15
1 Thomas Weichhart (ed.), mTOR: Methods and Protocols, Methods in Molecular Biology, vol. 821, DOI 10.1007/978-1-61779-430-8_1, © Springer Science+Business Media, LLC 2012 Chapter 1 Mammalian Target of Rapamycin: A Signaling Kinase for Every Aspect of Cellular Life Thomas Weichhart Abstract The mammalian (or mechanistic) target o rapamycin (mTOR) is an evolutionarily conserved serine- threonine kinase that is known to sense the environmenta l and cellular nutrition and energy status. Diverse mitogens, growth actors, and nutrients stimulate the activation o the two mTOR complexes mTORC1 and mTORC2 to regulate diverse unctions, such as cell growth, prolieration, development, memory, longevity , angiogenesis, autophagy , and innate as well as adaptive immune responses. Dysregulation o the mTOR pathway is requently observed in various cancers and in genetic disorders, such as tuberous scle- rosis complex or cystic kidney disease. In this review, I will give an overview o the current understanding o mTOR signaling and its role in diverse tissues and cells. Genetic deletion o specic mTOR pathway proteins in distinct tissues and cells broadened our understanding o the cell-specic roles o mTORC1 and mTORC2. Inhibition o mTOR is an established th erapeutic principle in transplantation medicine and in cancers, such as renal cell carcinoma. Pharmacological targeting o both mTOR complexes by novel drugs potentially expand the clinical applicability and ecacy o mTOR inhibition in various disease settings. Key words: mTOR, Rapamycin, Immunity, Cancer, Kinase  When the antiungal drug rapamycin was isolated rom the soil bacterium Streptomyces hygroscopicus on Easter Island (Rapa Nui) in the 1970s, nobody could have imagined back in those days that this drug would be undamental or the identicat ion o a signaling network that regulates so many dierent aspects o cellular lie ( 1). Initially, rapamycin was developed as antiungal agent, but soon aterward it was ound that rapamycin possesses immunosup pressive and antiprolierative properties ( 2). Yeast genetic screens discovered that rapamycin inhibits two genes called target o rapamycin 1 and 2 (TOR1 and TOR2) and later the mammalian homolog mammalian 1. Identication o mTOR 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Mammalian Target of Rapamycin- A Signaling Kinase for Every Aspect of Celllular Life

Embed Size (px)

Citation preview

Page 1: Mammalian Target of Rapamycin- A Signaling Kinase for Every Aspect of Celllular Life

7/28/2019 Mammalian Target of Rapamycin- A Signaling Kinase for Every Aspect of Celllular Life

http://slidepdf.com/reader/full/mammalian-target-of-rapamycin-a-signaling-kinase-for-every-aspect-of-celllular 1/14

1

Thomas Weichhart (ed.), mTOR: Methods and Protocols, Methods in Molecular Biology, vol. 821,DOI 10.1007/978-1-61779-430-8_1, © Springer Science+Business Media, LLC 2012

Chapter 1

Mammalian Target of Rapamycin: A Signaling Kinasefor Every Aspect of Cellular Life

Thomas Weichhart

Abstract

The mammalian (or mechanistic) target o rapamycin (mTOR) is an evolutionarily conserved serine-threonine kinase that is known to sense the environmental and cellular nutrition and energy status. Diversemitogens, growth actors, and nutrients stimulate the activation o the two mTOR complexes mTORC1and mTORC2 to regulate diverse unctions, such as cell growth, prolieration, development, memory,longevity, angiogenesis, autophagy, and innate as well as adaptive immune responses. Dysregulation o themTOR pathway is requently observed in various cancers and in genetic disorders, such as tuberous scle-rosis complex or cystic kidney disease. In this review, I will give an overview o the current understandingo mTOR signaling and its role in diverse tissues and cells. Genetic deletion o specic mTOR pathway proteins in distinct tissues and cells broadened our understanding o the cell-specic roles o mTORC1and mTORC2. Inhibition o mTOR is an established therapeutic principle in transplantation medicine andin cancers, such as renal cell carcinoma. Pharmacological targeting o both mTOR complexes by novel

drugs potentially expand the clinical applicability and ecacy o mTOR inhibition in various diseasesettings.

Key words: mTOR, Rapamycin, Immunity, Cancer, Kinase

 When the antiungal drug rapamycin was isolated rom the soilbacterium Streptomyces hygroscopicus on Easter Island (Rapa Nui)in the 1970s, nobody could have imagined back in those days thatthis drug would be undamental or the identication o a signalingnetwork that regulates so many dierent aspects o cellular lie (1).Initially, rapamycin was developed as antiungal agent, but soonaterward it was ound that rapamycin possesses immunosuppressiveand antiprolierative properties (2). Yeast genetic screens discoveredthat rapamycin inhibits two genes called target o rapamycin 1 and 2(TOR1 and TOR2) and later the mammalian homolog mammalian

1. Identicationo mTOR

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Page 2: Mammalian Target of Rapamycin- A Signaling Kinase for Every Aspect of Celllular Life

7/28/2019 Mammalian Target of Rapamycin- A Signaling Kinase for Every Aspect of Celllular Life

http://slidepdf.com/reader/full/mammalian-target-of-rapamycin-a-signaling-kinase-for-every-aspect-of-celllular 2/14

2 T. Weichhart

(or mechanistic) TOR (mTOR; also known as FRAP1 or RAFT1) was identied (1). Rapamycin does not directly inhibit mTOR, butinstead binds the FK506-binding protein 12 (FKBP12), and it isthis complex, which inhibits mTOR (Fig. 1) (1). mTOR is a sig-naling kinase that aects broad aspects o cellular unctions, includ-ing metabolism, growth, survival, aging, synaptic plasticity,immunity, and memory (3). It is an atypical serine-threonine pro-

tein kinase belonging to the phosphatidylinositol kinase-relatedkinase (PIKK) amily with a predicted molecular weight o 290 kDa.mTOR is the catalytic subunit o two distinct complexes calledmTOR complex 1 (mTORC1) and mTORC2.

The mTOR signaling pathway is highly conserved rom yeast to

humans and is activated by a variety o divergent stimuli. mTOR senses cellular energy levels by monitoring cellular ATP:AMP levels

 via the AMP-activated protein kinase (AMPK), growth actors such

2. The mTORSignaling Pathway

Ribosome

mTORC1mTORRaptormLST8PRAS40

mTORC2mTORRictorSIN1mLST8

TSC1TSC2P

P

P

Rheb

Rheb

GTP

GDP

TCTPRapamycin

4E-BP1 p70S6KP P

protein synthesis & cell growth

FKBP12

Insulin/ IGF-1

TLR ligands

PI3K

IRS-1

P

PIP2

PIP3

PTEN

AMP

Cellular stress 

AMPK

LKB1

P

PDK1

GSK3AktP

P

++

Wnt

Rag GTPases

amino acids

Fig. 1. The current understanding of mTOR signaling. All pathway members, which are discussed in the text, are shown.

Please note that additional proteins in the mTOR pathway have been described that are comprehensively reviewed by

Zoncu et al. (3) or Yang and Guan (1).

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

Page 3: Mammalian Target of Rapamycin- A Signaling Kinase for Every Aspect of Celllular Life

7/28/2019 Mammalian Target of Rapamycin- A Signaling Kinase for Every Aspect of Celllular Life

http://slidepdf.com/reader/full/mammalian-target-of-rapamycin-a-signaling-kinase-for-every-aspect-of-celllular 3/14

31 Mammalian Target of Rapamycin: A Signaling Kinase…

as insulin and insulin-like growth actor 1 (IGF-1) via the insulinreceptor and the IGF-1 receptor respectively, amino acids via RagGTPases, and signals rom the Wnt amily via glycogen synthasekinase 3 (GSK3) (1, 4). In the immune system, stimulation o antigen receptors (T and B cell receptors), cytokine receptors (e.g.,

Interleukin [IL]-2 receptor), or toll-like receptors (TLRs) (1, 5–8)all lead to the activation o mTOR (Fig. 1). As the archetypical andbest-documented example, triggering o the insulin receptoractivates tyrosine kinase adaptor molecules at the cell membraneleading to the recruitment o the class I amily o phosphati-dylinositol-3 kinases (PI3K) to the receptor complex (9). Followingreceptor engagement, PI3K phosphorylates phosphatidylinositol4,5-bisphosphate (PIP2) to generate phosphatidylinositol-3,4,5-trisphosphate (PIP3) as a second messenger to recruit and activatedownstream targets, including Akt (Fig. 1). The serine-threonine

kinase Akt, also termed protein kinase B (PKB), connects PI3K and mTOR (10). There are three highly homologous isoorms o 

 Akt encoded in the genome (Akt1, Akt2, and Akt3) representingsome o the most important survival kinases involved in regulat-ing a similarly wide array o cellular processes as mTOR, includingmetabolism, growth, prolieration, and apoptosis (11). The tumorsuppressor phosphatase and tensin homolog deleted on chromosome10 (PTEN) is a lipid phosphatase and dephosphorylates PIP3 tonegatively regulate PI3K signaling (12). A main eector o Akt isthe tuberous sclerosis complex (TSC) protein 2 (TSC2) (1). TSC2

is a tumor suppressor that orms a heterodimeric complex withTSC1. Mutations in TSC1 or TSC2 give rise to the hamartomasyndrome TSC and the prolierative lung disorder lymphangioleio-myomatosis (13). TSC2 is phosphorylated and inactivated by Aktleading to a loss o suppression o mTOR by the TSC1–TSC2complex (1). Moreover, downstream o TSC1–TSC2, the GTPaseRas homolog enriched in brain (Rheb) is essential or mTOR activation (14). Amino acid-induced activation o the Rag GTPasespromotes the translocation o mTORC1 to lyosomal compartmentsthat contain Rheb (4, 15–17). mTOR controls protein synthesis

through the direct phosphorylation and inactivation o a repressoro mRNA translation, eukaryotic initiation actor 4E-bindingprotein 1 (4E-BP1), and through phosphorylation and activationo S6 kinase (S6K1 or p70S6K), which in turn phosphorylates theribosomal protein S6 (18). Cytokines, growth actors, amino acids,insulin, or TLR ligands activate mTOR and increase the phospho-rylation status o 4E-BP1 and S6K1 in a rapamycin-sensitive manner(18). Importantly, a negative eedback loop has been described inthe insulin receptor pathway involving the insulin receptor substrate-1(IRS-1). Activation o mTORC1 promotes an inhibitory phospho-

rylation o IRS-1 via S6K1 that leads to inactivation o PI3K and Akt (Fig. 1). Conversely, inhibition o mTORC1 should lead tohyperactivation o Akt, which indeed has been documented in

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

Page 4: Mammalian Target of Rapamycin- A Signaling Kinase for Every Aspect of Celllular Life

7/28/2019 Mammalian Target of Rapamycin- A Signaling Kinase for Every Aspect of Celllular Life

http://slidepdf.com/reader/full/mammalian-target-of-rapamycin-a-signaling-kinase-for-every-aspect-of-celllular 4/14

4 T. Weichhart

some rapamycin-treated cancer patients (3). Loss o mTOR unction leads to an arrest in the G1 phase o the cell-cycle along

 with a severe reduction in protein synthesis in many cells.mTOR exists in two distinct complexes in the cell. mTORC1

consists o the regulatory-associated protein o mTOR (Raptor),

a conserved 150 kDa protein, which recruits S6K1 and 4-E-BP1,and the adaptor protein mLST8 (19). Rapamycin inhibits mTORC1activity by blocking its interaction with Raptor (20). mTORC2 iscomposed o mTOR, mLST8 and the adaptor proteins Rictor(rapamycin-insensitive companion o mTOR) and Sin1 (21).mTORC2 is usually rapamycin-insensitive and is thought to regu-late actin cytoskeleton dynamics. mTORC2 directly phosphorylates

 Akt at serine 473 via cotranslational phosphorylation and througha direct interaction with the ribosome (22–24). The unctional roleo mTORC2, which is upstream o Akt and mTORC1, is not well

understood within this signaling circuit (25). Interestingly, long-term treatment with rapamycin (>18 h) alters the mTORC1:mTORC2 equilibrium resulting in reduced mTORC2 levels and,hence, impaired Akt signaling in some cells (26). Collectively, recep-tor engagement leads to a coordinated activation o PI3K, Akt,TSC1–TSC2 and Rheb, which are integrated at the level o mTORC1 (1, 27). Interestingly, mTORC1 seems to be predomi-nantly cytoplasmic, whereas mTORC2 is abundant in the cytoplasmand the nucleus in human primary broblasts (28). The detailedunctions o the mTOR complexes in these compartments are cur-

rently unknown. Further aspects o mTOR signaling are compre-hensively reviewed, e.g., by Zoncu et al. (3), Yang and Guan (1).

mTORC1 controls growth and prolieration by modulating mRNA translation through phosphorylation o the 4E-BP1, 2, and 3 andthe S6K1 and 2 (29). More specically, the three 4E-BPs do not

regulate cell size, but they block cell prolieration by inhibiting thetranslation o messenger RNAs that encode proteins involved inprolieration and cell cycle progression (29). In T lymphocytes,mTOR controls cell cycle progression rom the G1 into S phase inIL-2-stimulated cells (30). The cyclin-dependent kinase (Cdk)enzymes, when associated with the G1 cyclins D and E, arerate-limiting or the entry into the S phase o the cell cycle. IL-2activates Cdk by causing the elimination o the Cdk inhibitorprotein p27Kip1, a process that is prevented by rapamycin in Tcells (31). Moreover, mTORC2 activates the serum- and

glucocorticoid-induced protein kinase-1 (SGK1), which in turnphosphorylates p27Kip1. Once phosphorylated, p27Kip1 is

3. Cell Growthand Prolieration

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

Page 5: Mammalian Target of Rapamycin- A Signaling Kinase for Every Aspect of Celllular Life

7/28/2019 Mammalian Target of Rapamycin- A Signaling Kinase for Every Aspect of Celllular Life

http://slidepdf.com/reader/full/mammalian-target-of-rapamycin-a-signaling-kinase-for-every-aspect-of-celllular 5/14

51 Mammalian Target of Rapamycin: A Signaling Kinase…

retained in the cytoplasm rendering it incapable o blockingCdk1 or Cdk2 activation and thereore allowing entry into the cellcycle (32, 33).

 Autophagy is a starvation-induced degradation o cytosoliccomponents ranging rom individual proteins (microautophagy)to entire organelles (macroautophagy). Autophagy is critical inproviding substrates or energy production under conditions o limited nutrient supply (3). mTORC1 actively suppresses auto-phagy and, conversely, inhibition o mTORC1 strongly inducesautophagy (34). In S. cerevisiae , TOR-dependent phosphorylationo autophagy-related 13 (Atg13) disrupts the Atg1–Atg13–Atg17complex that triggers the ormation o the autophagosome (3).The mammalian homologs o yeast Atg13 and Atg1, ATG13 andULK1, bind to the 200 kDa FAK amily kinase-interacting protein(FIP200; a putative ortholog o Atg17) and the mammalian-specic component ATG101 (35). mTOR phosphorylates ATG13and ULK1 to block autophagosome initiation (35).

 As the mTOR pathway is critical or many basic aspects o cell biology,it is not surprising that mTOR also plays a prominent role in devel-opment. For example, embryonic homozygous deletion o mTOR leads to a developmental arrest at E5.5 (36). Moreover, mTOR−/−embryos show a deect in inner cell mass prolieration consistent

 with an inability to establish embryonic stem cells rom mTOR-decient embryos (36). The catalytic unction o mTOR is criticalor the embryonic development as knock-in mice carrying a muta-

tion in the catalytic domain o mTOR die beore embryonic day 6.5 (37). Rheb, the essential upstream regulator o mTORC1, islikewise important or embryonic development (38, 39). Interes-tingly, in contrast to mTOR or Raptor mutants, the inner cellmass o Rheb−/− embryos dierentiate normally (38). Moreover,embryonic deletion o Rheb in neural progenitor cells abolishesmTORC1 signaling in the developing brain and increases mTORC2signaling. While embryonic and early postnatal brain developmentappears grossly normal in these mice, there are deects in myelina-tion (39). These results suggest that mTORC1 signaling plays a

role in selective cellular adaptations but is not decisive or generalcellular viability (39).

4. Autophagy

5. DevelopmentalAspects o mTORSignaling

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

Page 6: Mammalian Target of Rapamycin- A Signaling Kinase for Every Aspect of Celllular Life

7/28/2019 Mammalian Target of Rapamycin- A Signaling Kinase for Every Aspect of Celllular Life

http://slidepdf.com/reader/full/mammalian-target-of-rapamycin-a-signaling-kinase-for-every-aspect-of-celllular 6/14

6 T. Weichhart

TSC is an autosomal dominant disease caused by mutations ineither TSC1 or TSC2. TSC is characterized by the presence o benign tumors called hamartomas, which within the brain areknown as cortical tubers. Neurological maniestations in TSCpatients include epilepsy, mental retardation, and autistic eatures(40). In mice, Tsc2 haploin suciency causes aberrant retinogenic-ulate projections and the TSC2–Rheb–mTOR pathway controlsaxon guidance in the visual system (41). In addition, dorsal rootganglial neurons (DRGs) in the peripheral nervous system activatemTOR ollowing damage to enhance axonal growth capacity (42).Hence, the mTOR pathway has a central role in axon guidance,regeneration, and growth (43).

Human embryonic stem cells (hESCs), derived rom blastocyst-stageembryos, can undergo long-term sel-renewal and have the remark-able ability to dierentiate into multiple cell types in the humanbody (44). A role or mTOR in these processes has recently beenappreciated (45). mTOR integrates signals rom extrinsic pluripo-

tency-supporting actors and represses the transcriptional activitieso a subset o developmental and growth inhibitory genes in hESCs.Repression o the developmental genes by mTOR is necessary orthe maintenance o hESC pluripotency (46). A similar mechanismis operative in human amniotic fuid stem cells (47). On the otherhand, it has been proposed that mTOR-mediated activation o S6K1 induces dierentiation o pluripotent hESCs (48). In thatline, mTORC1 activation is detrimental to stem cell maintenancein spermatogonial progenitor cells (SPCs) (49, 50).

mTOR regulates the metabolism, growth and survival o b-cells,the cardinal cells in the pancreas that produce insulin, a hormonethat controls the level o glucose in the blood to regulate oodintake (51). Studies in S6K1 knockout mice demonstrate a centralpositive role o mTOR/S6K1 signaling in b-cell growth and unc-tion (51). Indeed, these mice develop glucose intolerance despite

6. Nerve Functionand Epilepsy

7. mTORand Pluripotencyin Stem Cells

8. Regulationo b-Cell Functionand Obesityby mTOR Signaling

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

Page 7: Mammalian Target of Rapamycin- A Signaling Kinase for Every Aspect of Celllular Life

7/28/2019 Mammalian Target of Rapamycin- A Signaling Kinase for Every Aspect of Celllular Life

http://slidepdf.com/reader/full/mammalian-target-of-rapamycin-a-signaling-kinase-for-every-aspect-of-celllular 7/14

71 Mammalian Target of Rapamycin: A Signaling Kinase…

increased insulin sensitivity. This is associated with depletion o thepancreatic insulin content, hypoinsulinemia and reduced b-cellmass suggesting that lack o S6K1 activity impairs b-cell growthand unction (51). In addition, it has been shown that obesity develops in older hypothalamic Tsc1 knockout animals; however,

 young animals display a prominent gain-o-unction b-cell pheno-type prior to the onset o obesity (52). Young hypothalamic Tsc1knockout animals display improved glycemic control due tomTOR-mediated enhancement o b-cell size and insulin production.Thus, mTOR disseminates a dominant signal to promote b cell/islet size and insulin production, and this pathway is crucial orb-cell unction and glycemic control (52).

The immune system is a complex network o cells that protectagainst disease by identiying and killing pathogens and tumorcells, but it is also implicated in homeostatic mechanisms like tissueremodeling and wound healing (53).

 A growing body o evidence indicates that in myeloid phago-cytes (monocytes, macrophages, and myeloid DC; mDC) mTOR is crucially implicated in TLR signaling and might serve as a decisionmaker to control the cellular response to pathogens by modulating

cytokines, chemokines, and type I intereron responses (54, 55).Inhibition o mTOR by rapamycin in these cells promotes IL-12and IL-23 production via the transcription actor NF-k B but blocksthe release o IL-10 via Stat3 (7, 8, 56, 57). These results havebeen conrmed in kidney transplant patients in vivo. The mostprominent transcriptional alterations in peripheral blood romrapamycin-treated kidney transplant recipients aect the innateimmune cell compartment and hyperactivation o NF-k B-mediatedproinfammatory pathways (58). Moreover, kidney transplantpatients on rapamycin display an increased infammatory and

immunostimulatory potential o myeloid monocytes and dendriticcells in vivo compared with patients on calcineurin inhibitors(59, 60). Moreover, rapamycin can augment infammation andpulmonary injury by enhancing NF-k B activity in the lung o tobacco-exposed mice (61). In dendritic cells, autophagy acilitatesthe presentation o endogenous proteins on MHC class I and classII molecules. This leads to the activation o CD4+ T cells andconnects autophagy in innate immune cells with enhanced adaptiveimmune responses. For example, in Mycobacterium tuberculosis-inected DCs, rapamycin-induced autophagy enhances the presen-

tation o mycobacterial antigens (62).

9. MyeloidPhagocytesActivate mTORto LimitProinfammatoryResponses

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

Page 8: Mammalian Target of Rapamycin- A Signaling Kinase for Every Aspect of Celllular Life

7/28/2019 Mammalian Target of Rapamycin- A Signaling Kinase for Every Aspect of Celllular Life

http://slidepdf.com/reader/full/mammalian-target-of-rapamycin-a-signaling-kinase-for-every-aspect-of-celllular 8/14

8 T. Weichhart

Plasmacytoid DCs (pDCs) constitute a specialized cell populationthat produce large amounts o type I intererons (IFN) in responseto viral inection via the activation o cytoplasmic receptors orTLRs (63). The mTOR pathway is important or the regulationo type I IFN production in murine pDCs (6, 64). Inhibition o mTOR or its downstream mediators S6K1 and S6K2 during pDCactivation block the phosphorylation and nuclear translocation o the transcription actor IRF-7, which results in impaired IFN-a and b production (6). In addition, translation o IRF-7 in pDCs isnegatively regulated by the 4E-BP pathway downstream o mTOR (65). Hence, mTOR via its two downstream eectors, 4E-BP andS6K, controls translation and activation o IRF-7.

Peripheral CD4+ T helper (Th) lymphocytes are critical in regulatingimmune responses as well as autoimmune and infammatory diseases.Upon activation, naïve CD4+ Th cells dierentiate into distincteector subsets depending on the cytokine milieu (66). Recentdata show that mTOR-decient naïve CD4+ T cells are unable to

dierentiate into Th1, Th2, and Th17 cells, but preerentially develop into induced regulatory T (Treg) cells, which can potently suppress adaptive immune responses (67). In line, rapamycin isable to enrich Treg cells in vitro (68). mTORC2 is important inthese processes as Rictor-decient CD4+ T cells are unable todierentiate into Th2 cells demonstrating that mTORC2 is criticalor Th2 dierentiation (69, 70). On the other hand, Rheb-decientT cells ail to generate Th17 responses in vitro and in vivo (67).The role o mTORC1 and mTORC2 or Th1 dierentiation iscurrently under debate.

 Another insight how mTOR regulates adaptive immunity in vivocan be deduced rom recent experiments showing that mTOR infuences the migratory properties o murine CD8+ T lymphocytesand the dierentiation o CD8+ memory T cells (71, 72). Themigratory properties o naïve CD8+ T lymphocytes into the lymph

nodes crucially depends on the constitutive expression o thechemokine receptor 7 (CCR7) and L-selectin (CD62L), which iscontrolled by the transcription actor Krüppel-like actor 2 (KLF2).

10. mTORMediates Type IIntereronProduction in

PlasmacytoidDendritic Cells

11. CD4+ T HelperDierentiation andthe Role o mTOR

12. mTOR ControlsCD8+ T LymphocyteMigrationand Memory

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

Page 9: Mammalian Target of Rapamycin- A Signaling Kinase for Every Aspect of Celllular Life

7/28/2019 Mammalian Target of Rapamycin- A Signaling Kinase for Every Aspect of Celllular Life

http://slidepdf.com/reader/full/mammalian-target-of-rapamycin-a-signaling-kinase-for-every-aspect-of-celllular 9/14

Page 10: Mammalian Target of Rapamycin- A Signaling Kinase for Every Aspect of Celllular Life

7/28/2019 Mammalian Target of Rapamycin- A Signaling Kinase for Every Aspect of Celllular Life

http://slidepdf.com/reader/full/mammalian-target-of-rapamycin-a-signaling-kinase-for-every-aspect-of-celllular 10/14

10 T. Weichhart

 with TSC or sporadic lymphangioleiomyomatosis oten developbenign renal neoplasms called angiomyolipomas, which impair renalunction. In initial clinical trials, inhibition o mTOR showed somepromise in leading to a partial angiomyolipoma regression (13, 81).

Rapamycin was initially seen as a holy grail or cancer therapy; how-ever, the potency o rapamycin as an anticancer drug in clinical trials

 was limited to the tumor types described above (3). The constrictedsuccess o rapamycin and the appreciation that mTORC1 has bothrapamycin-sensitive and rapamycin-insensitive substrates (82, 83) as

 well as the nding that mTORC2 activation is largely unaected or

even increased by acute cellular exposure to rapamycin promotedthe development o novel active-site mTOR inhibitors that ully block both mTOR complexes. These novel ATP-competitive inhib-itors have improved anticancer activity compared to rapamycin in a

 variety o solid tumor models in vitro and in vivo and at least threecandidate compounds have entered clinical trials (84–88). They show a consistently potent eect against tumors that are driven by PI3K–Akt; however, the clinical eectiveness o these novel mTOR inhibitors remain to be determined.

In the last years, there has been a tremendous amount o novel dataestablishing how the mTOR pathway is regulated by various envi-ronmental and intracellular molecules and how mTOR controlsmany dierent processes implicated in health and disease. Inhibitiono mTOR is currently established in allogeneic transplantation andin certain orms o cancer. Novel applications or mTOR inhibitors,

such as the generation o high number o Treg cells ex vivo orimmunotherapy or the improvement o vaccines by the promotiono memory CD8+ T-cell responses, are currently evaluated. Theidentication o novel signaling pathways important or the controlo mTOR in dierent tissues o the body may open urther clinicalapplications o inhibiting mTOR in human disease.

Acknowledgments

TW is supported by the Else-Kröner Fresenius Stitung. I apologizeto those authors whose primary work I did not reerence directly in the text.

15. NovelInhibitorsTargeting mTORC1and mTORC2

16. Conclusion

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

Page 11: Mammalian Target of Rapamycin- A Signaling Kinase for Every Aspect of Celllular Life

7/28/2019 Mammalian Target of Rapamycin- A Signaling Kinase for Every Aspect of Celllular Life

http://slidepdf.com/reader/full/mammalian-target-of-rapamycin-a-signaling-kinase-for-every-aspect-of-celllular 11/14

111 Mammalian Target of Rapamycin: A Signaling Kinase…

Reerences

1. Yang, Q., and Guan, K. L. (2007) ExpandingmTOR signaling. Cell Res  17, 666–81.

2. Abraham, R. T., and Wiederrecht, G. J. (1996)Immunopharmacology o rapamycin.  Annu 

Rev Immunol  14, 483–510.3. Zoncu, R., Eeyan, A., and Sabatini, D. M.

(2011) mTOR: rom growth signal integrationto cancer, diabetes and ageing. Nat Rev Mol Cell Biol  12, 21–35.

4. Avruch, J., Long, X., Ortiz-Vega, S., Rapley, J.,Papageorgiou, A., and Dai, N. (2009) Aminoacid regulation o TOR complex 1. Am J Physiol Endocrinol Metab  296, E592–602.

5. Donahue, A. C., and Fruman, D. A. (2007)Distinct signaling mechanisms activate the tar-get o rapamycin in response to dierent B-cell

stimuli. Eur J Immunol  37, 2923–36.6. Cao, W., Manicassamy, S., Tang, H., Kasturi, S.

P., Pirani, A., Murthy, N., et al. (2008) Toll-like receptor-mediated induction o type Iintereron in plasmacytoid dendritic cellsrequires the rapamycin-sensitive PI(3)K-mTOR-p70S6K pathway. Nat Immunol   9,1157–64.

7. Schmitz, F., Heit, A., Dreher, S., Eisenacher, K.,Mages, J., Haas, T., et al. (2008) Mammaliantarget o rapamycin (mTOR) orchestrates thedeense program o innate immune cells. Eur 

 J Immunol  38, 2981–92.8. Weichhart, T., Costantino, G., Poglitsch, M.,

Rosner, M., Zeyda, M., Stuhlmeier, K. M.,et al. (2008) The TSC-mTOR signaling path-

 way regulates the innate infammatory response.Immunity  29, 565–77.

9. Fruman, D. A. (2004) Towards an understand-ing o isoorm specicity in phosphoinositide3-kinase signalling in lymphocytes. Biochem Soc Trans  32, 315–9.

 10. Guertin, D. A., and Sabatini, D. M. (2005) Anexpanding role or mTOR in cancer. Trends 

Mol Med  11, 353–61.11. Brazil, D. P., Yang, Z. Z., and Hemmings, B. A.

(2004) Advances in protein kinase B signalling: AKTion on multiple ronts. Trends Biochem Sci  29, 233–42.

 12. Deane, J. A., and Fruman, D. A. (2004)Phosphoinositide 3-kinase: diverse roles inimmune cell activation.  Annu Rev Immunol  22, 563–98.

 13. Paul, E., and Thiele, E. (2008) Ecacy o sirolimus in treating tuberous sclerosis andlymphangioleiomyomatosis. N Engl J Med  

358, 190–2. 14. Stocker, H., Radimerski, T., Schindelholz, B.,

 Wittwer, F., Belawat, P., Daram, P., et al.(2003) Rheb is an essential regulator o S6K in

controlling cell growth in Drosophila. Nat Cell Biol  5, 559–65.

15. Kim, E., Goraksha-Hicks, P., Li, L., Neueld,T. P., and Guan, K. L. (2008) Regulation o 

TORC1 by Rag GTPases in nutrient response.Nat Cell Biol  10, 935–45.

16. Sancak, Y., Bar-Peled, L., Zoncu, R., Markhard, A. L., Nada, S., and Sabatini, D. M. (2010)Ragulator-Rag complex targets mTORC1 tothe lysosomal surace and is necessary or itsactivation by amino acids. Cell  141, 290–303.

17. Sancak, Y., Peterson, T. R., Shaul, Y. D.,Lindquist, R. A., Thoreen, C. C., Bar-Peled,L., et al. (2008) The Rag GTPases bind raptorand mediate amino acid signaling to mTORC1.Science  320, 1496–501.

18. Hay, N., and Sonenberg, N. (2004) Upstreamand downstream o mTOR. Genes Dev   18,1926–45.

19. Kim, D. H., and Sabatini, D. M. (2004) Raptorand mTOR: subunits o a nutrient-sensitivecomplex. Curr Top Microbiol Immunol   279,259–70.

20. Oshiro, N., Yoshino, K., Hidayat, S., Tokunaga,C., Hara, K., Eguchi, S., et al. (2004)Dissociation o raptor rom mTOR is a mecha-nism o rapamycin-induced inhibition o mTOR unction. Genes Cells  9, 359–66.

21. Jacinto, E., Loewith, R., Schmidt, A., Lin, S.,Ruegg, M. A., Hall, A., et al. (2004) MammalianTOR complex 2 controls the actin cytoskeletonand is rapamycin insensitive. Nat Cell Biol  6,1122–8.

 22. Zinzalla, V., Stracka, D., Oppliger, W., andHall, M. N. (2011) Activation o mTORC2 by 

 Association with the Ribosome. Cell   144,757–68.

23. Oh, W. J., Wu, C. C., Kim, S. J., Facchinetti, V., Julien, L. A., Finlan, M., et al. (2010)mTORC2 can associate with ribosomes to

promote cotranslational phosphorylation andstability o nascent Akt polypeptide. EMBO J  29, 3939–51.

24. Sarbassov, D. D., Guertin, D. A., Ali, S. M.,and Sabatini, D. M. (2005) Phosphorylationand regulation o Akt/PKB by the rictor-mTOR complex. Science  307, 1098–101.

25. Huang, J., Dibble, C. C., Matsuzaki, M., andManning, B. D. (2008) The TSC1-TSC2 com-plex is required or proper activation o mTOR complex 2. Mol Cell Biol  28, 4104–15.

26. Sarbassov dos, D., Ali, S. M., Sengupta, S.,

Sheen, J. H., Hsu, P. P., Bagley, A. F., et al.(2006) Prolonged rapamycin treatment inhibitsmTORC2 assembly and Akt/PKB. Mol Cell  22, 159–68.

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

Page 12: Mammalian Target of Rapamycin- A Signaling Kinase for Every Aspect of Celllular Life

7/28/2019 Mammalian Target of Rapamycin- A Signaling Kinase for Every Aspect of Celllular Life

http://slidepdf.com/reader/full/mammalian-target-of-rapamycin-a-signaling-kinase-for-every-aspect-of-celllular 12/14

12 T. Weichhart

 27. Rosner, M., Hanneder, M., Siegel, N., Valli, A.,and Hengstschlager, M. (2008) The tuberoussclerosis gene products hamartin and tuberinare multiunctional proteins with a wide spec-trum o interacting partners. Mutat Res  658,234–46.

 28. Rosner, M., and Hengstschlager, M. (2008)Cytoplasmic and nuclear distribution o theprotein complexes mTORC1 and mTORC2:rapamycin triggers dephosphorylation anddelocalisation o the mTORC2 componentsrictor and sin1. Hum Mol Genet  17, 2934–48.

 29. Dowling, R. J., Topisirovic, I., Alain, T.,Bidinosti, M., Fonseca, B. D., Petroulakis, E.,et al. (2010) mTORC1-mediated cell proliera-tion, but not cell growth, controlled by the4E-BPs. Science  328, 1172–6.

 30. Morice, W. G., Brunn, G. J., Wiederrecht, G.,

Siekierka, J. J., and Abraham, R. T. (1993)Rapamycin-induced inhibition o p34cdc2kinase activation is associated with G1/S-phasegrowth arrest in T lymphocytes.  J Biol Chem  268, 3734–8.

 31. Nourse, J., Firpo, E., Flanagan, W. M., Coats,S., Polyak, K., Lee, M. H., et al. (1994)Interleukin-2-mediated elimination o thep27Kip1 cyclin-dependent kinase inhibitorprevented by rapamycin. Nature  372, 570–3.

 32. Hong, F., Larrea, M. D., Doughty, C.,Kwiatkowski, D. J., Squillace, R., and

Slingerland, J. M. (2008) mTOR-raptor bindsand activates SGK1 to regulate p27 phosphory-lation. Mol Cell  30, 701–11.

 33. Rosner, M., Freilinger, A., Hanneder, M.,Fujita, N., Lubec, G., Tsuruo, T., et al. (2007)p27Kip1 localization depends on the tumorsuppressor protein tuberin. Hum Mol Genet  16, 1541–56.

 34. Noda, T., and Ohsumi, Y. (1998) Tor, a phos-phatidylinositol kinase homologue, controlsautophagy in yeast. J Biol Chem  273, 3963–6.

 35. Jung, C. H., Jun, C. B., Ro, S. H., Kim, Y. M.,

Otto, N. M., Cao, J., et al. (2009) ULK-Atg13-FIP200 complexes mediate mTOR signaling tothe autophagy machinery. Mol Biol Cell   20,1992–2003.

 36. Ganglo, Y. G., Mueller, M., Dann, S. G.,Svoboda, P., Sticker, M., Spetz, J. F., et al.(2004) Disruption o the mouse mTOR geneleads to early postimplantation lethality andprohibits embryonic stem cell development.Mol Cell Biol  24, 9508–16.

 37. Shor, B., Cavender, D., and Harris, C. (2009) A kinase-dead knock-in mutation in mTOR 

leads to early embryonic lethality and is dispens-able or the immune system in heterozygousmice. BMC Immunol  10, 28.

38. Goorden, S. M., Hoogeveen-Westerveld, M.,Cheng, C., van Woerden, G. M., Mozaari, M.,Post, L., et al. (2011) Rheb is essential or murinedevelopment. Mol Cell Biol  31, 1672–8.

39. Zou, J., Zhou, L., Du, X. X., Ji, Y., Xu, J., Tian,J., et al. (2011) Rheb1 is required or mTORC1

and myelination in postnatal brain develop-ment. Dev Cell  20, 97–108.

40. Haidinger, M., Hecking, M., Weichhart, T.,Poglitsch, M., Enkner, W., Vonbank, K., et al.(2010) Sirolimus in renal transplant recipients

 with tuberous sclerosis complex: clinical eec-tiveness and implications or innate immunity.Transpl Int  23, 777–85.

41. Nie, D., Di Nardo, A., Han, J. M., Baharanyi,H., Kramvis, I., Huynh, T., et al. (2010) Tsc2-Rheb signaling regulates EphA-mediated axonguidance. Nat Neurosci  13, 163–72.

42. Abe, N., Borson, S. H., Gambello, M. J., Wang,F., and Cavalli, V. (2010) Mammalian target o rapamycin (mTOR) activation increases axonalgrowth capacity o injured peripheral nerves.

 J Biol Chem  285, 28034–43.

43. Park, K. K., Liu, K., Hu, Y., Smith, P. D., Wang,C., Cai, B., et al. (2008) Promoting axon regen-eration in the adult CNS by modulation o thePTEN/mTOR pathway. Science  322, 963–6.

44. Li, D., Zhou, J., Wang, L., Shin, M. E., Su, P.,Lei, X., et al. (2010) Integrated biochemicaland mechanical signals regulate multiaceted

human embryonic stem cell unctions.  J Cell Biol  191, 631–44.

45. Zhou, J., Su, P., Wang, L., Chen, J.,Zimmermann, M., Genbacev, O., et al. (2009)mTOR supports long-term sel-renewal andsuppresses mesoderm and endoderm activitieso human embryonic stem cells. Proc Natl Acad Sci USA  106, 7840–5.

46. Lee, K. W., Yook, J. Y., Son, M. Y., Kim, M. J.,Koo, D. B., Han, Y. M., et al. (2010) Rapamycinpromotes the osteoblastic dierentiation o human embryonic stem cells by blocking the

mTOR pathway and stimulating the BMP/Smad pathway. Stem Cells Dev  19, 557–68.

47. Siegel, N., Rosner, M., Unbekandt, M., Fuchs,C., Slabina, N., Dolznig, H., et al. (2010)Contribution o human amniotic fuid stemcells to renal tissue ormation depends onmTOR. Hum Mol Genet  19, 3320–31.

48. Easley. C.A.t., Ben-Yehudah. A., Redinger.C.J., Oliver. S.L., Varum. S.T., Eisinger. V.M.,et al., (2010). mTOR-mediated activation o p70 S6K induces dierentiation o pluripotenthuman embryonic stem cells. Cell Reprogram. 

12, 263–73.49. Yilmaz, O. H., Valdez, R., Theisen, B. K., Guo, W., Ferguson, D. O., Wu, H., et al. (2006)

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581582

583

584

585

586

587

588

589

590

591

592

593

594

595

Page 13: Mammalian Target of Rapamycin- A Signaling Kinase for Every Aspect of Celllular Life

7/28/2019 Mammalian Target of Rapamycin- A Signaling Kinase for Every Aspect of Celllular Life

http://slidepdf.com/reader/full/mammalian-target-of-rapamycin-a-signaling-kinase-for-every-aspect-of-celllular 13/14

131 Mammalian Target of Rapamycin: A Signaling Kinase…

Pten dependence distinguishes haematopoieticstem cells rom leukaemia-initiating cells.Nature  441, 475–82.

 50. Hobbs, R. M., Seandel, M., Falciatori, I., Rai,S., and Pandol, P. P. (2010) Plz regulatesgermline progenitor sel-renewal by opposing

mTORC1. Cell  142, 468–79. 51. Leibowitz, G., Cerasi, E., and Ketzinel-Gilad,

M. (2008) The role o mTOR in the adapta-tion and ailure o beta-cells in type 2 diabetes.Diabetes Obes Metab  10 Suppl 4, 157–69.

 52. Mori, H., Inoki, K., Opland, D., Muenzberg,H., Villanueva, E. C., Faouzi, M., et al. (2009)Critical roles or the TSC-mTOR pathway in{beta}-cell unction.  Am J Physiol Endocrinol Metab  297, 1013–22.

 53. Janeway, C. A., Jr. (2001) How the immunesystem works to protect the host rom inection:a personal view. Proc Natl Acad Sci USA  98,7461–8.

 54. Saemann, M. D., Haidinger, M., Hecking, M.,Horl, W. H., and Weichhart, T. (2009) Themultiunctional role o mTOR in innate immu-nity: implications or transplant immunity.  Am 

 J Transplant  9, 2655–61.

 55. Weichhart, T., and Saemann, M. D. (2009)The multiple acets o mTOR in immunity.Trends Immunol  30, 218–26.

 56. Yang, C. S., Song, C. H., Lee, J. S., Jung, S. B.,Oh, J. H., Park, J., et al. (2006) Intracellularnetwork o phosphatidylinositol 3-kinase,mammalian target o the rapamycin/70 kDaribosomal S6 kinase 1, and mitogen-activatedprotein kinases pathways or regulating myco-bacteria-induced IL-23 expression in humanmacrophages. Cell Microbiol  8, 1158–71.

 57. Ohtani, M., Nagai, S., Kondo, S., Mizuno, S.,Nakamura, K., Tanabe, M., et al. (2008)Mammalian target o rapamycin and glycogensynthase kinase 3 dierentially regulatelipopolysaccharide-induced interleukin-12 pro-duction in dendritic cells. Blood  112, 635–43.

 58. Brouard, S., Puig-Pey, I., Lozano, J. J., Pallier, A., Braud, C., Giral, M., et al. (2010)Comparative Transcriptional and PhenotypicPeripheral Blood Analysis o Kidney Recipientsunder Cyclosporin A or Sirolimus Monotherapy.

 Am J Transplant  10, 2604–14.

 59. Haidinger, M., Poglitsch, M., Geyeregger, R.,Kasturi, S., Zeyda, M., Zlabinger, G. J., et al.(2010) A versatile role o mammalian target o rapamycin in human dendritic cell unction anddierentiation.  J Immunol  185, 3919–31.

60. Weichhart, T., Haidinger, M., Katholnig, M.,

Kopecky, C., Poglitsch, M., Lassnig, C., et al.(2011) Inhibition o mTOR blocks the anti-infammatory eects o glucocorticoids in myel-oid immune cells. Blood  117, 4273–83.

61. Yoshida, T., Mett, I., Bhunia, A. K., Bowman,J., Perez, M., Zhang, L., et al. (2010) Rtp801,a suppressor o mTOR signaling, is an essentialmediator o cigarette smoke-induced pulmo-nary injury and emphysema. Nat Med   16,767–73.

62. Jagannath, C., Lindsey, D. R., Dhandayuthapani,S., Xu, Y., Hunter, R. L., Jr., and Eissa, N. T.(2009) Autophagy enhances the ecacy o BCG vaccine by increasing peptide presentationin mouse dendritic cells. Nat Med  15, 267–76.

63. Colonna, M., Trinchieri, G., and Liu, Y. J.(2004) Plasmacytoid dendritic cells in immu-nity. Nat Immunol  5, 1219–26.

64. Kaur, S., Lal, L., Sassano, A., Majchrzak-Kita, B.,Srikanth, M., Baker, D. P., et al. (2007) Regulatory eects o mammalian target o rapamycin-activated pathways in type I and II intereron

signaling. J Biol Chem  282, 1757–68.65. Colina, R., Costa-Mattioli, M., Dowling, R. J.,

Jaramillo, M., Tai, L. H., Breitbach, C. J., et al.(2008) Translational control o the innateimmune response through IRF-7. Nature  452,323–8.

66. Zhu, J., Yamane, H., and Paul, W. E. (2010)Dierentiation o eector CD4 T cell popula-tions (*). Annu Rev Immunol  28, 445–89.

67. Delgoe, G. M., Kole, T. P., Zheng, Y., Zarek,P. E., Matthews, K. L., Xiao, B., et al. (2009)The mTOR kinase dierentially regulates eec-

tor and regulatory T cell lineage commitment.Immunity  30, 832–44.

68. Battaglia, M., Stabilini, A., and Roncarolo, M.G. (2005) Rapamycin selectively expandsCD4 + CD25 + FoxP3+ regulatory T cells.Blood  105, 4743–8.

69. Lee, K., Gudapati, P., Dragovic, S., Spencer,C., Joyce, S., Killeen, N., et al. (2010)Mammalian target o rapamycin protein com-plex 2 regulates dierentiation o Th1 and Th2cell subsets via distinct signaling pathways.Immunity  32, 743–53.

70. Weichhart, T., and Saemann, M. D. (2010) T helpercell dierentiation: understanding the needs o hierarchy. Immunity  32, 727–9.

71. Sinclair, L. V., Finlay, D., Feijoo, C., Cornish,G. H., Gray, A., Ager, A., et al. (2008)Phosphatidylinositol-3-OH kinase and nutrient-sensing mTOR pathways control T lymphocytetracking. Nat Immunol  9, 513–21.

72. Araki, K., Turner, A. P., Shaer, V. O.,Gangappa, S., Keller, S. A., Bachmann, M. F.,et al. (2009) mTOR regulates memory CD8T-cell dierentiation. Nature  460, 108–12.

73. Pearce, E. L., Walsh, M. C., Cejas, P. J., Harms,G. M., Shen, H., Wang, L. S., et al. (2009)Enhancing CD8 T-cell memory by modulatingatty acid metabolism. Nature  460, 103–7.

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

Page 14: Mammalian Target of Rapamycin- A Signaling Kinase for Every Aspect of Celllular Life

7/28/2019 Mammalian Target of Rapamycin- A Signaling Kinase for Every Aspect of Celllular Life

http://slidepdf.com/reader/full/mammalian-target-of-rapamycin-a-signaling-kinase-for-every-aspect-of-celllular 14/14

14 T. Weichhart

 74. Hands, S. L., Proud, C. G., and Wyttenbach, A. (2009) mTOR’s role in ageing: protein syn-thesis or autophagy?  Aging (Albany NY)  1,586–97.

 75. Harrison, D. E., Strong, R., Sharp, Z. D.,Nelson, J. F., Astle, C. M., Flurkey, K., et al.

(2009) Rapamycin ed late in lie extendsliespan in genetically heterogeneous mice.Nature  460, 392–5.

 76. Colman, R. J., Anderson, R. M., Johnson, S.C., Kastman, E. K., Kosmatka, K. J., Beasley, T.M., et al. (2009) Caloric restriction delaysdisease onset and mortality in rhesus monkeys.Science  325, 201–4.

77. Selman, C., Tullet, J. M., Wieser, D., Irvine, E.,Lingard, S. J., Choudhury, A. I., et al. (2009)Ribosomal protein S6 kinase 1 signaling regu-lates mammalian lie span. Science  326, 140–4.

 78. Miller, J. L. (1999) Sirolimus approved withrenal transplant indication.  Am J Health Syst Pharm  56, 2177–8.

79. Moses, J. W., Leon, M. B., Popma, J. J.,Fitzgerald, P. J., Holmes, D. R., O’Shaughnessy,C., et al. (2003) Sirolimus-eluting stents versusstandard stents in patients with stenosis in a nativecoronary artery. N Engl J Med  349, 1315–23.

 80. Faivre, S., Kroemer, G., and Raymond, E.(2006) Current development o mTOR inhibi-tors as anticancer agents. Nat Rev Drug Discov  5, 671–88.

 81. Bissler, J. J., McCormack, F. X., Young, L. R.,Elwing, J. M., Chuck, G., Leonard, J. M., et al.(2008) Sirolimus or angiomyolipoma in tuber-ous sclerosis complex or lymphangioleiomyo-matosis. N Engl J Med  358, 140–51.

82. Thoreen, C. C., Kang, S. A., Chang, J. W., Liu,Q., Zhang, J., Gao, Y., et al. (2009) An ATP-competitive mammalian target o rapamycininhibitor reveals rapamycin-resistant unctionso mTORC1. J Biol Chem  284, 8023–32.

83. Thoreen, C. C., and Sabatini, D. M. (2009)

Rapamycin inhibits mTORC1, but not com-pletely. Autophagy  5, 725–6.

84. Yu, K., Shi, C., Toral-Barza, L., Lucas, J., Shor,B., Kim, J. E., et al. (2010) Beyond rapalogtherapy: preclinical pharmacology and antitu-mor activity o WYE-125132, an ATP-competitive and specic inhibitor o mTORC1and mTORC2. Cancer Res  70, 621–31.

85. Yu, K., Toral-Barza, L., Shi, C., Zhang, W. G.,Lucas, J., Shor, B., et al. (2009) Biochemical,cellular, and in vivo activity o novel ATP-competitive and selective inhibitors o the

mammalian target o rapamycin. Cancer Res  69, 6232–40.

86. Chresta, C. M., Davies, B. R., Hickson, I.,Harding, T., Cosulich, S., Critchlow, S. E.,et al. (2010) AZD8055 is a potent, selective,and orally bioavailable ATP-competitive mam-malian target o rapamycin kinase inhibitor

 with in vitro and in vivo antitumor activity.Cancer Res  70, 288–98.

87. Janes, M. R., and Fruman, D. A. (2010)Targeting TOR dependence in cancer.Oncotarget  1, 69–76.

88. Janes, M. R., Limon, J. J., So, L., Chen, J.,Lim, R. J., Chavez, M. A., et al. (2010)Eective and selective targeting o leukemiacells using a TORC1/2 kinase inhibitor. Nat Med  16, 205–13.

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781