51
Introduction Problem Formulation Numerical Examples Conclusions Market Power with Combined Heat and Power Production in the Nordic Energy System Vilma Virasjoki a Afzal S. Siddiqui a,b Behnam Zakeri a Ahti Salo a a Aalto University b Stockholm University, e-mail address: [email protected] 28 October 2020

Market Power with Combined Heat and Power Production in the Nordic Energy System · 2020. 10. 14. · Introduction Problem Formulation Numerical Examples Conclusions Market Power

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • Introduction Problem Formulation Numerical Examples Conclusions

    Market Power with Combined Heat and

    Power Production in the Nordic Energy

    System

    Vilma Virasjokia Afzal S. Siddiquia,b Behnam Zakeria

    Ahti Saloa

    aAalto University bStockholm University, e-mail address: [email protected]

    28 October 2020

  • Introduction Problem Formulation Numerical Examples Conclusions

    Table of Contents

    1 Introduction

    2 Problem Formulation

    3 Numerical Examples

    4 Conclusions

  • Introduction Problem Formulation Numerical Examples Conclusions

    Introduction

  • Introduction Problem Formulation Numerical Examples Conclusions

    Motivation

    Asymmetrically Linked Markets and the Feasible Operating

    Region (FOR)

    Power

    production

    (MWh)

    Heat

    production

    (MWhth)

    200

    200

    400

    400

  • Introduction Problem Formulation Numerical Examples Conclusions

    Related Work

    Impact of CHP on System Operations

    Wu and Rosen (1999) develop an equilibrium model with CHP

    in a conventional power system

    Lund et al. (2005) demonstrate how CHP could facilitate

    integration of wind power

    Chen et al. (2015) examine how CHP with electric boilers and

    heat storage can provide system flexibility with VRE

    integration by developing a linear model with a convex CHP

    FOR

    Potential for exertion of market power (Hobbs, 2001)?

    Fridolfsson and Tanger̊as (2009) do not find systematically

    higher-than-marginal-cost prices in Nord Pool, but there could

    be local market power due to transmission constraints and

    strategic use of CHP

    Mitridati and Pinson (2016) develop a hierarchical stochastic

    setup to model CHP operations under uncertainty

  • Introduction Problem Formulation Numerical Examples Conclusions

    Contribution

    Research Objective and Findings

    Examine the system-wide effects of CHP given VRE output,

    transmission constraints, and market power

    How is market power is impacted by CHP? How can market

    power can affect district heating (DH) supply?

    Equilibrium model: profit-maximising firms and a grid owner

    Decoupling CHP increases electricity prices with a higher

    impact under perfect competition than under Cournot

    oligopoly

    CHP facilitates exercise of market power because the decrease

    in revenue from withholding is offset by DH sales

    Market power shifts production toward CHP from heat-only

    plants because CHP makes it easier to withhold generation

  • Introduction Problem Formulation Numerical Examples Conclusions

    Contribution

    Numerical Experiments

    Model Perfect Competition Cournot Oligopoly

    CHP status quo Case 1 (SQ-PC) Case 2 (SQ-CO)

    CHP decoupling Case 3 (DE-PC) Case 4 (DE-CO)

    Case 1 Case 2 ∆SQ Case 3 Case 4 ∆DE

    (SQ-PC) (SQ-CO) (DE-PC) (DE-CO)

    SW 87 113 86 777 - 336 84 549 84 237 - 312

    CS 57 697 51 439 - 6 258 53 393 48 607 - 4 785

    PS 28 578 34 686 6 107 30 136 34 805 4 670

    GR 838 652 - 185 1 020 825 -196

  • Introduction Problem Formulation Numerical Examples Conclusions

    Contribution

    Numerical Experiments

    Model Perfect Competition Cournot Oligopoly

    CHP status quo Case 1 (SQ-PC) Case 2 (SQ-CO)

    CHP decoupling Case 3 (DE-PC) Case 4 (DE-CO)

    Case 1 Case 2 ∆SQ Case 3 Case 4 ∆DE

    (SQ-PC) (SQ-CO) (DE-PC) (DE-CO)

    SW 87 113 86 777 - 336 84 549 84 237 - 312

    CS 57 697 51 439 - 6 258 53 393 48 607 - 4 785

    PS 28 578 34 686 6 107 30 136 34 805 4 670

    GR 838 652 - 185 1 020 825 -196

  • Introduction Problem Formulation Numerical Examples Conclusions

    Contribution

    Numerical Experiments

    Model Perfect Competition Cournot Oligopoly

    CHP status quo Case 1 (SQ-PC) Case 2 (SQ-CO)

    CHP decoupling Case 3 (DE-PC) Case 4 (DE-CO)

    Case 1 Case 2 ∆SQ Case 3 Case 4 ∆DE

    (SQ-PC) (SQ-CO) (DE-PC) (DE-CO)

    SW 87 113 86 777 - 336 84 549 84 237 - 312

    CS 57 697 51 439 - 6 258 53 393 48 607 - 4 785

    PS 28 578 34 686 6 107 30 136 34 805 4 670

    GR 838 652 - 185 1 020 825 -196

  • Introduction Problem Formulation Numerical Examples Conclusions

    Contribution

    Numerical Experiments

    Model Perfect Competition Cournot Oligopoly

    CHP status quo Case 1 (SQ-PC) Case 2 (SQ-CO)

    CHP decoupling Case 3 (DE-PC) Case 4 (DE-CO)

    Case 1 Case 2 ∆SQ Case 3 Case 4 ∆DE

    (SQ-PC) (SQ-CO) (DE-PC) (DE-CO)

    SW 87 113 86 777 - 336 84 549 84 237 - 312

    CS 57 697 51 439 - 6 258 53 393 48 607 - 4 785

    PS 28 578 34 686 6 107 30 136 34 805 4 670

    GR 838 652 - 185 1 020 825 -196

  • Introduction Problem Formulation Numerical Examples Conclusions

    Problem Formulation

  • Introduction Problem Formulation Numerical Examples Conclusions

    Setup

    Assumptions

    Economic and technological attributes

    Linearised DC power flow

    CHP marginal cost allocated to heat and power proportionally

    VRE output: periodic availability and zero marginal costs

    Hydropower variations: periodic maximum available capacity

    Linear inverse demand: D intn,t − Dslpn,t∑

    i ′∈I qpowern,i ′,t

    Each firm i owns both conventional and VRE capacity plusCHP

    Maximises profit by determining production and sales

    Generates electricity at node n and sells it at node n′

    Generation is constrained by installed capacity and FOR for CHP

    Heat storage respects capacities and rates

    Grid owner

    Controls transmission flows in order to maximise revenues from

    congestion charges on net imports

    Must respect thermal limits of transmission lines

  • Introduction Problem Formulation Numerical Examples Conclusions

    Setup

    Equilibrium Model

  • Introduction Problem Formulation Numerical Examples Conclusions

    Numerical Examples

  • Introduction Problem Formulation Numerical Examples Conclusions

    Data

    Transmission Lines

    Line Type Positive direction Negative direction

    ℓ1 AC 650 450

    ℓ2 AC 150 250

    ℓ3 AC 600 1000

    ℓ4 AC 2145 2095

    ℓ5 DC 950 1000

    ℓ6 AC 650 450

    ℓ7 AC 150 250

    ℓ8 AC 600 1000

    ℓ9 AC 2145 2095

    ℓ10 DC 680 740

    ℓ11 DC 590 600

    ℓ12 AC 1700 1300

    ℓ13 AC 1480 1120

    ℓ14 DC 1200 1200

    ℓ15 AC 1480 1120

    ℓ16 DC 1200 1200

    ℓ17 DC 860 1016

    ℓ18 AC 750 779

    ℓ19 AC 1234 684

  • Introduction Problem Formulation Numerical Examples Conclusions

    Data

    Generation Costs

    Fuel Types Cpowern,u,t Cchp,pyB /C

    chp,hyB C

    chp,pyE /C

    chp,hyE C

    heatx

    Coal u1, y1, x1 29 - 15 / 30 47Natural gas u2, y2, x2 85 45 / 50 46 / 51 53CCGT u3 47,* - - -Oil u4, y4, x4 78 37 / 51 38 / 52 54Biomass u5, y5, x5 62 - 28 / 26 27Oil shale u6 33 - - -Nuclear u7 9 - - -Hydro u8 *,** - - -Waste y9, x9 - - 25 / 3 24Peat y10, x10 - - 22 / 25 25Bio oil x11 - - - 51

  • Introduction Problem Formulation Numerical Examples Conclusions

    Data

    Installed Power-Only Capacity by Producer and at Node (GW)

    Node Producer u1 u2 u3 u4 u5 u6 u7 u8 Wind PVSE i1 - - - - - - 3.2 8 0.4 -

    i2 - 0.1 0.3 0.3 0.1 - - 2.6 0.2 -i3 - - - - - - 3.7 - - -i4 - - - - - - 2.6 - - -i5 - - - - - - - 2.9 - -i6 0.1 0.1 0.1 1.8 0.1 - - 3.9 4.8 0.1

    FI i5 0.6 - - - - - 1.0 0.8 - -i7 - - - - - - 1.8 - - -i8 0.5 - - 0.2 - - - 0.4 - -i9 - - - 0.1 - - - - - -i10 - - - - - - - 1.1 - -i11 - 0.1 - 1.1 - - - 0.8 0.6 -

    DK1 i12 - - - - - - - - 0.4 -i1 - - - - - - - - 0.4 -i13 - - - - - - - - 3.0 0.4

    DK2 i12 - - - 0.7 - - - - 0.2 -i13 - - - - - - - - 0.8 0.2

    NO i14 - - 0.2 - - - - 9.9 0.2 -i15 - - - - - - - 2.5 - -i16 - - - - - - - 2.0 - -i17 - - - - - - - 1.8 - -i18 - - - - - - - 1.7 - -i19 - - - - - - - 1.4 - -i20 - - - - - - - 1.2 - -i21 - - 0.2 0.1 - - - 9.6 0.7 -

    EE∗ i22 - 0.2 - - 0.1 1.8 - - 0.3 -LV∗ i22 - 0.5 - - - - - 1.5 0.1 -LT∗ i22 - 1.6 0.5 0.8 - - - 1.0 0.3 -% Available 90 95 80 86 95 90 90 See fig. See fig. See fig.

  • Introduction Problem Formulation Numerical Examples Conclusions

    Data

    VRE and Hydropower Profiles

    5 10 15 20Hour of the day

    0

    20

    40

    %

    (M) (J) (S) (D)

    5 10 15 20Hour of the day

    0

    50

    %

    (M) (J) (S) (D)

    NO SE FI LV,LTNode

    0

    50

    %

    (M) (J) (S) (D)

  • Introduction Problem Formulation Numerical Examples Conclusions

    Data

    Installed CHP Power Capacity by Producer and at Node (GW)

    Node Producer y1E y9E y2B y2E y4B y4E y10E y5E

    SE i1 - - - - - - - 0.2i2 - - - - 0.1 - - 0.2i5 0.1 0.1 - - - 0.2 - 0.2i6 0.2 0.2 0.1 0.1 0.1 0.4 - 1.8

    FI i5 0.1 - 0.3 - - - 0.1 -i9 0.4 - 0.6 - - - - -i11 0.9 - 0.7 0.2 - 0.1 1.1 0.5

    DK1 i12 1.1 - 0.1 0.4 - - - 0.1i1 0.7 - - - - - - -i13 - 0.1 0.5 0.4 - - - -

    DK2 i12 1.1 - - 0.3 - - - 0.5i13 0.3 0.1 0.1 0.3 - 0.1 - 0.1

    % Available 90 90 95 95 95 95 95 95

    Rp-t-hyB/E 0.58 0.28 0.78 1.18 0.78 1.18 0.43 0.43

  • Introduction Problem Formulation Numerical Examples Conclusions

    Data

    Installed Heat-Only Capacity by Producer and at Node (GW)

    Node Producer x1 x9 x2 x4 x10 x5 x11SE∗ i1 - - - - - 0.5 -

    i2 - 0.3 0.1 - - 0.2 -i5 0.2 0.4 - - - 0.2 0.1i6 0.6 6.4 0.6 0.6 0.8 12.2 0.6

    FI i5 0.2 - 0.6 0.4 - - -i9 0.2 - 1.0 1.2 - - -i11 - - 2.3 5.3 0.9 1.3 -

    DK1∗ i13 1.7 1.7 1.5 0.1 - 2.9 -DK2∗ i13 1.1 1.1 1.0 0.1 - 1.9 -NO∗ i14 - 0.3 - - - 0.1 -

    i21 - 3.3 0.3 0.1 - 1.2 -

    % Available 90 90 95 95 95 95 95

  • Introduction Problem Formulation Numerical Examples Conclusions

    Data

    Calibration for March Scenario

  • Introduction Problem Formulation Numerical Examples Conclusions

    Results

    Test Cases and Main Results (in ke)

    Model Perfect Competition Cournot Oligopoly

    CHP status quo Case 1 (SQ-PC) Case 2 (SQ-CO)

    CHP decoupling Case 3 (DE-PC) Case 4 (DE-CO)

    Case 1 Case 2 ∆SQ Case 3 Case 4 ∆DE

    (SQ-PC) (SQ-CO) (DE-PC) (DE-CO)

    SW 87 113 86 777 - 336 84 549 84 237 - 312

    CS 57 697 51 439 - 6 258 53 393 48 607 - 4 785

    PS 28 578 34 686 6 107 30 136 34 805 4 670

    GR 838 652 - 185 1 020 825 -196

  • Introduction Problem Formulation Numerical Examples Conclusions

    Results

    Test Cases and Main Results (in ke)

    Model Perfect Competition Cournot Oligopoly

    CHP status quo Case 1 (SQ-PC) Case 2 (SQ-CO)

    CHP decoupling Case 3 (DE-PC) Case 4 (DE-CO)

    Case 1 Case 2 ∆SQ Case 3 Case 4 ∆DE

    (SQ-PC) (SQ-CO) (DE-PC) (DE-CO)

    SW 87 113 86 777 - 336 84 549 84 237 - 312

    CS 57 697 51 439 - 6 258 53 393 48 607 - 4 785

    PS 28 578 34 686 6 107 30 136 34 805 4 670

    GR 838 652 - 185 1 020 825 -196

  • Introduction Problem Formulation Numerical Examples Conclusions

    Results

    Test Cases and Main Results (in ke)

    Model Perfect Competition Cournot Oligopoly

    CHP status quo Case 1 (SQ-PC) Case 2 (SQ-CO)

    CHP decoupling Case 3 (DE-PC) Case 4 (DE-CO)

    Case 1 Case 2 ∆SQ Case 3 Case 4 ∆DE

    (SQ-PC) (SQ-CO) (DE-PC) (DE-CO)

    SW 87 113 86 777 - 336 84 549 84 237 - 312

    CS 57 697 51 439 - 6 258 53 393 48 607 - 4 785

    PS 28 578 34 686 6 107 30 136 34 805 4 670

    GR 838 652 - 185 1 020 825 -196

  • Introduction Problem Formulation Numerical Examples Conclusions

    Results

    Test Cases and Main Results (in ke)

    Model Perfect Competition Cournot Oligopoly

    CHP status quo Case 1 (SQ-PC) Case 2 (SQ-CO)

    CHP decoupling Case 3 (DE-PC) Case 4 (DE-CO)

    Case 1 Case 2 ∆SQ Case 3 Case 4 ∆DE

    (SQ-PC) (SQ-CO) (DE-PC) (DE-CO)

    SW 87 113 86 777 - 336 84 549 84 237 - 312

    CS 57 697 51 439 - 6 258 53 393 48 607 - 4 785

    PS 28 578 34 686 6 107 30 136 34 805 4 670

    GR 838 652 - 185 1 020 825 -196

  • Introduction Problem Formulation Numerical Examples Conclusions

    Results

    Impact of CHP Decoupling on Electricity Prices

  • Introduction Problem Formulation Numerical Examples Conclusions

    Results

    Impact of Market Power on Electricity Prices

  • Introduction Problem Formulation Numerical Examples Conclusions

    Results

    Analysis of Withholding via CHP (December Scenario)

    00-0

    202

    -04

    04-0

    606

    -08

    08-1

    010

    -12

    12-1

    414

    -16

    16-1

    818

    -20

    20-2

    222

    -00

    Hour of the day

    -10

    -5

    0E

    lect

    ricity

    Gen

    erat

    ion

    Cha

    nge

    (GW

    h)

    Power-onlyCHP

    00-0

    202

    -04

    04-0

    606

    -08

    08-1

    010

    -12

    12-1

    414

    -16

    16-1

    818

    -20

    20-2

    222

    -00

    Hour of the day

    -10

    -5

    0

    Ele

    ctric

    ity G

    ener

    atio

    nC

    hang

    e (G

    Wh)

    Power-onlyCHP (decoupled)

  • Introduction Problem Formulation Numerical Examples Conclusions

    Results

    Impact of Market Power on DH Sector and CO2 Emissions

    -0.2

    0

    0.2

    CO

    2 E

    mis

    sion

    s

    Cha

    nge

    (Gg)

    (M) (J) (S) (D)

    -5

    0

    5

    Hea

    t Gen

    erat

    ion

    Cha

    nge

    (GW

    hth

    )

    CHP-heat Heat-only Total DH CO2

  • Introduction Problem Formulation Numerical Examples Conclusions

    Conclusions

  • Introduction Problem Formulation Numerical Examples Conclusions

    Conclusions

    Summary

    High penetration of VRE in Nordic countries may encourage

    expansion of CHP capacity

    CHP can intensify producers’ market power by reducing the

    opportunity cost of withholding output

    Market power may shift DH production to CHP from

    heat-only because of the additional leverage it provides during

    peak hours

    Even with fixed DH sales, market power may impact CO2emissions from the DH sector due to production mix changes

    Further policy analysis with VRE uncertainty and bi-level

    model for optimal CHP investment

  • Mathematical Appendix

    Mathematical Appendix

  • Mathematical Appendix

    Optimisation Problems

    Firm i ∈ I

    minΓ

    ∑t∈T

    ∑n∈N

    [−

    (Dintn,t − D

    slpn,t

    ∑i′∈I

    qpowern,i′,t

    − ωn,t)

    qpowern,i,t − Pheatn Q

    heatn,i,t +

    ∑u∈Un,i

    (Cpowern,u,t − ωn,t

    )gpowern,i,u,t

    +∑

    x∈Xn,i

    Cheatx gheatn,i,x,t +

    ∑y∈Yn,i

    (Cchp,py − ωn,t

    )gchp,pn,i,y,t +

    ∑y∈Yn,i

    Cchp,hy gchp,hn,i,y,t − ωn,t

    ∑e∈E

    gen,i,t

    ](1)

    s.t.∑

    n∈Nqpowern,i,t −

    ∑n∈N

    ∑u∈Un,i

    gpowern,i,u,t −∑

    n∈N

    ∑y∈Yn,i

    gchp,pn,i,y,t −∑

    n∈N

    ∑e∈E

    gen,i,t = 0(δpoweri,t

    ), ∀t (2)

    Qheatn,i,t −∑

    x∈Xn,i

    Etransn gheatn,i,x,t −

    ∑y∈Yn,i

    Etransn gchp,hn,i,y,t + r

    inn,i,t − r

    outn,i,t = 0

    (δheatn,i,t

    ), ∀n, t (3)

    gchp,pn,i,yB,t

    − Rp-t-hyB

    gchp,hn,i,yB,t

    = 0

    (ϕBn,i,yB,t

    ), ∀n, yB ∈ YBn,i , t (4)

    Rp-t-hyE

    gchp,hn,i,yE,t

    − gchp,pn,i,yE,t

    ≤ 0(ϕE,p-t-h

    n,i,yE,t

    ), ∀n, yE ∈ YEn,i , t (5)

    Rf-t-hyE

    gchp,hn,i,yE,t

    + Rf-t-pyE

    gchp,pn,i,yE,t

    − FyE ≤ 0(ϕE,ub-fuel

    n,i,yE,t

    ), ∀n, yE ∈ YEn,i , t (6)

    Rheat-onlyn,i Qheatn,i,t −

    ∑x∈Xn,i

    Etransn gheatn,i,x,t ≤ 0

    (δheat-onlyn,i,t

    ), ∀n, t (7)

    gpowern,i,u,t − TtGpowern,i,u ≤ 0

    (λpowern,i,u,t

    ), ∀n, u ∈ Un,i , t (8)

    gchp,hn,i,y,t − TtGchp,hn,i,y ≤ 0

    (λchp,hn,i,y,t

    ), ∀n, y ∈ Yn,i , t (9)

    gheatn,i,x,t − TtGheatn,i,x ≤ 0

    (λheatn,i,x,t

    ), ∀n, x ∈ Xn,i , t (10)

    gen,i,t − TtAen,tG

    en,i = 0

    en,i,t

    ), ∀n, e, t (11)

  • Mathematical Appendix

    Optimisation Problems

    Firm i ∈ I

    minΓ

    ∑t∈T

    ∑n∈N

    [−

    (Dintn,t − D

    slpn,t

    ∑i′∈I

    qpowern,i′,t

    − ωn,t)

    qpowern,i,t − Pheatn Q

    heatn,i,t +

    ∑u∈Un,i

    (Cpowern,u,t − ωn,t

    )gpowern,i,u,t

    +∑

    x∈Xn,i

    Cheatx gheatn,i,x,t +

    ∑y∈Yn,i

    (Cchp,py − ωn,t

    )gchp,pn,i,y,t +

    ∑y∈Yn,i

    Cchp,hy gchp,hn,i,y,t − ωn,t

    ∑e∈E

    gen,i,t

    ](1)

    s.t.∑

    n∈Nqpowern,i,t −

    ∑n∈N

    ∑u∈Un,i

    gpowern,i,u,t −∑

    n∈N

    ∑y∈Yn,i

    gchp,pn,i,y,t −∑

    n∈N

    ∑e∈E

    gen,i,t = 0(δpoweri,t

    ), ∀t (2)

    Qheatn,i,t −∑

    x∈Xn,i

    Etransn gheatn,i,x,t −

    ∑y∈Yn,i

    Etransn gchp,hn,i,y,t + r

    inn,i,t − r

    outn,i,t = 0

    (δheatn,i,t

    ), ∀n, t (3)

    gchp,pn,i,yB,t

    − Rp-t-hyB

    gchp,hn,i,yB,t

    = 0

    (ϕBn,i,yB,t

    ), ∀n, yB ∈ YBn,i , t (4)

    Rp-t-hyE

    gchp,hn,i,yE,t

    − gchp,pn,i,yE,t

    ≤ 0(ϕE,p-t-h

    n,i,yE,t

    ), ∀n, yE ∈ YEn,i , t (5)

    Rf-t-hyE

    gchp,hn,i,yE,t

    + Rf-t-pyE

    gchp,pn,i,yE,t

    − FyE ≤ 0(ϕE,ub-fuel

    n,i,yE,t

    ), ∀n, yE ∈ YEn,i , t (6)

    Rheat-onlyn,i Qheatn,i,t −

    ∑x∈Xn,i

    Etransn gheatn,i,x,t ≤ 0

    (δheat-onlyn,i,t

    ), ∀n, t (7)

    gpowern,i,u,t − TtGpowern,i,u ≤ 0

    (λpowern,i,u,t

    ), ∀n, u ∈ Un,i , t (8)

    gchp,hn,i,y,t − TtGchp,hn,i,y ≤ 0

    (λchp,hn,i,y,t

    ), ∀n, y ∈ Yn,i , t (9)

    gheatn,i,x,t − TtGheatn,i,x ≤ 0

    (λheatn,i,x,t

    ), ∀n, x ∈ Xn,i , t (10)

    gen,i,t − TtAen,tG

    en,i = 0

    en,i,t

    ), ∀n, e, t (11)

  • Mathematical Appendix

    Optimisation Problems

    Firm i ∈ I

    minΓ

    ∑t∈T

    ∑n∈N

    [−

    (Dintn,t − D

    slpn,t

    ∑i′∈I

    qpowern,i′,t

    − ωn,t)

    qpowern,i,t − Pheatn Q

    heatn,i,t +

    ∑u∈Un,i

    (Cpowern,u,t − ωn,t

    )gpowern,i,u,t

    +∑

    x∈Xn,i

    Cheatx gheatn,i,x,t +

    ∑y∈Yn,i

    (Cchp,py − ωn,t

    )gchp,pn,i,y,t +

    ∑y∈Yn,i

    Cchp,hy gchp,hn,i,y,t − ωn,t

    ∑e∈E

    gen,i,t

    ](1)

    s.t.∑

    n∈Nqpowern,i,t −

    ∑n∈N

    ∑u∈Un,i

    gpowern,i,u,t −∑

    n∈N

    ∑y∈Yn,i

    gchp,pn,i,y,t −∑

    n∈N

    ∑e∈E

    gen,i,t = 0(δpoweri,t

    ), ∀t (2)

    Qheatn,i,t −∑

    x∈Xn,i

    Etransn gheatn,i,x,t −

    ∑y∈Yn,i

    Etransn gchp,hn,i,y,t + r

    inn,i,t − r

    outn,i,t = 0

    (δheatn,i,t

    ), ∀n, t (3)

    gchp,pn,i,yB,t

    − Rp-t-hyB

    gchp,hn,i,yB,t

    = 0

    (ϕBn,i,yB,t

    ), ∀n, yB ∈ YBn,i , t (4)

    Rp-t-hyE

    gchp,hn,i,yE,t

    − gchp,pn,i,yE,t

    ≤ 0(ϕE,p-t-h

    n,i,yE,t

    ), ∀n, yE ∈ YEn,i , t (5)

    Rf-t-hyE

    gchp,hn,i,yE,t

    + Rf-t-pyE

    gchp,pn,i,yE,t

    − FyE ≤ 0(ϕE,ub-fuel

    n,i,yE,t

    ), ∀n, yE ∈ YEn,i , t (6)

    Rheat-onlyn,i Qheatn,i,t −

    ∑x∈Xn,i

    Etransn gheatn,i,x,t ≤ 0

    (δheat-onlyn,i,t

    ), ∀n, t (7)

    gpowern,i,u,t − TtGpowern,i,u ≤ 0

    (λpowern,i,u,t

    ), ∀n, u ∈ Un,i , t (8)

    gchp,hn,i,y,t − TtGchp,hn,i,y ≤ 0

    (λchp,hn,i,y,t

    ), ∀n, y ∈ Yn,i , t (9)

    gheatn,i,x,t − TtGheatn,i,x ≤ 0

    (λheatn,i,x,t

    ), ∀n, x ∈ Xn,i , t (10)

    gen,i,t − TtAen,tG

    en,i = 0

    en,i,t

    ), ∀n, e, t (11)

  • Mathematical Appendix

    Optimisation Problems

    Firm i ∈ I

    minΓ

    ∑t∈T

    ∑n∈N

    [−

    (Dintn,t − D

    slpn,t

    ∑i′∈I

    qpowern,i′,t

    − ωn,t)

    qpowern,i,t − Pheatn Q

    heatn,i,t +

    ∑u∈Un,i

    (Cpowern,u,t − ωn,t

    )gpowern,i,u,t

    +∑

    x∈Xn,i

    Cheatx gheatn,i,x,t +

    ∑y∈Yn,i

    (Cchp,py − ωn,t

    )gchp,pn,i,y,t +

    ∑y∈Yn,i

    Cchp,hy gchp,hn,i,y,t − ωn,t

    ∑e∈E

    gen,i,t

    ](1)

    s.t.∑

    n∈Nqpowern,i,t −

    ∑n∈N

    ∑u∈Un,i

    gpowern,i,u,t −∑

    n∈N

    ∑y∈Yn,i

    gchp,pn,i,y,t −∑

    n∈N

    ∑e∈E

    gen,i,t = 0(δpoweri,t

    ), ∀t (2)

    Qheatn,i,t −∑

    x∈Xn,i

    Etransn gheatn,i,x,t −

    ∑y∈Yn,i

    Etransn gchp,hn,i,y,t + r

    inn,i,t − r

    outn,i,t = 0

    (δheatn,i,t

    ), ∀n, t (3)

    gchp,pn,i,yB,t

    − Rp-t-hyB

    gchp,hn,i,yB,t

    = 0

    (ϕBn,i,yB,t

    ), ∀n, yB ∈ YBn,i , t (4)

    Rp-t-hyE

    gchp,hn,i,yE,t

    − gchp,pn,i,yE,t

    ≤ 0(ϕE,p-t-h

    n,i,yE,t

    ), ∀n, yE ∈ YEn,i , t (5)

    Rf-t-hyE

    gchp,hn,i,yE,t

    + Rf-t-pyE

    gchp,pn,i,yE,t

    − FyE ≤ 0(ϕE,ub-fuel

    n,i,yE,t

    ), ∀n, yE ∈ YEn,i , t (6)

    Rheat-onlyn,i Qheatn,i,t −

    ∑x∈Xn,i

    Etransn gheatn,i,x,t ≤ 0

    (δheat-onlyn,i,t

    ), ∀n, t (7)

    gpowern,i,u,t − TtGpowern,i,u ≤ 0

    (λpowern,i,u,t

    ), ∀n, u ∈ Un,i , t (8)

    gchp,hn,i,y,t − TtGchp,hn,i,y ≤ 0

    (λchp,hn,i,y,t

    ), ∀n, y ∈ Yn,i , t (9)

    gheatn,i,x,t − TtGheatn,i,x ≤ 0

    (λheatn,i,x,t

    ), ∀n, x ∈ Xn,i , t (10)

    gen,i,t − TtAen,tG

    en,i = 0

    en,i,t

    ), ∀n, e, t (11)

  • Mathematical Appendix

    Optimisation Problems

    Firm i ∈ I

    minΓ

    ∑t∈T

    ∑n∈N

    [−

    (Dintn,t − D

    slpn,t

    ∑i′∈I

    qpowern,i′,t

    − ωn,t)

    qpowern,i,t − Pheatn Q

    heatn,i,t +

    ∑u∈Un,i

    (Cpowern,u,t − ωn,t

    )gpowern,i,u,t

    +∑

    x∈Xn,i

    Cheatx gheatn,i,x,t +

    ∑y∈Yn,i

    (Cchp,py − ωn,t

    )gchp,pn,i,y,t +

    ∑y∈Yn,i

    Cchp,hy gchp,hn,i,y,t − ωn,t

    ∑e∈E

    gen,i,t

    ](1)

    s.t.∑

    n∈Nqpowern,i,t −

    ∑n∈N

    ∑u∈Un,i

    gpowern,i,u,t −∑

    n∈N

    ∑y∈Yn,i

    gchp,pn,i,y,t −∑

    n∈N

    ∑e∈E

    gen,i,t = 0(δpoweri,t

    ), ∀t (2)

    Qheatn,i,t −∑

    x∈Xn,i

    Etransn gheatn,i,x,t −

    ∑y∈Yn,i

    Etransn gchp,hn,i,y,t + r

    inn,i,t − r

    outn,i,t = 0

    (δheatn,i,t

    ), ∀n, t (3)

    gchp,pn,i,yB,t

    − Rp-t-hyB

    gchp,hn,i,yB,t

    = 0

    (ϕBn,i,yB,t

    ), ∀n, yB ∈ YBn,i , t (4)

    Rp-t-hyE

    gchp,hn,i,yE,t

    − gchp,pn,i,yE,t

    ≤ 0(ϕE,p-t-h

    n,i,yE,t

    ), ∀n, yE ∈ YEn,i , t (5)

    Rf-t-hyE

    gchp,hn,i,yE,t

    + Rf-t-pyE

    gchp,pn,i,yE,t

    − FyE ≤ 0(ϕE,ub-fuel

    n,i,yE,t

    ), ∀n, yE ∈ YEn,i , t (6)

    Rheat-onlyn,i Qheatn,i,t −

    ∑x∈Xn,i

    Etransn gheatn,i,x,t ≤ 0

    (δheat-onlyn,i,t

    ), ∀n, t (7)

    gpowern,i,u,t − TtGpowern,i,u ≤ 0

    (λpowern,i,u,t

    ), ∀n, u ∈ Un,i , t (8)

    gchp,hn,i,y,t − TtGchp,hn,i,y ≤ 0

    (λchp,hn,i,y,t

    ), ∀n, y ∈ Yn,i , t (9)

    gheatn,i,x,t − TtGheatn,i,x ≤ 0

    (λheatn,i,x,t

    ), ∀n, x ∈ Xn,i , t (10)

    gen,i,t − TtAen,tG

    en,i = 0

    en,i,t

    ), ∀n, e, t (11)

  • Mathematical Appendix

    Optimisation Problems

    Firm i ∈ I

    minΓ

    ∑t∈T

    ∑n∈N

    [−

    (Dintn,t − D

    slpn,t

    ∑i′∈I

    qpowern,i′,t

    − ωn,t)

    qpowern,i,t − Pheatn Q

    heatn,i,t +

    ∑u∈Un,i

    (Cpowern,u,t − ωn,t

    )gpowern,i,u,t

    +∑

    x∈Xn,i

    Cheatx gheatn,i,x,t +

    ∑y∈Yn,i

    (Cchp,py − ωn,t

    )gchp,pn,i,y,t +

    ∑y∈Yn,i

    Cchp,hy gchp,hn,i,y,t − ωn,t

    ∑e∈E

    gen,i,t

    ](1)

    s.t.∑

    n∈Nqpowern,i,t −

    ∑n∈N

    ∑u∈Un,i

    gpowern,i,u,t −∑

    n∈N

    ∑y∈Yn,i

    gchp,pn,i,y,t −∑

    n∈N

    ∑e∈E

    gen,i,t = 0(δpoweri,t

    ), ∀t (2)

    Qheatn,i,t −∑

    x∈Xn,i

    Etransn gheatn,i,x,t −

    ∑y∈Yn,i

    Etransn gchp,hn,i,y,t + r

    inn,i,t − r

    outn,i,t = 0

    (δheatn,i,t

    ), ∀n, t (3)

    gchp,pn,i,yB,t

    − Rp-t-hyB

    gchp,hn,i,yB,t

    = 0

    (ϕBn,i,yB,t

    ), ∀n, yB ∈ YBn,i , t (4)

    Rp-t-hyE

    gchp,hn,i,yE,t

    − gchp,pn,i,yE,t

    ≤ 0(ϕE,p-t-h

    n,i,yE,t

    ), ∀n, yE ∈ YEn,i , t (5)

    Rf-t-hyE

    gchp,hn,i,yE,t

    + Rf-t-pyE

    gchp,pn,i,yE,t

    − FyE ≤ 0(ϕE,ub-fuel

    n,i,yE,t

    ), ∀n, yE ∈ YEn,i , t (6)

    Rheat-onlyn,i Qheatn,i,t −

    ∑x∈Xn,i

    Etransn gheatn,i,x,t ≤ 0

    (δheat-onlyn,i,t

    ), ∀n, t (7)

    gpowern,i,u,t − TtGpowern,i,u ≤ 0

    (λpowern,i,u,t

    ), ∀n, u ∈ Un,i , t (8)

    gchp,hn,i,y,t − TtGchp,hn,i,y ≤ 0

    (λchp,hn,i,y,t

    ), ∀n, y ∈ Yn,i , t (9)

    gheatn,i,x,t − TtGheatn,i,x ≤ 0

    (λheatn,i,x,t

    ), ∀n, x ∈ Xn,i , t (10)

    gen,i,t − TtAen,tG

    en,i = 0

    en,i,t

    ), ∀n, e, t (11)

  • Mathematical Appendix

    Optimisation Problems

    Firm i ∈ I

    minΓ

    ∑t∈T

    ∑n∈N

    [−

    (Dintn,t − D

    slpn,t

    ∑i′∈I

    qpowern,i′,t

    − ωn,t)

    qpowern,i,t − Pheatn Q

    heatn,i,t +

    ∑u∈Un,i

    (Cpowern,u,t − ωn,t

    )gpowern,i,u,t

    +∑

    x∈Xn,i

    Cheatx gheatn,i,x,t +

    ∑y∈Yn,i

    (Cchp,py − ωn,t

    )gchp,pn,i,y,t +

    ∑y∈Yn,i

    Cchp,hy gchp,hn,i,y,t − ωn,t

    ∑e∈E

    gen,i,t

    ](1)

    s.t.∑

    n∈Nqpowern,i,t −

    ∑n∈N

    ∑u∈Un,i

    gpowern,i,u,t −∑

    n∈N

    ∑y∈Yn,i

    gchp,pn,i,y,t −∑

    n∈N

    ∑e∈E

    gen,i,t = 0(δpoweri,t

    ), ∀t (2)

    Qheatn,i,t −∑

    x∈Xn,i

    Etransn gheatn,i,x,t −

    ∑y∈Yn,i

    Etransn gchp,hn,i,y,t + r

    inn,i,t − r

    outn,i,t = 0

    (δheatn,i,t

    ), ∀n, t (3)

    gchp,pn,i,yB,t

    − Rp-t-hyB

    gchp,hn,i,yB,t

    = 0

    (ϕBn,i,yB,t

    ), ∀n, yB ∈ YBn,i , t (4)

    Rp-t-hyE

    gchp,hn,i,yE,t

    − gchp,pn,i,yE,t

    ≤ 0(ϕE,p-t-h

    n,i,yE,t

    ), ∀n, yE ∈ YEn,i , t (5)

    Rf-t-hyE

    gchp,hn,i,yE,t

    + Rf-t-pyE

    gchp,pn,i,yE,t

    − FyE ≤ 0(ϕE,ub-fuel

    n,i,yE,t

    ), ∀n, yE ∈ YEn,i , t (6)

    Rheat-onlyn,i Qheatn,i,t −

    ∑x∈Xn,i

    Etransn gheatn,i,x,t ≤ 0

    (δheat-onlyn,i,t

    ), ∀n, t (7)

    gpowern,i,u,t − TtGpowern,i,u ≤ 0

    (λpowern,i,u,t

    ), ∀n, u ∈ Un,i , t (8)

    gchp,hn,i,y,t − TtGchp,hn,i,y ≤ 0

    (λchp,hn,i,y,t

    ), ∀n, y ∈ Yn,i , t (9)

    gheatn,i,x,t − TtGheatn,i,x ≤ 0

    (λheatn,i,x,t

    ), ∀n, x ∈ Xn,i , t (10)

    gen,i,t − TtAen,tG

    en,i = 0

    en,i,t

    ), ∀n, e, t (11)

  • Mathematical Appendix

    Optimisation Problems

    Firm i ∈ I

    gpowern,i,u,t − gpowern,i,u,t−1 − TtR

    power-upu G

    powern,i,u ≤ 0

    (ρpower-upn,i,u,t

    ), ∀n, u ∈ Un,i , t (12)

    gpowern,i,u,t−1 − gpowern,i,u,t − TtR

    power-downu G

    powern,i,u ≤ 0

    (ρpower-downn,i,u,t

    ), ∀n, u ∈ Un,i , t (13)

    gchp,hn,i,y,t − gchp,hn,i,y,t−1 − TtR

    chp-upy G

    chp,hn,i,y ≤ 0

    (ρchp-upn,i,y,t

    ), ∀n, y ∈ Yn,i , t (14)

    gchp,hn,i,y,t−1 − gchp,hn,i,y,t − TtR

    chp-downy G

    chp,hn,i,y ≤ 0

    (ρchp-downn,i,y,t

    ), ∀n, y ∈ Yn,i , t (15)

    gheatn,i,x,t − gheatn,i,x,t−1 − TtR

    heat-upx G

    heatn,i,x ≤ 0

    (ρheat-upn,i,x,t

    ), ∀n, x ∈ Xn,i , t (16)

    gheatn,i,x,t−1 − gheatn,i,x,t − TtR

    heat-downx G

    heatn,i,x ≤ 0

    (ρheat-downn,i,x,t

    ), ∀n, x ∈ Xn,i , t (17)

    rston,i,t − (1 − Edec)Tt rston,i,t−1 − E

    effr inn,i,t + routn,i,t = 0

    (βbaln,i,t

    ), ∀n, t (18)

    r inn,i,t − TtEinEmaxn,i ≤ 0

    (βinn,i,t

    ), ∀n, t (19)

    routn,i,t − TtEoutEmaxn,i ≤ 0

    (βoutn,i,t

    ), ∀n, t (20)

    Eminn,i ≤ rston,i,t ≤ E

    maxn,i

    (βlbn,i,t , β

    ubn,i,t

    ), ∀n, t (21)

    gpowern,i,u,t ≥ 0 ∀n, u ∈ Un,i , t; gchp,pn,i,y,t , g

    chp,hn,i,y,t ≥ 0 ∀n, y ∈ Yn,i , t; g

    heatn,i,x,t ≥ 0 ∀n, x ∈ Xn,i , t;

    gen,i,t , qpowern,i,t , r

    ston,i,t , r

    inn,i,t , r

    outn,i,t ≥ 0 ∀n, t (22)

    Γ := {gpowern,i,u,t , gchp,pn,i,y,t , g

    chp,hn,i,y,t , g

    heatn,i,x,t , g

    en,i,t , q

    powern,i,t , r

    ston,i,t , r

    inn,i,t , r

    outn,i,t}

  • Mathematical Appendix

    Optimisation Problems

    Firm i ∈ I

    gpowern,i,u,t − gpowern,i,u,t−1 − TtR

    power-upu G

    powern,i,u ≤ 0

    (ρpower-upn,i,u,t

    ), ∀n, u ∈ Un,i , t (12)

    gpowern,i,u,t−1 − gpowern,i,u,t − TtR

    power-downu G

    powern,i,u ≤ 0

    (ρpower-downn,i,u,t

    ), ∀n, u ∈ Un,i , t (13)

    gchp,hn,i,y,t − gchp,hn,i,y,t−1 − TtR

    chp-upy G

    chp,hn,i,y ≤ 0

    (ρchp-upn,i,y,t

    ), ∀n, y ∈ Yn,i , t (14)

    gchp,hn,i,y,t−1 − gchp,hn,i,y,t − TtR

    chp-downy G

    chp,hn,i,y ≤ 0

    (ρchp-downn,i,y,t

    ), ∀n, y ∈ Yn,i , t (15)

    gheatn,i,x,t − gheatn,i,x,t−1 − TtR

    heat-upx G

    heatn,i,x ≤ 0

    (ρheat-upn,i,x,t

    ), ∀n, x ∈ Xn,i , t (16)

    gheatn,i,x,t−1 − gheatn,i,x,t − TtR

    heat-downx G

    heatn,i,x ≤ 0

    (ρheat-downn,i,x,t

    ), ∀n, x ∈ Xn,i , t (17)

    rston,i,t − (1 − Edec)Tt rston,i,t−1 − E

    effr inn,i,t + routn,i,t = 0

    (βbaln,i,t

    ), ∀n, t (18)

    r inn,i,t − TtEinEmaxn,i ≤ 0

    (βinn,i,t

    ), ∀n, t (19)

    routn,i,t − TtEoutEmaxn,i ≤ 0

    (βoutn,i,t

    ), ∀n, t (20)

    Eminn,i ≤ rston,i,t ≤ E

    maxn,i

    (βlbn,i,t , β

    ubn,i,t

    ), ∀n, t (21)

    gpowern,i,u,t ≥ 0 ∀n, u ∈ Un,i , t; gchp,pn,i,y,t , g

    chp,hn,i,y,t ≥ 0 ∀n, y ∈ Yn,i , t; g

    heatn,i,x,t ≥ 0 ∀n, x ∈ Xn,i , t;

    gen,i,t , qpowern,i,t , r

    ston,i,t , r

    inn,i,t , r

    outn,i,t ≥ 0 ∀n, t (22)

    Γ := {gpowern,i,u,t , gchp,pn,i,y,t , g

    chp,hn,i,y,t , g

    heatn,i,x,t , g

    en,i,t , q

    powern,i,t , r

    ston,i,t , r

    inn,i,t , r

    outn,i,t}

  • Mathematical Appendix

    Optimisation Problems

    Firm i ∈ I

    gpowern,i,u,t − gpowern,i,u,t−1 − TtR

    power-upu G

    powern,i,u ≤ 0

    (ρpower-upn,i,u,t

    ), ∀n, u ∈ Un,i , t (12)

    gpowern,i,u,t−1 − gpowern,i,u,t − TtR

    power-downu G

    powern,i,u ≤ 0

    (ρpower-downn,i,u,t

    ), ∀n, u ∈ Un,i , t (13)

    gchp,hn,i,y,t − gchp,hn,i,y,t−1 − TtR

    chp-upy G

    chp,hn,i,y ≤ 0

    (ρchp-upn,i,y,t

    ), ∀n, y ∈ Yn,i , t (14)

    gchp,hn,i,y,t−1 − gchp,hn,i,y,t − TtR

    chp-downy G

    chp,hn,i,y ≤ 0

    (ρchp-downn,i,y,t

    ), ∀n, y ∈ Yn,i , t (15)

    gheatn,i,x,t − gheatn,i,x,t−1 − TtR

    heat-upx G

    heatn,i,x ≤ 0

    (ρheat-upn,i,x,t

    ), ∀n, x ∈ Xn,i , t (16)

    gheatn,i,x,t−1 − gheatn,i,x,t − TtR

    heat-downx G

    heatn,i,x ≤ 0

    (ρheat-downn,i,x,t

    ), ∀n, x ∈ Xn,i , t (17)

    rston,i,t − (1 − Edec)Tt rston,i,t−1 − E

    effr inn,i,t + routn,i,t = 0

    (βbaln,i,t

    ), ∀n, t (18)

    r inn,i,t − TtEinEmaxn,i ≤ 0

    (βinn,i,t

    ), ∀n, t (19)

    routn,i,t − TtEoutEmaxn,i ≤ 0

    (βoutn,i,t

    ), ∀n, t (20)

    Eminn,i ≤ rston,i,t ≤ E

    maxn,i

    (βlbn,i,t , β

    ubn,i,t

    ), ∀n, t (21)

    gpowern,i,u,t ≥ 0 ∀n, u ∈ Un,i , t; gchp,pn,i,y,t , g

    chp,hn,i,y,t ≥ 0 ∀n, y ∈ Yn,i , t; g

    heatn,i,x,t ≥ 0 ∀n, x ∈ Xn,i , t;

    gen,i,t , qpowern,i,t , r

    ston,i,t , r

    inn,i,t , r

    outn,i,t ≥ 0 ∀n, t (22)

    Γ := {gpowern,i,u,t , gchp,pn,i,y,t , g

    chp,hn,i,y,t , g

    heatn,i,x,t , g

    en,i,t , q

    powern,i,t , r

    ston,i,t , r

    inn,i,t , r

    outn,i,t}

  • Mathematical Appendix

    Optimisation Problems

    Firm i ∈ I

    gpowern,i,u,t − gpowern,i,u,t−1 − TtR

    power-upu G

    powern,i,u ≤ 0

    (ρpower-upn,i,u,t

    ), ∀n, u ∈ Un,i , t (12)

    gpowern,i,u,t−1 − gpowern,i,u,t − TtR

    power-downu G

    powern,i,u ≤ 0

    (ρpower-downn,i,u,t

    ), ∀n, u ∈ Un,i , t (13)

    gchp,hn,i,y,t − gchp,hn,i,y,t−1 − TtR

    chp-upy G

    chp,hn,i,y ≤ 0

    (ρchp-upn,i,y,t

    ), ∀n, y ∈ Yn,i , t (14)

    gchp,hn,i,y,t−1 − gchp,hn,i,y,t − TtR

    chp-downy G

    chp,hn,i,y ≤ 0

    (ρchp-downn,i,y,t

    ), ∀n, y ∈ Yn,i , t (15)

    gheatn,i,x,t − gheatn,i,x,t−1 − TtR

    heat-upx G

    heatn,i,x ≤ 0

    (ρheat-upn,i,x,t

    ), ∀n, x ∈ Xn,i , t (16)

    gheatn,i,x,t−1 − gheatn,i,x,t − TtR

    heat-downx G

    heatn,i,x ≤ 0

    (ρheat-downn,i,x,t

    ), ∀n, x ∈ Xn,i , t (17)

    rston,i,t − (1 − Edec)Tt rston,i,t−1 − E

    effr inn,i,t + routn,i,t = 0

    (βbaln,i,t

    ), ∀n, t (18)

    r inn,i,t − TtEinEmaxn,i ≤ 0

    (βinn,i,t

    ), ∀n, t (19)

    routn,i,t − TtEoutEmaxn,i ≤ 0

    (βoutn,i,t

    ), ∀n, t (20)

    Eminn,i ≤ rston,i,t ≤ E

    maxn,i

    (βlbn,i,t , β

    ubn,i,t

    ), ∀n, t (21)

    gpowern,i,u,t ≥ 0 ∀n, u ∈ Un,i , t; gchp,pn,i,y,t , g

    chp,hn,i,y,t ≥ 0 ∀n, y ∈ Yn,i , t; g

    heatn,i,x,t ≥ 0 ∀n, x ∈ Xn,i , t;

    gen,i,t , qpowern,i,t , r

    ston,i,t , r

    inn,i,t , r

    outn,i,t ≥ 0 ∀n, t (22)

    Γ := {gpowern,i,u,t , gchp,pn,i,y,t , g

    chp,hn,i,y,t , g

    heatn,i,x,t , g

    en,i,t , q

    powern,i,t , r

    ston,i,t , r

    inn,i,t , r

    outn,i,t}

  • Mathematical Appendix

    Optimisation Problems

    Firm i ∈ I

    gpowern,i,u,t − gpowern,i,u,t−1 − TtR

    power-upu G

    powern,i,u ≤ 0

    (ρpower-upn,i,u,t

    ), ∀n, u ∈ Un,i , t (12)

    gpowern,i,u,t−1 − gpowern,i,u,t − TtR

    power-downu G

    powern,i,u ≤ 0

    (ρpower-downn,i,u,t

    ), ∀n, u ∈ Un,i , t (13)

    gchp,hn,i,y,t − gchp,hn,i,y,t−1 − TtR

    chp-upy G

    chp,hn,i,y ≤ 0

    (ρchp-upn,i,y,t

    ), ∀n, y ∈ Yn,i , t (14)

    gchp,hn,i,y,t−1 − gchp,hn,i,y,t − TtR

    chp-downy G

    chp,hn,i,y ≤ 0

    (ρchp-downn,i,y,t

    ), ∀n, y ∈ Yn,i , t (15)

    gheatn,i,x,t − gheatn,i,x,t−1 − TtR

    heat-upx G

    heatn,i,x ≤ 0

    (ρheat-upn,i,x,t

    ), ∀n, x ∈ Xn,i , t (16)

    gheatn,i,x,t−1 − gheatn,i,x,t − TtR

    heat-downx G

    heatn,i,x ≤ 0

    (ρheat-downn,i,x,t

    ), ∀n, x ∈ Xn,i , t (17)

    rston,i,t − (1 − Edec)Tt rston,i,t−1 − E

    effr inn,i,t + routn,i,t = 0

    (βbaln,i,t

    ), ∀n, t (18)

    r inn,i,t − TtEinEmaxn,i ≤ 0

    (βinn,i,t

    ), ∀n, t (19)

    routn,i,t − TtEoutEmaxn,i ≤ 0

    (βoutn,i,t

    ), ∀n, t (20)

    Eminn,i ≤ rston,i,t ≤ E

    maxn,i

    (βlbn,i,t , β

    ubn,i,t

    ), ∀n, t (21)

    gpowern,i,u,t ≥ 0 ∀n, u ∈ Un,i , t; gchp,pn,i,y,t , g

    chp,hn,i,y,t ≥ 0 ∀n, y ∈ Yn,i , t; g

    heatn,i,x,t ≥ 0 ∀n, x ∈ Xn,i , t;

    gen,i,t , qpowern,i,t , r

    ston,i,t , r

    inn,i,t , r

    outn,i,t ≥ 0 ∀n, t (22)

    Γ := {gpowern,i,u,t , gchp,pn,i,y,t , g

    chp,hn,i,y,t , g

    heatn,i,x,t , g

    en,i,t , q

    powern,i,t , r

    ston,i,t , r

    inn,i,t , r

    outn,i,t}

  • Mathematical Appendix

    Optimisation Problems

    Grid Owner and Market Clearing

    minθnAC,t ,fℓ,t

    −∑t∈T

    ∑n∈N

    ωn,t∑ℓ∈L

    Mℓ,nTt fℓ,t (23)

    s.t.∑

    nAC∈NACTtHℓAC,nACθnAC,t − Tt fℓAC,t = 0

    (ηℓAC,t

    ), ∀ℓAC ∈ LAC, t (24)

    Tt fℓ,t − TtK ℓ ≤ 0(µℓ,t

    ), ∀ℓ, t (25)

    − Tt fℓ,t − TtK ℓ ≤ 0(µ

    ℓ,t

    ), ∀ℓ, t (26)

    TtSnAC θnAC,t = 0(γnAC,t

    ), ∀nAC ∈ N AC, t (27)

    θnAC,t and fℓ,t u.r.s., ∀nAC ∈ N AC, ℓ, t (28)

    ∑i∈I

    qpowern,i ,t −∑i∈I

    ∑u∈Un,i

    g powern,i ,u,t −∑i∈I

    ∑y∈Yn,i

    g chp,pn,i ,y,t

    −∑i∈I

    ∑e∈E

    g en,i ,t −∑ℓ∈L

    TtMℓ,nfℓ,t = 0 (ωn,t , u.r.s.) , ∀n, t (29)

  • Mathematical Appendix

    Optimisation Problems

    Grid Owner and Market Clearing

    minθnAC,t ,fℓ,t

    −∑t∈T

    ∑n∈N

    ωn,t∑ℓ∈L

    Mℓ,nTt fℓ,t (23)

    s.t.∑

    nAC∈NACTtHℓAC,nACθnAC,t − Tt fℓAC,t = 0

    (ηℓAC,t

    ), ∀ℓAC ∈ LAC, t (24)

    Tt fℓ,t − TtK ℓ ≤ 0(µℓ,t

    ), ∀ℓ, t (25)

    − Tt fℓ,t − TtK ℓ ≤ 0(µ

    ℓ,t

    ), ∀ℓ, t (26)

    TtSnAC θnAC,t = 0(γnAC,t

    ), ∀nAC ∈ N AC, t (27)

    θnAC,t and fℓ,t u.r.s., ∀nAC ∈ N AC, ℓ, t (28)

    ∑i∈I

    qpowern,i ,t −∑i∈I

    ∑u∈Un,i

    g powern,i ,u,t −∑i∈I

    ∑y∈Yn,i

    g chp,pn,i ,y,t

    −∑i∈I

    ∑e∈E

    g en,i ,t −∑ℓ∈L

    TtMℓ,nfℓ,t = 0 (ωn,t , u.r.s.) , ∀n, t (29)

  • Mathematical Appendix

    Optimisation Problems

    Grid Owner and Market Clearing

    minθnAC,t ,fℓ,t

    −∑t∈T

    ∑n∈N

    ωn,t∑ℓ∈L

    Mℓ,nTt fℓ,t (23)

    s.t.∑

    nAC∈NACTtHℓAC,nACθnAC,t − Tt fℓAC,t = 0

    (ηℓAC,t

    ), ∀ℓAC ∈ LAC, t (24)

    Tt fℓ,t − TtK ℓ ≤ 0(µℓ,t

    ), ∀ℓ, t (25)

    − Tt fℓ,t − TtK ℓ ≤ 0(µ

    ℓ,t

    ), ∀ℓ, t (26)

    TtSnAC θnAC,t = 0(γnAC,t

    ), ∀nAC ∈ N AC, t (27)

    θnAC,t and fℓ,t u.r.s., ∀nAC ∈ N AC, ℓ, t (28)

    ∑i∈I

    qpowern,i ,t −∑i∈I

    ∑u∈Un,i

    g powern,i ,u,t −∑i∈I

    ∑y∈Yn,i

    g chp,pn,i ,y,t

    −∑i∈I

    ∑e∈E

    g en,i ,t −∑ℓ∈L

    TtMℓ,nfℓ,t = 0 (ωn,t , u.r.s.) , ∀n, t (29)

  • Mathematical Appendix

    Optimisation Problems

    Grid Owner and Market Clearing

    minθnAC,t ,fℓ,t

    −∑t∈T

    ∑n∈N

    ωn,t∑ℓ∈L

    Mℓ,nTt fℓ,t (23)

    s.t.∑

    nAC∈NACTtHℓAC,nACθnAC,t − Tt fℓAC,t = 0

    (ηℓAC,t

    ), ∀ℓAC ∈ LAC, t (24)

    Tt fℓ,t − TtK ℓ ≤ 0(µℓ,t

    ), ∀ℓ, t (25)

    − Tt fℓ,t − TtK ℓ ≤ 0(µ

    ℓ,t

    ), ∀ℓ, t (26)

    TtSnAC θnAC,t = 0(γnAC,t

    ), ∀nAC ∈ N AC, t (27)

    θnAC,t and fℓ,t u.r.s., ∀nAC ∈ N AC, ℓ, t (28)

    ∑i∈I

    qpowern,i ,t −∑i∈I

    ∑u∈Un,i

    g powern,i ,u,t −∑i∈I

    ∑y∈Yn,i

    g chp,pn,i ,y,t

    −∑i∈I

    ∑e∈E

    g en,i ,t −∑ℓ∈L

    TtMℓ,nfℓ,t = 0 (ωn,t , u.r.s.) , ∀n, t (29)

  • Mathematical Appendix

    Optimisation Problems

    Grid Owner and Market Clearing

    minθnAC,t ,fℓ,t

    −∑t∈T

    ∑n∈N

    ωn,t∑ℓ∈L

    Mℓ,nTt fℓ,t (23)

    s.t.∑

    nAC∈NACTtHℓAC,nACθnAC,t − Tt fℓAC,t = 0

    (ηℓAC,t

    ), ∀ℓAC ∈ LAC, t (24)

    Tt fℓ,t − TtK ℓ ≤ 0(µℓ,t

    ), ∀ℓ, t (25)

    − Tt fℓ,t − TtK ℓ ≤ 0(µ

    ℓ,t

    ), ∀ℓ, t (26)

    TtSnAC θnAC,t = 0(γnAC,t

    ), ∀nAC ∈ N AC, t (27)

    θnAC,t and fℓ,t u.r.s., ∀nAC ∈ N AC, ℓ, t (28)

    ∑i∈I

    qpowern,i ,t −∑i∈I

    ∑u∈Un,i

    g powern,i ,u,t −∑i∈I

    ∑y∈Yn,i

    g chp,pn,i ,y,t

    −∑i∈I

    ∑e∈E

    g en,i ,t −∑ℓ∈L

    TtMℓ,nfℓ,t = 0 (ωn,t , u.r.s.) , ∀n, t (29)

  • Mathematical Appendix

    Optimisation Problems

    Grid Owner and Market Clearing

    minθnAC,t ,fℓ,t

    −∑t∈T

    ∑n∈N

    ωn,t∑ℓ∈L

    Mℓ,nTt fℓ,t (23)

    s.t.∑

    nAC∈NACTtHℓAC,nACθnAC,t − Tt fℓAC,t = 0

    (ηℓAC,t

    ), ∀ℓAC ∈ LAC, t (24)

    Tt fℓ,t − TtK ℓ ≤ 0(µℓ,t

    ), ∀ℓ, t (25)

    − Tt fℓ,t − TtK ℓ ≤ 0(µ

    ℓ,t

    ), ∀ℓ, t (26)

    TtSnAC θnAC,t = 0(γnAC,t

    ), ∀nAC ∈ N AC, t (27)

    θnAC,t and fℓ,t u.r.s., ∀nAC ∈ N AC, ℓ, t (28)

    ∑i∈I

    qpowern,i ,t −∑i∈I

    ∑u∈Un,i

    g powern,i ,u,t −∑i∈I

    ∑y∈Yn,i

    g chp,pn,i ,y,t

    −∑i∈I

    ∑e∈E

    g en,i ,t −∑ℓ∈L

    TtMℓ,nfℓ,t = 0 (ωn,t , u.r.s.) , ∀n, t (29)

  • Mathematical Appendix

    Optimisation Problems

    Grid Owner and Market Clearing

    minθnAC,t ,fℓ,t

    −∑t∈T

    ∑n∈N

    ωn,t∑ℓ∈L

    Mℓ,nTt fℓ,t (23)

    s.t.∑

    nAC∈NACTtHℓAC,nACθnAC,t − Tt fℓAC,t = 0

    (ηℓAC,t

    ), ∀ℓAC ∈ LAC, t (24)

    Tt fℓ,t − TtK ℓ ≤ 0(µℓ,t

    ), ∀ℓ, t (25)

    − Tt fℓ,t − TtK ℓ ≤ 0(µ

    ℓ,t

    ), ∀ℓ, t (26)

    TtSnAC θnAC,t = 0(γnAC,t

    ), ∀nAC ∈ N AC, t (27)

    θnAC,t and fℓ,t u.r.s., ∀nAC ∈ N AC, ℓ, t (28)

    ∑i∈I

    qpowern,i ,t −∑i∈I

    ∑u∈Un,i

    g powern,i ,u,t −∑i∈I

    ∑y∈Yn,i

    g chp,pn,i ,y,t

    −∑i∈I

    ∑e∈E

    g en,i ,t −∑ℓ∈L

    TtMℓ,nfℓ,t = 0 (ωn,t , u.r.s.) , ∀n, t (29)

    IntroductionMotivationRelated WorkContribution

    Problem FormulationSetup

    Numerical ExamplesDataResults

    ConclusionsConclusions

    AppendixMathematical AppendixOptimisation Problems