Main Group OM Part 1 2005

Embed Size (px)

Citation preview

  • 8/8/2019 Main Group OM Part 1 2005

    1/49

    Main-Group Organometallics

    MH+ - CH-

    carbanionic in character

    susceptible to attack by electrophilessusceptible to nucleophilic attack

    Stability M-C is weak compared to M-N, M-O or M-Hal p use for organometallics

    in synthesis

    M-Cbondenergies cover wide range

    within a main-group

    decrease with increasing

    atomic number

  • 8/8/2019 Main Group OM Part 1 2005

    2/49

    Main-Group Organometallics

    Lability thermal decomposition Pb(C2H5)4 Pb + C2H5

    p Pb, EtH, C2H4, C4H10.

    F-elimination

    R2C CR2

    H

    R2C CR2

    H

    R2C CR2H

    E F

    Facilitated by vacant orbital at metal to accommodate metal-hydrogen bond pair

    (Group I-III)

    Stabilisation by adduct formation of Lewis base e.g. (bipy)BeEt2

    BeEt2 inflames, (bipy)BeEt2 stable 10-15 min in air

  • 8/8/2019 Main Group OM Part 1 2005

    3/49

    Main-Group Organometallics

    Reactivitytowards O2 and H2O highest for organometallics with free electron pair,low lying empty orbitals and/or high polarity of M-C

    bond

    InMe3 pyrophoric/hydrolysed vacant orbital on In, moderate bond polarity

    SiMe4 inert/not hydrolysed Si shielded well, low bond polarity

    eactivity of M-C bonds may also be controlled by use of sterically demanding

    substituents, e.g., (Me3Si)3C, mesityl p kinetic stabilisation

    c.f. Zn(CH3)2 Zn{C(SiMe3)3}2

    Pyrophoric, explodes with water Stable in air, steam

  • 8/8/2019 Main Group OM Part 1 2005

    4/49

    Main Structural Types of Organometallic

    Compounds

    Li

    1.0

    Be

    1.6

    B

    2.0

    C

    2.5

    N

    3.0

    O

    3.4

    F

    4.0

    Na

    0.9

    Mg

    1.3

    Al

    1.6

    Si

    1.9

    P

    2.2

    S

    2.6

    Cl

    3.1

    K

    0.8

    Ca

    1.0

    Sc

    1.3

    Ti

    1.5

    V

    1.6

    Cr

    1.6

    Mn

    1.6

    Fe

    1.8

    Co

    1.9

    Ni

    1.9

    Cu

    1.9

    Zn

    1.7

    Ga

    1.8

    Ge

    2.0

    As

    2.2

    Se

    2.6

    Br

    2.9

    b

    0.8

    Sr

    1.0

    Y

    1.2

    Zr

    1.3

    Nb

    1.6

    Mo

    2.1

    Tc

    1.9

    u

    2.2

    h

    2.3

    Pd

    2.2

    Ag

    1.9

    Cd

    1.7

    In

    1.8

    Sn

    1.8

    Sb

    2.0

    Te

    2.1

    I

    2.6

    Cs

    0.8

    Ba

    0.9

    La

    1.1

    Hf

    1.3

    Ta

    1.5

    W

    2.3

    e

    1.9

    Os

    2.2

    Ir

    2.2

    Pt

    2.3

    Au

    2.5

    Hg

    2.0

    Tl

    1.6

    Pb

    1.9

    Bi

    2.0

    Po

    2.0

    At

    2.2

    metals with a strong tendency to form

    alkyl- or aryl-bridged species;

    covalent, multicenter bonds

    metals that

    form ionic

    derivatives

    transition metals

    T-complexes tend to

    predominate

    metals and metalloids that

    form volatile, covalent

    organo derivatives

    mainly M-C W-bonds

    rarely M-C T-bonds

    non-metals

  • 8/8/2019 Main Group OM Part 1 2005

    5/49

    Synthesis

    DirectSynthesis 2 M + n X nM + MXn (or nMXn)

    2 Li + C4H9Br C4H9Li + LiBr

    Mg + C6H5Br C6H5MgBr

    2 Na + Hg + 2 CH3Br (CH3)2Hg + 2 NaBr4 NaPb + 4 C2H5Cl (C2H5)4Pb + 3 Pb + 4 NaCl

    Mixed Metal

    Synthesis

    not fore.g. Hg or Pb

    Transmetallation M + M M + M

    Zn + (CH3)2Hg (CH3)2Zn + Hg

    favourable when M is higher in electrochemical

    series than M

    slow

    2 Al + 3 MeCl Me3Al2Cl3

  • 8/8/2019 Main Group OM Part 1 2005

    6/49

    Synthesis

    Metathesis M + MX X + M

    Li Mg Al Zn

    Electronegativity: 0.98 1.31 1.61 1.65

    Si B As P

    1.90 2.04 2.18 2.19

    Li4(CH3)4 + SiCl4 4 LiCl + Si(CH3)4

    Al2(CH3)6 + 2 BF3 2 AlF3 + 2 B(CH3)3

    Hydrometallation M-H + C C C CHM M = B, Al, Si, Zr, e.g.

    (C2H5)2AlH + C2H4 (C2H5)3Al

    everse ofF-elimination

  • 8/8/2019 Main Group OM Part 1 2005

    7/49

    Reaction Pattern

    Oxidation - potential reducing agents; for electropositive elements very strong reducing

    agents- componds of electropositive metals have unfilled valence orbitals,

    or readily dissociate to fragments with unfilled orbitals - pyrophoric

    Nucleophilic(carbanion) Character

    -organic group at electropositive

    - metal has partial negative charge

    - strong nucleophile and Lewis base

    - most commonly used carbanion

    reagents LiR and RMgX

  • 8/8/2019 Main Group OM Part 1 2005

    8/49

    Reaction Pattern

    Protolysis Reaction

    Ga Et

    Et

    Et

    Ga O

    Et

    EtEt

    CH3

    H

    Ga OCH3

    Et

    Et

    CH3OH

    - C2H6

    Al2(CH3)6 + 6 C2H5OH 2 Al(OC2H5)3 + 6 CH4

    Lewis Acidity presence of unoccupied orbitals on metal, electron-deficient

    B(C6H5)3 + Li(C6H5) Li[B(C6H5)4]

    Al2(CH3)6 + 2 N(C2H5)3 2 (CH3)3AlN(C2H5)3

  • 8/8/2019 Main Group OM Part 1 2005

    9/49

    Alkali Metal Organometallics Method of Synthesis

    DirectSynthesis - organic halide + metal

    Transmetallation - using Hg organyls

    MetalExchange - PhLi + (CH2=CH)

    4Sn 4 (CH

    2=CH)Li + Ph

    4Sn

    (good yields of vinyllithium)

    Metal-HalExchange - BunLi + PhX BunX + PhLi (practicable only for ArX; competingreaction Wurtz coupling)

    MetallationofC-HAcid- Na + C5H6 C5H5Na + 1/2H2

  • 8/8/2019 Main Group OM Part 1 2005

    10/49

    Alkali Metal Organometallics Method of Synthesis

    Forheavieralkalimetal organometallics widely used method metathesis of

    organolithium reagent and an alkoxide

    e.g., BunLi + KOBut LiOBut + BunK

    in hydrocarbons, easy to separate the MR product, e.g. BunK

    CH3CH2OCH2CH3 + KC4H9 C4H10 +

    KOC2H5 + H2C=CH2

    [CH-O-C2H5]

    CH3

    K

    Ether Cleavage

  • 8/8/2019 Main Group OM Part 1 2005

    11/49

    Organolithium Structures

    i

    i

    i

    i

    i

    i i

    i

    i

    i i

    i

    s

    i grouor itals

    O iagram for one of the four e c on s in R i

    hh

    ii

    i

    h

    h

    i

    .O t

    .O t

    t O.

    t O.Ten ency to form

    oligomers through

    multicentre on s

    e i tetramer

  • 8/8/2019 Main Group OM Part 1 2005

    12/49

    Organolithium Structures

    Hexamer of BunLiButLi tetramer

  • 8/8/2019 Main Group OM Part 1 2005

    13/49

    Organolithium Structures

    LiR Solvent Aggregation

    MeLi thf, Et2O

    Me2CH2CH2NMe2

    (tmeda)

    tetramer

    (Li4 tetrahedron

    monomer, dimer

    BunLi cyclohexane

    Et2O

    hexamer

    tetramer

    ButLi hydrocarbons

    thf

    tetramer

    monomer

    LiCH2Ph thf, Et2O monomer

    LiC3H5 (allyl) Et2O

    thf

    columnar structure

    dimer

    Ph

    Ph

    Ph

    Ph

    Li

    Li

    Li

    OEt2

    OEt2

    Et2O

  • 8/8/2019 Main Group OM Part 1 2005

    14/49

    Organolithium Structures

    (n- i)tme a

    i-

    Degree of association strongly epen ent on nature of solvent

    Affects structures an reactivity by increasing polarity of i- bon

    Rates of metallation by Ph i excee those of 3 i by factor of 0 , although

    3- stronger base as Ph -

    omplexation of i ; polarisation of i- bon ;

    carbanionic character of butyl group increase

  • 8/8/2019 Main Group OM Part 1 2005

    15/49

    Reactions of Organolithium Compounds

    Metallation ofC-H, N-H, O-Hacids R-Li + E-H R-H + E-Li

    when E-H is stronger acid than R-H

    H HLi

    +

    + uHu

    nLi

    HHLi

    unLi

    + uH

    Reactions with Main-GroupandTransition-metalHalides

    RLi + M-X M-R + LiX

  • 8/8/2019 Main Group OM Part 1 2005

    16/49

    Reactions of Organolithium Compounds

    C NR C NLiR

    R'

    C NHR

    R'

    C OR

    R'R'Li hydrolysis hydrolysis

    C

    O

    NR'2

    H R CH

    OLi

    NR'2 CO

    H

    RRLi hydrolysis

    W

    OC

    OC CO

    CO

    CO

    CO

    W

    OC

    OC CO

    CO

    CO

    C

    R O-Li+

    W

    OC

    OC CO

    CO

    CO

    C

    R OCH3

    LiR [(CH3)3O]BF4

    Additions to Multiple Bonds

  • 8/8/2019 Main Group OM Part 1 2005

    17/49

    Radical Anion Salts

    Na + C10H8(thf) Na[C10H8](thf) sodium naphthalenide

    + ArH+

    + ArH . + ArH + + ArH -

    ( e5C5) SiBrK, anthracene

    - KBrSi

  • 8/8/2019 Main Group OM Part 1 2005

    18/49

    Radical Anion Salts

    -

    -.

    -

    non lanar

    nTelectr

    ti r tic

    pl r

    ( n+1) T-electr

    pl r

    ( n+2) T-electr

    r tic

  • 8/8/2019 Main Group OM Part 1 2005

    19/49

    Organomagnesium Compounds

    DirectSynthesis Mg + RX RMgX(OR2)n

    Transmetallation Mg + R2Hg R2Mg + Hg

    MetallationR

    -C|CH + EtMgBrR

    -C|CMgBr + EtH

    SchlenkEquilibrium 2 RMgX + 2 dioxane R2Mg + MgX2(dioxane)2

  • 8/8/2019 Main Group OM Part 1 2005

    20/49

    Organomagnesium Compounds

    RX

    Mg Mg Mg

    RX R MgX

    R RMgX

    . .

    .

    Mgacti eMgCl2K, t f

    C 17Mg %!C 17F

    r.t.,

    Formation

    Acti ation of Mg: I2, CCl4, 1,2-dibromoet ane

    Riecke magnesium:

  • 8/8/2019 Main Group OM Part 1 2005

    21/49

    Organomagnesium Compounds

    2 R g R2Mg + Mg 2

    I IIIII I

    Mg Mg

    R

    R

    Mg Mg

    R R

    sol ent it donor properties, usuall et er

    Dominant forms: I et er solution of lo concentration

    II in Et3N, it dioxane onl MgR2 in solution,precipitation ofMgCl2(dioxane)2

    III and I in ig er concentration and it more basic t f

    Schlenkequilibrium

  • 8/8/2019 Main Group OM Part 1 2005

    22/49

    Organomagnesium Compounds

    Structure

    Generally polymeric/oligomeric structures, where halide (2e2c) bridges are preferred

    over2e3calkyl bridges

    Exception: [(Me3Si)3C]Mg is monomeric

    due to bulky substituents

    Al

    Mg

    Al

  • 8/8/2019 Main Group OM Part 1 2005

    23/49

    Organomagnesium Compounds

    Reactivity

    RMgX + R'C|N R C R'

    O

    RMgX + R'CHO RR'CH-OH

    Use in organic synthesis, e.g.

    Alkylating/arylating reagents for main group and transition metals halides

    l + Mg ( )

    Mg

    - Mg l

    compared to LiR, RMg reagents - less reactive (do not form ate complexes)

    - less reducing with transition metal halides

  • 8/8/2019 Main Group OM Part 1 2005

    24/49

    Organomagnesium Compounds

    Magnesium-ate-complexes MxMgyR

    z (M = group 1,2 and 13);

    the less EP metal usually in ate-complex anion

    MgMe2+ iMeEt2O

    iMgMe3(Et2O)ntmeda

    lithium magnesiate

    Me i

  • 8/8/2019 Main Group OM Part 1 2005

    25/49

    Organometallics of Calcium, Strontium and Barium

    Synthesis

    Highly reactive due to predominantly ionic character of metal-ligand bond

    increased lability complicates synthetic access; unstable and/or sparingly soluble

    Transamination M[N(SiMe3)2]2 + 2 HR

    MR

    2 + 2 HN(SiMe3)2

    Direct metallation 2 HR + activated M MR2 + H2

    Transmetallation/ HgR2 + activated M MR2 + Hg

    Metal exchange

    2 LiR + M(OR)2 MR2 + 2 LiOR

    M[N(SiMe3)2]2 + 2 LiR MR2 + 2 LiN(SiMe3)2

    M[N(SiMe3)2]2 + 2 LiCH2Ph M(CH2Ph)2 + 2 LiN(SiMe3)2

    MI2 + 2 LiCp* Cp*2M + 2 LiI

  • 8/8/2019 Main Group OM Part 1 2005

    26/49

    Organometallics of Calcium, Strontium and Barium

    Most intensively studied are the cyclopentadienyl systems

    Magnesocene is useful reagent for introduction of C5H5 groups

    Cp2Mg Cp*2Ca

    M E,

    MCp*2

    Mg 180

    Ca 154

    Sr 149Ba 148

    M2+ HH

    Sterically should be parallel, however explained

    by polarisable ion model bending due to dipole induced

    on large central cation (also Yb(II), Eu(I) analogues)

    maximises electrostatic bonding

  • 8/8/2019 Main Group OM Part 1 2005

    27/49

    Organometallics of Calcium, Strontium and Barium

    purelyW

    -bonded ligands - scarce

    [Ca{CH(SiMe3)2}2(1,4-dioxane)2] Ca[C(SiMe3)3]2

    CCaC 150r

    Lappert, 1991 Eaborn/Smith, 1997

  • 8/8/2019 Main Group OM Part 1 2005

    28/49

    Tris(trimethylsilyl)methylmagnesium and -calcium

  • 8/8/2019 Main Group OM Part 1 2005

    29/49

    Organoaluminium Compounds

    Synthesis

    Transmetallation 3 Ph2Hg + 2 Al 2 AlPh3 + 3 Hg

    Metathesis (RLi orRMgX) AlCl3 + 3 ButLi AlBut3 + 3 LiCl

    Hydroalumination 3 RCH=CH2 + AlH3.OEt2 (RCH2CH2)3Al

    .OEt2

    Direct synthesis 2Al + 3RX 2 R3Al2X3 sesquihalide

    Properties

    Alkyls are usually colourless liquids that react violently with air and water; short

    chain lengths pyrophoric

    Lewis acidic (6 valence electrons) marked effects on structure and reactivity

  • 8/8/2019 Main Group OM Part 1 2005

    30/49

    Organoaluminium Compounds

    Applications

    Aufbau reaction (growth reaction) - multiple insertion of ethylene into the Al-C bond

    e.g. AlC2H5 + C2H4 p AlC4H10 etc (Ziegler)

    - produces 1-alkenes and (after reaction with

    dioxygen and hydrolysis) unbranched C16 C20

    primary alcohols for detergent industry

    Catalytic dimerisation of propene basis for production of isoprene

    (-synthetic rubber)

    Olefin polymerisation Ziegler-Natta low-pressure process with mixed

    catalysts like Et3Al/TiCl4

  • 8/8/2019 Main Group OM Part 1 2005

    31/49

    Organoaluminium Compounds

    CCatalytic dimerisation of propene

    CH2=CHCH3Pr3Al Pr2AlCH2CHMePr

    CH2=CHCH3

    Pr2AlH + CH2=CMeCH2CH2CH3

    cracking

    CH2=CMeCH=CH2 + CH4

    isoprene

  • 8/8/2019 Main Group OM Part 1 2005

    32/49

    Organoaluminium Compounds

    Structure andbonding

    Al Al

    C

    C

    109.5 Al Al 120

    C

    C

    C

    Al

    C

    AlAl CAl Al

    AlC

    AlAl

    (2e3c) (2e3c) (2e2c) (2e4c)+ +

    a b

    Al(sp3) Al(sp2)

    Al

    H3C

    H3C

    Al

    CH3

    CH3

    H3C

    CH3

    75

    260 pm

    214 pm

    123

    197 pm

    H

    H

    Al2(CH3)6

    Al2Cl6 d(Al-Al) 340 pm with Al-X-Al bridges

    rcov Al = 252 pm [rcov(Al) = 146 pm]

  • 8/8/2019 Main Group OM Part 1 2005

    33/49

    Organoaluminium Compounds

    l l

    a

    l l76

    270 pm

    218 pm

    115

    196 pm

    114 sp2 120

    l l

    c

    spsp

    109.5

    Q- 6H5 Q- 6H5

    Structure andbonding Al2(C6H5)6

  • 8/8/2019 Main Group OM Part 1 2005

    34/49

    Organoaluminium Compounds

    Associationin solution Al-C-Al bridging persists in non-polar solvents with

    fast Al-Me exchange

    50 rC + 20 rC

    0.5 6.5 0.3

    a R = Me b R = Ph

    Al

    R

    R

    R

    R

    R

    R

    Al Al

    R

    R

    R

    R

    R

    R

    Al Al

    R

    R

    R

    R

    R

    R

    Al Al

    R

    R

    R

    R

    R

    R

    Al

    **

    *

    *

    a

    b

  • 8/8/2019 Main Group OM Part 1 2005

    35/49

    Organoaluminium Compounds

    R2AlX and RAlX2 (X = halide) are most conveniently prepared by redistribution

    of trialkyls and trihalides in correct stoichiometry. Reactions occur readily at RT.

    2 R3Al + AlCl3 3 R2AlCl

    R3Al + 2 AlCl3 3 RAlCl2

    X

    Al

    X

    Al

    Me Me

    Me Me

    usually oligomers, formed by Al-X-Al bridging

    (interaction with heteroatom lone pair favoured over Al-C-Al)

    Al-Me-M bridges also formed with other acidic metal centres, e.g.

    AlMe3 + Cp2Yb

  • 8/8/2019 Main Group OM Part 1 2005

    36/49

    Organoaluminium Compounds

    Reactivity

    Organoaluminium compounds are hardacids and readily form adducts with bases

    such as thf and amines

    Mes3

    Al + thf

    Reactions with protic reagents gives access to wide variety of organoaluminium

    compounds

    AlR3-n + nROH R3-nAl(OR)n

  • 8/8/2019 Main Group OM Part 1 2005

    37/49

    Organoaluminium Compounds

    Formation of ate-complexes AlR3 + LiR Li[AlR4]

    Carbalumination

    Hydroalumination

    H2C CHR

    Et2Al Et

    Et3Al(Et

    3Al)

    2

    CH2=CHR H2C CHR

    Et2Al Et

    1/2

    +

    H2C CHR

    Et2Al H

  • 8/8/2019 Main Group OM Part 1 2005

    38/49

    Organometallics of Ga, In and Tl

    Synthesis

    R3M may be prepared by same methods as forR3Al metathesis orRLi/MgX with MX3

    - transmetallation with organomercurials

    Halides RnMX3-n most readily prepared by redistribution reactions

    Structure R3Ga and R3In monomeric Lewis acidity less than that of AlMe3Ga very important ion semiconductor industry more inflammable

    than dimeric Me3Al

    ReactivityLess reactive than aluminium compounds so possible to get e.g.Me2GaOH easily

  • 8/8/2019 Main Group OM Part 1 2005

    39/49

    Organometallics of Ga, In and Tl

    X

    GaX

    Ga

    R R

    R R

    InCl

    In Cl

    Cl In

    [Me2InCl]n

    in R2MX compound the larger In can adopt coordination numberes > 4

    leads to coordination polymers in solid state

  • 8/8/2019 Main Group OM Part 1 2005

    40/49

    Group 14 Organometallics

    E Thermal stability Bond energy

    E(E-C) in kJ/mol

    Bond length

    d(E-C) in pm

    Bond polarity

    EH+ - CH-EN

    C 358 154 2.5

    Si 311 188 1.9

    Ge 249 195 2.0

    Sn 217 217 1.8

    Pb 152 224 1.9

    Common oxidation state of +4 with increasing stability of +2 as group is descended

    In contrast to group 13 derivatives R4M derivatives show lower bond polarity of the E-C bond,

    have an octet configuration and reactivity towards nucleophiles is diminished,

    ie. ER4 species are usually water-stable and often air-stable

  • 8/8/2019 Main Group OM Part 1 2005

    41/49

    Group 14 Organometallics

    Chlorination of ER4

    species: for E = C and Si chlorination of organic part but for

    E = Ge, Sn or Pb cleavage of the E-C bond

    CEH

    + H-

    u El

    nucleophilic

    attac

    electrophilic

    attac

    Availability of empty nd orbitals at E renders associative

    Mechanism of substitution possible by extending

    the C to 5

    Successive replacement ofR by more E groups X in

    RnEX4-n increases affinity of E for attacking nucleophiles

    Me4Sn inert towards H2O and [SnMe6]2- unknown, but

    Me2SnCl2 hydrolyses and [Me2SnCl4]2- can be prepared

  • 8/8/2019 Main Group OM Part 1 2005

    42/49

    Organosilicon Derivatives

    Preparation

    Metathesis withR

    Li,R

    MgX orR

    3Al SiX4 + nLiR

    SiX4-nR

    n + nLiX

    3 SiX4 + 4 AlR3 3 SiR4 + 4 AlX3

    Hydrosilylation (anti-Markovnikov) R3SiH + CH2=CHR R3SiCH2CH2R

    Industrially, prepared by 2 RCl + Si/Cu R2SiCl2 (ca. 70%)

    Organosilanes -properties

    R4Si are H2O and O2 stable because of low bond polarity, heterolytic cleavage does

    not occur readily

    Si-C bonds are thermally stable and do not decompose before ca. 700C

    Leads to use in silicon polymers from hydrolysis of chlorosilanes now a very mature

    industry

    Chlorosilanes are commonest precursor for wide range of organosilanes

    Rochowprocess

  • 8/8/2019 Main Group OM Part 1 2005

    43/49

    Organosilicon derivatives

    R2SiCl2 + H2O / catalyst p (R2SiO)n + ClR2Si(OSiR2)nOSiR2Cl

    cyclics linear

    D4 predominates

    Mainly R = Me 106 tonnes/year

    Thermal stability up to 350 rC Unzipping rate less when R = Ph

    Low temperature coefficient of viscosity Tg < 120 rC

    SiOSi ca 145 rC easy rotation

    Good insulator

    Hydrophobicity coatings, waxes, sealants

    Many variations in pendant groups - copolymers

    Si O

    SiO

    Si O

    SiO

  • 8/8/2019 Main Group OM Part 1 2005

    44/49

    Organosilicon Derivatives

    SelectedReactions of organohalosilanes

    R i l

    R iOH

    R i H2 (R i)2NH

    R i H (R i)2S

    (R Si)2O

    R SiR'

    R SiH

    R Si-SiR

    R SiSRR SiOR'

    R'Li

    Li lH4

    Li

    RSNa

    R'OH

    H2S

    NH3H2O

    -H2O

    -NH3

    -H2S

  • 8/8/2019 Main Group OM Part 1 2005

    45/49

    Organo(germanium), -tin and (-lead) derivatives, RnMX4-n

    Preparation ofR4M most commonly by metathesis of MX4 with RLi, RMgX and R3Al

    derivatives

    other methods similar to those employed for organosilanes

    Preparation of the most important routes involve redistribution of tetraalkyl

    RnMX4-n derivatives with tetrahalides; in contrast to group 13 derivatives

    these reactions generally involve elevated temperatures

    (ca. 170 C)

    Structure/ R4Sn simple tetrahedral (sp3) coordination is encountered inproperties tetraalkyls which are air/moisture stable

    R3SnX with more electronegative groups attached the Lewis acidity

    increases and higher coordinate derivatives result from coordination

    by bases in absence of external bases polymeric structures are

    common

    R

    SnR

    R

    Me SnMe

    MeCl

    N

    Me

    Sn

    MeMe

    Me

    Sn

    MeMe

    F

    Me

    Sn

    MeMe

    F

    F

    Me3SnF, 1 polymer with tbp Sn (5 coordinate)

  • 8/8/2019 Main Group OM Part 1 2005

    46/49

    Organotin Derivatives

    R3Sn l

    R3SnOH

    R3SnN'R2

    (R3Sn)2O

    R3SiR'

    R3SnH

    R3Sn-SnR3

    R3SnMn( O)5

    R3SnOR'

    R'Li

    Li lH 4

    Na

    NaMn( O)5

    R'OH, R3N

    LiNR'2

    H2O

    R3Sn 5H5

    Na 5H5

    SelectedReactions of organohalostananes

    ompounds containing R3S

    n are toxic and must be handled with great care

  • 8/8/2019 Main Group OM Part 1 2005

    47/49

    Organotin Hydrides

    RnSnX4-n RnSnH4-nLiAlH4, Et2O

    HC

    HC C

    O

    PhH

    H2C

    H2C C

    O

    PhH

    + Bun3SnH

    1. cat. (Ph3P)4Pd,

    thf, 20 C

    2. H2O

    Et3SnH + CH2=CH-CH=CH2 Et3SnCH2-CH=CH-CH3AIBN

    in absence of Lewis acids or radical forming reagents polar double bonds like C=O or

    C=N are not attackedwell-suited forchemoselective hydrogenation of activated C=C bonds

    in presence of AIBN 1,4-addition to conjugated dienes occurs

    Sn H + A B Sn A B HHydrostannation

  • 8/8/2019 Main Group OM Part 1 2005

    48/49

    Organotin Hydrides

    R'3Sn-H R'3Sn. + H

    .

    R'3Sn. + R R'3Sn + R

    .

    R. + R'3SnH RH + R'3Sn.

    (start)

    (propagation)

    Sn H + X Y Sn Y + HXHydrostannolysis

    R3Sn-H + Me OOH R3SnOO Me + H2 H-

    4 R3Sn-H + i(NR'2)4 (R3Sn)4Ti + 4 HNR'2 H+

    2 R3Sn-H + R'2Hg (R3Sn)2Hg + 2 R'H H.

    R3SnH transfer

    R6Sn2R =Me, -10

    R = , +100

    -Hg

    low polarity ofSn-H bond R3SnH may act as a source of H-, H+ or H.,

    depending on nature of attacking agent

  • 8/8/2019 Main Group OM Part 1 2005

    49/49

    Organotin Hydrides

    Me2 Br2 Me2

    Br

    Me2 H2

    But3SnH

    hY

    But3SnH

    hY

    most convenient methods for conversion R-X to R-H

    e.g., selective reduction of geminal dihalides in presence of other sensitive

    groups