69
Magnetostatics Magnetostatics Chapter 5

Magnetostatics

  • Upload
    talor

  • View
    38

  • Download
    31

Embed Size (px)

DESCRIPTION

Chapter 5. Magnetostatics. Department of Physics , ROCMA. The Lorentz Force Law. Magnetic Fields. The Lorentz Force Law. Magnetic Fields. The Lorentz Force Law. Magnetic Forces. => Lorentz Force. The Lorentz Force Law. Exp 1: cyclotron motion. The Lorentz Force Law. - PowerPoint PPT Presentation

Citation preview

Page 1: Magnetostatics

MagnetostaticsMagnetostatics

Chapter 5Chapter 5

Page 2: Magnetostatics

2

The Lorentz Force Law The Lorentz Force Law

EQF

Magnetic Magnetic FieldsFields

Page 3: Magnetostatics

3

The Lorentz Force Law The Lorentz Force Law

Magnetic Magnetic FieldsFields

EQF

Page 4: Magnetostatics

4

The Lorentz Force Law The Lorentz Force Law

Magnetic Magnetic ForcesForces )Bv(QFmag

)]Bv(E[QFFF magetotal

=> Lorentz Force

Page 5: Magnetostatics

5

The Lorentz Force Law The Lorentz Force Law

Exp 1: Exp 1: cyclotron cyclotron motionmotion

pmvQRBR

vmQvB

R

vm)Bv(Q

FF cL

2

2

Bv

Bv

Page 6: Magnetostatics

6

The Lorentz Force Law The Lorentz Force Law

Exp 2: Exp 2: A more exotic trajectory occurs if we include a uniform A more exotic trajectory occurs if we include a uniform electric field, at electric field, at right angles to the magnetic one. Suppose, for instance, that right angles to the magnetic one. Suppose, for instance, that BB points in the points in the x-direction, and x-direction, and EE in the z-direction. A particle at rest is in the z-direction. A particle at rest is released from the released from the origin; what path will it follow?origin; what path will it follow?

Page 7: Magnetostatics

7

The Lorentz Force Law The Lorentz Force Law

Exp 2:Exp 2:

frequency cyclotron: m

QB

)( )yB

E()y

B

E(

m

QBz

)( zzm

QBy

zmyQBQE

ymzQB

)zzyy(mam)zyByzBzE(Q

)BvE(QFL

2

1

zyByzB

B

zy

zyx

Bv

zzyyxrdt

dv

z)t(zy)t(yxr

00

0

0

0

no force on x-no force on x-directiondirection

Page 8: Magnetostatics

8

The Lorentz Force Law The Lorentz Force Law

Exp 2:Exp 2:

321

222

1

2

1

ctB

Etsinctcosc)t(y

B

EtsinBtcosAy

B

Eyy )y

B

E(zy

)(

)( )yB

E(z

)( zy

Substitute to (1)Substitute to (1)

B

Ec, ctsinctcosc)t(z

zB

E)tsinctcosc( zyzy

4412

12

Page 9: Magnetostatics

9

The Lorentz Force Law The Lorentz Force Law

Exp 2:Exp 2:The particle start from rest at origin000000 )(z)(y and )(z)(y

B

Ecc,cc

c )(z

cc )(zB

Ec )(y

cc )(y

orf

4231

1

42

2

31

0

000

000

000

000

ctsinctcosc)t(z 412

321 ctB

Etsinctcosc)t(y

)tcos(B

E)t(z

)tsint(B

E)t(y

1

Page 10: Magnetostatics

10

The Lorentz Force Law The Lorentz Force Law

Exp 2:Exp 2:

formula circle, R)Rz()tRy(

)tcost(sinR)Rz()tRy(

tcosR)Rz(

tsinR)tRy(

tcosRRz

tsinRtRy

)tcos(B

E)t(z

)tsint(B

E)t(y

222

22222

1

Page 11: Magnetostatics

11

The Lorentz Force Law The Lorentz Force Law

CurrentCurrent:the charge per unit time passing a given point:the charge per unit time passing a given point)s(ondsec/)C(coulombs )A(amperes

dt

dQI 11

)tv(dQ

v t

)tv(

dt

dQI

vv

Page 12: Magnetostatics

12

The Lorentz Force Law The Lorentz Force Law

CurrentCurrent

d)BI(d)Bv(dq)Bv(F)Bv(qF magiii

imag 1

)Bd(I)Bd(IF.const is I if

mag

Page 13: Magnetostatics

13

The Lorentz Force Law The Lorentz Force Law

Exp 3: Exp 3: A rectangular loop of wire, supporting a mass A rectangular loop of wire, supporting a mass mm, hangs , hangs vertically with one end in a uniform magnetic field vertically with one end in a uniform magnetic field BB, which points , which points into the page in the shaded region of figure. For what currentinto the page in the shaded region of figure. For what current I I, in , in the loop, would the the loop, would the magnetic force magnetic force upward exactly upward exactly balancebalance the the gravitational force gravitational force downward?downward?

)Bd(IBvqFmag

mgFg

Page 14: Magnetostatics

14

The Lorentz Force Law The Lorentz Force Law

Exp 3:Exp 3:

Ba

mgI mgIBa

mgF

IBa)Bd(IF

g

mag

m

Page 15: Magnetostatics

15

The Lorentz Force Law The Lorentz Force Law

Surface current density Surface current density

d

IdK

velocity:v

density eargch surface:, v K

da)BK(da)Bv(dq)Bv(Fmag

Page 16: Magnetostatics

16

The Lorentz Force Law The Lorentz Force Law

Volume current density Volume current density

da

IdJ

velocity:v

density eargch volume:, v J

d)BJ(d)Bv(dq)Bv(Fmag

Page 17: Magnetostatics

17

The Lorentz Force Law The Lorentz Force Law

volume d)BJ( d)Bv(

surface da)BK(da)Bv(

line d)BI(d)Bv(

ointp Bvq

dq)Bv(F

n

iii

mag

1

SummarizeSummarize

Page 18: Magnetostatics

18

The Lorentz Force Law The Lorentz Force Law

Exp 4(a): Exp 4(a): A current A current I I is is uniformly distributed uniformly distributed over a wire of over a wire of circular cross section, with radius circular cross section, with radius aa. Find the volume current density . Find the volume current density J .J .

2a

IJ

Page 19: Magnetostatics

19

The Lorentz Force Law The Lorentz Force Law

Exp 4(b): Exp 4(b): suppose the current density in the wire is proportional to suppose the current density in the wire is proportional to the distance from the axis.the distance from the axis. J=ks (k=constant) J=ks (k=constant) . Find the total . Find the total current current II in the wire. in the wire.

3

2

2

3

0

2

2

0 0

ka

dssk

)sdsd)(ks(

JdaI

JdadI

da

dIJ

a

s

Page 20: Magnetostatics

20

The Lorentz Force Law The Lorentz Force Law

Equation of continuityEquation of continuity

tJ

d)t

(ddt

dd)J(adJ

VVVS

total charge per unit time leaving a total charge per unit time leaving a volume Vvolume V

S

JdaI e- e- e-e-

e-e- e-e-J

Page 21: Magnetostatics

21

The Biot-Savart Law The Biot-Savart Law

The magnetic field of a steady currentThe magnetic field of a steady current

R

RdId

R

RI)r(B

20

20

44

Biot-Savart Biot-Savart lawlaw27

0 104 A/N permeability of free permeability of free spacespaceunitsunits)mA/(N )teslas(T 11

d

R

rPP

Page 22: Magnetostatics

22

The Biot-Savart Law The Biot-Savart Law

Exp 5: Exp 5: Find the magnetic field a distance Find the magnetic field a distance ss from a long straight from a long straight wire carrying a steady current wire carrying a steady current II . .

d

R

xyz )sin(sin

s

Idcos

s

I

z dcos)cos

s)(

s

cos(

IB

s

cos

RcosRs

dcos

sdsecsdtans

z cosdz sindRd

R

RdI)r(B

1200

22

20

2

2

2

22

20

44

4

1

4

2

1

2

1

Page 23: Magnetostatics

23

The Biot-Savart Law The Biot-Savart Law

Exp 5:Exp 5:

z s

Iz )(

s

I

z )sin(sins

I B

,

22

4

4

22

00

120

12

For an infinite wireFor an infinite wire

Page 24: Magnetostatics

24

The Biot-Savart Law The Biot-Savart Law

Page 25: Magnetostatics

25

The Biot-Savart Law The Biot-Savart Law

Exp 6: Exp 6: Find the magnetic field a distance Find the magnetic field a distance zz above the center of a above the center of a circular loop of radius circular loop of radius a a, which carries a steady current , which carries a steady current II . .

z )za(

aI

z )R

a(

Ia

z a)R

cos(

I

z cosR

adI)z(B

ˆ R

dI)(B

ˆdRd

R

RdI)r(B

/ 2322

20

30

20

2

0 20

20

20

2

2

24

4

4

4

d

a

R

z

Page 26: Magnetostatics

26

The Biot-Savart Law The Biot-Savart Law

volume dR

RJ

surface adR

RK

line dR

RI

)r(B

20

20

20

4

4

4

Page 27: Magnetostatics

27

The Divergence and Curl of B The Divergence and Curl of B

I dI

sd s

I

)zdzˆsdsds()ˆ s

I(dB

0

2

0

0

0

0

2

2

2

Page 28: Magnetostatics

28

The Divergence and Curl of B The Divergence and Curl of B

JB

adJad)B(

adJIdB enc

0

0

00

from stoke’s theoremfrom stoke’s theorem

Ampere’s law Ampere’s law in differential formin differential form

Ampere’s law Ampere’s law in integral formin integral formencIdB 0

Page 29: Magnetostatics

29

The Divergence and Curl of B The Divergence and Curl of B

),,(

),,(

ˆ)(ˆ)(ˆ)(

ˆ)(

4)(

2

zyxoffunctionaisJ

zyxoffunctionaisB

zdydxdd

zzzyyyxxxrrR

where

dR

RrJrB o

x

y

z

O r

r R

from Biot-Savart law

d])R

R(J)J(

R

R[

d)R

RJ()r(B

o

o

22

2

4

4

21 p @ )iv.(eq ,)B(A)A(B)BA(

Page 30: Magnetostatics

30

The Divergence and Curl of B The Divergence and Curl of B

])ˆ

()(ˆ

[4

)(22

d

R

RJJ

R

RrB o

)72.1.(42, 0ˆ)(1ˆ)

sin

1(

0),,()ˆˆˆ(

222

eqpRR

RRR

R

zyxJzz

yy

xx

J

since

0)( rB

The divergence of the magnetic field is zero

Page 31: Magnetostatics

31

The Divergence and Curl of B The Divergence and Curl of B

21@).()()()()()( p vieq ,ABBABAABBA

x

y

z

O r

r R

d

R

RJrB o )

ˆ(

4)(

2

22

22222

ˆ)()

ˆ(

)(ˆ

)()ˆ

()ˆ

(

R

RJ

R

RJ

JR

R

R

RJ

R

RJJ

R

R

R

RJ

0 0

dR

RJd

R

RJrB oo

22

ˆ)(

4)

ˆ(

4)(

Page 32: Magnetostatics

32

)100.1 .(50, )ˆ(4ˆ

32

eqpRR

R

The Divergence and Curl of B The Divergence and Curl of B

dR

RJd

R

RJrB oo

22

ˆ)(

4)

ˆ(

4)(

)(

)(4)(4

(4

32

rJ

drrrJdR

RJ

o

oo

x

y

z

O r

r R

since

Page 33: Magnetostatics

33

3

2

2/3222

2/3222

2222222

ˆ)(ˆ)(ˆ)()(

ˆ)(

])()()[(

ˆ)(ˆ)(ˆ)()]ˆˆˆ(),,([

])()()[(

ˆ)(ˆ)(ˆ)()]ˆˆˆ(),,([

)()()(

ˆ)(ˆ)(ˆ)(

)()()(

1)]ˆˆˆ(),,([

ˆ)(

R

zzzyyyxxxJ

R

RJ

zzyyxx

zzzyyyxxxz

zy

yx

xzyxJ

zzyyxx

zzzyyyxxxz

zy

yx

xzyxJ

zzyyxx

zzzyyyxxx

zzyyxxz

zy

yx

xzyxJ

R

RJ

The Divergence and Curl of B The Divergence and Curl of B

21 )(, )()()( piiieqfAAfAf

svv x

xx

x

adJR

xxdJ

R

xxd

R

RJ

JR

xx

R

RJ

R

RJ

JR

xxJ

R

xxJ

R

xx

R

xxJ

R

RJ

332

322

33332

)(]ˆ

)[(

)(]ˆ

)[(]ˆ

)[(

)())(()())((]ˆ

)[(

0 : for steady current: for steady current0 : for surface s → ∞: for surface s → ∞

)(4 2

dR

RJo

Page 34: Magnetostatics

34

The Divergence and Curl of B The Divergence and Curl of B

x

y

z

O r

r R

)(ˆ

)(4

(4

)(22

rJdR

RJd

R

RJrB o

oo

Ampere’s law Ampere’s law –in differential form

Page 35: Magnetostatics

35

Application of Ampere’s law Application of Ampere’s law

enco

encoo

o

IdB

IadrJdBadB

rJrB

)()(

)()( Ampere’s law Ampere’s law (in differential (in differential form)form)

Ampere’s law Ampere’s law (in integral (in integral form)form)

law sAmpere law tvarSaBiot ticsMagnetosta

law sGauss law coulomb ticsElectrosta

':

':

Page 36: Magnetostatics

36

Comparison of Magnetostatics and Electrostatics Comparison of Magnetostatics and Electrostatics

name no E

law sGauss E

,0

',1

0

law sAmpere JB

name no B

',

,0

0

law Force )BvEQ(F ,

Page 37: Magnetostatics

37

Exp 7: Exp 7: Find the magnetic field a distance Find the magnetic field a distance ss from a long straight from a long straight wire, carrying a wire, carrying a steady current steady current II..

Application of Ampere’s law Application of Ampere’s law

ˆ2

2

2)ˆ()ˆ(2

0

s

IB

s

IB

IBsdBssd B

IdB

o

o

o

enco

Page 38: Magnetostatics

38

Exp 8: Exp 8: Find the magnetic field of an infinite uniform surface Find the magnetic field of an infinite uniform surface current current , flowing over the , flowing over the xyxy plane. plane.

Application of Ampere’s law Application of Ampere’s law

xKK ˆ

0,ˆ2

0,ˆ2

2

2

)ˆ(ˆ

)ˆ()ˆ()ˆ()ˆ(

0

0

0

z for yK

z for yK

B

KB

KB

dyKdydzxxK

dy yyBdy yyB

adKIdB

o

o

o

o

oo

oenco

Page 39: Magnetostatics

39

Exp 9: Exp 9: Find the magnetic field of a very long solenoid, consisting Find the magnetic field of a very long solenoid, consisting of of nn closely closely wound turns per unit length on a cylinder of radius wound turns per unit length on a cylinder of radius RR and and carrying a carrying a steady current steady current II . .

Application of Ampere’s law Application of Ampere’s law

Page 40: Magnetostatics

40

Application of Ampere’s law Application of Ampere’s law

Page 41: Magnetostatics

41

Exp 9:Exp 9: Application of Ampere’s law Application of Ampere’s law

02 encoIsBdB

Page 42: Magnetostatics

42

Exp 9:Exp 9: Application of Ampere’s law Application of Ampere’s law

0)()(

0)()()(

0)]()([

:1

bBaB

B equal bBaB

ILbBaBdB

loop for

also

enco

znIB

nIB

nILIBLdB

loop for

o

o

oenco

ˆ

:2

solenoid the outside

solenoid the inside z nIB o

,0

Page 43: Magnetostatics

43

Exp 10: Exp 10: A toroidal coil consists of a circular ring, or ‘donut’, A toroidal coil consists of a circular ring, or ‘donut’, around which a around which a long wire is wrapped. The winding is uniform and tight long wire is wrapped. The winding is uniform and tight enough so that enough so that each turn can be considered a closed loop. The cross-each turn can be considered a closed loop. The cross-sectional shape of sectional shape of the coil is immaterial. I made it the coil is immaterial. I made it rectangularrectangular in in figure a figure a for the sake of for the sake of simplicity, but it could just as well be circular or even simplicity, but it could just as well be circular or even some some weird weird asymmetrical formasymmetrical form, as in , as in figure bfigure b, just as long as the , just as long as the shape remains the shape remains the same all the way around the ring. same all the way around the ring. In that case it follows In that case it follows that the that the magnetic field of the toroid is circumferential at all magnetic field of the toroid is circumferential at all points, both points, both insideinside and and outsideoutside the coil. the coil.

Application of Ampere’s law Application of Ampere’s law

(a)(a) (b)(b)

Page 44: Magnetostatics

R

44

Exp 10:Exp 10: Application of Ampere’s law Application of Ampere’s law

From Biot-Savart lawFrom Biot-Savart law

zIyIxIzIsII

zzzysxsx

zzysxszzyxx

rrR

where

dR

RIBd

zsszs ˆˆsinˆcosˆˆ

ˆ)(ˆsinˆ)cos(

)ˆˆsinˆcos()ˆˆ0ˆ(

4 30

Page 45: Magnetostatics

45

zxIyzzIsxIxsIzzI

zsxs

II

yzzsx

II

xzzs

II

zzssx

III

zyx

RI

sszzs

ss

zs

zs

zss

ˆ]sin[ˆ)](cos)cos([ˆ)])(([sin

ˆ)cos()sin(

cossin

ˆ)()cos(

cos

ˆ)()sin(

sin

)()sin()cos(

sincos

ˆˆˆ

Exp 10:Exp 10: Application of Ampere’s law Application of Ampere’s law

R

Page 46: Magnetostatics

46

y)]zz(cosI)cossx(I[dR

}z]sinxI[

y)]zz(cosI)cossx(I[

x)]sI)zz(I({[sindR

dR

RIBd

sz

s

sz

zs

30

30

30

1

4

1

4

4

Exp 10:Exp 10: Application of Ampere’s law Application of Ampere’s law

B

R

sin)sin(

Page 47: Magnetostatics

47

Exp 10:Exp 10: Application of Ampere’s law Application of Ampere’s law

coil the outside points for,

coil the inside points for, ˆs

NIB

ˆs

NIB

s

NIB

NIsB

NIˆsdˆB

IdB

law s'Ampere from

o

oo

o

o

enco

02

22

2

2

0

Ampere’s Ampere’s looploop

Page 48: Magnetostatics

48

Exp 10:Exp 10: Application of Ampere’s law Application of Ampere’s law

Page 49: Magnetostatics

49

Magnetic Vector Potential Magnetic Vector Potential

potential vector:A ,AB B

potential scalar:V, VE E

0

0

JA

0A since

JA)A()A(B

)A(B

0

0

2

2

0

Page 50: Magnetostatics

50

Magnetic Vector Potential Magnetic Vector Potential

dR

)r(J

4(r)A

JA

0solution

0

2

dR

V

equation s'Poisson ,V

solution

0

0

2

4

1

D, dR

I

4

D, adR

K

4

D, dR

)r(J

4

(r)A

0

0

0

1

2

3

Page 51: Magnetostatics

51

Magnetic dipole of the vector potential Magnetic dipole of the vector potential

A

m

I

x

y

z

)z,,x(P 0

a

d

r

r r

)y(ˆ cosr

adIˆr

adI

R

dIA

2

0

02

0

00

444

cosr

ax

r

a

cosr

a

r

a

rrr/r,ra, cosr

ar

r

a

)cosr

ar

r

a(

r

r

cosararr

/

22

2

2

2

22

2

2122

2

222

21

21

12

1

21

2

cosr

xcos cosxacosra

)ysinaxcosa()zzxx(ar

Page 52: Magnetostatics

52

Magnetic dipole of the vector potential Magnetic dipole of the vector potential

A

m

I

x

y

z

)z,,x(P 0

a

d

r

r r

)rm(r

ˆ )(sinr

m ˆ )(sin

r

)S(I

ˆ )r

x(

r

)a(I ˆ )(

r

xIa

ˆ)sin(r

xIa

ˆ dcosr

xIa

ˆ d)cosr

ax

r

a(cos

r

aIA

20

20

20

2

20

3

20

2

03

20

22

03

20

22

22

0

0

4

44

44

24

1

24

4

21

4

dipole magnetic, SIzISm

00

Page 53: Magnetostatics

53

Magnetic dipole of the vector potential Magnetic dipole of the vector potential

A

m

I

x

y

z

)z,,x(P 0

a

d

r

r r

ˆ sinr

m

r cos

r

m

ˆˆ)]sinr

m

rr(

r)sinr

m[(

sinr

AsinrrAAr

ˆsinrˆrr

sinr

AB

ˆsinr

m)rm(

r A

r

30

30

20

22

02

2

20

20

4

2

4

04

4

1

1

44

0 0

Page 54: Magnetostatics

54

Magnetic Vector Potential Magnetic Vector Potential

Exp 11: Exp 11: A spherical shell, of radius A spherical shell, of radius DD, carrying a uniform surface , carrying a uniform surface charge charge σσ, is set spinning at angular velocity , is set spinning at angular velocity ωω. Find the vector . Find the vector potential it produces at point potential it produces at point rr..

D

Page 55: Magnetostatics

55

Magnetic Vector Potential Magnetic Vector Potential

Exp 11:Exp 11:

]z)sinsin(sin

y)cossincossin(cos

x)sinsin(cos[D

cosDsinsinDcossinD

cossin

zyx

)r(

vK

0

)ddsinD(R

)r(Kad

R

)r(K)r(A

200

44

R

DD

0

2

0

2

0dcos dsin

Page 56: Magnetostatics

56

Magnetic Vector Potential Magnetic Vector Potential

Exp 11:Exp 11:R

DD

1

1

2222

2230

1

1 22

30

0 22

30

0

22

0

0

232

22

22

4

]DrurDrD

DrurD[

sinD

duDrurD

usinD

y)cosDrrD

dsincos(

sinD

y)dsinD(R

)cossinD(d )r(A

110

u, u

dsin)(cosdducosu let

Page 57: Magnetostatics

57

Magnetic Vector Potential Magnetic Vector Potential

Exp 11:Exp 11:

1

1

2222

22

1

1

22212222

1

1

232222

2122

1

1

221

1

22

1

1

1

1

1

1

22

22

1

1 22

23

2323

1

23

12

21

2

21

2

12

]DrurDrD

DrurD[

)]DrurD(Dru[)DrurD(rD

])DrurD(rD

)DrurD(Dr

u[

duDrurD )Dr

(DrurDDr

u

udv vuvdu

DrurDDr

vduDrurD

vd

duuduu

let, duDrurD

u

/

//

Page 58: Magnetostatics

58

Magnetic Vector Potential Magnetic Vector Potential

Exp 11:Exp 11:

rD, )r( r

D

rD, )r( D

rD, r

D

rD, D

rsinD

y

y)]rD)(DrrD(|rD|)DrrD)[(rD

(sinD

y]DrurDrD

DrurD[

sinD)r(A

3

40

0

2

230

222222

30

1

1

2222

2230

3

3

3

23

2

2

3

1

2

232

R

DD

y sinrr

Page 59: Magnetostatics

59

Magnetic Vector Potential Magnetic Vector Potential

Exp 11:Exp 11:

rD, ˆr

sin

D

rD, ˆsinr D

),,r(A

rD, )r( r

D

rD, )r( D

)r(A

2

40

0

3

40

0

3

3

3

3

DD

),,r(

Page 60: Magnetostatics

60

Magnetic Vector Potential Magnetic Vector Potential

Exp 11:Exp 11:

rD, ˆr

sin

D

rD, ˆsinr D

),,r(A

2

40

0

3

3

Dz D)ˆ sinr (cosD

ˆ]A)rA(r

[r

ˆ)]rA(r

Asin

[r

r]A)A(sin[sinr

AB

rr

000

3

2

3

2

3

2

111

1

For D r≧For D r≧

0

000

DD

),,r(

Page 61: Magnetostatics

61

Summary Summary

Page 62: Magnetostatics

62

Magnetostatic Boundary Conditions Magnetostatic Boundary Conditions

B

B

//B

Page 63: Magnetostatics

63

Magnetostatic Boundary Conditions Magnetostatic Boundary Conditions

belowabove

belowabove

BB

aBaB

adB

0

0

a

n

n

Page 64: Magnetostatics

64

Magnetostatic Boundary Conditions Magnetostatic Boundary Conditions

)nK(BB

KBB

KBB

IdB

belowabove

//below

//above

//below

//above

enc

0

0

0

0

n

Page 65: Magnetostatics

65

Page 66: Magnetostatics

66

Page 67: Magnetostatics

67

Page 68: Magnetostatics

68

Page 69: Magnetostatics

69