Makala h Turbin u AP Dang As

Embed Size (px)

DESCRIPTION

whdw

Citation preview

BAB I

PENDAHULUAN

Turbin adalah mesin penggerak, dimana energy fluida kerja dipergunakan langsung untuk memutar roda turbin. Jadi, berbeda dengan yang terjadi dengan mesin torak, pada turbin tidak terdapat bagian mesin yang bergerak translasi. Bagian turbin yang berputar dinamai rotor atau roda turbin., sedangkan bagian yang tidak berputar dinamai stator atau rumah turbin. Roda turbin terletak di dalam rumah turbin dan roda turbin memutar poros daya yang menggerakkan atau memutar bebannya (generator listrik, pompa, kompresor, baling-baling atau mesin lainnya). Di dalam turbin, fluida kerja mengalami proses ekspansi, yaitu proses penurunan tekanan dan mengalir secara kontinu. Kerja fluida dapat berupa air, uap air, atau gas.

Secara umum, sistem turbin terdiri dari beberapa komponen, antara lain: kompresor, pompa, ketel uap (boiler), ruang bakar, kondensor dan turbin. Turbin banyak di manfatkan untuk pembangkit listrik, pesawat terbang, di dalam industry, dan lain-lain. Di dalam makalah ini, akan di bahas khusus pada turbin uap dan turbin gas baik dalam siklus, klasifikasi, komponen-komponen yang ada, dan prinsip kerja dari turbin tersebut serta aplikasi turbin yang akan di gunakan.BAB II

PEMBAHASAN

II.1 TURBIN UAP

Turbin uap adalah suatu penggerak mula yang mengubah energi potensial menjadi energi kinetik dan energi kinetik ini selanjutnya diubah menjadi energi mekanik dalam bentuk putaran poros turbin. Poros turbin langsung atau dengan bantuan elemen lain, dihubungkan dengan mekanisme yang digerakkan. Tergantung dari jenis mekanisme yang digerakkan turbin uap dapat digunakan pada berbagai bidang industri, seperti untuk pembangkit listrik.

A. Prinsip Kerja Sistem Turbin UapTurbin uap merupakan salah satu jenis mesin yang menggunakan metode external combustion engine (mesin pembakaran luar). Pemanasan fluida kerja (uap) dilakukan di luar sistem. Secara singkat prinsip kerja turbin uap adalah sebagai berikut :

Uap masuk kedalam turbin melalui nosel. Didalam nosel energi panas dari uap dirubah menjadi energi kinetis dan uap mengalami pengembangan.

Tekanan uap pada saat keluar dari nosel lebih kecil dari pada saat masuk ke dalam nosel, akan tetapi sebaliknya kecepatan uap keluar nosel lebih besar dari pada saat masuk ke dalam nosel. Uap yang memancar keluar dari nosel diarahkan ke sudu-sudu turbin yang berbentuk lengkungan dan dipasang disekeliling roda turbin. Uap yang mengalir melalui celah-celah antara sudu turbin itu dibelokkan kearah mengikuti lengkungan dari sudu turbin. Perubahan kecepatan uap ini menimbulkan gaya yang mendorong dan kemudian memutar roda dan poros turbin. Jika uap masih mempunyai kecepatan saat meninggalkn sudu turbin berarti hanya sebagian yang energi kinetis dari uap yang diambil oleh sudu-sudu turbin yang berjalan. Supaya energi kinetis yang tersisa saat meninggalkan sudu turbin dimanfaatkan maka pada turbin dipasang lebih dari satu baris sudu gerak. Sebelum memasuki baris kedua sudu gerak. Maka antara baris pertama dan baris kedua sudu gerak dipasang satu baris sudu tetap ( guide blade ) yang berguna untuk mengubah arah kecepatan uap, supaya uap dapat masuk ke baris kedua sudu gerak dengan arah yang tepat. Kecepatan uap saat meninggalkan sudu gerak yang terakhir harus dapat dibuat sekecil mungkin, agar energi kinetis yang tersedia dapat dimanfaatkan sebanyak mungkin. Dengan demikian effisiensi turbin menjadi lebih tinggi karena kehilangan energi relatif kecil.B. Klasifikasi Turbin Uap

Turbin uap dapat diklasifikasikan sebagai berikut :

a. Menurut arah aliran uap Turbin aksial: Fluida kerja mengalir dalam arah yang sejajar terhadap sumbu turbin Turbin radial: Fluida kerja mengalir dalam arah yang tegak lurus terhadap sumbu turbin.b. Menurut prinsip aksi uap Turbin impuls: Energi potensial uap diubah menjadi energi kinetik di dalam nosel. Turbin reaksi: Ekspansi uap terjadi pada sudu pengarah dan sudu gerak.

c. Menurut pemakaiannya di bidang industri Turbin stasioner dengan putaran yang konstan yang dipakai terutama untuk generator. Turbin stasioner dengan putaran yang bervariasi dipakai untuk mengerakkan blower turbo, pompa, dan lain-lain. Turbin tidak stasioner dengan putaran yang bervariasi, biasa digunakan pada kapal dan lokomotif uap.C. Siklus turbin uapSiklus ideal yang terjadi didalam turbin adalah siklus Renkine. Siklus Rankine adalah siklus termodinamika yang mengubah panas menjadi kerja. Panas disuplai secara eksternal pada aliran tertutup, yang biasanya menggunakan air sebagai fluida yang bergerak. Siklus rankine terdiri dari beberapa proses antara lain:

Proses 1-2: Proses pemompaan isentropik, didalam pompaProses 2-2-3: Proses pemasukan kalor atau pemanasan pada tekanan konstan, di dalam ketelProses 3-4: Proses ekspansi isentropik di dalam turbinProses 4-1: Proses pengeluaran kalor dalam kondensorD. Aplikasi turbin uapSalah satu contoh aplikasi turbin gas yang di gunakan adalah Pembangkit Listrik Tenaga Uap (PLTU). Dalam PLTU, energi primer yang dikonversikan menjadi energi listrik adalah bahan bakar. Baban bakar yang digunakan dapat berupa batubara (padat), minyak (cair), atau gas. Ada kalanya PLTU menggunakan kombinasi beberapa macam bahan bakar. Konversi energi tingkat pertama yang berlangsung dalam PLTU adalah konversi energi primer menjadi energi panas (kalor). Hal ini dilakukan dalam ruang bakar dari ketel uap PLTU. Energi panas ini kemudian dipindahkan ke dalam air yang ada dalam pipa ketel untuk menghasilkan uap yang dikumpulkan dalam drum dari ketel. Uap dari drum ketel dialirkan ke turbin uap. Dalam turbin uap, energi uap dikonversikan menjadi energi mekanis penggerak generator, dan akhirnya energi mekanik dari turbin uap ini dikonversikan menjadi energi listrik oleh generator. II.1 TURBIN GAS

Turbin gas adalah suatu alat yang memanfaatkan gas sebagai fluida untuk memutar turbin dengan pembakaran internal. Didalam turbin gas energi kinetik dikonversikan menjadi energi mekanik melalui udara bertekanan yang memutar roda turbin sehingga menghasilkan daya. Sistem turbin gas yang paling sederhana terdiri dari tiga komponen yaitu:1. Kompresor (Compressor)

Berfungsi untuk menaikkan tekanan udara yang masuk

2. Ruang bakar (Combustion Area)Berfungsi untuk membakar bahan bakar yang masuk dan menghasilkan tekanan yang sangat tinggi begitu pula dengan kecepatannya.

3. Turbin (Turbine)Berfungsi untuk Mengkonversi energi dari gas dengan tekanan dan kecepatan yang tinggi hasil dari combustion area menjadi energi mekanik berupa rotasi poros turbin.A. Prinsip Kerja Sistem Turbin GasUdara masuk kedalam kompresor melalui saluran masuk udara (inlet). Kompresor berfungsi untuk menghisap dan menaikkan tekanan udara tersebut, sehingga temperatur udara juga meningkat. Kemudian udara bertekanan ini masuk kedalam ruang bakar. Di dalam ruang bakar dilakukan proses pembakaran dengan cara mencampurkan udara bertekanan dan bahan bakar. Proses pembakaran tersebut berlangsung dalam keadaan tekanan konstan sehingga dapat dikatakan ruang bakar hanya untuk menaikkan temperatur. Gas hasil pembakaran tersebut dialirkan ke turbin gas melalui suatu nozel yang berfungsi untuk mengarahkan aliran tersebut ke sudu-sudu turbin. Daya yang dihasilkan oleh turbin gas tersebut digunakan untuk memutar kompresornya sendiri dan memutar beban lainnya seperti generator listrik, dll. Setelah melewati turbin ini gas tersebut akan dibuang keluar melalui saluran buang (exhaust).

Secara umum proses yang terjadi pada suatu sistem turbin gas adalah sebagai berikut:

1. Pemampatan (compression) udara di hisap dan dimampatkan

2. Pembakaran (combustion) bahan bakar dicampurkan ke dalam ruang bakar dengan udara kemudian di bakar.

3. Pemuaian (expansion) gas hasil pembakaran memuai dan mengalir ke luar melalui nozel (nozzle).

4. Pembuangan gas (exhaust) gas hasil pembakaran dikeluarkan lewat saluran pembuangan.A. Klasifikasi Turbin Gas

Turbin gas dapat dibedakan berdasarkan siklusnya, kontruksi poros dan lainnya. Menurut siklusnya turbin gas terdiri dari:a. Turbin gas siklus tertutup (Close cycle): akhir ekspansi fluida kerjanya didinginkan untuk kembali ke dalam proses awal.b. Turbin gas siklus terbuka (Open cycle): akhir ekspansi fluida kerjanya langsung dibuang ke udara atmosfirDalam industri turbin gas umumnya diklasifikasikan dalam dua jenis yaitu :

1. Turbin Gas Poros Tunggal (Single Shaft)Turbin jenis ini digunakan untuk menggerakkan generator listrik yang menghasilkan energi listrik untuk keperluan proses di industri.2. Turbin Gas Poros Ganda (Double Shaft)Turbin jenis ini merupakan turbin gas yang terdiri dari turbin bertekanan tinggi dan turbin bertekanan rendah, dimana turbin gas ini digunakan untuk menggerakkan beban yang berubah seperti kompresor pada unit proses.B. Siklus Turbin GasSiklus brayton merupakan siklus daya termodinamika ideal untuk turbin gas, sehingga saat ini siklus ini yang sangat populer digunakan oleh pembuat mesin turbine atau manufacturer dalam analisa untuk performance upgrading. Siklus Brayton ini terdiri dari proses kompresi isentropik yang diakhiri dengan proses pelepasan panas pada tekanan konstanSiklus Brayton terdiri dari proses:

Proses 1-2: proses kompresi isentropik di dalam kompresor.

Proses 2-3: proses pemasukan bahan bakar pada tekanan konstan di dalam ruang bakar atau alat pemindah kalor (pemanas).Proses 3-4: proses ekspansi isentropik didalam turbin.Proses 4-1: proses pembuangan kalor pada tekanan konstan dalam alat pemindah kalor.C. Aplikasi dari turbin gasSalah satu contoh aplikasi turbin gas yang di gunakan adalah Pembangkit Listrik Tenaga Gas (PLTG). Gambar menunjukkan prinsip kerja PLTG. Udara masuk ke kompresor untuk dinaikkan tekanannya, kemudian udara tersebut dialirkan ke ruang bakar. Dalam ruang bakar, udara bertekanan ini dicampur dengan bahan bakar dan dibakar. Apabila digunakan bahan bakar gas (BBG), maka gas dapat langsung dicampur dengan udara untuk dibakar, tetapi apabila digunakan bahan bakar minyak (BBM), maka BBM ini harus dijadikan kabut terlebih dahulu kemudian baru dicampur dengan udara untuk dibakar. Teknik mencampur bahan bakar dengan udara dalam ruang bakar sangat mempengaruhi efisiensi pembakaran. Pembakaran bahan bakar dalam ruang bakar menghasilkan gas bersuhu tinggi. Gas hasil pembakaran ini kemudian dialirkan menuju turbin untuk disemprotkan kepada sudu-sudu turbin sehingga energi (enthalpy) gas ini dikonversikan menjadi energi mekanik dalam turbin penggerak generator (dan kompresor udara) dan akhirnya generator menghasilkan tenaga listrik.

BAB III

KESIMPULAN

Dari kesimpulan yang telah d bahas, sehingga dapat di simpulkan bahwa Turbin adalah mesin penggerak, dimana energy fluida kerja dipergunakan langsung untuk memutar roda turbin. Jadi, berbeda dengan yang terjadi dengan mesin torak, pada turbin tidak terdapat bagian mesin yang bergerak translasi. Bagian turbin yang berputar dinamai rotor atau roda turbin., sedangkan bagian yang tidak berputar dinamai stator atau rumah turbin. Secara umum, sistem turbin terdiri dari beberapa komponen, antara lain: kompresor, pompa, ketel uap (boiler), ruang bakar, kondensor dan turbin.

Untuk Turbin uap adalah suatu penggerak mula yang mengubah energi potensial menjadi energi kinetik dan energi kinetik ini selanjutnya diubah menjadi energi mekanik dalam bentuk putaran poros turbin. Poros turbin langsung atau dengan bantuan elemen lain, dihubungkan dengan mekanisme yang digerakkan. Siklus ideal yang terjadi didalam turbin adalah siklus Renkine. Siklus Rankine adalah siklus termodinamika yang mengubah panas menjadi kerja. Panas disuplai secara eksternal pada aliran tertutup, yang biasanya menggunakan air sebagai fluida yang bergerak.

Sedangkan Turbin gas adalah suatu alat yang memanfaatkan gas sebagai fluida untuk memutar turbin dengan pembakaran internal. Didalam turbin gas energi kinetik dikonversikan menjadi energi mekanik melalui udara bertekanan yang memutar roda turbin sehingga menghasilkan daya. Siklus brayton merupakan siklus daya termodinamika ideal untuk turbin gas, sehingga saat ini siklus ini yang sangat populer digunakan oleh pembuat mesin turbine atau manufacturer dalam analisa untuk performance upgrading. Siklus Brayton ini terdiri dari proses kompresi isentropik yang diakhiri dengan proses pelepasan panas pada tekanan konstan.1