 Nature 490 373

44Ti rarr 44Sc rarr 44Ca T12 = 60 d T12 = 4 h

Asymmetries in core-collapse supernovae from

maps of radioactive 44Ti in Cas A

20140304 BH-mag 2014 Kumamoto Univ 52

Grefenstette+14 Nature 506 339

Aspherical explosion enhance 44Ti

20140304 BH-mag 2014 Kumamoto Univ 53

56Ni 4He 44Ti

Alpha-rich freeze-out enhance the production of 44Ti in the

explosive nucleosynthesis

Aspherical explosion enhance the ratio of M(44Ti)M(56Ni)

096 s after the initiation of the explosion

Toward full 3D radiative transfer

bull 爆発形状を仮定した

輻射輸送計算

ndash 形状で偏光度が異なる

ndash 元素によっても異なる

bull 3次元物質混合計算を

インプットにした輻射

輸送計算

20140304 BH-mag 2014 Kumamoto Univ 54

Tanaka et al 2012 bipolar

clumpy

爆発形状のプローブ

20140304 BH-mag 2014 Kumamoto Univ 55

3D MHD simulation of a SNR

Introduction

bull Acceleration of cosmic-rays in SNRs

ndash Up to ~ 1015 eV or more

ndash Magnetic field is key ingredient

20140304 BH-mag 2014 Kumamoto Univ 56

SN1006 (Chandra X-ray)

Amplified strong magnetic field

20140304 BH-mag 2014 Kumamoto Univ 57

Uchiyama et al 2007 Nature 4469 576

Bohm-diffusion limit

Variations of X-ray hot

spots on a 1 yr timescale

Strong amplified

magnetic field

3D MHD simulation of a SNR

20140304 BH-mag 2014 Kumamoto Univ 58

3 pc

Preliminary

20140304 BH-mag 2014 Kumamoto Univ 59

Amplified magnetic field

20121015 - 17 SNSNR12 59

~ 50 μ G

1 μ G Preliminary

20140304 BH-mag 2014 Kumamoto Univ 60

3D structure of Cas A

Delaney et al 2010

Chandra lsquos X-rays

Spitzer lsquos infrared

Green X-ray Fe-K

Red IR [Ar II]

Blue high [Ne II][Ar II] ratio

Yellow optical outer ejecta

Grey IR [Si II]

Black X-ray Si XIII

20140304 BH-mag 2014 Kumamoto Univ 61

ASTRO-H

bull New exploration X-ray

Telescope

ndash First right will be

2015 yr

ndash 10 times larger

energy resolution

httpastro-hisasjaxajpgallerysatelite02html

High resolution spectrum

of X-ray from SNRs is

expected

3D simulation of the thermal X-ray emission from young

SNRs including efficient particle acceleration

bull 3D simulation

bull Diffusive Shock Acceleration

bull Back reaction from

accelerated particle

bull Non-equilibrium ionization

bull Thermal X-ray emission

20140304 BH-mag 2014 Kumamoto Univ 62

Ferrand et al 2012

To go further than

Ferrand et al

Test 1D calculation

bull Two energy equation for ions and electrons respectively

bull Energy equilibration between ions and electrons

bull Ionization

20140304 BH-mag 2014 Kumamoto Univ 63

20140304 BH-mag 2014 Kumamoto Univ 64

Density contour

Preliminary

Emission from deferent regions

20140304 BH-mag 2014 Kumamoto Univ 65

Preliminary

Summary

bull Aspherical nature of core-collapse supernova

explosions

bull Origin of heavy elements

ndash NS merger

ndash Magnetically driven jets

bull Mixing in CCSN explosion

bull Supernova explosions to Supernova remnant

20140304 BH-mag 2014 Kumamoto Univ 66

Page 33: Masaomi ONO Kyushu University - aichi-edu.ac.jptakahasi/BHmag2014_pdf/Presen/...Method of MHD simulation 16 Magnetohydrodynamics (ideal MHD) Poisson eq. pseudo-Newtonian potential

20140304 BH-mag 2014 Kumamoto Univ 33

Rayleigh-Taylor (RT) instability

120571120588 ∙ 120571119901 lt 0 (Chevalier 1979)

120588 1199033 rarr accelerate

Kifonidis et al 2006

Shengtai Li amp Hui Li 2006

RT unstable condition

1205882

1205881

g

Spherical explosions + RT

instabilities have not explained

the high velocity 56Ni

if 1205881 gt 1205882 120588 1199033 rarr decelerate

20140304 BH-mag 2014 Kumamoto Univ 34

Presupernova structure and introduced

perturbations

120571120588 ∙ 120571119901 lt 0 (Chavalier 1979)

120588 1199033 rarr shock wave tend

to be decelerated

Progenitor model 6 M8

helium core (Nomoto amp Hashimoto

1988) + 103 M8 hydrogen envelope

Si C+O He H

Rayleigh-Taylor unstable

Random

Sinusoidal

Perturbations are introduced at 6times109 cm (C+OHe) 5times1010 cm (HeH)

Models

20140304 BH-mag 2014 Kumamoto Univ 35

Parametersasphericity timing of the introduction

of perturbations

1 Spherical explosion models

2 Bipolar explosion models

3 Explosion models mimicking neutrino-driven

explosion

Results of models

20140304 BH-mag 2014 Kumamoto Univ 36

Spherical explosion models

20140304 BH-mag 2014 Kumamoto Univ 37

Density distributions

Perturbations

at C+OHe

Perturbations

at HeH

Perturbations

at both

Growth factor of instability

20140304 BH-mag 2014 Kumamoto Univ 38

Growth factors at the end of

simulation time

Growth rate for incompressible fluid

Growth rate for compressible fluid

Growth factors

Based on pure 1d spherical simulation

Radial velocity distribution of elements for

spherical explosion models

20140304 BH-mag 2014 Kumamoto Univ 39

Timing of the perturbations hardly affect

the maximum velocity of 56Ni

Maximum velocity of 56Ni lt 1600 km s-1

Different asphericity of bipolar explosions

20140304 BH-mag 2014 Kumamoto Univ 40

Bipolar explosion slightly enhance the mixing

length along the polar axis but maximum velocity

of 56Ni is still the level of lt 1700 km s-1

milder asphericity stronger asphericity

Revisiting Nagataki et al 2000 (jetlike explosion)

only initial large amplitude of perturbations

20140304 BH-mag 2014 Kumamoto Univ 41

with amplitude of 30 and m = 20

Initial relatively large sale of perturbations can not survive in later phase due to KH instabilities

Mimicking the neutrino-driven explosions

20140304 BH-mag 2014 Kumamoto Univ 42

Initial radial velocity

Scheck+04

Gawryszczak+10

Mechanism of the core-collapse supernova

explosions

bull Neutrino heating

20140304 BH-mag 2014 Kumamoto Univ 43

Taken from Janka et al 2012 (PTEP 1 A309)

Bethe 1990 (Rev Mod Phys 62 801) Taken from Liebendofer et al 2001

Convections and Standing Accretion Shock

Instability (SASI)

bull Convection around PNS surface

bull Neutrino-driven convection

bull Standing Accretion Shock Instability (SASI) (Blondin et al )

ndash Acoustic-vorticity cycle

20140304 BH-mag 2014 Kumamoto Univ 44

Ledoux criterion

Ledoux criterion

Taken from Liebendofer et al 2001

20140304 BH-mag 2014 Kumamoto Univ 45

Aspherical explosion with clumpy structure in the

explosion (movie)

20140304 BH-mag 2014 Kumamoto Univ 46

Aspherical explosion with clumpy structure + RT

instability

053 s 288 s 5752 s

20140304 BH-mag 2014 Kumamoto Univ 47

Maximum 3000 km s-1

56Ni

Radial velocity distributions of the best model in

this study

bull Relatively high velocity

(3000 km s-1) of 56Ni

bull Mass of 56Ni with ~ 3000

km s-1 14 x 10-3 M8

20140304 BH-mag 2014 Kumamoto Univ 48

Summary

bull To reproduce the high velocity of 56Ni both aspherical

explosion with clumpy structure and perturbations of

presupernova origins may be necessary

bull There are still missing ingredients to explain the observed

high velocity of 56Ni in SN 1987A

bull Possible missing ingredients

ndash More realistic explosion model (eg Kifonidis et al 2006)

ndash Lager perturbations in presupernova structure (Arnett amp Meakin 2011)

ndash Long simulation time

bull Heating due to the decay of 56Co (Herant amp Benz 1991)

ndash 3D effect (Hammer et al 2010)

Possible seeds of perturbations

bull Dynamical stellar evolution calculation

bull Density fluctuations

around the composition

interfaces

20140304 BH-mag 2014 Kumamoto Univ 49

Arnett amp Meakin 2011

20140304 BH-mag 2014 Kumamoto Univ 50

3D simulations of mixing instabilities in SN

explosions

Hammer et al 2010

56Ni 56Ni

2D 3D

Entropy per baryon Red Oxygen

Blue Nickel

Green Carbon

Direct-escape lines of 44Ti from SNR 1987A

bull lines from 44Ti 679 keV and 784 keV

bull Estimated 44Ti mass (31plusmn08) x 10-4 M8

20140304 BH-mag 2014 Kumamoto Univ 51

Grebenev+12 Nature 490 373

44Ti rarr 44Sc rarr 44Ca T12 = 60 d T12 = 4 h

Asymmetries in core-collapse supernovae from

maps of radioactive 44Ti in Cas A

20140304 BH-mag 2014 Kumamoto Univ 52

Grefenstette+14 Nature 506 339

Aspherical explosion enhance 44Ti

20140304 BH-mag 2014 Kumamoto Univ 53

56Ni 4He 44Ti

Alpha-rich freeze-out enhance the production of 44Ti in the

explosive nucleosynthesis

Aspherical explosion enhance the ratio of M(44Ti)M(56Ni)

096 s after the initiation of the explosion

Toward full 3D radiative transfer

bull 爆発形状を仮定した

輻射輸送計算

ndash 形状で偏光度が異なる

ndash 元素によっても異なる

bull 3次元物質混合計算を

インプットにした輻射

輸送計算

20140304 BH-mag 2014 Kumamoto Univ 54

Tanaka et al 2012 bipolar

clumpy

爆発形状のプローブ

20140304 BH-mag 2014 Kumamoto Univ 55

3D MHD simulation of a SNR

Introduction

bull Acceleration of cosmic-rays in SNRs

ndash Up to ~ 1015 eV or more

ndash Magnetic field is key ingredient

20140304 BH-mag 2014 Kumamoto Univ 56

SN1006 (Chandra X-ray)

Amplified strong magnetic field

20140304 BH-mag 2014 Kumamoto Univ 57

Uchiyama et al 2007 Nature 4469 576

Bohm-diffusion limit

Variations of X-ray hot

spots on a 1 yr timescale

Strong amplified

magnetic field

3D MHD simulation of a SNR

20140304 BH-mag 2014 Kumamoto Univ 58

3 pc

Preliminary

20140304 BH-mag 2014 Kumamoto Univ 59

Amplified magnetic field

20121015 - 17 SNSNR12 59

~ 50 μ G

1 μ G Preliminary

20140304 BH-mag 2014 Kumamoto Univ 60

3D structure of Cas A

Delaney et al 2010

Chandra lsquos X-rays

Spitzer lsquos infrared

Green X-ray Fe-K

Red IR [Ar II]

Blue high [Ne II][Ar II] ratio

Yellow optical outer ejecta

Grey IR [Si II]

Black X-ray Si XIII

20140304 BH-mag 2014 Kumamoto Univ 61

ASTRO-H

bull New exploration X-ray

Telescope

ndash First right will be

2015 yr

ndash 10 times larger

energy resolution

httpastro-hisasjaxajpgallerysatelite02html

High resolution spectrum

of X-ray from SNRs is

expected

3D simulation of the thermal X-ray emission from young

SNRs including efficient particle acceleration

bull 3D simulation

bull Diffusive Shock Acceleration

bull Back reaction from

accelerated particle

bull Non-equilibrium ionization

bull Thermal X-ray emission

20140304 BH-mag 2014 Kumamoto Univ 62

Ferrand et al 2012

To go further than

Ferrand et al

Test 1D calculation

bull Two energy equation for ions and electrons respectively

bull Energy equilibration between ions and electrons

bull Ionization

20140304 BH-mag 2014 Kumamoto Univ 63

20140304 BH-mag 2014 Kumamoto Univ 64

Density contour

Preliminary

Emission from deferent regions

20140304 BH-mag 2014 Kumamoto Univ 65

Preliminary

Summary

bull Aspherical nature of core-collapse supernova

explosions

bull Origin of heavy elements

ndash NS merger

ndash Magnetically driven jets

bull Mixing in CCSN explosion

bull Supernova explosions to Supernova remnant

20140304 BH-mag 2014 Kumamoto Univ 66

Page 34: Masaomi ONO Kyushu University - aichi-edu.ac.jptakahasi/BHmag2014_pdf/Presen/...Method of MHD simulation 16 Magnetohydrodynamics (ideal MHD) Poisson eq. pseudo-Newtonian potential

20140304 BH-mag 2014 Kumamoto Univ 34

Presupernova structure and introduced

perturbations

120571120588 ∙ 120571119901 lt 0 (Chavalier 1979)

120588 1199033 rarr shock wave tend

to be decelerated

Progenitor model 6 M8

helium core (Nomoto amp Hashimoto

1988) + 103 M8 hydrogen envelope

Si C+O He H

Rayleigh-Taylor unstable

Random

Sinusoidal

Perturbations are introduced at 6times109 cm (C+OHe) 5times1010 cm (HeH)

Models

20140304 BH-mag 2014 Kumamoto Univ 35

Parametersasphericity timing of the introduction

of perturbations

1 Spherical explosion models

2 Bipolar explosion models

3 Explosion models mimicking neutrino-driven

explosion

Results of models

20140304 BH-mag 2014 Kumamoto Univ 36

Spherical explosion models

20140304 BH-mag 2014 Kumamoto Univ 37

Density distributions

Perturbations

at C+OHe

Perturbations

at HeH

Perturbations

at both

Growth factor of instability

20140304 BH-mag 2014 Kumamoto Univ 38

Growth factors at the end of

simulation time

Growth rate for incompressible fluid

Growth rate for compressible fluid

Growth factors

Based on pure 1d spherical simulation

Radial velocity distribution of elements for

spherical explosion models

20140304 BH-mag 2014 Kumamoto Univ 39

Timing of the perturbations hardly affect

the maximum velocity of 56Ni

Maximum velocity of 56Ni lt 1600 km s-1

Different asphericity of bipolar explosions

20140304 BH-mag 2014 Kumamoto Univ 40

Bipolar explosion slightly enhance the mixing

length along the polar axis but maximum velocity

of 56Ni is still the level of lt 1700 km s-1

milder asphericity stronger asphericity

Revisiting Nagataki et al 2000 (jetlike explosion)

only initial large amplitude of perturbations

20140304 BH-mag 2014 Kumamoto Univ 41

with amplitude of 30 and m = 20

Initial relatively large sale of perturbations can not survive in later phase due to KH instabilities

Mimicking the neutrino-driven explosions

20140304 BH-mag 2014 Kumamoto Univ 42

Initial radial velocity

Scheck+04

Gawryszczak+10

Mechanism of the core-collapse supernova

explosions

bull Neutrino heating

20140304 BH-mag 2014 Kumamoto Univ 43

Taken from Janka et al 2012 (PTEP 1 A309)

Bethe 1990 (Rev Mod Phys 62 801) Taken from Liebendofer et al 2001

Convections and Standing Accretion Shock

Instability (SASI)

bull Convection around PNS surface

bull Neutrino-driven convection

bull Standing Accretion Shock Instability (SASI) (Blondin et al )

ndash Acoustic-vorticity cycle

20140304 BH-mag 2014 Kumamoto Univ 44

Ledoux criterion

Ledoux criterion

Taken from Liebendofer et al 2001

20140304 BH-mag 2014 Kumamoto Univ 45

Aspherical explosion with clumpy structure in the

explosion (movie)

20140304 BH-mag 2014 Kumamoto Univ 46

Aspherical explosion with clumpy structure + RT

instability

053 s 288 s 5752 s

20140304 BH-mag 2014 Kumamoto Univ 47

Maximum 3000 km s-1

56Ni

Radial velocity distributions of the best model in

this study

bull Relatively high velocity

(3000 km s-1) of 56Ni

bull Mass of 56Ni with ~ 3000

km s-1 14 x 10-3 M8

20140304 BH-mag 2014 Kumamoto Univ 48

Summary

bull To reproduce the high velocity of 56Ni both aspherical

explosion with clumpy structure and perturbations of

presupernova origins may be necessary

bull There are still missing ingredients to explain the observed

high velocity of 56Ni in SN 1987A

bull Possible missing ingredients

ndash More realistic explosion model (eg Kifonidis et al 2006)

ndash Lager perturbations in presupernova structure (Arnett amp Meakin 2011)

ndash Long simulation time

bull Heating due to the decay of 56Co (Herant amp Benz 1991)

ndash 3D effect (Hammer et al 2010)

Possible seeds of perturbations

bull Dynamical stellar evolution calculation

bull Density fluctuations

around the composition

interfaces

20140304 BH-mag 2014 Kumamoto Univ 49

Arnett amp Meakin 2011

20140304 BH-mag 2014 Kumamoto Univ 50

3D simulations of mixing instabilities in SN

explosions

Hammer et al 2010

56Ni 56Ni

2D 3D

Entropy per baryon Red Oxygen

Blue Nickel

Green Carbon

Direct-escape lines of 44Ti from SNR 1987A

bull lines from 44Ti 679 keV and 784 keV

bull Estimated 44Ti mass (31plusmn08) x 10-4 M8

20140304 BH-mag 2014 Kumamoto Univ 51

Grebenev+12 Nature 490 373

44Ti rarr 44Sc rarr 44Ca T12 = 60 d T12 = 4 h

Asymmetries in core-collapse supernovae from

maps of radioactive 44Ti in Cas A

20140304 BH-mag 2014 Kumamoto Univ 52

Grefenstette+14 Nature 506 339

Aspherical explosion enhance 44Ti

20140304 BH-mag 2014 Kumamoto Univ 53

56Ni 4He 44Ti

Alpha-rich freeze-out enhance the production of 44Ti in the

explosive nucleosynthesis

Aspherical explosion enhance the ratio of M(44Ti)M(56Ni)

096 s after the initiation of the explosion

Toward full 3D radiative transfer

bull 爆発形状を仮定した

輻射輸送計算

ndash 形状で偏光度が異なる

ndash 元素によっても異なる

bull 3次元物質混合計算を

インプットにした輻射

輸送計算

20140304 BH-mag 2014 Kumamoto Univ 54

Tanaka et al 2012 bipolar

clumpy

爆発形状のプローブ

20140304 BH-mag 2014 Kumamoto Univ 55

3D MHD simulation of a SNR

Introduction

bull Acceleration of cosmic-rays in SNRs

ndash Up to ~ 1015 eV or more

ndash Magnetic field is key ingredient

20140304 BH-mag 2014 Kumamoto Univ 56

SN1006 (Chandra X-ray)

Amplified strong magnetic field

20140304 BH-mag 2014 Kumamoto Univ 57

Uchiyama et al 2007 Nature 4469 576

Bohm-diffusion limit

Variations of X-ray hot

spots on a 1 yr timescale

Strong amplified

magnetic field

3D MHD simulation of a SNR

20140304 BH-mag 2014 Kumamoto Univ 58

3 pc

Preliminary

20140304 BH-mag 2014 Kumamoto Univ 59

Amplified magnetic field

20121015 - 17 SNSNR12 59

~ 50 μ G

1 μ G Preliminary

20140304 BH-mag 2014 Kumamoto Univ 60

3D structure of Cas A

Delaney et al 2010

Chandra lsquos X-rays

Spitzer lsquos infrared

Green X-ray Fe-K

Red IR [Ar II]

Blue high [Ne II][Ar II] ratio

Yellow optical outer ejecta

Grey IR [Si II]

Black X-ray Si XIII

20140304 BH-mag 2014 Kumamoto Univ 61

ASTRO-H

bull New exploration X-ray

Telescope

ndash First right will be

2015 yr

ndash 10 times larger

energy resolution

httpastro-hisasjaxajpgallerysatelite02html

High resolution spectrum

of X-ray from SNRs is

expected

3D simulation of the thermal X-ray emission from young

SNRs including efficient particle acceleration

bull 3D simulation

bull Diffusive Shock Acceleration

bull Back reaction from

accelerated particle

bull Non-equilibrium ionization

bull Thermal X-ray emission

20140304 BH-mag 2014 Kumamoto Univ 62

Ferrand et al 2012

To go further than

Ferrand et al

Test 1D calculation

bull Two energy equation for ions and electrons respectively

bull Energy equilibration between ions and electrons

bull Ionization

20140304 BH-mag 2014 Kumamoto Univ 63

20140304 BH-mag 2014 Kumamoto Univ 64

Density contour

Preliminary

Emission from deferent regions

20140304 BH-mag 2014 Kumamoto Univ 65

Preliminary

Summary

bull Aspherical nature of core-collapse supernova

explosions

bull Origin of heavy elements

ndash NS merger

ndash Magnetically driven jets

bull Mixing in CCSN explosion

bull Supernova explosions to Supernova remnant

20140304 BH-mag 2014 Kumamoto Univ 66

Page 35: Masaomi ONO Kyushu University - aichi-edu.ac.jptakahasi/BHmag2014_pdf/Presen/...Method of MHD simulation 16 Magnetohydrodynamics (ideal MHD) Poisson eq. pseudo-Newtonian potential

Models

20140304 BH-mag 2014 Kumamoto Univ 35

Parametersasphericity timing of the introduction

of perturbations

1 Spherical explosion models

2 Bipolar explosion models

3 Explosion models mimicking neutrino-driven

explosion

Results of models

20140304 BH-mag 2014 Kumamoto Univ 36

Spherical explosion models

20140304 BH-mag 2014 Kumamoto Univ 37

Density distributions

Perturbations

at C+OHe

Perturbations

at HeH

Perturbations

at both

Growth factor of instability

20140304 BH-mag 2014 Kumamoto Univ 38

Growth factors at the end of

simulation time

Growth rate for incompressible fluid

Growth rate for compressible fluid

Growth factors

Based on pure 1d spherical simulation

Radial velocity distribution of elements for

spherical explosion models

20140304 BH-mag 2014 Kumamoto Univ 39

Timing of the perturbations hardly affect

the maximum velocity of 56Ni

Maximum velocity of 56Ni lt 1600 km s-1

Different asphericity of bipolar explosions

20140304 BH-mag 2014 Kumamoto Univ 40

Bipolar explosion slightly enhance the mixing

length along the polar axis but maximum velocity

of 56Ni is still the level of lt 1700 km s-1

milder asphericity stronger asphericity

Revisiting Nagataki et al 2000 (jetlike explosion)

only initial large amplitude of perturbations

20140304 BH-mag 2014 Kumamoto Univ 41

with amplitude of 30 and m = 20

Initial relatively large sale of perturbations can not survive in later phase due to KH instabilities

Mimicking the neutrino-driven explosions

20140304 BH-mag 2014 Kumamoto Univ 42

Initial radial velocity

Scheck+04

Gawryszczak+10

Mechanism of the core-collapse supernova

explosions

bull Neutrino heating

20140304 BH-mag 2014 Kumamoto Univ 43

Taken from Janka et al 2012 (PTEP 1 A309)

Bethe 1990 (Rev Mod Phys 62 801) Taken from Liebendofer et al 2001

Convections and Standing Accretion Shock

Instability (SASI)

bull Convection around PNS surface

bull Neutrino-driven convection

bull Standing Accretion Shock Instability (SASI) (Blondin et al )

ndash Acoustic-vorticity cycle

20140304 BH-mag 2014 Kumamoto Univ 44

Ledoux criterion

Ledoux criterion

Taken from Liebendofer et al 2001

20140304 BH-mag 2014 Kumamoto Univ 45

Aspherical explosion with clumpy structure in the

explosion (movie)

20140304 BH-mag 2014 Kumamoto Univ 46

Aspherical explosion with clumpy structure + RT

instability

053 s 288 s 5752 s

20140304 BH-mag 2014 Kumamoto Univ 47

Maximum 3000 km s-1

56Ni

Radial velocity distributions of the best model in

this study

bull Relatively high velocity

(3000 km s-1) of 56Ni

bull Mass of 56Ni with ~ 3000

km s-1 14 x 10-3 M8

20140304 BH-mag 2014 Kumamoto Univ 48

Summary

bull To reproduce the high velocity of 56Ni both aspherical

explosion with clumpy structure and perturbations of

presupernova origins may be necessary

bull There are still missing ingredients to explain the observed

high velocity of 56Ni in SN 1987A

bull Possible missing ingredients

ndash More realistic explosion model (eg Kifonidis et al 2006)

ndash Lager perturbations in presupernova structure (Arnett amp Meakin 2011)

ndash Long simulation time

bull Heating due to the decay of 56Co (Herant amp Benz 1991)

ndash 3D effect (Hammer et al 2010)

Possible seeds of perturbations

bull Dynamical stellar evolution calculation

bull Density fluctuations

around the composition

interfaces

20140304 BH-mag 2014 Kumamoto Univ 49

Arnett amp Meakin 2011

20140304 BH-mag 2014 Kumamoto Univ 50

3D simulations of mixing instabilities in SN

explosions

Hammer et al 2010

56Ni 56Ni

2D 3D

Entropy per baryon Red Oxygen

Blue Nickel

Green Carbon

Direct-escape lines of 44Ti from SNR 1987A

bull lines from 44Ti 679 keV and 784 keV

bull Estimated 44Ti mass (31plusmn08) x 10-4 M8

20140304 BH-mag 2014 Kumamoto Univ 51

Grebenev+12 Nature 490 373

44Ti rarr 44Sc rarr 44Ca T12 = 60 d T12 = 4 h

Asymmetries in core-collapse supernovae from

maps of radioactive 44Ti in Cas A

20140304 BH-mag 2014 Kumamoto Univ 52

Grefenstette+14 Nature 506 339

Aspherical explosion enhance 44Ti

20140304 BH-mag 2014 Kumamoto Univ 53

56Ni 4He 44Ti

Alpha-rich freeze-out enhance the production of 44Ti in the

explosive nucleosynthesis

Aspherical explosion enhance the ratio of M(44Ti)M(56Ni)

096 s after the initiation of the explosion

Toward full 3D radiative transfer

bull 爆発形状を仮定した

輻射輸送計算

ndash 形状で偏光度が異なる

ndash 元素によっても異なる

bull 3次元物質混合計算を

インプットにした輻射

輸送計算

20140304 BH-mag 2014 Kumamoto Univ 54

Tanaka et al 2012 bipolar

clumpy

爆発形状のプローブ

20140304 BH-mag 2014 Kumamoto Univ 55

3D MHD simulation of a SNR

Introduction

bull Acceleration of cosmic-rays in SNRs

ndash Up to ~ 1015 eV or more

ndash Magnetic field is key ingredient

20140304 BH-mag 2014 Kumamoto Univ 56

SN1006 (Chandra X-ray)

Amplified strong magnetic field

20140304 BH-mag 2014 Kumamoto Univ 57

Uchiyama et al 2007 Nature 4469 576

Bohm-diffusion limit

Variations of X-ray hot

spots on a 1 yr timescale

Strong amplified

magnetic field

3D MHD simulation of a SNR

20140304 BH-mag 2014 Kumamoto Univ 58

3 pc

Preliminary

20140304 BH-mag 2014 Kumamoto Univ 59

Amplified magnetic field

20121015 - 17 SNSNR12 59

~ 50 μ G

1 μ G Preliminary

20140304 BH-mag 2014 Kumamoto Univ 60

3D structure of Cas A

Delaney et al 2010

Chandra lsquos X-rays

Spitzer lsquos infrared

Green X-ray Fe-K

Red IR [Ar II]

Blue high [Ne II][Ar II] ratio

Yellow optical outer ejecta

Grey IR [Si II]

Black X-ray Si XIII

20140304 BH-mag 2014 Kumamoto Univ 61

ASTRO-H

bull New exploration X-ray

Telescope

ndash First right will be

2015 yr

ndash 10 times larger

energy resolution

httpastro-hisasjaxajpgallerysatelite02html

High resolution spectrum

of X-ray from SNRs is

expected

3D simulation of the thermal X-ray emission from young

SNRs including efficient particle acceleration

bull 3D simulation

bull Diffusive Shock Acceleration

bull Back reaction from

accelerated particle

bull Non-equilibrium ionization

bull Thermal X-ray emission

20140304 BH-mag 2014 Kumamoto Univ 62

Ferrand et al 2012

To go further than

Ferrand et al

Test 1D calculation

bull Two energy equation for ions and electrons respectively

bull Energy equilibration between ions and electrons

bull Ionization

20140304 BH-mag 2014 Kumamoto Univ 63

20140304 BH-mag 2014 Kumamoto Univ 64

Density contour

Preliminary

Emission from deferent regions

20140304 BH-mag 2014 Kumamoto Univ 65

Preliminary

Summary

bull Aspherical nature of core-collapse supernova

explosions

bull Origin of heavy elements

ndash NS merger

ndash Magnetically driven jets

bull Mixing in CCSN explosion

bull Supernova explosions to Supernova remnant

20140304 BH-mag 2014 Kumamoto Univ 66

Page 36: Masaomi ONO Kyushu University - aichi-edu.ac.jptakahasi/BHmag2014_pdf/Presen/...Method of MHD simulation 16 Magnetohydrodynamics (ideal MHD) Poisson eq. pseudo-Newtonian potential

Results of models

20140304 BH-mag 2014 Kumamoto Univ 36

Spherical explosion models

20140304 BH-mag 2014 Kumamoto Univ 37

Density distributions

Perturbations

at C+OHe

Perturbations

at HeH

Perturbations

at both

Growth factor of instability

20140304 BH-mag 2014 Kumamoto Univ 38

Growth factors at the end of

simulation time

Growth rate for incompressible fluid

Growth rate for compressible fluid

Growth factors

Based on pure 1d spherical simulation

Radial velocity distribution of elements for

spherical explosion models

20140304 BH-mag 2014 Kumamoto Univ 39

Timing of the perturbations hardly affect

the maximum velocity of 56Ni

Maximum velocity of 56Ni lt 1600 km s-1

Different asphericity of bipolar explosions

20140304 BH-mag 2014 Kumamoto Univ 40

Bipolar explosion slightly enhance the mixing

length along the polar axis but maximum velocity

of 56Ni is still the level of lt 1700 km s-1

milder asphericity stronger asphericity

Revisiting Nagataki et al 2000 (jetlike explosion)

only initial large amplitude of perturbations

20140304 BH-mag 2014 Kumamoto Univ 41

with amplitude of 30 and m = 20

Initial relatively large sale of perturbations can not survive in later phase due to KH instabilities

Mimicking the neutrino-driven explosions

20140304 BH-mag 2014 Kumamoto Univ 42

Initial radial velocity

Scheck+04

Gawryszczak+10

Mechanism of the core-collapse supernova

explosions

bull Neutrino heating

20140304 BH-mag 2014 Kumamoto Univ 43

Taken from Janka et al 2012 (PTEP 1 A309)

Bethe 1990 (Rev Mod Phys 62 801) Taken from Liebendofer et al 2001

Convections and Standing Accretion Shock

Instability (SASI)

bull Convection around PNS surface

bull Neutrino-driven convection

bull Standing Accretion Shock Instability (SASI) (Blondin et al )

ndash Acoustic-vorticity cycle

20140304 BH-mag 2014 Kumamoto Univ 44

Ledoux criterion

Ledoux criterion

Taken from Liebendofer et al 2001

20140304 BH-mag 2014 Kumamoto Univ 45

Aspherical explosion with clumpy structure in the

explosion (movie)

20140304 BH-mag 2014 Kumamoto Univ 46

Aspherical explosion with clumpy structure + RT

instability

053 s 288 s 5752 s

20140304 BH-mag 2014 Kumamoto Univ 47

Maximum 3000 km s-1

56Ni

Radial velocity distributions of the best model in

this study

bull Relatively high velocity

(3000 km s-1) of 56Ni

bull Mass of 56Ni with ~ 3000

km s-1 14 x 10-3 M8

20140304 BH-mag 2014 Kumamoto Univ 48

Summary

bull To reproduce the high velocity of 56Ni both aspherical

explosion with clumpy structure and perturbations of

presupernova origins may be necessary

bull There are still missing ingredients to explain the observed

high velocity of 56Ni in SN 1987A

bull Possible missing ingredients

ndash More realistic explosion model (eg Kifonidis et al 2006)

ndash Lager perturbations in presupernova structure (Arnett amp Meakin 2011)

ndash Long simulation time

bull Heating due to the decay of 56Co (Herant amp Benz 1991)

ndash 3D effect (Hammer et al 2010)

Possible seeds of perturbations

bull Dynamical stellar evolution calculation

bull Density fluctuations

around the composition

interfaces

20140304 BH-mag 2014 Kumamoto Univ 49

Arnett amp Meakin 2011

20140304 BH-mag 2014 Kumamoto Univ 50

3D simulations of mixing instabilities in SN

explosions

Hammer et al 2010

56Ni 56Ni

2D 3D

Entropy per baryon Red Oxygen

Blue Nickel

Green Carbon

Direct-escape lines of 44Ti from SNR 1987A

bull lines from 44Ti 679 keV and 784 keV

bull Estimated 44Ti mass (31plusmn08) x 10-4 M8

20140304 BH-mag 2014 Kumamoto Univ 51

Grebenev+12 Nature 490 373

44Ti rarr 44Sc rarr 44Ca T12 = 60 d T12 = 4 h

Asymmetries in core-collapse supernovae from

maps of radioactive 44Ti in Cas A

20140304 BH-mag 2014 Kumamoto Univ 52

Grefenstette+14 Nature 506 339

Aspherical explosion enhance 44Ti

20140304 BH-mag 2014 Kumamoto Univ 53

56Ni 4He 44Ti

Alpha-rich freeze-out enhance the production of 44Ti in the

explosive nucleosynthesis

Aspherical explosion enhance the ratio of M(44Ti)M(56Ni)

096 s after the initiation of the explosion

Toward full 3D radiative transfer

bull 爆発形状を仮定した

輻射輸送計算

ndash 形状で偏光度が異なる

ndash 元素によっても異なる

bull 3次元物質混合計算を

インプットにした輻射

輸送計算

20140304 BH-mag 2014 Kumamoto Univ 54

Tanaka et al 2012 bipolar

clumpy

爆発形状のプローブ

20140304 BH-mag 2014 Kumamoto Univ 55

3D MHD simulation of a SNR

Introduction

bull Acceleration of cosmic-rays in SNRs

ndash Up to ~ 1015 eV or more

ndash Magnetic field is key ingredient

20140304 BH-mag 2014 Kumamoto Univ 56

SN1006 (Chandra X-ray)

Amplified strong magnetic field

20140304 BH-mag 2014 Kumamoto Univ 57

Uchiyama et al 2007 Nature 4469 576

Bohm-diffusion limit

Variations of X-ray hot

spots on a 1 yr timescale

Strong amplified

magnetic field

3D MHD simulation of a SNR

20140304 BH-mag 2014 Kumamoto Univ 58

3 pc

Preliminary

20140304 BH-mag 2014 Kumamoto Univ 59

Amplified magnetic field

20121015 - 17 SNSNR12 59

~ 50 μ G

1 μ G Preliminary

20140304 BH-mag 2014 Kumamoto Univ 60

3D structure of Cas A

Delaney et al 2010

Chandra lsquos X-rays

Spitzer lsquos infrared

Green X-ray Fe-K

Red IR [Ar II]

Blue high [Ne II][Ar II] ratio

Yellow optical outer ejecta

Grey IR [Si II]

Black X-ray Si XIII

20140304 BH-mag 2014 Kumamoto Univ 61

ASTRO-H

bull New exploration X-ray

Telescope

ndash First right will be

2015 yr

ndash 10 times larger

energy resolution

httpastro-hisasjaxajpgallerysatelite02html

High resolution spectrum

of X-ray from SNRs is

expected

3D simulation of the thermal X-ray emission from young

SNRs including efficient particle acceleration

bull 3D simulation

bull Diffusive Shock Acceleration

bull Back reaction from

accelerated particle

bull Non-equilibrium ionization

bull Thermal X-ray emission

20140304 BH-mag 2014 Kumamoto Univ 62

Ferrand et al 2012

To go further than

Ferrand et al

Test 1D calculation

bull Two energy equation for ions and electrons respectively

bull Energy equilibration between ions and electrons

bull Ionization

20140304 BH-mag 2014 Kumamoto Univ 63

20140304 BH-mag 2014 Kumamoto Univ 64

Density contour

Preliminary

Emission from deferent regions

20140304 BH-mag 2014 Kumamoto Univ 65

Preliminary

Summary

bull Aspherical nature of core-collapse supernova

explosions

bull Origin of heavy elements

ndash NS merger

ndash Magnetically driven jets

bull Mixing in CCSN explosion

bull Supernova explosions to Supernova remnant

20140304 BH-mag 2014 Kumamoto Univ 66

Page 37: Masaomi ONO Kyushu University - aichi-edu.ac.jptakahasi/BHmag2014_pdf/Presen/...Method of MHD simulation 16 Magnetohydrodynamics (ideal MHD) Poisson eq. pseudo-Newtonian potential

Spherical explosion models

20140304 BH-mag 2014 Kumamoto Univ 37

Density distributions

Perturbations

at C+OHe

Perturbations

at HeH

Perturbations

at both

Growth factor of instability

20140304 BH-mag 2014 Kumamoto Univ 38

Growth factors at the end of

simulation time

Growth rate for incompressible fluid

Growth rate for compressible fluid

Growth factors

Based on pure 1d spherical simulation

Radial velocity distribution of elements for

spherical explosion models

20140304 BH-mag 2014 Kumamoto Univ 39

Timing of the perturbations hardly affect

the maximum velocity of 56Ni

Maximum velocity of 56Ni lt 1600 km s-1

Different asphericity of bipolar explosions

20140304 BH-mag 2014 Kumamoto Univ 40

Bipolar explosion slightly enhance the mixing

length along the polar axis but maximum velocity

of 56Ni is still the level of lt 1700 km s-1

milder asphericity stronger asphericity

Revisiting Nagataki et al 2000 (jetlike explosion)

only initial large amplitude of perturbations

20140304 BH-mag 2014 Kumamoto Univ 41

with amplitude of 30 and m = 20

Initial relatively large sale of perturbations can not survive in later phase due to KH instabilities

Mimicking the neutrino-driven explosions

20140304 BH-mag 2014 Kumamoto Univ 42

Initial radial velocity

Scheck+04

Gawryszczak+10

Mechanism of the core-collapse supernova

explosions

bull Neutrino heating

20140304 BH-mag 2014 Kumamoto Univ 43

Taken from Janka et al 2012 (PTEP 1 A309)

Bethe 1990 (Rev Mod Phys 62 801) Taken from Liebendofer et al 2001

Convections and Standing Accretion Shock

Instability (SASI)

bull Convection around PNS surface

bull Neutrino-driven convection

bull Standing Accretion Shock Instability (SASI) (Blondin et al )

ndash Acoustic-vorticity cycle

20140304 BH-mag 2014 Kumamoto Univ 44

Ledoux criterion

Ledoux criterion

Taken from Liebendofer et al 2001

20140304 BH-mag 2014 Kumamoto Univ 45

Aspherical explosion with clumpy structure in the

explosion (movie)

20140304 BH-mag 2014 Kumamoto Univ 46

Aspherical explosion with clumpy structure + RT

instability

053 s 288 s 5752 s

20140304 BH-mag 2014 Kumamoto Univ 47

Maximum 3000 km s-1

56Ni

Radial velocity distributions of the best model in

this study

bull Relatively high velocity

(3000 km s-1) of 56Ni

bull Mass of 56Ni with ~ 3000

km s-1 14 x 10-3 M8

20140304 BH-mag 2014 Kumamoto Univ 48

Summary

bull To reproduce the high velocity of 56Ni both aspherical

explosion with clumpy structure and perturbations of

presupernova origins may be necessary

bull There are still missing ingredients to explain the observed

high velocity of 56Ni in SN 1987A

bull Possible missing ingredients

ndash More realistic explosion model (eg Kifonidis et al 2006)

ndash Lager perturbations in presupernova structure (Arnett amp Meakin 2011)

ndash Long simulation time

bull Heating due to the decay of 56Co (Herant amp Benz 1991)

ndash 3D effect (Hammer et al 2010)

Possible seeds of perturbations

bull Dynamical stellar evolution calculation

bull Density fluctuations

around the composition

interfaces

20140304 BH-mag 2014 Kumamoto Univ 49

Arnett amp Meakin 2011

20140304 BH-mag 2014 Kumamoto Univ 50

3D simulations of mixing instabilities in SN

explosions

Hammer et al 2010

56Ni 56Ni

2D 3D

Entropy per baryon Red Oxygen

Blue Nickel

Green Carbon

Direct-escape lines of 44Ti from SNR 1987A

bull lines from 44Ti 679 keV and 784 keV

bull Estimated 44Ti mass (31plusmn08) x 10-4 M8

20140304 BH-mag 2014 Kumamoto Univ 51

Grebenev+12 Nature 490 373

44Ti rarr 44Sc rarr 44Ca T12 = 60 d T12 = 4 h

Asymmetries in core-collapse supernovae from

maps of radioactive 44Ti in Cas A

20140304 BH-mag 2014 Kumamoto Univ 52

Grefenstette+14 Nature 506 339

Aspherical explosion enhance 44Ti

20140304 BH-mag 2014 Kumamoto Univ 53

56Ni 4He 44Ti

Alpha-rich freeze-out enhance the production of 44Ti in the

explosive nucleosynthesis

Aspherical explosion enhance the ratio of M(44Ti)M(56Ni)

096 s after the initiation of the explosion

Toward full 3D radiative transfer

bull 爆発形状を仮定した

輻射輸送計算

ndash 形状で偏光度が異なる

ndash 元素によっても異なる

bull 3次元物質混合計算を

インプットにした輻射

輸送計算

20140304 BH-mag 2014 Kumamoto Univ 54

Tanaka et al 2012 bipolar

clumpy

爆発形状のプローブ

20140304 BH-mag 2014 Kumamoto Univ 55

3D MHD simulation of a SNR

Introduction

bull Acceleration of cosmic-rays in SNRs

ndash Up to ~ 1015 eV or more

ndash Magnetic field is key ingredient

20140304 BH-mag 2014 Kumamoto Univ 56

SN1006 (Chandra X-ray)

Amplified strong magnetic field

20140304 BH-mag 2014 Kumamoto Univ 57

Uchiyama et al 2007 Nature 4469 576

Bohm-diffusion limit

Variations of X-ray hot

spots on a 1 yr timescale

Strong amplified

magnetic field

3D MHD simulation of a SNR

20140304 BH-mag 2014 Kumamoto Univ 58

3 pc

Preliminary

20140304 BH-mag 2014 Kumamoto Univ 59

Amplified magnetic field

20121015 - 17 SNSNR12 59

~ 50 μ G

1 μ G Preliminary

20140304 BH-mag 2014 Kumamoto Univ 60

3D structure of Cas A

Delaney et al 2010

Chandra lsquos X-rays

Spitzer lsquos infrared

Green X-ray Fe-K

Red IR [Ar II]

Blue high [Ne II][Ar II] ratio

Yellow optical outer ejecta

Grey IR [Si II]

Black X-ray Si XIII

20140304 BH-mag 2014 Kumamoto Univ 61

ASTRO-H

bull New exploration X-ray

Telescope

ndash First right will be

2015 yr

ndash 10 times larger

energy resolution

httpastro-hisasjaxajpgallerysatelite02html

High resolution spectrum

of X-ray from SNRs is

expected

3D simulation of the thermal X-ray emission from young

SNRs including efficient particle acceleration

bull 3D simulation

bull Diffusive Shock Acceleration

bull Back reaction from

accelerated particle

bull Non-equilibrium ionization

bull Thermal X-ray emission

20140304 BH-mag 2014 Kumamoto Univ 62

Ferrand et al 2012

To go further than

Ferrand et al

Test 1D calculation

bull Two energy equation for ions and electrons respectively

bull Energy equilibration between ions and electrons

bull Ionization

20140304 BH-mag 2014 Kumamoto Univ 63

20140304 BH-mag 2014 Kumamoto Univ 64

Density contour

Preliminary

Emission from deferent regions

20140304 BH-mag 2014 Kumamoto Univ 65

Preliminary

Summary

bull Aspherical nature of core-collapse supernova

explosions

bull Origin of heavy elements

ndash NS merger

ndash Magnetically driven jets

bull Mixing in CCSN explosion

bull Supernova explosions to Supernova remnant

20140304 BH-mag 2014 Kumamoto Univ 66

Page 38: Masaomi ONO Kyushu University - aichi-edu.ac.jptakahasi/BHmag2014_pdf/Presen/...Method of MHD simulation 16 Magnetohydrodynamics (ideal MHD) Poisson eq. pseudo-Newtonian potential

Growth factor of instability

20140304 BH-mag 2014 Kumamoto Univ 38

Growth factors at the end of

simulation time

Growth rate for incompressible fluid

Growth rate for compressible fluid

Growth factors

Based on pure 1d spherical simulation

Radial velocity distribution of elements for

spherical explosion models

20140304 BH-mag 2014 Kumamoto Univ 39

Timing of the perturbations hardly affect

the maximum velocity of 56Ni

Maximum velocity of 56Ni lt 1600 km s-1

Different asphericity of bipolar explosions

20140304 BH-mag 2014 Kumamoto Univ 40

Bipolar explosion slightly enhance the mixing

length along the polar axis but maximum velocity

of 56Ni is still the level of lt 1700 km s-1

milder asphericity stronger asphericity

Revisiting Nagataki et al 2000 (jetlike explosion)

only initial large amplitude of perturbations

20140304 BH-mag 2014 Kumamoto Univ 41

with amplitude of 30 and m = 20

Initial relatively large sale of perturbations can not survive in later phase due to KH instabilities

Mimicking the neutrino-driven explosions

20140304 BH-mag 2014 Kumamoto Univ 42

Initial radial velocity

Scheck+04

Gawryszczak+10

Mechanism of the core-collapse supernova

explosions

bull Neutrino heating

20140304 BH-mag 2014 Kumamoto Univ 43

Taken from Janka et al 2012 (PTEP 1 A309)

Bethe 1990 (Rev Mod Phys 62 801) Taken from Liebendofer et al 2001

Convections and Standing Accretion Shock

Instability (SASI)

bull Convection around PNS surface

bull Neutrino-driven convection

bull Standing Accretion Shock Instability (SASI) (Blondin et al )

ndash Acoustic-vorticity cycle

20140304 BH-mag 2014 Kumamoto Univ 44

Ledoux criterion

Ledoux criterion

Taken from Liebendofer et al 2001

20140304 BH-mag 2014 Kumamoto Univ 45

Aspherical explosion with clumpy structure in the

explosion (movie)

20140304 BH-mag 2014 Kumamoto Univ 46

Aspherical explosion with clumpy structure + RT

instability

053 s 288 s 5752 s

20140304 BH-mag 2014 Kumamoto Univ 47

Maximum 3000 km s-1

56Ni

Radial velocity distributions of the best model in

this study

bull Relatively high velocity

(3000 km s-1) of 56Ni

bull Mass of 56Ni with ~ 3000

km s-1 14 x 10-3 M8

20140304 BH-mag 2014 Kumamoto Univ 48

Summary

bull To reproduce the high velocity of 56Ni both aspherical

explosion with clumpy structure and perturbations of

presupernova origins may be necessary

bull There are still missing ingredients to explain the observed

high velocity of 56Ni in SN 1987A

bull Possible missing ingredients

ndash More realistic explosion model (eg Kifonidis et al 2006)

ndash Lager perturbations in presupernova structure (Arnett amp Meakin 2011)

ndash Long simulation time

bull Heating due to the decay of 56Co (Herant amp Benz 1991)

ndash 3D effect (Hammer et al 2010)

Possible seeds of perturbations

bull Dynamical stellar evolution calculation

bull Density fluctuations

around the composition

interfaces

20140304 BH-mag 2014 Kumamoto Univ 49

Arnett amp Meakin 2011

20140304 BH-mag 2014 Kumamoto Univ 50

3D simulations of mixing instabilities in SN

explosions

Hammer et al 2010

56Ni 56Ni

2D 3D

Entropy per baryon Red Oxygen

Blue Nickel

Green Carbon

Direct-escape lines of 44Ti from SNR 1987A

bull lines from 44Ti 679 keV and 784 keV

bull Estimated 44Ti mass (31plusmn08) x 10-4 M8

20140304 BH-mag 2014 Kumamoto Univ 51

Grebenev+12 Nature 490 373

44Ti rarr 44Sc rarr 44Ca T12 = 60 d T12 = 4 h

Asymmetries in core-collapse supernovae from

maps of radioactive 44Ti in Cas A

20140304 BH-mag 2014 Kumamoto Univ 52

Grefenstette+14 Nature 506 339

Aspherical explosion enhance 44Ti

20140304 BH-mag 2014 Kumamoto Univ 53

56Ni 4He 44Ti

Alpha-rich freeze-out enhance the production of 44Ti in the

explosive nucleosynthesis

Aspherical explosion enhance the ratio of M(44Ti)M(56Ni)

096 s after the initiation of the explosion

Toward full 3D radiative transfer

bull 爆発形状を仮定した

輻射輸送計算

ndash 形状で偏光度が異なる

ndash 元素によっても異なる

bull 3次元物質混合計算を

インプットにした輻射

輸送計算

20140304 BH-mag 2014 Kumamoto Univ 54

Tanaka et al 2012 bipolar

clumpy

爆発形状のプローブ

20140304 BH-mag 2014 Kumamoto Univ 55

3D MHD simulation of a SNR

Introduction

bull Acceleration of cosmic-rays in SNRs

ndash Up to ~ 1015 eV or more

ndash Magnetic field is key ingredient

20140304 BH-mag 2014 Kumamoto Univ 56

SN1006 (Chandra X-ray)

Amplified strong magnetic field

20140304 BH-mag 2014 Kumamoto Univ 57

Uchiyama et al 2007 Nature 4469 576

Bohm-diffusion limit

Variations of X-ray hot

spots on a 1 yr timescale

Strong amplified

magnetic field

3D MHD simulation of a SNR

20140304 BH-mag 2014 Kumamoto Univ 58

3 pc

Preliminary

20140304 BH-mag 2014 Kumamoto Univ 59

Amplified magnetic field

20121015 - 17 SNSNR12 59

~ 50 μ G

1 μ G Preliminary

20140304 BH-mag 2014 Kumamoto Univ 60

3D structure of Cas A

Delaney et al 2010

Chandra lsquos X-rays

Spitzer lsquos infrared

Green X-ray Fe-K

Red IR [Ar II]

Blue high [Ne II][Ar II] ratio

Yellow optical outer ejecta

Grey IR [Si II]

Black X-ray Si XIII

20140304 BH-mag 2014 Kumamoto Univ 61

ASTRO-H

bull New exploration X-ray

Telescope

ndash First right will be

2015 yr

ndash 10 times larger

energy resolution

httpastro-hisasjaxajpgallerysatelite02html

High resolution spectrum

of X-ray from SNRs is

expected

3D simulation of the thermal X-ray emission from young

SNRs including efficient particle acceleration

bull 3D simulation

bull Diffusive Shock Acceleration

bull Back reaction from

accelerated particle

bull Non-equilibrium ionization

bull Thermal X-ray emission

20140304 BH-mag 2014 Kumamoto Univ 62

Ferrand et al 2012

To go further than

Ferrand et al

Test 1D calculation

bull Two energy equation for ions and electrons respectively

bull Energy equilibration between ions and electrons

bull Ionization

20140304 BH-mag 2014 Kumamoto Univ 63

20140304 BH-mag 2014 Kumamoto Univ 64

Density contour

Preliminary

Emission from deferent regions

20140304 BH-mag 2014 Kumamoto Univ 65

Preliminary

Summary

bull Aspherical nature of core-collapse supernova

explosions

bull Origin of heavy elements

ndash NS merger

ndash Magnetically driven jets

bull Mixing in CCSN explosion

bull Supernova explosions to Supernova remnant

20140304 BH-mag 2014 Kumamoto Univ 66

Page 39: Masaomi ONO Kyushu University - aichi-edu.ac.jptakahasi/BHmag2014_pdf/Presen/...Method of MHD simulation 16 Magnetohydrodynamics (ideal MHD) Poisson eq. pseudo-Newtonian potential

Radial velocity distribution of elements for

spherical explosion models

20140304 BH-mag 2014 Kumamoto Univ 39

Timing of the perturbations hardly affect

the maximum velocity of 56Ni

Maximum velocity of 56Ni lt 1600 km s-1

Different asphericity of bipolar explosions

20140304 BH-mag 2014 Kumamoto Univ 40

Bipolar explosion slightly enhance the mixing

length along the polar axis but maximum velocity

of 56Ni is still the level of lt 1700 km s-1

milder asphericity stronger asphericity

Revisiting Nagataki et al 2000 (jetlike explosion)

only initial large amplitude of perturbations

20140304 BH-mag 2014 Kumamoto Univ 41

with amplitude of 30 and m = 20

Initial relatively large sale of perturbations can not survive in later phase due to KH instabilities

Mimicking the neutrino-driven explosions

20140304 BH-mag 2014 Kumamoto Univ 42

Initial radial velocity

Scheck+04

Gawryszczak+10

Mechanism of the core-collapse supernova

explosions

bull Neutrino heating

20140304 BH-mag 2014 Kumamoto Univ 43

Taken from Janka et al 2012 (PTEP 1 A309)

Bethe 1990 (Rev Mod Phys 62 801) Taken from Liebendofer et al 2001

Convections and Standing Accretion Shock

Instability (SASI)

bull Convection around PNS surface

bull Neutrino-driven convection

bull Standing Accretion Shock Instability (SASI) (Blondin et al )

ndash Acoustic-vorticity cycle

20140304 BH-mag 2014 Kumamoto Univ 44

Ledoux criterion

Ledoux criterion

Taken from Liebendofer et al 2001

20140304 BH-mag 2014 Kumamoto Univ 45

Aspherical explosion with clumpy structure in the

explosion (movie)

20140304 BH-mag 2014 Kumamoto Univ 46

Aspherical explosion with clumpy structure + RT

instability

053 s 288 s 5752 s

20140304 BH-mag 2014 Kumamoto Univ 47

Maximum 3000 km s-1

56Ni

Radial velocity distributions of the best model in

this study

bull Relatively high velocity

(3000 km s-1) of 56Ni

bull Mass of 56Ni with ~ 3000

km s-1 14 x 10-3 M8

20140304 BH-mag 2014 Kumamoto Univ 48

Summary

bull To reproduce the high velocity of 56Ni both aspherical

explosion with clumpy structure and perturbations of

presupernova origins may be necessary

bull There are still missing ingredients to explain the observed

high velocity of 56Ni in SN 1987A

bull Possible missing ingredients

ndash More realistic explosion model (eg Kifonidis et al 2006)

ndash Lager perturbations in presupernova structure (Arnett amp Meakin 2011)

ndash Long simulation time

bull Heating due to the decay of 56Co (Herant amp Benz 1991)

ndash 3D effect (Hammer et al 2010)

Possible seeds of perturbations

bull Dynamical stellar evolution calculation

bull Density fluctuations

around the composition

interfaces

20140304 BH-mag 2014 Kumamoto Univ 49

Arnett amp Meakin 2011

20140304 BH-mag 2014 Kumamoto Univ 50

3D simulations of mixing instabilities in SN

explosions

Hammer et al 2010

56Ni 56Ni

2D 3D

Entropy per baryon Red Oxygen

Blue Nickel

Green Carbon

Direct-escape lines of 44Ti from SNR 1987A

bull lines from 44Ti 679 keV and 784 keV

bull Estimated 44Ti mass (31plusmn08) x 10-4 M8

20140304 BH-mag 2014 Kumamoto Univ 51

Grebenev+12 Nature 490 373

44Ti rarr 44Sc rarr 44Ca T12 = 60 d T12 = 4 h

Asymmetries in core-collapse supernovae from

maps of radioactive 44Ti in Cas A

20140304 BH-mag 2014 Kumamoto Univ 52

Grefenstette+14 Nature 506 339

Aspherical explosion enhance 44Ti

20140304 BH-mag 2014 Kumamoto Univ 53

56Ni 4He 44Ti

Alpha-rich freeze-out enhance the production of 44Ti in the

explosive nucleosynthesis

Aspherical explosion enhance the ratio of M(44Ti)M(56Ni)

096 s after the initiation of the explosion

Toward full 3D radiative transfer

bull 爆発形状を仮定した

輻射輸送計算

ndash 形状で偏光度が異なる

ndash 元素によっても異なる

bull 3次元物質混合計算を

インプットにした輻射

輸送計算

20140304 BH-mag 2014 Kumamoto Univ 54

Tanaka et al 2012 bipolar

clumpy

爆発形状のプローブ

20140304 BH-mag 2014 Kumamoto Univ 55

3D MHD simulation of a SNR

Introduction

bull Acceleration of cosmic-rays in SNRs

ndash Up to ~ 1015 eV or more

ndash Magnetic field is key ingredient

20140304 BH-mag 2014 Kumamoto Univ 56

SN1006 (Chandra X-ray)

Amplified strong magnetic field

20140304 BH-mag 2014 Kumamoto Univ 57

Uchiyama et al 2007 Nature 4469 576

Bohm-diffusion limit

Variations of X-ray hot

spots on a 1 yr timescale

Strong amplified

magnetic field

3D MHD simulation of a SNR

20140304 BH-mag 2014 Kumamoto Univ 58

3 pc

Preliminary

20140304 BH-mag 2014 Kumamoto Univ 59

Amplified magnetic field

20121015 - 17 SNSNR12 59

~ 50 μ G

1 μ G Preliminary

20140304 BH-mag 2014 Kumamoto Univ 60

3D structure of Cas A

Delaney et al 2010

Chandra lsquos X-rays

Spitzer lsquos infrared

Green X-ray Fe-K

Red IR [Ar II]

Blue high [Ne II][Ar II] ratio

Yellow optical outer ejecta

Grey IR [Si II]

Black X-ray Si XIII

20140304 BH-mag 2014 Kumamoto Univ 61

ASTRO-H

bull New exploration X-ray

Telescope

ndash First right will be

2015 yr

ndash 10 times larger

energy resolution

httpastro-hisasjaxajpgallerysatelite02html

High resolution spectrum

of X-ray from SNRs is

expected

3D simulation of the thermal X-ray emission from young

SNRs including efficient particle acceleration

bull 3D simulation

bull Diffusive Shock Acceleration

bull Back reaction from

accelerated particle

bull Non-equilibrium ionization

bull Thermal X-ray emission

20140304 BH-mag 2014 Kumamoto Univ 62

Ferrand et al 2012

To go further than

Ferrand et al

Test 1D calculation

bull Two energy equation for ions and electrons respectively

bull Energy equilibration between ions and electrons

bull Ionization

20140304 BH-mag 2014 Kumamoto Univ 63

20140304 BH-mag 2014 Kumamoto Univ 64

Density contour

Preliminary

Emission from deferent regions

20140304 BH-mag 2014 Kumamoto Univ 65

Preliminary

Summary

bull Aspherical nature of core-collapse supernova

explosions

bull Origin of heavy elements

ndash NS merger

ndash Magnetically driven jets

bull Mixing in CCSN explosion

bull Supernova explosions to Supernova remnant

20140304 BH-mag 2014 Kumamoto Univ 66

Page 40: Masaomi ONO Kyushu University - aichi-edu.ac.jptakahasi/BHmag2014_pdf/Presen/...Method of MHD simulation 16 Magnetohydrodynamics (ideal MHD) Poisson eq. pseudo-Newtonian potential

Different asphericity of bipolar explosions

20140304 BH-mag 2014 Kumamoto Univ 40

Bipolar explosion slightly enhance the mixing

length along the polar axis but maximum velocity

of 56Ni is still the level of lt 1700 km s-1

milder asphericity stronger asphericity

Revisiting Nagataki et al 2000 (jetlike explosion)

only initial large amplitude of perturbations

20140304 BH-mag 2014 Kumamoto Univ 41

with amplitude of 30 and m = 20

Initial relatively large sale of perturbations can not survive in later phase due to KH instabilities

Mimicking the neutrino-driven explosions

20140304 BH-mag 2014 Kumamoto Univ 42

Initial radial velocity

Scheck+04

Gawryszczak+10

Mechanism of the core-collapse supernova

explosions

bull Neutrino heating

20140304 BH-mag 2014 Kumamoto Univ 43

Taken from Janka et al 2012 (PTEP 1 A309)

Bethe 1990 (Rev Mod Phys 62 801) Taken from Liebendofer et al 2001

Convections and Standing Accretion Shock

Instability (SASI)

bull Convection around PNS surface

bull Neutrino-driven convection

bull Standing Accretion Shock Instability (SASI) (Blondin et al )

ndash Acoustic-vorticity cycle

20140304 BH-mag 2014 Kumamoto Univ 44

Ledoux criterion

Ledoux criterion

Taken from Liebendofer et al 2001

20140304 BH-mag 2014 Kumamoto Univ 45

Aspherical explosion with clumpy structure in the

explosion (movie)

20140304 BH-mag 2014 Kumamoto Univ 46

Aspherical explosion with clumpy structure + RT

instability

053 s 288 s 5752 s

20140304 BH-mag 2014 Kumamoto Univ 47

Maximum 3000 km s-1

56Ni

Radial velocity distributions of the best model in

this study

bull Relatively high velocity

(3000 km s-1) of 56Ni

bull Mass of 56Ni with ~ 3000

km s-1 14 x 10-3 M8

20140304 BH-mag 2014 Kumamoto Univ 48

Summary

bull To reproduce the high velocity of 56Ni both aspherical

explosion with clumpy structure and perturbations of

presupernova origins may be necessary

bull There are still missing ingredients to explain the observed

high velocity of 56Ni in SN 1987A

bull Possible missing ingredients

ndash More realistic explosion model (eg Kifonidis et al 2006)

ndash Lager perturbations in presupernova structure (Arnett amp Meakin 2011)

ndash Long simulation time

bull Heating due to the decay of 56Co (Herant amp Benz 1991)

ndash 3D effect (Hammer et al 2010)

Possible seeds of perturbations

bull Dynamical stellar evolution calculation

bull Density fluctuations

around the composition

interfaces

20140304 BH-mag 2014 Kumamoto Univ 49

Arnett amp Meakin 2011

20140304 BH-mag 2014 Kumamoto Univ 50

3D simulations of mixing instabilities in SN

explosions

Hammer et al 2010

56Ni 56Ni

2D 3D

Entropy per baryon Red Oxygen

Blue Nickel

Green Carbon

Direct-escape lines of 44Ti from SNR 1987A

bull lines from 44Ti 679 keV and 784 keV

bull Estimated 44Ti mass (31plusmn08) x 10-4 M8

20140304 BH-mag 2014 Kumamoto Univ 51

Grebenev+12 Nature 490 373

44Ti rarr 44Sc rarr 44Ca T12 = 60 d T12 = 4 h

Asymmetries in core-collapse supernovae from

maps of radioactive 44Ti in Cas A

20140304 BH-mag 2014 Kumamoto Univ 52

Grefenstette+14 Nature 506 339

Aspherical explosion enhance 44Ti

20140304 BH-mag 2014 Kumamoto Univ 53

56Ni 4He 44Ti

Alpha-rich freeze-out enhance the production of 44Ti in the

explosive nucleosynthesis

Aspherical explosion enhance the ratio of M(44Ti)M(56Ni)

096 s after the initiation of the explosion

Toward full 3D radiative transfer

bull 爆発形状を仮定した

輻射輸送計算

ndash 形状で偏光度が異なる

ndash 元素によっても異なる

bull 3次元物質混合計算を

インプットにした輻射

輸送計算

20140304 BH-mag 2014 Kumamoto Univ 54

Tanaka et al 2012 bipolar

clumpy

爆発形状のプローブ

20140304 BH-mag 2014 Kumamoto Univ 55

3D MHD simulation of a SNR

Introduction

bull Acceleration of cosmic-rays in SNRs

ndash Up to ~ 1015 eV or more

ndash Magnetic field is key ingredient

20140304 BH-mag 2014 Kumamoto Univ 56

SN1006 (Chandra X-ray)

Amplified strong magnetic field

20140304 BH-mag 2014 Kumamoto Univ 57

Uchiyama et al 2007 Nature 4469 576

Bohm-diffusion limit

Variations of X-ray hot

spots on a 1 yr timescale

Strong amplified

magnetic field

3D MHD simulation of a SNR

20140304 BH-mag 2014 Kumamoto Univ 58

3 pc

Preliminary

20140304 BH-mag 2014 Kumamoto Univ 59

Amplified magnetic field

20121015 - 17 SNSNR12 59

~ 50 μ G

1 μ G Preliminary

20140304 BH-mag 2014 Kumamoto Univ 60

3D structure of Cas A

Delaney et al 2010

Chandra lsquos X-rays

Spitzer lsquos infrared

Green X-ray Fe-K

Red IR [Ar II]

Blue high [Ne II][Ar II] ratio

Yellow optical outer ejecta

Grey IR [Si II]

Black X-ray Si XIII

20140304 BH-mag 2014 Kumamoto Univ 61

ASTRO-H

bull New exploration X-ray

Telescope

ndash First right will be

2015 yr

ndash 10 times larger

energy resolution

httpastro-hisasjaxajpgallerysatelite02html

High resolution spectrum

of X-ray from SNRs is

expected

3D simulation of the thermal X-ray emission from young

SNRs including efficient particle acceleration

bull 3D simulation

bull Diffusive Shock Acceleration

bull Back reaction from

accelerated particle

bull Non-equilibrium ionization

bull Thermal X-ray emission

20140304 BH-mag 2014 Kumamoto Univ 62

Ferrand et al 2012

To go further than

Ferrand et al

Test 1D calculation

bull Two energy equation for ions and electrons respectively

bull Energy equilibration between ions and electrons

bull Ionization

20140304 BH-mag 2014 Kumamoto Univ 63

20140304 BH-mag 2014 Kumamoto Univ 64

Density contour

Preliminary

Emission from deferent regions

20140304 BH-mag 2014 Kumamoto Univ 65

Preliminary

Summary

bull Aspherical nature of core-collapse supernova

explosions

bull Origin of heavy elements

ndash NS merger

ndash Magnetically driven jets

bull Mixing in CCSN explosion

bull Supernova explosions to Supernova remnant

20140304 BH-mag 2014 Kumamoto Univ 66

Page 41: Masaomi ONO Kyushu University - aichi-edu.ac.jptakahasi/BHmag2014_pdf/Presen/...Method of MHD simulation 16 Magnetohydrodynamics (ideal MHD) Poisson eq. pseudo-Newtonian potential

Revisiting Nagataki et al 2000 (jetlike explosion)

only initial large amplitude of perturbations

20140304 BH-mag 2014 Kumamoto Univ 41

with amplitude of 30 and m = 20

Initial relatively large sale of perturbations can not survive in later phase due to KH instabilities

Mimicking the neutrino-driven explosions

20140304 BH-mag 2014 Kumamoto Univ 42

Initial radial velocity

Scheck+04

Gawryszczak+10

Mechanism of the core-collapse supernova

explosions

bull Neutrino heating

20140304 BH-mag 2014 Kumamoto Univ 43

Taken from Janka et al 2012 (PTEP 1 A309)

Bethe 1990 (Rev Mod Phys 62 801) Taken from Liebendofer et al 2001

Convections and Standing Accretion Shock

Instability (SASI)

bull Convection around PNS surface

bull Neutrino-driven convection

bull Standing Accretion Shock Instability (SASI) (Blondin et al )

ndash Acoustic-vorticity cycle

20140304 BH-mag 2014 Kumamoto Univ 44

Ledoux criterion

Ledoux criterion

Taken from Liebendofer et al 2001

20140304 BH-mag 2014 Kumamoto Univ 45

Aspherical explosion with clumpy structure in the

explosion (movie)

20140304 BH-mag 2014 Kumamoto Univ 46

Aspherical explosion with clumpy structure + RT

instability

053 s 288 s 5752 s

20140304 BH-mag 2014 Kumamoto Univ 47

Maximum 3000 km s-1

56Ni

Radial velocity distributions of the best model in

this study

bull Relatively high velocity

(3000 km s-1) of 56Ni

bull Mass of 56Ni with ~ 3000

km s-1 14 x 10-3 M8

20140304 BH-mag 2014 Kumamoto Univ 48

Summary

bull To reproduce the high velocity of 56Ni both aspherical

explosion with clumpy structure and perturbations of

presupernova origins may be necessary

bull There are still missing ingredients to explain the observed

high velocity of 56Ni in SN 1987A

bull Possible missing ingredients

ndash More realistic explosion model (eg Kifonidis et al 2006)

ndash Lager perturbations in presupernova structure (Arnett amp Meakin 2011)

ndash Long simulation time

bull Heating due to the decay of 56Co (Herant amp Benz 1991)

ndash 3D effect (Hammer et al 2010)

Possible seeds of perturbations

bull Dynamical stellar evolution calculation

bull Density fluctuations

around the composition

interfaces

20140304 BH-mag 2014 Kumamoto Univ 49

Arnett amp Meakin 2011

20140304 BH-mag 2014 Kumamoto Univ 50

3D simulations of mixing instabilities in SN

explosions

Hammer et al 2010

56Ni 56Ni

2D 3D

Entropy per baryon Red Oxygen

Blue Nickel

Green Carbon

Direct-escape lines of 44Ti from SNR 1987A

bull lines from 44Ti 679 keV and 784 keV

bull Estimated 44Ti mass (31plusmn08) x 10-4 M8

20140304 BH-mag 2014 Kumamoto Univ 51

Grebenev+12 Nature 490 373

44Ti rarr 44Sc rarr 44Ca T12 = 60 d T12 = 4 h

Asymmetries in core-collapse supernovae from

maps of radioactive 44Ti in Cas A

20140304 BH-mag 2014 Kumamoto Univ 52

Grefenstette+14 Nature 506 339

Aspherical explosion enhance 44Ti

20140304 BH-mag 2014 Kumamoto Univ 53

56Ni 4He 44Ti

Alpha-rich freeze-out enhance the production of 44Ti in the

explosive nucleosynthesis

Aspherical explosion enhance the ratio of M(44Ti)M(56Ni)

096 s after the initiation of the explosion

Toward full 3D radiative transfer

bull 爆発形状を仮定した

輻射輸送計算

ndash 形状で偏光度が異なる

ndash 元素によっても異なる

bull 3次元物質混合計算を

インプットにした輻射

輸送計算

20140304 BH-mag 2014 Kumamoto Univ 54

Tanaka et al 2012 bipolar

clumpy

爆発形状のプローブ

20140304 BH-mag 2014 Kumamoto Univ 55

3D MHD simulation of a SNR

Introduction

bull Acceleration of cosmic-rays in SNRs

ndash Up to ~ 1015 eV or more

ndash Magnetic field is key ingredient

20140304 BH-mag 2014 Kumamoto Univ 56

SN1006 (Chandra X-ray)

Amplified strong magnetic field

20140304 BH-mag 2014 Kumamoto Univ 57

Uchiyama et al 2007 Nature 4469 576

Bohm-diffusion limit

Variations of X-ray hot

spots on a 1 yr timescale

Strong amplified

magnetic field

3D MHD simulation of a SNR

20140304 BH-mag 2014 Kumamoto Univ 58

3 pc

Preliminary

20140304 BH-mag 2014 Kumamoto Univ 59

Amplified magnetic field

20121015 - 17 SNSNR12 59

~ 50 μ G

1 μ G Preliminary

20140304 BH-mag 2014 Kumamoto Univ 60

3D structure of Cas A

Delaney et al 2010

Chandra lsquos X-rays

Spitzer lsquos infrared

Green X-ray Fe-K

Red IR [Ar II]

Blue high [Ne II][Ar II] ratio

Yellow optical outer ejecta

Grey IR [Si II]

Black X-ray Si XIII

20140304 BH-mag 2014 Kumamoto Univ 61

ASTRO-H

bull New exploration X-ray

Telescope

ndash First right will be

2015 yr

ndash 10 times larger

energy resolution

httpastro-hisasjaxajpgallerysatelite02html

High resolution spectrum

of X-ray from SNRs is

expected

3D simulation of the thermal X-ray emission from young

SNRs including efficient particle acceleration

bull 3D simulation

bull Diffusive Shock Acceleration

bull Back reaction from

accelerated particle

bull Non-equilibrium ionization

bull Thermal X-ray emission

20140304 BH-mag 2014 Kumamoto Univ 62

Ferrand et al 2012

To go further than

Ferrand et al

Test 1D calculation

bull Two energy equation for ions and electrons respectively

bull Energy equilibration between ions and electrons

bull Ionization

20140304 BH-mag 2014 Kumamoto Univ 63

20140304 BH-mag 2014 Kumamoto Univ 64

Density contour

Preliminary

Emission from deferent regions

20140304 BH-mag 2014 Kumamoto Univ 65

Preliminary

Summary

bull Aspherical nature of core-collapse supernova

explosions

bull Origin of heavy elements

ndash NS merger

ndash Magnetically driven jets

bull Mixing in CCSN explosion

bull Supernova explosions to Supernova remnant

20140304 BH-mag 2014 Kumamoto Univ 66

Page 42: Masaomi ONO Kyushu University - aichi-edu.ac.jptakahasi/BHmag2014_pdf/Presen/...Method of MHD simulation 16 Magnetohydrodynamics (ideal MHD) Poisson eq. pseudo-Newtonian potential

Mimicking the neutrino-driven explosions

20140304 BH-mag 2014 Kumamoto Univ 42

Initial radial velocity

Scheck+04

Gawryszczak+10

Mechanism of the core-collapse supernova

explosions

bull Neutrino heating

20140304 BH-mag 2014 Kumamoto Univ 43

Taken from Janka et al 2012 (PTEP 1 A309)

Bethe 1990 (Rev Mod Phys 62 801) Taken from Liebendofer et al 2001

Convections and Standing Accretion Shock

Instability (SASI)

bull Convection around PNS surface

bull Neutrino-driven convection

bull Standing Accretion Shock Instability (SASI) (Blondin et al )

ndash Acoustic-vorticity cycle

20140304 BH-mag 2014 Kumamoto Univ 44

Ledoux criterion

Ledoux criterion

Taken from Liebendofer et al 2001

20140304 BH-mag 2014 Kumamoto Univ 45

Aspherical explosion with clumpy structure in the

explosion (movie)

20140304 BH-mag 2014 Kumamoto Univ 46

Aspherical explosion with clumpy structure + RT

instability

053 s 288 s 5752 s

20140304 BH-mag 2014 Kumamoto Univ 47

Maximum 3000 km s-1

56Ni

Radial velocity distributions of the best model in

this study

bull Relatively high velocity

(3000 km s-1) of 56Ni

bull Mass of 56Ni with ~ 3000

km s-1 14 x 10-3 M8

20140304 BH-mag 2014 Kumamoto Univ 48

Summary

bull To reproduce the high velocity of 56Ni both aspherical

explosion with clumpy structure and perturbations of

presupernova origins may be necessary

bull There are still missing ingredients to explain the observed

high velocity of 56Ni in SN 1987A

bull Possible missing ingredients

ndash More realistic explosion model (eg Kifonidis et al 2006)

ndash Lager perturbations in presupernova structure (Arnett amp Meakin 2011)

ndash Long simulation time

bull Heating due to the decay of 56Co (Herant amp Benz 1991)

ndash 3D effect (Hammer et al 2010)

Possible seeds of perturbations

bull Dynamical stellar evolution calculation

bull Density fluctuations

around the composition

interfaces

20140304 BH-mag 2014 Kumamoto Univ 49

Arnett amp Meakin 2011

20140304 BH-mag 2014 Kumamoto Univ 50

3D simulations of mixing instabilities in SN

explosions

Hammer et al 2010

56Ni 56Ni

2D 3D

Entropy per baryon Red Oxygen

Blue Nickel

Green Carbon

Direct-escape lines of 44Ti from SNR 1987A

bull lines from 44Ti 679 keV and 784 keV

bull Estimated 44Ti mass (31plusmn08) x 10-4 M8

20140304 BH-mag 2014 Kumamoto Univ 51

Grebenev+12 Nature 490 373

44Ti rarr 44Sc rarr 44Ca T12 = 60 d T12 = 4 h

Asymmetries in core-collapse supernovae from

maps of radioactive 44Ti in Cas A

20140304 BH-mag 2014 Kumamoto Univ 52

Grefenstette+14 Nature 506 339

Aspherical explosion enhance 44Ti

20140304 BH-mag 2014 Kumamoto Univ 53

56Ni 4He 44Ti

Alpha-rich freeze-out enhance the production of 44Ti in the

explosive nucleosynthesis

Aspherical explosion enhance the ratio of M(44Ti)M(56Ni)

096 s after the initiation of the explosion

Toward full 3D radiative transfer

bull 爆発形状を仮定した

輻射輸送計算

ndash 形状で偏光度が異なる

ndash 元素によっても異なる

bull 3次元物質混合計算を

インプットにした輻射

輸送計算

20140304 BH-mag 2014 Kumamoto Univ 54

Tanaka et al 2012 bipolar

clumpy

爆発形状のプローブ

20140304 BH-mag 2014 Kumamoto Univ 55

3D MHD simulation of a SNR

Introduction

bull Acceleration of cosmic-rays in SNRs

ndash Up to ~ 1015 eV or more

ndash Magnetic field is key ingredient

20140304 BH-mag 2014 Kumamoto Univ 56

SN1006 (Chandra X-ray)

Amplified strong magnetic field

20140304 BH-mag 2014 Kumamoto Univ 57

Uchiyama et al 2007 Nature 4469 576

Bohm-diffusion limit

Variations of X-ray hot

spots on a 1 yr timescale

Strong amplified

magnetic field

3D MHD simulation of a SNR

20140304 BH-mag 2014 Kumamoto Univ 58

3 pc

Preliminary

20140304 BH-mag 2014 Kumamoto Univ 59

Amplified magnetic field

20121015 - 17 SNSNR12 59

~ 50 μ G

1 μ G Preliminary

20140304 BH-mag 2014 Kumamoto Univ 60

3D structure of Cas A

Delaney et al 2010

Chandra lsquos X-rays

Spitzer lsquos infrared

Green X-ray Fe-K

Red IR [Ar II]

Blue high [Ne II][Ar II] ratio

Yellow optical outer ejecta

Grey IR [Si II]

Black X-ray Si XIII

20140304 BH-mag 2014 Kumamoto Univ 61

ASTRO-H

bull New exploration X-ray

Telescope

ndash First right will be

2015 yr

ndash 10 times larger

energy resolution

httpastro-hisasjaxajpgallerysatelite02html

High resolution spectrum

of X-ray from SNRs is

expected

3D simulation of the thermal X-ray emission from young

SNRs including efficient particle acceleration

bull 3D simulation

bull Diffusive Shock Acceleration

bull Back reaction from

accelerated particle

bull Non-equilibrium ionization

bull Thermal X-ray emission

20140304 BH-mag 2014 Kumamoto Univ 62

Ferrand et al 2012

To go further than

Ferrand et al

Test 1D calculation

bull Two energy equation for ions and electrons respectively

bull Energy equilibration between ions and electrons

bull Ionization

20140304 BH-mag 2014 Kumamoto Univ 63

20140304 BH-mag 2014 Kumamoto Univ 64

Density contour

Preliminary

Emission from deferent regions

20140304 BH-mag 2014 Kumamoto Univ 65

Preliminary

Summary

bull Aspherical nature of core-collapse supernova

explosions

bull Origin of heavy elements

ndash NS merger

ndash Magnetically driven jets

bull Mixing in CCSN explosion

bull Supernova explosions to Supernova remnant

20140304 BH-mag 2014 Kumamoto Univ 66

Page 43: Masaomi ONO Kyushu University - aichi-edu.ac.jptakahasi/BHmag2014_pdf/Presen/...Method of MHD simulation 16 Magnetohydrodynamics (ideal MHD) Poisson eq. pseudo-Newtonian potential

Mechanism of the core-collapse supernova

explosions

bull Neutrino heating

20140304 BH-mag 2014 Kumamoto Univ 43

Taken from Janka et al 2012 (PTEP 1 A309)

Bethe 1990 (Rev Mod Phys 62 801) Taken from Liebendofer et al 2001

Convections and Standing Accretion Shock

Instability (SASI)

bull Convection around PNS surface

bull Neutrino-driven convection

bull Standing Accretion Shock Instability (SASI) (Blondin et al )

ndash Acoustic-vorticity cycle

20140304 BH-mag 2014 Kumamoto Univ 44

Ledoux criterion

Ledoux criterion

Taken from Liebendofer et al 2001

20140304 BH-mag 2014 Kumamoto Univ 45

Aspherical explosion with clumpy structure in the

explosion (movie)

20140304 BH-mag 2014 Kumamoto Univ 46

Aspherical explosion with clumpy structure + RT

instability

053 s 288 s 5752 s

20140304 BH-mag 2014 Kumamoto Univ 47

Maximum 3000 km s-1

56Ni

Radial velocity distributions of the best model in

this study

bull Relatively high velocity

(3000 km s-1) of 56Ni

bull Mass of 56Ni with ~ 3000

km s-1 14 x 10-3 M8

20140304 BH-mag 2014 Kumamoto Univ 48

Summary

bull To reproduce the high velocity of 56Ni both aspherical

explosion with clumpy structure and perturbations of

presupernova origins may be necessary

bull There are still missing ingredients to explain the observed

high velocity of 56Ni in SN 1987A

bull Possible missing ingredients

ndash More realistic explosion model (eg Kifonidis et al 2006)

ndash Lager perturbations in presupernova structure (Arnett amp Meakin 2011)

ndash Long simulation time

bull Heating due to the decay of 56Co (Herant amp Benz 1991)

ndash 3D effect (Hammer et al 2010)

Possible seeds of perturbations

bull Dynamical stellar evolution calculation

bull Density fluctuations

around the composition

interfaces

20140304 BH-mag 2014 Kumamoto Univ 49

Arnett amp Meakin 2011

20140304 BH-mag 2014 Kumamoto Univ 50

3D simulations of mixing instabilities in SN

explosions

Hammer et al 2010

56Ni 56Ni

2D 3D

Entropy per baryon Red Oxygen

Blue Nickel

Green Carbon

Direct-escape lines of 44Ti from SNR 1987A

bull lines from 44Ti 679 keV and 784 keV

bull Estimated 44Ti mass (31plusmn08) x 10-4 M8

20140304 BH-mag 2014 Kumamoto Univ 51

Grebenev+12 Nature 490 373

44Ti rarr 44Sc rarr 44Ca T12 = 60 d T12 = 4 h

Asymmetries in core-collapse supernovae from

maps of radioactive 44Ti in Cas A

20140304 BH-mag 2014 Kumamoto Univ 52

Grefenstette+14 Nature 506 339

Aspherical explosion enhance 44Ti

20140304 BH-mag 2014 Kumamoto Univ 53

56Ni 4He 44Ti

Alpha-rich freeze-out enhance the production of 44Ti in the

explosive nucleosynthesis

Aspherical explosion enhance the ratio of M(44Ti)M(56Ni)

096 s after the initiation of the explosion

Toward full 3D radiative transfer

bull 爆発形状を仮定した

輻射輸送計算

ndash 形状で偏光度が異なる

ndash 元素によっても異なる

bull 3次元物質混合計算を

インプットにした輻射

輸送計算

20140304 BH-mag 2014 Kumamoto Univ 54

Tanaka et al 2012 bipolar

clumpy

爆発形状のプローブ

20140304 BH-mag 2014 Kumamoto Univ 55

3D MHD simulation of a SNR

Introduction

bull Acceleration of cosmic-rays in SNRs

ndash Up to ~ 1015 eV or more

ndash Magnetic field is key ingredient

20140304 BH-mag 2014 Kumamoto Univ 56

SN1006 (Chandra X-ray)

Amplified strong magnetic field

20140304 BH-mag 2014 Kumamoto Univ 57

Uchiyama et al 2007 Nature 4469 576

Bohm-diffusion limit

Variations of X-ray hot

spots on a 1 yr timescale

Strong amplified

magnetic field

3D MHD simulation of a SNR

20140304 BH-mag 2014 Kumamoto Univ 58

3 pc

Preliminary

20140304 BH-mag 2014 Kumamoto Univ 59

Amplified magnetic field

20121015 - 17 SNSNR12 59

~ 50 μ G

1 μ G Preliminary

20140304 BH-mag 2014 Kumamoto Univ 60

3D structure of Cas A

Delaney et al 2010

Chandra lsquos X-rays

Spitzer lsquos infrared

Green X-ray Fe-K

Red IR [Ar II]

Blue high [Ne II][Ar II] ratio

Yellow optical outer ejecta

Grey IR [Si II]

Black X-ray Si XIII

20140304 BH-mag 2014 Kumamoto Univ 61

ASTRO-H

bull New exploration X-ray

Telescope

ndash First right will be

2015 yr

ndash 10 times larger

energy resolution

httpastro-hisasjaxajpgallerysatelite02html

High resolution spectrum

of X-ray from SNRs is

expected

3D simulation of the thermal X-ray emission from young

SNRs including efficient particle acceleration

bull 3D simulation

bull Diffusive Shock Acceleration

bull Back reaction from

accelerated particle

bull Non-equilibrium ionization

bull Thermal X-ray emission

20140304 BH-mag 2014 Kumamoto Univ 62

Ferrand et al 2012

To go further than

Ferrand et al

Test 1D calculation

bull Two energy equation for ions and electrons respectively

bull Energy equilibration between ions and electrons

bull Ionization

20140304 BH-mag 2014 Kumamoto Univ 63

20140304 BH-mag 2014 Kumamoto Univ 64

Density contour

Preliminary

Emission from deferent regions

20140304 BH-mag 2014 Kumamoto Univ 65

Preliminary

Summary

bull Aspherical nature of core-collapse supernova

explosions

bull Origin of heavy elements

ndash NS merger

ndash Magnetically driven jets

bull Mixing in CCSN explosion

bull Supernova explosions to Supernova remnant

20140304 BH-mag 2014 Kumamoto Univ 66

Page 44: Masaomi ONO Kyushu University - aichi-edu.ac.jptakahasi/BHmag2014_pdf/Presen/...Method of MHD simulation 16 Magnetohydrodynamics (ideal MHD) Poisson eq. pseudo-Newtonian potential

Convections and Standing Accretion Shock

Instability (SASI)

bull Convection around PNS surface

bull Neutrino-driven convection

bull Standing Accretion Shock Instability (SASI) (Blondin et al )

ndash Acoustic-vorticity cycle

20140304 BH-mag 2014 Kumamoto Univ 44

Ledoux criterion

Ledoux criterion

Taken from Liebendofer et al 2001

20140304 BH-mag 2014 Kumamoto Univ 45

Aspherical explosion with clumpy structure in the

explosion (movie)

20140304 BH-mag 2014 Kumamoto Univ 46

Aspherical explosion with clumpy structure + RT

instability

053 s 288 s 5752 s

20140304 BH-mag 2014 Kumamoto Univ 47

Maximum 3000 km s-1

56Ni

Radial velocity distributions of the best model in

this study

bull Relatively high velocity

(3000 km s-1) of 56Ni

bull Mass of 56Ni with ~ 3000

km s-1 14 x 10-3 M8

20140304 BH-mag 2014 Kumamoto Univ 48

Summary

bull To reproduce the high velocity of 56Ni both aspherical

explosion with clumpy structure and perturbations of

presupernova origins may be necessary

bull There are still missing ingredients to explain the observed

high velocity of 56Ni in SN 1987A

bull Possible missing ingredients

ndash More realistic explosion model (eg Kifonidis et al 2006)

ndash Lager perturbations in presupernova structure (Arnett amp Meakin 2011)

ndash Long simulation time

bull Heating due to the decay of 56Co (Herant amp Benz 1991)

ndash 3D effect (Hammer et al 2010)

Possible seeds of perturbations

bull Dynamical stellar evolution calculation

bull Density fluctuations

around the composition

interfaces

20140304 BH-mag 2014 Kumamoto Univ 49

Arnett amp Meakin 2011

20140304 BH-mag 2014 Kumamoto Univ 50

3D simulations of mixing instabilities in SN

explosions

Hammer et al 2010

56Ni 56Ni

2D 3D

Entropy per baryon Red Oxygen

Blue Nickel

Green Carbon

Direct-escape lines of 44Ti from SNR 1987A

bull lines from 44Ti 679 keV and 784 keV

bull Estimated 44Ti mass (31plusmn08) x 10-4 M8

20140304 BH-mag 2014 Kumamoto Univ 51

Grebenev+12 Nature 490 373

44Ti rarr 44Sc rarr 44Ca T12 = 60 d T12 = 4 h

Asymmetries in core-collapse supernovae from

maps of radioactive 44Ti in Cas A

20140304 BH-mag 2014 Kumamoto Univ 52

Grefenstette+14 Nature 506 339

Aspherical explosion enhance 44Ti

20140304 BH-mag 2014 Kumamoto Univ 53

56Ni 4He 44Ti

Alpha-rich freeze-out enhance the production of 44Ti in the

explosive nucleosynthesis

Aspherical explosion enhance the ratio of M(44Ti)M(56Ni)

096 s after the initiation of the explosion

Toward full 3D radiative transfer

bull 爆発形状を仮定した

輻射輸送計算

ndash 形状で偏光度が異なる

ndash 元素によっても異なる

bull 3次元物質混合計算を

インプットにした輻射

輸送計算

20140304 BH-mag 2014 Kumamoto Univ 54

Tanaka et al 2012 bipolar

clumpy

爆発形状のプローブ

20140304 BH-mag 2014 Kumamoto Univ 55

3D MHD simulation of a SNR

Introduction

bull Acceleration of cosmic-rays in SNRs

ndash Up to ~ 1015 eV or more

ndash Magnetic field is key ingredient

20140304 BH-mag 2014 Kumamoto Univ 56

SN1006 (Chandra X-ray)

Amplified strong magnetic field

20140304 BH-mag 2014 Kumamoto Univ 57

Uchiyama et al 2007 Nature 4469 576

Bohm-diffusion limit

Variations of X-ray hot

spots on a 1 yr timescale

Strong amplified

magnetic field

3D MHD simulation of a SNR

20140304 BH-mag 2014 Kumamoto Univ 58

3 pc

Preliminary

20140304 BH-mag 2014 Kumamoto Univ 59

Amplified magnetic field

20121015 - 17 SNSNR12 59

~ 50 μ G

1 μ G Preliminary

20140304 BH-mag 2014 Kumamoto Univ 60

3D structure of Cas A

Delaney et al 2010

Chandra lsquos X-rays

Spitzer lsquos infrared

Green X-ray Fe-K

Red IR [Ar II]

Blue high [Ne II][Ar II] ratio

Yellow optical outer ejecta

Grey IR [Si II]

Black X-ray Si XIII

20140304 BH-mag 2014 Kumamoto Univ 61

ASTRO-H

bull New exploration X-ray

Telescope

ndash First right will be

2015 yr

ndash 10 times larger

energy resolution

httpastro-hisasjaxajpgallerysatelite02html

High resolution spectrum

of X-ray from SNRs is

expected

3D simulation of the thermal X-ray emission from young

SNRs including efficient particle acceleration

bull 3D simulation

bull Diffusive Shock Acceleration

bull Back reaction from

accelerated particle

bull Non-equilibrium ionization

bull Thermal X-ray emission

20140304 BH-mag 2014 Kumamoto Univ 62

Ferrand et al 2012

To go further than

Ferrand et al

Test 1D calculation

bull Two energy equation for ions and electrons respectively

bull Energy equilibration between ions and electrons

bull Ionization

20140304 BH-mag 2014 Kumamoto Univ 63

20140304 BH-mag 2014 Kumamoto Univ 64

Density contour

Preliminary

Emission from deferent regions

20140304 BH-mag 2014 Kumamoto Univ 65

Preliminary

Summary

bull Aspherical nature of core-collapse supernova

explosions

bull Origin of heavy elements

ndash NS merger

ndash Magnetically driven jets

bull Mixing in CCSN explosion

bull Supernova explosions to Supernova remnant

20140304 BH-mag 2014 Kumamoto Univ 66

Page 45: Masaomi ONO Kyushu University - aichi-edu.ac.jptakahasi/BHmag2014_pdf/Presen/...Method of MHD simulation 16 Magnetohydrodynamics (ideal MHD) Poisson eq. pseudo-Newtonian potential

20140304 BH-mag 2014 Kumamoto Univ 45

Aspherical explosion with clumpy structure in the

explosion (movie)

20140304 BH-mag 2014 Kumamoto Univ 46

Aspherical explosion with clumpy structure + RT

instability

053 s 288 s 5752 s

20140304 BH-mag 2014 Kumamoto Univ 47

Maximum 3000 km s-1

56Ni

Radial velocity distributions of the best model in

this study

bull Relatively high velocity

(3000 km s-1) of 56Ni

bull Mass of 56Ni with ~ 3000

km s-1 14 x 10-3 M8

20140304 BH-mag 2014 Kumamoto Univ 48

Summary

bull To reproduce the high velocity of 56Ni both aspherical

explosion with clumpy structure and perturbations of

presupernova origins may be necessary

bull There are still missing ingredients to explain the observed

high velocity of 56Ni in SN 1987A

bull Possible missing ingredients

ndash More realistic explosion model (eg Kifonidis et al 2006)

ndash Lager perturbations in presupernova structure (Arnett amp Meakin 2011)

ndash Long simulation time

bull Heating due to the decay of 56Co (Herant amp Benz 1991)

ndash 3D effect (Hammer et al 2010)

Possible seeds of perturbations

bull Dynamical stellar evolution calculation

bull Density fluctuations

around the composition

interfaces

20140304 BH-mag 2014 Kumamoto Univ 49

Arnett amp Meakin 2011

20140304 BH-mag 2014 Kumamoto Univ 50

3D simulations of mixing instabilities in SN

explosions

Hammer et al 2010

56Ni 56Ni

2D 3D

Entropy per baryon Red Oxygen

Blue Nickel

Green Carbon

Direct-escape lines of 44Ti from SNR 1987A

bull lines from 44Ti 679 keV and 784 keV

bull Estimated 44Ti mass (31plusmn08) x 10-4 M8

20140304 BH-mag 2014 Kumamoto Univ 51

Grebenev+12 Nature 490 373

44Ti rarr 44Sc rarr 44Ca T12 = 60 d T12 = 4 h

Asymmetries in core-collapse supernovae from

maps of radioactive 44Ti in Cas A

20140304 BH-mag 2014 Kumamoto Univ 52

Grefenstette+14 Nature 506 339

Aspherical explosion enhance 44Ti

20140304 BH-mag 2014 Kumamoto Univ 53

56Ni 4He 44Ti

Alpha-rich freeze-out enhance the production of 44Ti in the

explosive nucleosynthesis

Aspherical explosion enhance the ratio of M(44Ti)M(56Ni)

096 s after the initiation of the explosion

Toward full 3D radiative transfer

bull 爆発形状を仮定した

輻射輸送計算

ndash 形状で偏光度が異なる

ndash 元素によっても異なる

bull 3次元物質混合計算を

インプットにした輻射

輸送計算

20140304 BH-mag 2014 Kumamoto Univ 54

Tanaka et al 2012 bipolar

clumpy

爆発形状のプローブ

20140304 BH-mag 2014 Kumamoto Univ 55

3D MHD simulation of a SNR

Introduction

bull Acceleration of cosmic-rays in SNRs

ndash Up to ~ 1015 eV or more

ndash Magnetic field is key ingredient

20140304 BH-mag 2014 Kumamoto Univ 56

SN1006 (Chandra X-ray)

Amplified strong magnetic field

20140304 BH-mag 2014 Kumamoto Univ 57

Uchiyama et al 2007 Nature 4469 576

Bohm-diffusion limit

Variations of X-ray hot

spots on a 1 yr timescale

Strong amplified

magnetic field

3D MHD simulation of a SNR

20140304 BH-mag 2014 Kumamoto Univ 58

3 pc

Preliminary

20140304 BH-mag 2014 Kumamoto Univ 59

Amplified magnetic field

20121015 - 17 SNSNR12 59

~ 50 μ G

1 μ G Preliminary

20140304 BH-mag 2014 Kumamoto Univ 60

3D structure of Cas A

Delaney et al 2010

Chandra lsquos X-rays

Spitzer lsquos infrared

Green X-ray Fe-K

Red IR [Ar II]

Blue high [Ne II][Ar II] ratio

Yellow optical outer ejecta

Grey IR [Si II]

Black X-ray Si XIII

20140304 BH-mag 2014 Kumamoto Univ 61

ASTRO-H

bull New exploration X-ray

Telescope

ndash First right will be

2015 yr

ndash 10 times larger

energy resolution

httpastro-hisasjaxajpgallerysatelite02html

High resolution spectrum

of X-ray from SNRs is

expected

3D simulation of the thermal X-ray emission from young

SNRs including efficient particle acceleration

bull 3D simulation

bull Diffusive Shock Acceleration

bull Back reaction from

accelerated particle

bull Non-equilibrium ionization

bull Thermal X-ray emission

20140304 BH-mag 2014 Kumamoto Univ 62

Ferrand et al 2012

To go further than

Ferrand et al

Test 1D calculation

bull Two energy equation for ions and electrons respectively

bull Energy equilibration between ions and electrons

bull Ionization

20140304 BH-mag 2014 Kumamoto Univ 63

20140304 BH-mag 2014 Kumamoto Univ 64

Density contour

Preliminary

Emission from deferent regions

20140304 BH-mag 2014 Kumamoto Univ 65

Preliminary

Summary

bull Aspherical nature of core-collapse supernova

explosions

bull Origin of heavy elements

ndash NS merger

ndash Magnetically driven jets

bull Mixing in CCSN explosion

bull Supernova explosions to Supernova remnant

20140304 BH-mag 2014 Kumamoto Univ 66

Page 46: Masaomi ONO Kyushu University - aichi-edu.ac.jptakahasi/BHmag2014_pdf/Presen/...Method of MHD simulation 16 Magnetohydrodynamics (ideal MHD) Poisson eq. pseudo-Newtonian potential

20140304 BH-mag 2014 Kumamoto Univ 46

Aspherical explosion with clumpy structure + RT

instability

053 s 288 s 5752 s

20140304 BH-mag 2014 Kumamoto Univ 47

Maximum 3000 km s-1

56Ni

Radial velocity distributions of the best model in

this study

bull Relatively high velocity

(3000 km s-1) of 56Ni

bull Mass of 56Ni with ~ 3000

km s-1 14 x 10-3 M8

20140304 BH-mag 2014 Kumamoto Univ 48

Summary

bull To reproduce the high velocity of 56Ni both aspherical

explosion with clumpy structure and perturbations of

presupernova origins may be necessary

bull There are still missing ingredients to explain the observed

high velocity of 56Ni in SN 1987A

bull Possible missing ingredients

ndash More realistic explosion model (eg Kifonidis et al 2006)

ndash Lager perturbations in presupernova structure (Arnett amp Meakin 2011)

ndash Long simulation time

bull Heating due to the decay of 56Co (Herant amp Benz 1991)

ndash 3D effect (Hammer et al 2010)

Possible seeds of perturbations

bull Dynamical stellar evolution calculation

bull Density fluctuations

around the composition

interfaces

20140304 BH-mag 2014 Kumamoto Univ 49

Arnett amp Meakin 2011

20140304 BH-mag 2014 Kumamoto Univ 50

3D simulations of mixing instabilities in SN

explosions

Hammer et al 2010

56Ni 56Ni

2D 3D

Entropy per baryon Red Oxygen

Blue Nickel

Green Carbon

Direct-escape lines of 44Ti from SNR 1987A

bull lines from 44Ti 679 keV and 784 keV

bull Estimated 44Ti mass (31plusmn08) x 10-4 M8

20140304 BH-mag 2014 Kumamoto Univ 51

Grebenev+12 Nature 490 373

44Ti rarr 44Sc rarr 44Ca T12 = 60 d T12 = 4 h

Asymmetries in core-collapse supernovae from

maps of radioactive 44Ti in Cas A

20140304 BH-mag 2014 Kumamoto Univ 52

Grefenstette+14 Nature 506 339

Aspherical explosion enhance 44Ti

20140304 BH-mag 2014 Kumamoto Univ 53

56Ni 4He 44Ti

Alpha-rich freeze-out enhance the production of 44Ti in the

explosive nucleosynthesis

Aspherical explosion enhance the ratio of M(44Ti)M(56Ni)

096 s after the initiation of the explosion

Toward full 3D radiative transfer

bull 爆発形状を仮定した

輻射輸送計算

ndash 形状で偏光度が異なる

ndash 元素によっても異なる

bull 3次元物質混合計算を

インプットにした輻射

輸送計算

20140304 BH-mag 2014 Kumamoto Univ 54

Tanaka et al 2012 bipolar

clumpy

爆発形状のプローブ

20140304 BH-mag 2014 Kumamoto Univ 55

3D MHD simulation of a SNR

Introduction

bull Acceleration of cosmic-rays in SNRs

ndash Up to ~ 1015 eV or more

ndash Magnetic field is key ingredient

20140304 BH-mag 2014 Kumamoto Univ 56

SN1006 (Chandra X-ray)

Amplified strong magnetic field

20140304 BH-mag 2014 Kumamoto Univ 57

Uchiyama et al 2007 Nature 4469 576

Bohm-diffusion limit

Variations of X-ray hot

spots on a 1 yr timescale

Strong amplified

magnetic field

3D MHD simulation of a SNR

20140304 BH-mag 2014 Kumamoto Univ 58

3 pc

Preliminary

20140304 BH-mag 2014 Kumamoto Univ 59

Amplified magnetic field

20121015 - 17 SNSNR12 59

~ 50 μ G

1 μ G Preliminary

20140304 BH-mag 2014 Kumamoto Univ 60

3D structure of Cas A

Delaney et al 2010

Chandra lsquos X-rays

Spitzer lsquos infrared

Green X-ray Fe-K

Red IR [Ar II]

Blue high [Ne II][Ar II] ratio

Yellow optical outer ejecta

Grey IR [Si II]

Black X-ray Si XIII

20140304 BH-mag 2014 Kumamoto Univ 61

ASTRO-H

bull New exploration X-ray

Telescope

ndash First right will be

2015 yr

ndash 10 times larger

energy resolution

httpastro-hisasjaxajpgallerysatelite02html

High resolution spectrum

of X-ray from SNRs is

expected

3D simulation of the thermal X-ray emission from young

SNRs including efficient particle acceleration

bull 3D simulation

bull Diffusive Shock Acceleration

bull Back reaction from

accelerated particle

bull Non-equilibrium ionization

bull Thermal X-ray emission

20140304 BH-mag 2014 Kumamoto Univ 62

Ferrand et al 2012

To go further than

Ferrand et al

Test 1D calculation

bull Two energy equation for ions and electrons respectively

bull Energy equilibration between ions and electrons

bull Ionization

20140304 BH-mag 2014 Kumamoto Univ 63

20140304 BH-mag 2014 Kumamoto Univ 64

Density contour

Preliminary

Emission from deferent regions

20140304 BH-mag 2014 Kumamoto Univ 65

Preliminary

Summary

bull Aspherical nature of core-collapse supernova

explosions

bull Origin of heavy elements

ndash NS merger

ndash Magnetically driven jets

bull Mixing in CCSN explosion

bull Supernova explosions to Supernova remnant

20140304 BH-mag 2014 Kumamoto Univ 66

Page 47: Masaomi ONO Kyushu University - aichi-edu.ac.jptakahasi/BHmag2014_pdf/Presen/...Method of MHD simulation 16 Magnetohydrodynamics (ideal MHD) Poisson eq. pseudo-Newtonian potential

20140304 BH-mag 2014 Kumamoto Univ 47

Maximum 3000 km s-1

56Ni

Radial velocity distributions of the best model in

this study

bull Relatively high velocity

(3000 km s-1) of 56Ni

bull Mass of 56Ni with ~ 3000

km s-1 14 x 10-3 M8

20140304 BH-mag 2014 Kumamoto Univ 48

Summary

bull To reproduce the high velocity of 56Ni both aspherical

explosion with clumpy structure and perturbations of

presupernova origins may be necessary

bull There are still missing ingredients to explain the observed

high velocity of 56Ni in SN 1987A

bull Possible missing ingredients

ndash More realistic explosion model (eg Kifonidis et al 2006)

ndash Lager perturbations in presupernova structure (Arnett amp Meakin 2011)

ndash Long simulation time

bull Heating due to the decay of 56Co (Herant amp Benz 1991)

ndash 3D effect (Hammer et al 2010)

Possible seeds of perturbations

bull Dynamical stellar evolution calculation

bull Density fluctuations

around the composition

interfaces

20140304 BH-mag 2014 Kumamoto Univ 49

Arnett amp Meakin 2011

20140304 BH-mag 2014 Kumamoto Univ 50

3D simulations of mixing instabilities in SN

explosions

Hammer et al 2010

56Ni 56Ni

2D 3D

Entropy per baryon Red Oxygen

Blue Nickel

Green Carbon

Direct-escape lines of 44Ti from SNR 1987A

bull lines from 44Ti 679 keV and 784 keV

bull Estimated 44Ti mass (31plusmn08) x 10-4 M8

20140304 BH-mag 2014 Kumamoto Univ 51

Grebenev+12 Nature 490 373

44Ti rarr 44Sc rarr 44Ca T12 = 60 d T12 = 4 h

Asymmetries in core-collapse supernovae from

maps of radioactive 44Ti in Cas A

20140304 BH-mag 2014 Kumamoto Univ 52

Grefenstette+14 Nature 506 339

Aspherical explosion enhance 44Ti

20140304 BH-mag 2014 Kumamoto Univ 53

56Ni 4He 44Ti

Alpha-rich freeze-out enhance the production of 44Ti in the

explosive nucleosynthesis

Aspherical explosion enhance the ratio of M(44Ti)M(56Ni)

096 s after the initiation of the explosion

Toward full 3D radiative transfer

bull 爆発形状を仮定した

輻射輸送計算

ndash 形状で偏光度が異なる

ndash 元素によっても異なる

bull 3次元物質混合計算を

インプットにした輻射

輸送計算

20140304 BH-mag 2014 Kumamoto Univ 54

Tanaka et al 2012 bipolar

clumpy

爆発形状のプローブ

20140304 BH-mag 2014 Kumamoto Univ 55

3D MHD simulation of a SNR

Introduction

bull Acceleration of cosmic-rays in SNRs

ndash Up to ~ 1015 eV or more

ndash Magnetic field is key ingredient

20140304 BH-mag 2014 Kumamoto Univ 56

SN1006 (Chandra X-ray)

Amplified strong magnetic field

20140304 BH-mag 2014 Kumamoto Univ 57

Uchiyama et al 2007 Nature 4469 576

Bohm-diffusion limit

Variations of X-ray hot

spots on a 1 yr timescale

Strong amplified

magnetic field

3D MHD simulation of a SNR

20140304 BH-mag 2014 Kumamoto Univ 58

3 pc

Preliminary

20140304 BH-mag 2014 Kumamoto Univ 59

Amplified magnetic field

20121015 - 17 SNSNR12 59

~ 50 μ G

1 μ G Preliminary

20140304 BH-mag 2014 Kumamoto Univ 60

3D structure of Cas A

Delaney et al 2010

Chandra lsquos X-rays

Spitzer lsquos infrared

Green X-ray Fe-K

Red IR [Ar II]

Blue high [Ne II][Ar II] ratio

Yellow optical outer ejecta

Grey IR [Si II]

Black X-ray Si XIII

20140304 BH-mag 2014 Kumamoto Univ 61

ASTRO-H

bull New exploration X-ray

Telescope

ndash First right will be

2015 yr

ndash 10 times larger

energy resolution

httpastro-hisasjaxajpgallerysatelite02html

High resolution spectrum

of X-ray from SNRs is

expected

3D simulation of the thermal X-ray emission from young

SNRs including efficient particle acceleration

bull 3D simulation

bull Diffusive Shock Acceleration

bull Back reaction from

accelerated particle

bull Non-equilibrium ionization

bull Thermal X-ray emission

20140304 BH-mag 2014 Kumamoto Univ 62

Ferrand et al 2012

To go further than

Ferrand et al

Test 1D calculation

bull Two energy equation for ions and electrons respectively

bull Energy equilibration between ions and electrons

bull Ionization

20140304 BH-mag 2014 Kumamoto Univ 63

20140304 BH-mag 2014 Kumamoto Univ 64

Density contour

Preliminary

Emission from deferent regions

20140304 BH-mag 2014 Kumamoto Univ 65

Preliminary

Summary

bull Aspherical nature of core-collapse supernova

explosions

bull Origin of heavy elements

ndash NS merger

ndash Magnetically driven jets

bull Mixing in CCSN explosion

bull Supernova explosions to Supernova remnant

20140304 BH-mag 2014 Kumamoto Univ 66

Page 48: Masaomi ONO Kyushu University - aichi-edu.ac.jptakahasi/BHmag2014_pdf/Presen/...Method of MHD simulation 16 Magnetohydrodynamics (ideal MHD) Poisson eq. pseudo-Newtonian potential

20140304 BH-mag 2014 Kumamoto Univ 48

Summary

bull To reproduce the high velocity of 56Ni both aspherical

explosion with clumpy structure and perturbations of

presupernova origins may be necessary

bull There are still missing ingredients to explain the observed

high velocity of 56Ni in SN 1987A

bull Possible missing ingredients

ndash More realistic explosion model (eg Kifonidis et al 2006)

ndash Lager perturbations in presupernova structure (Arnett amp Meakin 2011)

ndash Long simulation time

bull Heating due to the decay of 56Co (Herant amp Benz 1991)

ndash 3D effect (Hammer et al 2010)

Possible seeds of perturbations

bull Dynamical stellar evolution calculation

bull Density fluctuations

around the composition

interfaces

20140304 BH-mag 2014 Kumamoto Univ 49

Arnett amp Meakin 2011

20140304 BH-mag 2014 Kumamoto Univ 50

3D simulations of mixing instabilities in SN

explosions

Hammer et al 2010

56Ni 56Ni

2D 3D

Entropy per baryon Red Oxygen

Blue Nickel

Green Carbon

Direct-escape lines of 44Ti from SNR 1987A

bull lines from 44Ti 679 keV and 784 keV

bull Estimated 44Ti mass (31plusmn08) x 10-4 M8

20140304 BH-mag 2014 Kumamoto Univ 51

Grebenev+12 Nature 490 373

44Ti rarr 44Sc rarr 44Ca T12 = 60 d T12 = 4 h

Asymmetries in core-collapse supernovae from

maps of radioactive 44Ti in Cas A

20140304 BH-mag 2014 Kumamoto Univ 52

Grefenstette+14 Nature 506 339

Aspherical explosion enhance 44Ti

20140304 BH-mag 2014 Kumamoto Univ 53

56Ni 4He 44Ti

Alpha-rich freeze-out enhance the production of 44Ti in the

explosive nucleosynthesis

Aspherical explosion enhance the ratio of M(44Ti)M(56Ni)

096 s after the initiation of the explosion

Toward full 3D radiative transfer

bull 爆発形状を仮定した

輻射輸送計算

ndash 形状で偏光度が異なる

ndash 元素によっても異なる

bull 3次元物質混合計算を

インプットにした輻射

輸送計算

20140304 BH-mag 2014 Kumamoto Univ 54

Tanaka et al 2012 bipolar

clumpy

爆発形状のプローブ

20140304 BH-mag 2014 Kumamoto Univ 55

3D MHD simulation of a SNR

Introduction

bull Acceleration of cosmic-rays in SNRs

ndash Up to ~ 1015 eV or more

ndash Magnetic field is key ingredient

20140304 BH-mag 2014 Kumamoto Univ 56

SN1006 (Chandra X-ray)

Amplified strong magnetic field

20140304 BH-mag 2014 Kumamoto Univ 57

Uchiyama et al 2007 Nature 4469 576

Bohm-diffusion limit

Variations of X-ray hot

spots on a 1 yr timescale

Strong amplified

magnetic field

3D MHD simulation of a SNR

20140304 BH-mag 2014 Kumamoto Univ 58

3 pc

Preliminary

20140304 BH-mag 2014 Kumamoto Univ 59

Amplified magnetic field

20121015 - 17 SNSNR12 59

~ 50 μ G

1 μ G Preliminary

20140304 BH-mag 2014 Kumamoto Univ 60

3D structure of Cas A

Delaney et al 2010

Chandra lsquos X-rays

Spitzer lsquos infrared

Green X-ray Fe-K

Red IR [Ar II]

Blue high [Ne II][Ar II] ratio

Yellow optical outer ejecta

Grey IR [Si II]

Black X-ray Si XIII

20140304 BH-mag 2014 Kumamoto Univ 61

ASTRO-H

bull New exploration X-ray

Telescope

ndash First right will be

2015 yr

ndash 10 times larger

energy resolution

httpastro-hisasjaxajpgallerysatelite02html

High resolution spectrum

of X-ray from SNRs is

expected

3D simulation of the thermal X-ray emission from young

SNRs including efficient particle acceleration

bull 3D simulation

bull Diffusive Shock Acceleration

bull Back reaction from

accelerated particle

bull Non-equilibrium ionization

bull Thermal X-ray emission

20140304 BH-mag 2014 Kumamoto Univ 62

Ferrand et al 2012

To go further than

Ferrand et al

Test 1D calculation

bull Two energy equation for ions and electrons respectively

bull Energy equilibration between ions and electrons

bull Ionization

20140304 BH-mag 2014 Kumamoto Univ 63

20140304 BH-mag 2014 Kumamoto Univ 64

Density contour

Preliminary

Emission from deferent regions

20140304 BH-mag 2014 Kumamoto Univ 65

Preliminary

Summary

bull Aspherical nature of core-collapse supernova

explosions

bull Origin of heavy elements

ndash NS merger

ndash Magnetically driven jets

bull Mixing in CCSN explosion

bull Supernova explosions to Supernova remnant

20140304 BH-mag 2014 Kumamoto Univ 66

Page 49: Masaomi ONO Kyushu University - aichi-edu.ac.jptakahasi/BHmag2014_pdf/Presen/...Method of MHD simulation 16 Magnetohydrodynamics (ideal MHD) Poisson eq. pseudo-Newtonian potential

Possible seeds of perturbations

bull Dynamical stellar evolution calculation

bull Density fluctuations

around the composition

interfaces

20140304 BH-mag 2014 Kumamoto Univ 49

Arnett amp Meakin 2011

20140304 BH-mag 2014 Kumamoto Univ 50

3D simulations of mixing instabilities in SN

explosions

Hammer et al 2010

56Ni 56Ni

2D 3D

Entropy per baryon Red Oxygen

Blue Nickel

Green Carbon

Direct-escape lines of 44Ti from SNR 1987A

bull lines from 44Ti 679 keV and 784 keV

bull Estimated 44Ti mass (31plusmn08) x 10-4 M8

20140304 BH-mag 2014 Kumamoto Univ 51

Grebenev+12 Nature 490 373

44Ti rarr 44Sc rarr 44Ca T12 = 60 d T12 = 4 h

Asymmetries in core-collapse supernovae from

maps of radioactive 44Ti in Cas A

20140304 BH-mag 2014 Kumamoto Univ 52

Grefenstette+14 Nature 506 339

Aspherical explosion enhance 44Ti

20140304 BH-mag 2014 Kumamoto Univ 53

56Ni 4He 44Ti

Alpha-rich freeze-out enhance the production of 44Ti in the

explosive nucleosynthesis

Aspherical explosion enhance the ratio of M(44Ti)M(56Ni)

096 s after the initiation of the explosion

Toward full 3D radiative transfer

bull 爆発形状を仮定した

輻射輸送計算

ndash 形状で偏光度が異なる

ndash 元素によっても異なる

bull 3次元物質混合計算を

インプットにした輻射

輸送計算

20140304 BH-mag 2014 Kumamoto Univ 54

Tanaka et al 2012 bipolar

clumpy

爆発形状のプローブ

20140304 BH-mag 2014 Kumamoto Univ 55

3D MHD simulation of a SNR

Introduction

bull Acceleration of cosmic-rays in SNRs

ndash Up to ~ 1015 eV or more

ndash Magnetic field is key ingredient

20140304 BH-mag 2014 Kumamoto Univ 56

SN1006 (Chandra X-ray)

Amplified strong magnetic field

20140304 BH-mag 2014 Kumamoto Univ 57

Uchiyama et al 2007 Nature 4469 576

Bohm-diffusion limit

Variations of X-ray hot

spots on a 1 yr timescale

Strong amplified

magnetic field

3D MHD simulation of a SNR

20140304 BH-mag 2014 Kumamoto Univ 58

3 pc

Preliminary

20140304 BH-mag 2014 Kumamoto Univ 59

Amplified magnetic field

20121015 - 17 SNSNR12 59

~ 50 μ G

1 μ G Preliminary

20140304 BH-mag 2014 Kumamoto Univ 60

3D structure of Cas A

Delaney et al 2010

Chandra lsquos X-rays

Spitzer lsquos infrared

Green X-ray Fe-K

Red IR [Ar II]

Blue high [Ne II][Ar II] ratio

Yellow optical outer ejecta

Grey IR [Si II]

Black X-ray Si XIII

20140304 BH-mag 2014 Kumamoto Univ 61

ASTRO-H

bull New exploration X-ray

Telescope

ndash First right will be

2015 yr

ndash 10 times larger

energy resolution

httpastro-hisasjaxajpgallerysatelite02html

High resolution spectrum

of X-ray from SNRs is

expected

3D simulation of the thermal X-ray emission from young

SNRs including efficient particle acceleration

bull 3D simulation

bull Diffusive Shock Acceleration

bull Back reaction from

accelerated particle

bull Non-equilibrium ionization

bull Thermal X-ray emission

20140304 BH-mag 2014 Kumamoto Univ 62

Ferrand et al 2012

To go further than

Ferrand et al

Test 1D calculation

bull Two energy equation for ions and electrons respectively

bull Energy equilibration between ions and electrons

bull Ionization

20140304 BH-mag 2014 Kumamoto Univ 63

20140304 BH-mag 2014 Kumamoto Univ 64

Density contour

Preliminary

Emission from deferent regions

20140304 BH-mag 2014 Kumamoto Univ 65

Preliminary

Summary

bull Aspherical nature of core-collapse supernova

explosions

bull Origin of heavy elements

ndash NS merger

ndash Magnetically driven jets

bull Mixing in CCSN explosion

bull Supernova explosions to Supernova remnant

20140304 BH-mag 2014 Kumamoto Univ 66

Page 50: Masaomi ONO Kyushu University - aichi-edu.ac.jptakahasi/BHmag2014_pdf/Presen/...Method of MHD simulation 16 Magnetohydrodynamics (ideal MHD) Poisson eq. pseudo-Newtonian potential

20140304 BH-mag 2014 Kumamoto Univ 50

3D simulations of mixing instabilities in SN

explosions

Hammer et al 2010

56Ni 56Ni

2D 3D

Entropy per baryon Red Oxygen

Blue Nickel

Green Carbon

Direct-escape lines of 44Ti from SNR 1987A

bull lines from 44Ti 679 keV and 784 keV

bull Estimated 44Ti mass (31plusmn08) x 10-4 M8

20140304 BH-mag 2014 Kumamoto Univ 51

Grebenev+12 Nature 490 373

44Ti rarr 44Sc rarr 44Ca T12 = 60 d T12 = 4 h

Asymmetries in core-collapse supernovae from

maps of radioactive 44Ti in Cas A

20140304 BH-mag 2014 Kumamoto Univ 52

Grefenstette+14 Nature 506 339

Aspherical explosion enhance 44Ti

20140304 BH-mag 2014 Kumamoto Univ 53

56Ni 4He 44Ti

Alpha-rich freeze-out enhance the production of 44Ti in the

explosive nucleosynthesis

Aspherical explosion enhance the ratio of M(44Ti)M(56Ni)

096 s after the initiation of the explosion

Toward full 3D radiative transfer

bull 爆発形状を仮定した

輻射輸送計算

ndash 形状で偏光度が異なる

ndash 元素によっても異なる

bull 3次元物質混合計算を

インプットにした輻射

輸送計算

20140304 BH-mag 2014 Kumamoto Univ 54

Tanaka et al 2012 bipolar

clumpy

爆発形状のプローブ

20140304 BH-mag 2014 Kumamoto Univ 55

3D MHD simulation of a SNR

Introduction

bull Acceleration of cosmic-rays in SNRs

ndash Up to ~ 1015 eV or more

ndash Magnetic field is key ingredient

20140304 BH-mag 2014 Kumamoto Univ 56

SN1006 (Chandra X-ray)

Amplified strong magnetic field

20140304 BH-mag 2014 Kumamoto Univ 57

Uchiyama et al 2007 Nature 4469 576

Bohm-diffusion limit

Variations of X-ray hot

spots on a 1 yr timescale

Strong amplified

magnetic field

3D MHD simulation of a SNR

20140304 BH-mag 2014 Kumamoto Univ 58

3 pc

Preliminary

20140304 BH-mag 2014 Kumamoto Univ 59

Amplified magnetic field

20121015 - 17 SNSNR12 59

~ 50 μ G

1 μ G Preliminary

20140304 BH-mag 2014 Kumamoto Univ 60

3D structure of Cas A

Delaney et al 2010

Chandra lsquos X-rays

Spitzer lsquos infrared

Green X-ray Fe-K

Red IR [Ar II]

Blue high [Ne II][Ar II] ratio

Yellow optical outer ejecta

Grey IR [Si II]

Black X-ray Si XIII

20140304 BH-mag 2014 Kumamoto Univ 61

ASTRO-H

bull New exploration X-ray

Telescope

ndash First right will be

2015 yr

ndash 10 times larger

energy resolution

httpastro-hisasjaxajpgallerysatelite02html

High resolution spectrum

of X-ray from SNRs is

expected

3D simulation of the thermal X-ray emission from young

SNRs including efficient particle acceleration

bull 3D simulation

bull Diffusive Shock Acceleration

bull Back reaction from

accelerated particle

bull Non-equilibrium ionization

bull Thermal X-ray emission

20140304 BH-mag 2014 Kumamoto Univ 62

Ferrand et al 2012

To go further than

Ferrand et al

Test 1D calculation

bull Two energy equation for ions and electrons respectively

bull Energy equilibration between ions and electrons

bull Ionization

20140304 BH-mag 2014 Kumamoto Univ 63

20140304 BH-mag 2014 Kumamoto Univ 64

Density contour

Preliminary

Emission from deferent regions

20140304 BH-mag 2014 Kumamoto Univ 65

Preliminary

Summary

bull Aspherical nature of core-collapse supernova

explosions

bull Origin of heavy elements

ndash NS merger

ndash Magnetically driven jets

bull Mixing in CCSN explosion

bull Supernova explosions to Supernova remnant

20140304 BH-mag 2014 Kumamoto Univ 66

Page 51: Masaomi ONO Kyushu University - aichi-edu.ac.jptakahasi/BHmag2014_pdf/Presen/...Method of MHD simulation 16 Magnetohydrodynamics (ideal MHD) Poisson eq. pseudo-Newtonian potential

Direct-escape lines of 44Ti from SNR 1987A

bull lines from 44Ti 679 keV and 784 keV

bull Estimated 44Ti mass (31plusmn08) x 10-4 M8

20140304 BH-mag 2014 Kumamoto Univ 51

Grebenev+12 Nature 490 373

44Ti rarr 44Sc rarr 44Ca T12 = 60 d T12 = 4 h

Asymmetries in core-collapse supernovae from

maps of radioactive 44Ti in Cas A

20140304 BH-mag 2014 Kumamoto Univ 52

Grefenstette+14 Nature 506 339

Aspherical explosion enhance 44Ti

20140304 BH-mag 2014 Kumamoto Univ 53

56Ni 4He 44Ti

Alpha-rich freeze-out enhance the production of 44Ti in the

explosive nucleosynthesis

Aspherical explosion enhance the ratio of M(44Ti)M(56Ni)

096 s after the initiation of the explosion

Toward full 3D radiative transfer

bull 爆発形状を仮定した

輻射輸送計算

ndash 形状で偏光度が異なる

ndash 元素によっても異なる

bull 3次元物質混合計算を

インプットにした輻射

輸送計算

20140304 BH-mag 2014 Kumamoto Univ 54

Tanaka et al 2012 bipolar

clumpy

爆発形状のプローブ

20140304 BH-mag 2014 Kumamoto Univ 55

3D MHD simulation of a SNR

Introduction

bull Acceleration of cosmic-rays in SNRs

ndash Up to ~ 1015 eV or more

ndash Magnetic field is key ingredient

20140304 BH-mag 2014 Kumamoto Univ 56

SN1006 (Chandra X-ray)

Amplified strong magnetic field

20140304 BH-mag 2014 Kumamoto Univ 57

Uchiyama et al 2007 Nature 4469 576

Bohm-diffusion limit

Variations of X-ray hot

spots on a 1 yr timescale

Strong amplified

magnetic field

3D MHD simulation of a SNR

20140304 BH-mag 2014 Kumamoto Univ 58

3 pc

Preliminary

20140304 BH-mag 2014 Kumamoto Univ 59

Amplified magnetic field

20121015 - 17 SNSNR12 59

~ 50 μ G

1 μ G Preliminary

20140304 BH-mag 2014 Kumamoto Univ 60

3D structure of Cas A

Delaney et al 2010

Chandra lsquos X-rays

Spitzer lsquos infrared

Green X-ray Fe-K

Red IR [Ar II]

Blue high [Ne II][Ar II] ratio

Yellow optical outer ejecta

Grey IR [Si II]

Black X-ray Si XIII

20140304 BH-mag 2014 Kumamoto Univ 61

ASTRO-H

bull New exploration X-ray

Telescope

ndash First right will be

2015 yr

ndash 10 times larger

energy resolution

httpastro-hisasjaxajpgallerysatelite02html

High resolution spectrum

of X-ray from SNRs is

expected

3D simulation of the thermal X-ray emission from young

SNRs including efficient particle acceleration

bull 3D simulation

bull Diffusive Shock Acceleration

bull Back reaction from

accelerated particle

bull Non-equilibrium ionization

bull Thermal X-ray emission

20140304 BH-mag 2014 Kumamoto Univ 62

Ferrand et al 2012

To go further than

Ferrand et al

Test 1D calculation

bull Two energy equation for ions and electrons respectively

bull Energy equilibration between ions and electrons

bull Ionization

20140304 BH-mag 2014 Kumamoto Univ 63

20140304 BH-mag 2014 Kumamoto Univ 64

Density contour

Preliminary

Emission from deferent regions

20140304 BH-mag 2014 Kumamoto Univ 65

Preliminary

Summary

bull Aspherical nature of core-collapse supernova

explosions

bull Origin of heavy elements

ndash NS merger

ndash Magnetically driven jets

bull Mixing in CCSN explosion

bull Supernova explosions to Supernova remnant

20140304 BH-mag 2014 Kumamoto Univ 66

Page 52: Masaomi ONO Kyushu University - aichi-edu.ac.jptakahasi/BHmag2014_pdf/Presen/...Method of MHD simulation 16 Magnetohydrodynamics (ideal MHD) Poisson eq. pseudo-Newtonian potential

Asymmetries in core-collapse supernovae from

maps of radioactive 44Ti in Cas A

20140304 BH-mag 2014 Kumamoto Univ 52

Grefenstette+14 Nature 506 339

Aspherical explosion enhance 44Ti

20140304 BH-mag 2014 Kumamoto Univ 53

56Ni 4He 44Ti

Alpha-rich freeze-out enhance the production of 44Ti in the

explosive nucleosynthesis

Aspherical explosion enhance the ratio of M(44Ti)M(56Ni)

096 s after the initiation of the explosion

Toward full 3D radiative transfer

bull 爆発形状を仮定した

輻射輸送計算

ndash 形状で偏光度が異なる

ndash 元素によっても異なる

bull 3次元物質混合計算を

インプットにした輻射

輸送計算

20140304 BH-mag 2014 Kumamoto Univ 54

Tanaka et al 2012 bipolar

clumpy

爆発形状のプローブ

20140304 BH-mag 2014 Kumamoto Univ 55

3D MHD simulation of a SNR

Introduction

bull Acceleration of cosmic-rays in SNRs

ndash Up to ~ 1015 eV or more

ndash Magnetic field is key ingredient

20140304 BH-mag 2014 Kumamoto Univ 56

SN1006 (Chandra X-ray)

Amplified strong magnetic field

20140304 BH-mag 2014 Kumamoto Univ 57

Uchiyama et al 2007 Nature 4469 576

Bohm-diffusion limit

Variations of X-ray hot

spots on a 1 yr timescale

Strong amplified

magnetic field

3D MHD simulation of a SNR

20140304 BH-mag 2014 Kumamoto Univ 58

3 pc

Preliminary

20140304 BH-mag 2014 Kumamoto Univ 59

Amplified magnetic field

20121015 - 17 SNSNR12 59

~ 50 μ G

1 μ G Preliminary

20140304 BH-mag 2014 Kumamoto Univ 60

3D structure of Cas A

Delaney et al 2010

Chandra lsquos X-rays

Spitzer lsquos infrared

Green X-ray Fe-K

Red IR [Ar II]

Blue high [Ne II][Ar II] ratio

Yellow optical outer ejecta

Grey IR [Si II]

Black X-ray Si XIII

20140304 BH-mag 2014 Kumamoto Univ 61

ASTRO-H

bull New exploration X-ray

Telescope

ndash First right will be

2015 yr

ndash 10 times larger

energy resolution

httpastro-hisasjaxajpgallerysatelite02html

High resolution spectrum

of X-ray from SNRs is

expected

3D simulation of the thermal X-ray emission from young

SNRs including efficient particle acceleration

bull 3D simulation

bull Diffusive Shock Acceleration

bull Back reaction from

accelerated particle

bull Non-equilibrium ionization

bull Thermal X-ray emission

20140304 BH-mag 2014 Kumamoto Univ 62

Ferrand et al 2012

To go further than

Ferrand et al

Test 1D calculation

bull Two energy equation for ions and electrons respectively

bull Energy equilibration between ions and electrons

bull Ionization

20140304 BH-mag 2014 Kumamoto Univ 63

20140304 BH-mag 2014 Kumamoto Univ 64

Density contour

Preliminary

Emission from deferent regions

20140304 BH-mag 2014 Kumamoto Univ 65

Preliminary

Summary

bull Aspherical nature of core-collapse supernova

explosions

bull Origin of heavy elements

ndash NS merger

ndash Magnetically driven jets

bull Mixing in CCSN explosion

bull Supernova explosions to Supernova remnant

20140304 BH-mag 2014 Kumamoto Univ 66

Page 53: Masaomi ONO Kyushu University - aichi-edu.ac.jptakahasi/BHmag2014_pdf/Presen/...Method of MHD simulation 16 Magnetohydrodynamics (ideal MHD) Poisson eq. pseudo-Newtonian potential

Aspherical explosion enhance 44Ti

20140304 BH-mag 2014 Kumamoto Univ 53

56Ni 4He 44Ti

Alpha-rich freeze-out enhance the production of 44Ti in the

explosive nucleosynthesis

Aspherical explosion enhance the ratio of M(44Ti)M(56Ni)

096 s after the initiation of the explosion

Toward full 3D radiative transfer

bull 爆発形状を仮定した

輻射輸送計算

ndash 形状で偏光度が異なる

ndash 元素によっても異なる

bull 3次元物質混合計算を

インプットにした輻射

輸送計算

20140304 BH-mag 2014 Kumamoto Univ 54

Tanaka et al 2012 bipolar

clumpy

爆発形状のプローブ

20140304 BH-mag 2014 Kumamoto Univ 55

3D MHD simulation of a SNR

Introduction

bull Acceleration of cosmic-rays in SNRs

ndash Up to ~ 1015 eV or more

ndash Magnetic field is key ingredient

20140304 BH-mag 2014 Kumamoto Univ 56

SN1006 (Chandra X-ray)

Amplified strong magnetic field

20140304 BH-mag 2014 Kumamoto Univ 57

Uchiyama et al 2007 Nature 4469 576

Bohm-diffusion limit

Variations of X-ray hot

spots on a 1 yr timescale

Strong amplified

magnetic field

3D MHD simulation of a SNR

20140304 BH-mag 2014 Kumamoto Univ 58

3 pc

Preliminary

20140304 BH-mag 2014 Kumamoto Univ 59

Amplified magnetic field

20121015 - 17 SNSNR12 59

~ 50 μ G

1 μ G Preliminary

20140304 BH-mag 2014 Kumamoto Univ 60

3D structure of Cas A

Delaney et al 2010

Chandra lsquos X-rays

Spitzer lsquos infrared

Green X-ray Fe-K

Red IR [Ar II]

Blue high [Ne II][Ar II] ratio

Yellow optical outer ejecta

Grey IR [Si II]

Black X-ray Si XIII

20140304 BH-mag 2014 Kumamoto Univ 61

ASTRO-H

bull New exploration X-ray

Telescope

ndash First right will be

2015 yr

ndash 10 times larger

energy resolution

httpastro-hisasjaxajpgallerysatelite02html

High resolution spectrum

of X-ray from SNRs is

expected

3D simulation of the thermal X-ray emission from young

SNRs including efficient particle acceleration

bull 3D simulation

bull Diffusive Shock Acceleration

bull Back reaction from

accelerated particle

bull Non-equilibrium ionization

bull Thermal X-ray emission

20140304 BH-mag 2014 Kumamoto Univ 62

Ferrand et al 2012

To go further than

Ferrand et al

Test 1D calculation

bull Two energy equation for ions and electrons respectively

bull Energy equilibration between ions and electrons

bull Ionization

20140304 BH-mag 2014 Kumamoto Univ 63

20140304 BH-mag 2014 Kumamoto Univ 64

Density contour

Preliminary

Emission from deferent regions

20140304 BH-mag 2014 Kumamoto Univ 65

Preliminary

Summary

bull Aspherical nature of core-collapse supernova

explosions

bull Origin of heavy elements

ndash NS merger

ndash Magnetically driven jets

bull Mixing in CCSN explosion

bull Supernova explosions to Supernova remnant

20140304 BH-mag 2014 Kumamoto Univ 66

Page 54: Masaomi ONO Kyushu University - aichi-edu.ac.jptakahasi/BHmag2014_pdf/Presen/...Method of MHD simulation 16 Magnetohydrodynamics (ideal MHD) Poisson eq. pseudo-Newtonian potential

Toward full 3D radiative transfer

bull 爆発形状を仮定した

輻射輸送計算

ndash 形状で偏光度が異なる

ndash 元素によっても異なる

bull 3次元物質混合計算を

インプットにした輻射

輸送計算

20140304 BH-mag 2014 Kumamoto Univ 54

Tanaka et al 2012 bipolar

clumpy

爆発形状のプローブ

20140304 BH-mag 2014 Kumamoto Univ 55

3D MHD simulation of a SNR

Introduction

bull Acceleration of cosmic-rays in SNRs

ndash Up to ~ 1015 eV or more

ndash Magnetic field is key ingredient

20140304 BH-mag 2014 Kumamoto Univ 56

SN1006 (Chandra X-ray)

Amplified strong magnetic field

20140304 BH-mag 2014 Kumamoto Univ 57

Uchiyama et al 2007 Nature 4469 576

Bohm-diffusion limit

Variations of X-ray hot

spots on a 1 yr timescale

Strong amplified

magnetic field

3D MHD simulation of a SNR

20140304 BH-mag 2014 Kumamoto Univ 58

3 pc

Preliminary

20140304 BH-mag 2014 Kumamoto Univ 59

Amplified magnetic field

20121015 - 17 SNSNR12 59

~ 50 μ G

1 μ G Preliminary

20140304 BH-mag 2014 Kumamoto Univ 60

3D structure of Cas A

Delaney et al 2010

Chandra lsquos X-rays

Spitzer lsquos infrared

Green X-ray Fe-K

Red IR [Ar II]

Blue high [Ne II][Ar II] ratio

Yellow optical outer ejecta

Grey IR [Si II]

Black X-ray Si XIII

20140304 BH-mag 2014 Kumamoto Univ 61

ASTRO-H

bull New exploration X-ray

Telescope

ndash First right will be

2015 yr

ndash 10 times larger

energy resolution

httpastro-hisasjaxajpgallerysatelite02html

High resolution spectrum

of X-ray from SNRs is

expected

3D simulation of the thermal X-ray emission from young

SNRs including efficient particle acceleration

bull 3D simulation

bull Diffusive Shock Acceleration

bull Back reaction from

accelerated particle

bull Non-equilibrium ionization

bull Thermal X-ray emission

20140304 BH-mag 2014 Kumamoto Univ 62

Ferrand et al 2012

To go further than

Ferrand et al

Test 1D calculation

bull Two energy equation for ions and electrons respectively

bull Energy equilibration between ions and electrons

bull Ionization

20140304 BH-mag 2014 Kumamoto Univ 63

20140304 BH-mag 2014 Kumamoto Univ 64

Density contour

Preliminary

Emission from deferent regions

20140304 BH-mag 2014 Kumamoto Univ 65

Preliminary

Summary

bull Aspherical nature of core-collapse supernova

explosions

bull Origin of heavy elements

ndash NS merger

ndash Magnetically driven jets

bull Mixing in CCSN explosion

bull Supernova explosions to Supernova remnant

20140304 BH-mag 2014 Kumamoto Univ 66

Page 55: Masaomi ONO Kyushu University - aichi-edu.ac.jptakahasi/BHmag2014_pdf/Presen/...Method of MHD simulation 16 Magnetohydrodynamics (ideal MHD) Poisson eq. pseudo-Newtonian potential

20140304 BH-mag 2014 Kumamoto Univ 55

3D MHD simulation of a SNR

Introduction

bull Acceleration of cosmic-rays in SNRs

ndash Up to ~ 1015 eV or more

ndash Magnetic field is key ingredient

20140304 BH-mag 2014 Kumamoto Univ 56

SN1006 (Chandra X-ray)

Amplified strong magnetic field

20140304 BH-mag 2014 Kumamoto Univ 57

Uchiyama et al 2007 Nature 4469 576

Bohm-diffusion limit

Variations of X-ray hot

spots on a 1 yr timescale

Strong amplified

magnetic field

3D MHD simulation of a SNR

20140304 BH-mag 2014 Kumamoto Univ 58

3 pc

Preliminary

20140304 BH-mag 2014 Kumamoto Univ 59

Amplified magnetic field

20121015 - 17 SNSNR12 59

~ 50 μ G

1 μ G Preliminary

20140304 BH-mag 2014 Kumamoto Univ 60

3D structure of Cas A

Delaney et al 2010

Chandra lsquos X-rays

Spitzer lsquos infrared

Green X-ray Fe-K

Red IR [Ar II]

Blue high [Ne II][Ar II] ratio

Yellow optical outer ejecta

Grey IR [Si II]

Black X-ray Si XIII

20140304 BH-mag 2014 Kumamoto Univ 61

ASTRO-H

bull New exploration X-ray

Telescope

ndash First right will be

2015 yr

ndash 10 times larger

energy resolution

httpastro-hisasjaxajpgallerysatelite02html

High resolution spectrum

of X-ray from SNRs is

expected

3D simulation of the thermal X-ray emission from young

SNRs including efficient particle acceleration

bull 3D simulation

bull Diffusive Shock Acceleration

bull Back reaction from

accelerated particle

bull Non-equilibrium ionization

bull Thermal X-ray emission

20140304 BH-mag 2014 Kumamoto Univ 62

Ferrand et al 2012

To go further than

Ferrand et al

Test 1D calculation

bull Two energy equation for ions and electrons respectively

bull Energy equilibration between ions and electrons

bull Ionization

20140304 BH-mag 2014 Kumamoto Univ 63

20140304 BH-mag 2014 Kumamoto Univ 64

Density contour

Preliminary

Emission from deferent regions

20140304 BH-mag 2014 Kumamoto Univ 65

Preliminary

Summary

bull Aspherical nature of core-collapse supernova

explosions

bull Origin of heavy elements

ndash NS merger

ndash Magnetically driven jets

bull Mixing in CCSN explosion

bull Supernova explosions to Supernova remnant

20140304 BH-mag 2014 Kumamoto Univ 66

Page 56: Masaomi ONO Kyushu University - aichi-edu.ac.jptakahasi/BHmag2014_pdf/Presen/...Method of MHD simulation 16 Magnetohydrodynamics (ideal MHD) Poisson eq. pseudo-Newtonian potential

Introduction

bull Acceleration of cosmic-rays in SNRs

ndash Up to ~ 1015 eV or more

ndash Magnetic field is key ingredient

20140304 BH-mag 2014 Kumamoto Univ 56

SN1006 (Chandra X-ray)

Amplified strong magnetic field

20140304 BH-mag 2014 Kumamoto Univ 57

Uchiyama et al 2007 Nature 4469 576

Bohm-diffusion limit

Variations of X-ray hot

spots on a 1 yr timescale

Strong amplified

magnetic field

3D MHD simulation of a SNR

20140304 BH-mag 2014 Kumamoto Univ 58

3 pc

Preliminary

20140304 BH-mag 2014 Kumamoto Univ 59

Amplified magnetic field

20121015 - 17 SNSNR12 59

~ 50 μ G

1 μ G Preliminary

20140304 BH-mag 2014 Kumamoto Univ 60

3D structure of Cas A

Delaney et al 2010

Chandra lsquos X-rays

Spitzer lsquos infrared

Green X-ray Fe-K

Red IR [Ar II]

Blue high [Ne II][Ar II] ratio

Yellow optical outer ejecta

Grey IR [Si II]

Black X-ray Si XIII

20140304 BH-mag 2014 Kumamoto Univ 61

ASTRO-H

bull New exploration X-ray

Telescope

ndash First right will be

2015 yr

ndash 10 times larger

energy resolution

httpastro-hisasjaxajpgallerysatelite02html

High resolution spectrum

of X-ray from SNRs is

expected

3D simulation of the thermal X-ray emission from young

SNRs including efficient particle acceleration

bull 3D simulation

bull Diffusive Shock Acceleration

bull Back reaction from

accelerated particle

bull Non-equilibrium ionization

bull Thermal X-ray emission

20140304 BH-mag 2014 Kumamoto Univ 62

Ferrand et al 2012

To go further than

Ferrand et al

Test 1D calculation

bull Two energy equation for ions and electrons respectively

bull Energy equilibration between ions and electrons

bull Ionization

20140304 BH-mag 2014 Kumamoto Univ 63

20140304 BH-mag 2014 Kumamoto Univ 64

Density contour

Preliminary

Emission from deferent regions

20140304 BH-mag 2014 Kumamoto Univ 65

Preliminary

Summary

bull Aspherical nature of core-collapse supernova

explosions

bull Origin of heavy elements

ndash NS merger

ndash Magnetically driven jets

bull Mixing in CCSN explosion

bull Supernova explosions to Supernova remnant

20140304 BH-mag 2014 Kumamoto Univ 66

Page 57: Masaomi ONO Kyushu University - aichi-edu.ac.jptakahasi/BHmag2014_pdf/Presen/...Method of MHD simulation 16 Magnetohydrodynamics (ideal MHD) Poisson eq. pseudo-Newtonian potential

Amplified strong magnetic field

20140304 BH-mag 2014 Kumamoto Univ 57

Uchiyama et al 2007 Nature 4469 576

Bohm-diffusion limit

Variations of X-ray hot

spots on a 1 yr timescale

Strong amplified

magnetic field

3D MHD simulation of a SNR

20140304 BH-mag 2014 Kumamoto Univ 58

3 pc

Preliminary

20140304 BH-mag 2014 Kumamoto Univ 59

Amplified magnetic field

20121015 - 17 SNSNR12 59

~ 50 μ G

1 μ G Preliminary

20140304 BH-mag 2014 Kumamoto Univ 60

3D structure of Cas A

Delaney et al 2010

Chandra lsquos X-rays

Spitzer lsquos infrared

Green X-ray Fe-K

Red IR [Ar II]

Blue high [Ne II][Ar II] ratio

Yellow optical outer ejecta

Grey IR [Si II]

Black X-ray Si XIII

20140304 BH-mag 2014 Kumamoto Univ 61

ASTRO-H

bull New exploration X-ray

Telescope

ndash First right will be

2015 yr

ndash 10 times larger

energy resolution

httpastro-hisasjaxajpgallerysatelite02html

High resolution spectrum

of X-ray from SNRs is

expected

3D simulation of the thermal X-ray emission from young

SNRs including efficient particle acceleration

bull 3D simulation

bull Diffusive Shock Acceleration

bull Back reaction from

accelerated particle

bull Non-equilibrium ionization

bull Thermal X-ray emission

20140304 BH-mag 2014 Kumamoto Univ 62

Ferrand et al 2012

To go further than

Ferrand et al

Test 1D calculation

bull Two energy equation for ions and electrons respectively

bull Energy equilibration between ions and electrons

bull Ionization

20140304 BH-mag 2014 Kumamoto Univ 63

20140304 BH-mag 2014 Kumamoto Univ 64

Density contour

Preliminary

Emission from deferent regions

20140304 BH-mag 2014 Kumamoto Univ 65

Preliminary

Summary

bull Aspherical nature of core-collapse supernova

explosions

bull Origin of heavy elements

ndash NS merger

ndash Magnetically driven jets

bull Mixing in CCSN explosion

bull Supernova explosions to Supernova remnant

20140304 BH-mag 2014 Kumamoto Univ 66

Page 58: Masaomi ONO Kyushu University - aichi-edu.ac.jptakahasi/BHmag2014_pdf/Presen/...Method of MHD simulation 16 Magnetohydrodynamics (ideal MHD) Poisson eq. pseudo-Newtonian potential

3D MHD simulation of a SNR

20140304 BH-mag 2014 Kumamoto Univ 58

3 pc

Preliminary

20140304 BH-mag 2014 Kumamoto Univ 59

Amplified magnetic field

20121015 - 17 SNSNR12 59

~ 50 μ G

1 μ G Preliminary

20140304 BH-mag 2014 Kumamoto Univ 60

3D structure of Cas A

Delaney et al 2010

Chandra lsquos X-rays

Spitzer lsquos infrared

Green X-ray Fe-K

Red IR [Ar II]

Blue high [Ne II][Ar II] ratio

Yellow optical outer ejecta

Grey IR [Si II]

Black X-ray Si XIII

20140304 BH-mag 2014 Kumamoto Univ 61

ASTRO-H

bull New exploration X-ray

Telescope

ndash First right will be

2015 yr

ndash 10 times larger

energy resolution

httpastro-hisasjaxajpgallerysatelite02html

High resolution spectrum

of X-ray from SNRs is

expected

3D simulation of the thermal X-ray emission from young

SNRs including efficient particle acceleration

bull 3D simulation

bull Diffusive Shock Acceleration

bull Back reaction from

accelerated particle

bull Non-equilibrium ionization

bull Thermal X-ray emission

20140304 BH-mag 2014 Kumamoto Univ 62

Ferrand et al 2012

To go further than

Ferrand et al

Test 1D calculation

bull Two energy equation for ions and electrons respectively

bull Energy equilibration between ions and electrons

bull Ionization

20140304 BH-mag 2014 Kumamoto Univ 63

20140304 BH-mag 2014 Kumamoto Univ 64

Density contour

Preliminary

Emission from deferent regions

20140304 BH-mag 2014 Kumamoto Univ 65

Preliminary

Summary

bull Aspherical nature of core-collapse supernova

explosions

bull Origin of heavy elements

ndash NS merger

ndash Magnetically driven jets

bull Mixing in CCSN explosion

bull Supernova explosions to Supernova remnant

20140304 BH-mag 2014 Kumamoto Univ 66

Page 59: Masaomi ONO Kyushu University - aichi-edu.ac.jptakahasi/BHmag2014_pdf/Presen/...Method of MHD simulation 16 Magnetohydrodynamics (ideal MHD) Poisson eq. pseudo-Newtonian potential

20140304 BH-mag 2014 Kumamoto Univ 59

Amplified magnetic field

20121015 - 17 SNSNR12 59

~ 50 μ G

1 μ G Preliminary

20140304 BH-mag 2014 Kumamoto Univ 60

3D structure of Cas A

Delaney et al 2010

Chandra lsquos X-rays

Spitzer lsquos infrared

Green X-ray Fe-K

Red IR [Ar II]

Blue high [Ne II][Ar II] ratio

Yellow optical outer ejecta

Grey IR [Si II]

Black X-ray Si XIII

20140304 BH-mag 2014 Kumamoto Univ 61

ASTRO-H

bull New exploration X-ray

Telescope

ndash First right will be

2015 yr

ndash 10 times larger

energy resolution

httpastro-hisasjaxajpgallerysatelite02html

High resolution spectrum

of X-ray from SNRs is

expected

3D simulation of the thermal X-ray emission from young

SNRs including efficient particle acceleration

bull 3D simulation

bull Diffusive Shock Acceleration

bull Back reaction from

accelerated particle

bull Non-equilibrium ionization

bull Thermal X-ray emission

20140304 BH-mag 2014 Kumamoto Univ 62

Ferrand et al 2012

To go further than

Ferrand et al

Test 1D calculation

bull Two energy equation for ions and electrons respectively

bull Energy equilibration between ions and electrons

bull Ionization

20140304 BH-mag 2014 Kumamoto Univ 63

20140304 BH-mag 2014 Kumamoto Univ 64

Density contour

Preliminary

Emission from deferent regions

20140304 BH-mag 2014 Kumamoto Univ 65

Preliminary

Summary

bull Aspherical nature of core-collapse supernova

explosions

bull Origin of heavy elements

ndash NS merger

ndash Magnetically driven jets

bull Mixing in CCSN explosion

bull Supernova explosions to Supernova remnant

20140304 BH-mag 2014 Kumamoto Univ 66

Page 60: Masaomi ONO Kyushu University - aichi-edu.ac.jptakahasi/BHmag2014_pdf/Presen/...Method of MHD simulation 16 Magnetohydrodynamics (ideal MHD) Poisson eq. pseudo-Newtonian potential

20140304 BH-mag 2014 Kumamoto Univ 60

3D structure of Cas A

Delaney et al 2010

Chandra lsquos X-rays

Spitzer lsquos infrared

Green X-ray Fe-K

Red IR [Ar II]

Blue high [Ne II][Ar II] ratio

Yellow optical outer ejecta

Grey IR [Si II]

Black X-ray Si XIII

20140304 BH-mag 2014 Kumamoto Univ 61

ASTRO-H

bull New exploration X-ray

Telescope

ndash First right will be

2015 yr

ndash 10 times larger

energy resolution

httpastro-hisasjaxajpgallerysatelite02html

High resolution spectrum

of X-ray from SNRs is

expected

3D simulation of the thermal X-ray emission from young

SNRs including efficient particle acceleration

bull 3D simulation

bull Diffusive Shock Acceleration

bull Back reaction from

accelerated particle

bull Non-equilibrium ionization

bull Thermal X-ray emission

20140304 BH-mag 2014 Kumamoto Univ 62

Ferrand et al 2012

To go further than

Ferrand et al

Test 1D calculation

bull Two energy equation for ions and electrons respectively

bull Energy equilibration between ions and electrons

bull Ionization

20140304 BH-mag 2014 Kumamoto Univ 63

20140304 BH-mag 2014 Kumamoto Univ 64

Density contour

Preliminary

Emission from deferent regions

20140304 BH-mag 2014 Kumamoto Univ 65

Preliminary

Summary

bull Aspherical nature of core-collapse supernova

explosions

bull Origin of heavy elements

ndash NS merger

ndash Magnetically driven jets

bull Mixing in CCSN explosion

bull Supernova explosions to Supernova remnant

20140304 BH-mag 2014 Kumamoto Univ 66

Page 61: Masaomi ONO Kyushu University - aichi-edu.ac.jptakahasi/BHmag2014_pdf/Presen/...Method of MHD simulation 16 Magnetohydrodynamics (ideal MHD) Poisson eq. pseudo-Newtonian potential

20140304 BH-mag 2014 Kumamoto Univ 61

ASTRO-H

bull New exploration X-ray

Telescope

ndash First right will be

2015 yr

ndash 10 times larger

energy resolution

httpastro-hisasjaxajpgallerysatelite02html

High resolution spectrum

of X-ray from SNRs is

expected

3D simulation of the thermal X-ray emission from young

SNRs including efficient particle acceleration

bull 3D simulation

bull Diffusive Shock Acceleration

bull Back reaction from

accelerated particle

bull Non-equilibrium ionization

bull Thermal X-ray emission

20140304 BH-mag 2014 Kumamoto Univ 62

Ferrand et al 2012

To go further than

Ferrand et al

Test 1D calculation

bull Two energy equation for ions and electrons respectively

bull Energy equilibration between ions and electrons

bull Ionization

20140304 BH-mag 2014 Kumamoto Univ 63

20140304 BH-mag 2014 Kumamoto Univ 64

Density contour

Preliminary

Emission from deferent regions

20140304 BH-mag 2014 Kumamoto Univ 65

Preliminary

Summary

bull Aspherical nature of core-collapse supernova

explosions

bull Origin of heavy elements

ndash NS merger

ndash Magnetically driven jets

bull Mixing in CCSN explosion

bull Supernova explosions to Supernova remnant

20140304 BH-mag 2014 Kumamoto Univ 66

Page 62: Masaomi ONO Kyushu University - aichi-edu.ac.jptakahasi/BHmag2014_pdf/Presen/...Method of MHD simulation 16 Magnetohydrodynamics (ideal MHD) Poisson eq. pseudo-Newtonian potential

3D simulation of the thermal X-ray emission from young

SNRs including efficient particle acceleration

bull 3D simulation

bull Diffusive Shock Acceleration

bull Back reaction from

accelerated particle

bull Non-equilibrium ionization

bull Thermal X-ray emission

20140304 BH-mag 2014 Kumamoto Univ 62

Ferrand et al 2012

To go further than

Ferrand et al

Test 1D calculation

bull Two energy equation for ions and electrons respectively

bull Energy equilibration between ions and electrons

bull Ionization

20140304 BH-mag 2014 Kumamoto Univ 63

20140304 BH-mag 2014 Kumamoto Univ 64

Density contour

Preliminary

Emission from deferent regions

20140304 BH-mag 2014 Kumamoto Univ 65

Preliminary

Summary

bull Aspherical nature of core-collapse supernova

explosions

bull Origin of heavy elements

ndash NS merger

ndash Magnetically driven jets

bull Mixing in CCSN explosion

bull Supernova explosions to Supernova remnant

20140304 BH-mag 2014 Kumamoto Univ 66

Page 63: Masaomi ONO Kyushu University - aichi-edu.ac.jptakahasi/BHmag2014_pdf/Presen/...Method of MHD simulation 16 Magnetohydrodynamics (ideal MHD) Poisson eq. pseudo-Newtonian potential

Test 1D calculation

bull Two energy equation for ions and electrons respectively

bull Energy equilibration between ions and electrons

bull Ionization

20140304 BH-mag 2014 Kumamoto Univ 63

20140304 BH-mag 2014 Kumamoto Univ 64

Density contour

Preliminary

Emission from deferent regions

20140304 BH-mag 2014 Kumamoto Univ 65

Preliminary

Summary

bull Aspherical nature of core-collapse supernova

explosions

bull Origin of heavy elements

ndash NS merger

ndash Magnetically driven jets

bull Mixing in CCSN explosion

bull Supernova explosions to Supernova remnant

20140304 BH-mag 2014 Kumamoto Univ 66

Page 64: Masaomi ONO Kyushu University - aichi-edu.ac.jptakahasi/BHmag2014_pdf/Presen/...Method of MHD simulation 16 Magnetohydrodynamics (ideal MHD) Poisson eq. pseudo-Newtonian potential

20140304 BH-mag 2014 Kumamoto Univ 64

Density contour

Preliminary

Emission from deferent regions

20140304 BH-mag 2014 Kumamoto Univ 65

Preliminary

Summary

bull Aspherical nature of core-collapse supernova

explosions

bull Origin of heavy elements

ndash NS merger

ndash Magnetically driven jets

bull Mixing in CCSN explosion

bull Supernova explosions to Supernova remnant

20140304 BH-mag 2014 Kumamoto Univ 66

Page 65: Masaomi ONO Kyushu University - aichi-edu.ac.jptakahasi/BHmag2014_pdf/Presen/...Method of MHD simulation 16 Magnetohydrodynamics (ideal MHD) Poisson eq. pseudo-Newtonian potential

Emission from deferent regions

20140304 BH-mag 2014 Kumamoto Univ 65

Preliminary

Summary

bull Aspherical nature of core-collapse supernova

explosions

bull Origin of heavy elements

ndash NS merger

ndash Magnetically driven jets

bull Mixing in CCSN explosion

bull Supernova explosions to Supernova remnant

20140304 BH-mag 2014 Kumamoto Univ 66

Page 66: Masaomi ONO Kyushu University - aichi-edu.ac.jptakahasi/BHmag2014_pdf/Presen/...Method of MHD simulation 16 Magnetohydrodynamics (ideal MHD) Poisson eq. pseudo-Newtonian potential

Summary

bull Aspherical nature of core-collapse supernova

explosions

bull Origin of heavy elements

ndash NS merger

ndash Magnetically driven jets

bull Mixing in CCSN explosion

bull Supernova explosions to Supernova remnant

20140304 BH-mag 2014 Kumamoto Univ 66