3
NATIONAL UNIVERSITY OF SINGAPORE SEMESTER 2, 2013/2014 MA1521 Calculus for Computing Tutorial Solution 7 1. (a) This is a geometric series with common ratio x - 1 4 : X n=1 (x - 1) n-3 +(x - 1) n-1 4 n +2 2n-1 = 1 6(x - 1) 2 X n=1 x - 1 4 n-1 . It converges if and only if x - 1 4 < 1; that is, |x - 1| < 4. So its radius of convergence is R = 4. (b) Let c n = n 2n (-2) n 4 n (2n + 1)! . Then lim n→∞ c n+1 c n = lim n→∞ (n + 1) 2n+2 2 n+1 4 n+1 (2n + 3)! · 4 n (2n + 1)! n 2n 2 n = lim n→∞ (n + 1) 2 2(2n + 2)(2n + 3) 1+ 1 n 2n = lim n→∞ (1 + 1 n ) 2 2(2 + 2 n )(2 + 3 n ) lim n→∞ 1+ 1 n n 2 = e 2 8 . Then the radius of convergence is R = e 2 8 -1 = 8 e 2 . 2. (a) f (x)= (x - 1) 2 x +1 = (x - 1) 2 2+(x - 1) = (x - 1) 2 2 · 1 1+ x-1 2 = (x - 1) 2 2 · X n=0 x - 1 -2 n = X n=0 (-1) n (x - 1) n-2 2 n+1 = X n=2 (-1) n 2 n-1 (x - 1) n . (b) f (x)= 1 x 2 - 4x +5 = 1 1+(x - 2) 2 = X n=0 (-1) n (x - 2) 2n . 3. (a) ∂z ∂x =3x 2 and ∂z ∂y = -3y 2 . Then ∂z ∂x (3,2) = 27 and ∂z ∂y (3,2) = -12. The equation of the tangent plane is given by z = 19 + 27(x - 3) - 12(y - 2) = 27x - 12y - 38. 1

MA1521-Solution7

  • Upload
    ray-tan

  • View
    33

  • Download
    0

Embed Size (px)

DESCRIPTION

xcvcxxcv

Citation preview

  • NATIONAL UNIVERSITY OF SINGAPORE

    SEMESTER 2, 2013/2014

    MA1521 Calculus for Computing Tutorial Solution 7

    1. (a) This is a geometric series with common ratiox 14

    :

    n=1

    (x 1)n3 + (x 1)n14n + 22n1

    =1

    6(x 1)2n=1

    (x 14

    )n1.

    It converges if and only if

    x 14 < 1; that is, |x 1| < 4.

    So its radius of convergence is R = 4.

    (b) Let cn =n2n(2)n4n(2n+ 1)!

    . Then

    limn

    cn+1cn = limn

    ((n+ 1)2n+22n+1

    4n+1(2n+ 3)! 4

    n(2n+ 1)!

    n2n2n

    )= lim

    n(n+ 1)2

    2(2n+ 2)(2n+ 3)

    (1 +

    1

    n

    )2n= lim

    n(1 + 1

    n)2

    2(2 + 2n)(2 + 3

    n)

    (limn

    (1 +

    1

    n

    )n)2=e2

    8.

    Then the radius of convergence is R =

    (e2

    8

    )1=

    8

    e2.

    2. (a) f(x) =(x 1)2x+ 1

    =(x 1)2

    2 + (x 1) =(x 1)2

    2 11 + x1

    2

    =(x 1)2

    2n=0

    (x 12

    )n=n=0

    (1)n(x 1)n22n+1

    =n=2

    (1)n2n1

    (x 1)n.

    (b) f(x) =1

    x2 4x+ 5 =1

    1 + (x 2)2 =n=0

    (1)n(x 2)2n.

    3. (a)z

    x= 3x2 and

    z

    y= 3y2. Then z

    x

    (3,2)

    = 27 andz

    y

    (3,2)

    = 12.The equation of the tangent plane is given by

    z = 19 + 27(x 3) 12(y 2) = 27x 12y 38.

    1

  • MA1521 CALCULUS FOR COMPUTING TUTORIAL SOLUTION 7 2

    (b)z

    x= y and

    z

    y= x. Then

    z

    x

    (1,1)

    = 1 and zy

    (1,1)

    = 1.

    The equation of the tangent plane is given by

    z = 1 1(x 1) + 1(y + 1) = x+ y + 1.

    (c) Let f(x, y, z) = x2 + 4y2 z2. Then

    f(x, y, z) = 2xi+ 8yj 2zk and f(3, 2, 5) = 6i+ 16j 10k.

    It follows that the tangent plane is given by

    6(x 3) + 16(y 2) 10(z 5) = 0.

    That is, 6x+ 16y 10z = 0; or equivalently 3x+ 8y 5z = 0.

    4. (a) Let f(x, y) = exy2 + x sin(xy). Then

    f

    x= exy2 + sinxy + xy cosxy,

    f

    y= 2yex + x2 cosxy,

    2f

    x2=

    x

    f

    x= exy2 + 2y cosxy xy2 sinxy,

    2f

    y2=

    y

    f

    y= 2ex x3 sinxy

    2f

    x y=

    x

    f

    y= 2yex + 2x cosxy x2y sinxy.

    (b) Let f(x, y) =x+ y

    x2 + y. Then

    f

    x=

    (x2 + y) (x+ y)2x(x2 + y)2

    =x2 2xy + y

    (x2 + y)2,

    f

    y=

    (x2 + y) (x+ y)(x2 + y)2

    =x2 x

    (x2 + y)2,

    2f

    x2=

    (2x 2y)(x2 + y)2 (x2 2xy + y) 4x(x2 + y)(x2 + y)4

    =2x3 2y2 + 6xy(1 x)

    (x2 + y)3

    2f

    y2=(x2 x) 2(x2 + y)

    (x2 + y)4=

    2(x x2)(x2 + y)3

    2f

    x y=

    (2x 1)(x2 + y)2 (x2 x) 4x(x2 + y)(x2 + y)4

    =2x3 + 3x2 + (2x 1)y

    (x2 + y)3.

  • MA1521 CALCULUS FOR COMPUTING TUTORIAL SOLUTION 7 3

    5.dx

    dt= 2t,

    dy

    dt= 6 cos 2t,

    u

    x= 2x and

    u

    y= 2y. Then

    du

    dt=u

    x

    dx

    dt+u

    y

    dy

    dt= 2x 2t+ (2y) 6 cos 2t

    = 4t3 4t 36 sin 2t cos 2t = 4t(t2 1) 18 sin 4t.

    6. (a) f(x, y) = 2xi+ 2yj. Let v = u|u| =113

    (2i 3j). Then

    Dvf(1, 2) = f(2, 4) v = (2i+ 4j) 113

    (2i 3j) = 813.

    (b) f(x, y, z) = tan1(y + z)i+ x1 + (y + z)2

    j +x

    1 + (y + z)2k.

    Let v =u

    |u| =13(i+ j k). Then

    Dvf(1, 0, 1) = f(1, 0, 1) v =(pi

    4i+

    1

    2j +

    1

    2k

    ) 1

    3(i+ j k) = pi

    43.

    7. (a) Let c2n =42n

    9nn5/4. Then

    limn

    c2n+2c2n

    = limn

    42

    9

    (n

    n+ 1

    )5/4= lim

    n16

    9

    1

    (1 + 1n)5/4

    =16

    9.

    Therefore, the radius of convergence is R =

    9

    16=

    3

    4.

    (b) Let c2n1 =1

    32n14nn2. Then

    limn

    c2n+1c2n1

    = limn

    32n14nn2

    32n+14n+1(n+ 1)2= lim

    n1

    36(1 + 1n)2

    =1

    36.

    Then the radius of convergence is R =36 = 6.