15
Rockets-Micro thrusters State of the art microthrusters…  DARPA + Tanner research Micro-thrusters are miniature actuators… 

MAE 2201 FA13 Lecture 24 Orbital Eq

Embed Size (px)

Citation preview

Page 1: MAE 2201 FA13 Lecture 24 Orbital Eq

8/10/2019 MAE 2201 FA13 Lecture 24 Orbital Eq

http://slidepdf.com/reader/full/mae-2201-fa13-lecture-24-orbital-eq 1/15

Rockets-Micro thrusters

State of the artmicrothrusters… 

DARPA + Tanner

research

Micro-thrusters are

miniature actuators… 

Page 2: MAE 2201 FA13 Lecture 24 Orbital Eq

8/10/2019 MAE 2201 FA13 Lecture 24 Orbital Eq

http://slidepdf.com/reader/full/mae-2201-fa13-lecture-24-orbital-eq 2/15

Rockets-Micro thrusters

Micro-thrusters are miniature actuators created using smallcavities, rocket propellant, and low energy igniters. 

Work like Space Shuttle solid boosters, but are 1000’s of times smaller  

Individual micro-electromechanical system (MEMS) thrusters

size: poppy seed-sized cell fueled with lead styphnate propellant, fired

more than 20 times at 1-second intervals each thruster delivered 0.0001 Newton seconds of impulse. 

MEMS design, based on silicon chip fabrication technology, offers

several advantages over conventional thrusters

no moving parts

utilizes a variety of propellants

is scalable

eliminates the need for tanks, fuel lines and valves, and fully

integrates the structure of the satellite with the propulsion to power it.

Page 3: MAE 2201 FA13 Lecture 24 Orbital Eq

8/10/2019 MAE 2201 FA13 Lecture 24 Orbital Eq

http://slidepdf.com/reader/full/mae-2201-fa13-lecture-24-orbital-eq 3/15

Rockets-Micro thrusters

MEMS micro-thruster arrays are fabricated as a three-layersilicon and glass sandwich,

middle layer consisting of multiple small propellant cells sealed with

a rupturable diaphragm on one side and an ignitor on the other.

Each cell is a separate thruster, and when ignited, delivers one

impulse bit.

Delivering propulsion in discrete increments by igniting thrusters in

controlled sequences has lent the technology the name "digital

propulsion." 

Page 4: MAE 2201 FA13 Lecture 24 Orbital Eq

8/10/2019 MAE 2201 FA13 Lecture 24 Orbital Eq

http://slidepdf.com/reader/full/mae-2201-fa13-lecture-24-orbital-eq 4/15

Rockets-Micro thrusters

State of art  Cavity now built of aluminum to withstand higher pressures

Cavity is 4mm per side

Latest micro-thruster design may generate up to 40 mN-seconds of

impulse by combusting 35 milligrams of propellant primarily composed

of black powder.

Isp=116 s

Will be used for small satellites, guided munitions etc.

Page 5: MAE 2201 FA13 Lecture 24 Orbital Eq

8/10/2019 MAE 2201 FA13 Lecture 24 Orbital Eq

http://slidepdf.com/reader/full/mae-2201-fa13-lecture-24-orbital-eq 5/15

Orbital Mechanics

Last time we discussed burnout velocity…why isthat important?

Velocities on order of 7.9 km/s are needed to place

satellites in Earth orbit

Interplanetary vehicles need 11 km/s to get out of Earth’s

gravity

Page 6: MAE 2201 FA13 Lecture 24 Orbital Eq

8/10/2019 MAE 2201 FA13 Lecture 24 Orbital Eq

http://slidepdf.com/reader/full/mae-2201-fa13-lecture-24-orbital-eq 6/15

Page 7: MAE 2201 FA13 Lecture 24 Orbital Eq

8/10/2019 MAE 2201 FA13 Lecture 24 Orbital Eq

http://slidepdf.com/reader/full/mae-2201-fa13-lecture-24-orbital-eq 7/15

Page 8: MAE 2201 FA13 Lecture 24 Orbital Eq

8/10/2019 MAE 2201 FA13 Lecture 24 Orbital Eq

http://slidepdf.com/reader/full/mae-2201-fa13-lecture-24-orbital-eq 8/15

Page 9: MAE 2201 FA13 Lecture 24 Orbital Eq

8/10/2019 MAE 2201 FA13 Lecture 24 Orbital Eq

http://slidepdf.com/reader/full/mae-2201-fa13-lecture-24-orbital-eq 9/15

Page 10: MAE 2201 FA13 Lecture 24 Orbital Eq

8/10/2019 MAE 2201 FA13 Lecture 24 Orbital Eq

http://slidepdf.com/reader/full/mae-2201-fa13-lecture-24-orbital-eq 10/15

Orbital Mechanics

Starts with Kepler who developed the three laws of planetarymotion

First: The orbit of each planet is an ellipse, with the sun at

a focus

Second: The line joining the planet to the sun sweeps out

equal areas in equal times

Page 11: MAE 2201 FA13 Lecture 24 Orbital Eq

8/10/2019 MAE 2201 FA13 Lecture 24 Orbital Eq

http://slidepdf.com/reader/full/mae-2201-fa13-lecture-24-orbital-eq 11/15

Parameters of Elliptic Orbit

Page 12: MAE 2201 FA13 Lecture 24 Orbital Eq

8/10/2019 MAE 2201 FA13 Lecture 24 Orbital Eq

http://slidepdf.com/reader/full/mae-2201-fa13-lecture-24-orbital-eq 12/15

Orbital Mechanics

Third: The square of the period,  (time for 1 orbit) of aplanet is proportional to the cube of its mean distance

from the sun (semi-major axis, “a”, of the ellipse) 

Review Example Problem 8.2 on pg. 675 for period

calculations

Newton:

Law of gravity:

r mma F   

GMm F 

2

Page 13: MAE 2201 FA13 Lecture 24 Orbital Eq

8/10/2019 MAE 2201 FA13 Lecture 24 Orbital Eq

http://slidepdf.com/reader/full/mae-2201-fa13-lecture-24-orbital-eq 13/15

Orbital Mechanics

Law of gravity: G is gravitational constant

Vector r is distance

M, m are masses of the two bodies

The potential energy of a body of mass m foundsome distance away from a body of mass M (>m) is:

The kinetic energy of the small body is (in a polarcoordinate system):

GMm

 F 

2

GMm

222

2

1

2

1    r r mmV T   

Page 14: MAE 2201 FA13 Lecture 24 Orbital Eq

8/10/2019 MAE 2201 FA13 Lecture 24 Orbital Eq

http://slidepdf.com/reader/full/mae-2201-fa13-lecture-24-orbital-eq 14/15

Orbital Mechanics

The motion of the space vehicle in the direction is the conservation ofangular momentum

The orbit equation : gives the orbital or trajectory motion of satellite or planet

e eccentricity e=0; path is circle

e<1; path is an ellipse

e>1; path is hyperbola

e=1; path is parabola

h is angular momentum per unit mass is a constant =

p=h2 /k2  e=A(h2 /k2) all these are determined from burnout conditions 

G*M=k2

Review Example Problem 8.1 on page 668 for trajectory calculations

 

 

 I momentumangular 

const r m

 _ 

.2

)cos(1   C e pr 

 

 2r 

Page 15: MAE 2201 FA13 Lecture 24 Orbital Eq

8/10/2019 MAE 2201 FA13 Lecture 24 Orbital Eq

http://slidepdf.com/reader/full/mae-2201-fa13-lecture-24-orbital-eq 15/15

Orbital Mechanics

e eccentricity e=0; path is circle

e<1; path is an ellipse

e>1; path is hyperbola

e=1; path is parabola

e