28
Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights Chapter 4 Metal Alloys: Structure and Strengthening by Heat Treatment

Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0-13-148965-8. © 2006 Pearson Education, Inc.,

Embed Size (px)

Citation preview

Page 1: Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0-13-148965-8. © 2006 Pearson Education, Inc.,

Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid.ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Chapter 4Metal Alloys: Structure and

Strengthening by Heat Treatment

Page 2: Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0-13-148965-8. © 2006 Pearson Education, Inc.,

Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid.ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Gear Teeth Cross-section

Figure 4.1 Cross-section of gear teeth showing induction-hardened surfaces. Source: Courtesy of TOCCO Div., Park-Ohio Industries, Inc.

Page 3: Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0-13-148965-8. © 2006 Pearson Education, Inc.,

Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid.ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Chapter 4 Topics

Figure 4.2 Outline of topics described in Chapter 4.

Page 4: Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0-13-148965-8. © 2006 Pearson Education, Inc.,

Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid.ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Two Phase Systems

Figure 4.3 (a) Schematic illustration of grains, grain boundaries, and particles dispersed throughout the structure of a two-phase system, such as a lead-copper alloy. The grains represent lead in solid solution in copper, and the particles are lead as a second phase. (b) Schematic illustration of a two-phase system consisting of two sets of grains: dark and light. The dark and the light grains have separate compositions and properties.

Page 5: Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0-13-148965-8. © 2006 Pearson Education, Inc.,

Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid.ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Cooling of Metals

Figure 4.4 (a) Cooling curve for the solidification of pure metals. Note that freezing takes place at a constant temperature; during freezing, the latent heat of solidification is given off. (b) Change in density during the cooling of pure metals.

Page 6: Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0-13-148965-8. © 2006 Pearson Education, Inc.,

Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid.ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Phase Diagram for Nickel-copper Alloy System

Figure 4.5 Phase diagram for nickel-copper alloy system obtained at a slow rate of solidification. Note that pure nickel and pure copper each has one freezing or melting temperature. The top circle on the right depicts the nucleation of crystals. The second circle shows the formation of dendrites (see Section 10.2). The bottom circle shows the solidified alloy with grain boundaries.

Page 7: Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0-13-148965-8. © 2006 Pearson Education, Inc.,

Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid.ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Mechanical Properties of Copper Alloys

Figure 4.6 Mechanical properties of copper-nickel and copper-zinc alloys as a function of their composition. The curves for zinc are short, because zinc has a maximum solid solubility of 40% in copper.

Page 8: Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0-13-148965-8. © 2006 Pearson Education, Inc.,

Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid.ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Lead-tin Phase Diagram

Figure 4.7 The lead-tin phase diagram. Note that the composition of eutectic point for this alloy is 61.9% Sn – 38.1% Pb. A composition either lower or higher than this ratio will have a higher liquidus temperature.

Page 9: Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0-13-148965-8. © 2006 Pearson Education, Inc.,

Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid.ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Iron-iron Carbide Phase Diagram

Figure 4.8 The iron-iron carbide phase diagram. Because of the importance of steel as an engineering material, this diagram is one of the most important of all phase diagrams.

Page 10: Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0-13-148965-8. © 2006 Pearson Education, Inc.,

Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid.ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Unit Cells

Figure 4.9 The unit cells for (a) austenite, (b) ferrite, and (c) martensite. The effect of percentage of carbon (by weight) on the lattice dimensions for martensite is shown in (d). Note the interstitial position of the carbon atoms (see Fig. 1.9). Also note, the increase in dimension c with increasing carbon content: this effect causes the unit cell of martensite to be in the shape of a rectangular prism.

Page 11: Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0-13-148965-8. © 2006 Pearson Education, Inc.,

Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid.ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Microstructures for an Iron-Carbon Alloy

Figure 4.10 Schematic illustration of the microstructures for an iron-carbon alloy of eutectoid composition (0.77% carbon) above and below the eutectoid temperature of 727°C (1341°F).

Page 12: Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0-13-148965-8. © 2006 Pearson Education, Inc.,

Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid.ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Microstructure of Steel Formed from Eutectoid Composition

Figure 4.11 Microstructure of pearlite in 1080 steel formed from austenite of a eutectoid composition. In this lamellar structure, the lighter regions are ferrite, and the darker regions are carbide. Magnification: 2500x.

Page 13: Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0-13-148965-8. © 2006 Pearson Education, Inc.,

Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid.ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Iron-Carbon Phase Diagram with Graphite

Figure 4.12 Phase diagram for the iron-carbon system with graphite (instead of cementite) as the stable phase. Note that this figure is an extended version of Fig. 4.8.

Page 14: Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0-13-148965-8. © 2006 Pearson Education, Inc.,

Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid.ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Microstructure for Cast Irons

Figure 4.13 Microstructure for cast irons. Magnification: 100x. (a) Ferritic gray iron with graphite flakes. (b) Ferritic ductile iron (nodular iron) with graphite in nodular form. (c) Ferritic malleable iron. This cast iron solidified as white cast iron with the carbon present as cementite and was heat treated to graphitize the carbon.

Page 15: Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0-13-148965-8. © 2006 Pearson Education, Inc.,

Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid.ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Microstructure of Eutectoid Steel

Figure 4.14 Microstructure of eutectoid steel. Spheroidite is formed by tempering the steel at 700°C (1292°F). Magnification: 1000x.

Page 16: Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0-13-148965-8. © 2006 Pearson Education, Inc.,

Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid.ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Martensite

Figure 4.15 (a) Hardness of martensite as a function of carbon content. (b) Micrograph of martensite containing 0.8% carbon. The gray plate-like regions are martensite; they have the same composition as the original austenite (white regions). Magnification: 1000x.

Page 17: Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0-13-148965-8. © 2006 Pearson Education, Inc.,

Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid.ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Hardness of Tempered Martensite

Figure 4.16 Hardness of tempered martensite as a function of tempering time for the 1080 steel quenched to 65 HRC. Hardness decreases because the carbide particles coalesce and grow in size, thereby increasing the interparticle distance of the softer ferrite.

Page 18: Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0-13-148965-8. © 2006 Pearson Education, Inc.,

Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid.ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Time-temperature-

transformation diagrams

Figure 4.17 (a) Austenite-to-pearlite transformation of iron-carbon alloy as a function of time and temperature. (b) Isothermal transformation diagram obtained from (a) for a transformation temperature of 675°C (1274°F). (c) Microstructures obtained for a eutectoid iron-carbon alloy as a function of cooling rate.

Page 19: Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0-13-148965-8. © 2006 Pearson Education, Inc.,

Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid.ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Hardness and Toughness in Steel as a Function of Carbide Shape

Figure 4.18 (a) and (b) Hardness and (c) toughness for annealed plain-carbon steel as a function of a carbide shape. Carbides in the pearlite are lamellar. Fine pearlite is obtained by increasing the cooling rate. The spheroidite structure has sphere-like carbide particles.

Page 20: Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0-13-148965-8. © 2006 Pearson Education, Inc.,

Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid.ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Mechanical Properties of Steel as a Function of Composition and Microstructure

Figure 4.19 Mechanical properties of annealed steels as a function of composition and microstructure. Note in (a) the increase in hardness and strength and in (b) the decrease in ductility and toughness with increasing amounts of pearlite and iron carbide.

Page 21: Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0-13-148965-8. © 2006 Pearson Education, Inc.,

Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid.ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

End-Quench Hardenability

Test

Figure 4.20 (a) End-quench test and cooling rate. (b) Hardenability curves for five different steels, as obtained from the end-quench test. Small variations in composition can change the shape of these curves. Each curve is actually a band, and its exact determination is important in the heat treatment of metals for better control of properties.

Page 22: Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0-13-148965-8. © 2006 Pearson Education, Inc.,

Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid.ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Phase Diagram for Aluminum-copper Alloyand Obtained Microstructures

Figure 4.21 (a) Phase diagram for the aluminum-copper alloy system. (b) Various microstructures obtained during the age-hardening process.

Page 23: Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0-13-148965-8. © 2006 Pearson Education, Inc.,

Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid.ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Effect of Time and Temperature on Yield Stress

Figure 4.22 The effect of again time and temperature on the yield stress of 2014-T4 aluminum alloy. Note that, for each temperature, there is an optimal aging time for maximum strength.

Page 24: Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0-13-148965-8. © 2006 Pearson Education, Inc.,

Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid.ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Outline of Heat Treatment Processes for Surface Hardening

Page 25: Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0-13-148965-8. © 2006 Pearson Education, Inc.,

Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid.ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Outline of Heat Treatment Processes for Surface Hardening, con’t.

Page 26: Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0-13-148965-8. © 2006 Pearson Education, Inc.,

Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid.ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Heat-treating Temperature Ranges for Plain-Carbon Steels

Figure 4.23 Heat-treating temperature ranges for plain-carbon steels, as indicated on the iron-iron carbide phase diagram.

Page 27: Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0-13-148965-8. © 2006 Pearson Education, Inc.,

Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid.ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Hardness of Steel as a Function of Carbon Content

Figure 4.24 Hardness of steels in the quenched and normalized conditions as a function of carbon content.

Page 28: Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0-13-148965-8. © 2006 Pearson Education, Inc.,

Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid.ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Mechanical Properties of Steel as a Function of Tempering Temperature

Figure 4.25 Mechanical properties of oil-quenched 4340 steel as a function of tempering temperature.