M28W640FCB

Embed Size (px)

Citation preview

  • 7/28/2019 M28W640FCB

    1/55

    1/55

    PRELIMINARY DATA

    April 2005

    This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to change without notice.

    M28W640FCT

    M28W640FCB

    64 Mbit (4Mb x16, Boot Block)3V Supply Flash Memory

    FEATURES SUMMARY SUPPLY VOLTAGE

    VDD = 2.7V to 3.6V Core Power Supply

    VDDQ= 1.65V to 3.6V for Input/Output

    VPP = 12V for fast Program (optional)

    ACCESS TIME: 70, 85, 90,100ns

    PROGRAMMING TIME:

    10s typical

    Double Word Programming Option

    Quadruple Word Programming Option

    COMMON FLASH INTERFACE

    MEMORY BLOCKS

    Parameter Blocks (Top or Bottomlocation)

    Main Blocks

    BLOCK LOCKING

    All blocks locked at Power Up

    Any combination of blocks can be locked

    WP for Block Lock-Down SECURITY

    128 bit user Programmable OTP cells

    64 bit unique device identifier

    AUTOMATIC STAND-BY MODE

    PROGRAM and ERASE SUSPEND

    100,000 PROGRAM/ERASE CYCLES perBLOCK

    ELECTRONIC SIGNATURE

    Manufacturer Code: 20h

    Top Device Code, M28W640FCT: 8848h

    Bottom Device Code, M28W640FCB:8849h

    PACKAGES

    Compliant with Lead-Free SolderingProcesses

    Lead-Free Versions

    Figure 1. Packages

    TSOP48 (N)

    12 x 20mm

    FBGA

    TFBGA48 (ZB)

    6.39 x 10.5mm

  • 7/28/2019 M28W640FCB

    2/55

    M28W640FCT, M28W640FCB

    2/55

    TABLE OF CONTENTS

    FEATURES SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

    Figure 1. Packages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

    SUMMARY DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

    Figure 2. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

    Table 1. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

    Figure 3. TSOP Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

    Figure 4. TFBGA Connections (Top view through package) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

    Figure 5. Block Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

    Figure 6. Protection Register Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

    SIGNAL DESCRIPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

    Address Inputs (A0-A21). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9Data Input/Output (DQ0-DQ15). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

    Chip Enable (E). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

    Output Enable (G). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

    Write Enable (W). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

    Write Protect (WP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

    Reset (RP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

    VDD Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

    VDDQ Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

    VPP Program Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

    VSS Ground. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

    BUS OPERATIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

    Read.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

    Write. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

    Output Disable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

    Standby. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

    Automatic Standby. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

    Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

    Table 2. Bus Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

    COMMAND INTERFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

    Read Memory Array Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

    Read Status Register Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

    Read Electronic Signature Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

    Table 3. Command Codes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

    Read CFI Query Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

    Block Erase Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

    Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

    Double Word Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

    Quadruple Word Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

  • 7/28/2019 M28W640FCB

    3/55

    3/55

    M28W640FCT, M28W640FCB

    Clear Status Register Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

    Program/Erase Suspend Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

    Program/Erase Resume Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

    Protection Register Program Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13Block Lock Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

    Block Unlock Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

    Block Lock-Down Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

    Table 4. Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

    Table 5. Read Electronic Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

    Table 6. Read Block Lock Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

    Table 7. Read Protection Register and Lock Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

    Table 8. Program, Erase Times and Program/Erase Endurance Cycles . . . . . . . . . . . . . . . . . . . 16

    BLOCK LOCKING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

    Reading a Blocks Lock Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17Locked State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

    Unlocked State. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

    Lock-Down State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

    Locking Operations During Erase Suspend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

    Table 9. Block Lock Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

    Table 10. Protection Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

    STATUS REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

    Program/Erase Controller Status (Bit 7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

    Erase Suspend Status (Bit 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

    Erase Status (Bit 5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

    Program Status (Bit 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

    VPP Status (Bit 3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

    Program Suspend Status (Bit 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

    Block Protection Status (Bit 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

    Reserved (Bit 0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

    Table 11. Status Register Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

    MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

    Table 12. Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

    DC and AC PARAMETERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

    Table 13. Operating and AC Measurement Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

    Figure 7. AC Measurement I/O Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

    Figure 8. AC Measurement Load Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

    Table 14. Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

    Table 15. DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

    Figure 9. Read AC Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

    Table 16. Read AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

    Figure 10.Write AC Waveforms, Write Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

    Table 17. Write AC Characteristics, Write Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

  • 7/28/2019 M28W640FCB

    4/55

    M28W640FCT, M28W640FCB

    4/55

    Figure 11.Write AC Waveforms, Chip Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

    Table 18. Write AC Characteristics, Chip Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

    Figure 12.Power-Up and Reset AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

    Table 19. Power-Up and Reset AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

    PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

    Figure 13.TSOP48 - 48 lead Plastic Thin Small Outline, 12 x 20mm, Package Outline . . . . . . . . . 30

    Table 20. TSOP48 - 48 lead Plastic Thin Small Outline, 12 x 20mm, Package Mechanical Data . 30

    Figure 14.TFBGA48 6.39x10.5mm - 8x6 ball array, 0.75mm pitch, Bottom View Package Outline 31

    Table 21. TFBGA48 6.39x10.5mm - 8x6 ball array, 0.75mm pitch, Package Mechanical Data . . . 31

    Figure 15.TFBGA48 Daisy Chain - Package Connections (Top view through package) . . . . . . . . 32

    Figure 16.TFBGA48 Daisy Chain - PCB Connections proposal (Top view through package) . . . . 32

    PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

    Table 22. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33Table 23. Daisy Chain Ordering Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

    APPENDIX A.BLOCK ADDRESS TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

    Table 24. Top Boot Block Addresses, M28W640FCT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

    Table 25. Bottom Boot Block Addresses, M28W640FCB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

    APPENDIX B.COMMON FLASH INTERFACE (CFI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

    Table 26. Query Structure Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

    Table 27. CFI Query Identification String. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

    Table 28. CFI Query System Interface Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

    Table 29. Device Geometry Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

    Table 30. Primary Algorithm-Specific Extended Query Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

    Table 31. Security Code Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

    APPENDIX C.FLOWCHARTS AND PSEUDO CODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

    Figure 17.Program Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

    Figure 18.Double Word Program Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

    Figure 19.Quadruple Word Program Flowchart and Pseudo Code. . . . . . . . . . . . . . . . . . . . . . . . . 46

    Figure 20.Program Suspend & Resume Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . 47

    Figure 21.Erase Flowchart and Pseudo Code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

    Figure 22.Erase Suspend & Resume Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . 49Figure 23.Locking Operations Flowchart and Pseudo Code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

    Figure 24.Protection Register Program Flowchart and Pseudo Code. . . . . . . . . . . . . . . . . . . . . . . 51

    APPENDIX D.COMMAND INTERFACE AND PROGRAM/ERASE CONTROLLER STATE. . . . . . . . 52

    Table 32. Write State Machine Current/Next, sheet 1 of 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

    Table 33. Write State Machine Current/Next, sheet 2 of 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

    REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

    Table 34. Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

  • 7/28/2019 M28W640FCB

    5/55

    5/55

    M28W640FCT, M28W640FCB

    SUMMARY DESCRIPTIONThe M28W640FCT and M28W640FCB are 64Mbit (4 Mbit x 16) non-volatile Flash memories thatcan be erased electrically at block level and pro-

    grammed in-system on a Word-by-Word basis us-ing a 2.7V to 3.6V VDD supply for the circuitry anda 1.65V to 3.6V VDDQ supply for the Input/Outputpins. An optional 12V VPP power supply is provid-ed to speed up customer programming.

    The devices feature an asymmetrical blocked ar-chitecture. They have an array of 135 blocks: 8Parameter Blocks of 4 KWord and 127 MainBlocks of 32 KWord. The M28W640FCT has theParameter Blocks at the top of the memory ad-dress space while the M28W640FCB locates theParameter Blocks starting from the bottom. Thememory maps are shown in Figure 5., Block Ad-dresses.

    The M28W640FCT and M28W640FCB feature aninstant, individual block locking scheme that al-lows any block to be locked or unlocked with no la-tency, enabling instant code and data protection.All blocks have three levels of protection. They canbe locked and locked-down individually preventingany accidental programming or erasure. There isan additional hardware protection against programand erase. When VPP VPPLK all blocks are pro-tected against program or erase. All blocks arelocked at Power Up.

    Each block can be erased separately. Erase canbe suspended in order to perform either read or

    program in any other block and then resumed.Program can be suspended to read data in anyother block and then resumed. Each block can beprogrammed and erased over 100,000 cycles.

    The device includes a 192 bit Protection Registerto increase the protection of a system design. TheProtection Register is divided into a 64 bit segmentand a 128 bit segment. The 64 bit segment con-tains a unique device number written by ST, whilethe second one is one-time-programmable by theuser. The user programmable segment can bepermanently protected. Figure 6., shows the Pro-tection Register Memory Map.

    Program and Erase commands are written to theCommand Interface of the memory. An on-chipProgram/Erase Controller takes care of the tim-ings necessary for program and erase operations.The end of a program or erase operation can bedetected and any error conditions identified. Thecommand set required to control the memory isconsistent with JEDEC standards.

    The memory is offered in TSOP48 (12 X 20mm)and TFBGA48 (6.39 x 10.5mm, 0.75mm pitch)packages and is supplied with all the bits erased(set to 1).

    In addition to the standard version, the packagesare also available in Lead-free version, in compli-ance with JEDEC Std J-STD-020B, the ST ECO-

    PACK 7191395 Specification, and the RoHS(Restriction of Hazardous Substances) directive.

    All packages are compliant with Lead-free solder-ing processes.

    Figure 2. Logic Diagram

    Table 1. Signal Names

    A0-A21 Address Inputs

    DQ0-DQ15 Data Input/Output

    E Chip Enable

    G Output Enable

    W Write Enable

    RP Reset

    WP Write Protect

    VDD Core Power Supply

    VDDQPower Supply forInput/Output

    VPPOptional Supply Voltage forFast Program & Erase

    VSS Ground

    NC Not Connected Internally

    AI09903

    22

    A0-A21

    W

    DQ0-DQ15

    VDD

    M28W640FCTM28W640FCB

    E

    VSS

    16

    G

    RP

    WP

    VDDQ VPP

  • 7/28/2019 M28W640FCB

    6/55

    M28W640FCT, M28W640FCB

    6/55

    Figure 3. TSOP Connections

    DQ3

    DQ9

    DQ2

    A6

    DQ0

    W

    A3

    DQ6

    A8

    A9

    DQ13

    A17

    A10 DQ14

    A2

    DQ12

    DQ10

    DQ15

    VDD

    DQ4

    DQ5

    A7

    DQ7

    VPPWP

    AI09904b

    M28W640FCT

    M28W640FCB

    12

    1

    13

    24 25

    36

    37

    48

    DQ8

    A20

    A19

    A1

    A18

    A4

    A5

    DQ1

    DQ11

    G

    A12

    A13

    A16

    A11

    VDDQA15A14

    VSS

    E

    A0

    RP

    VSSQ

    A21

  • 7/28/2019 M28W640FCB

    7/55

    7/55

    M28W640FCT, M28W640FCB

    Figure 4. TFBGA Connections (Top view through package)

    AI04380b

    C

    B

    A

    87654321

    E

    D

    F

    A4A7VPPA8A11A13

    A0EDQ8DQ5DQ14A16

    VSSQDQ0DQ9DQ3DQ6DQ15VDDQ

    DQ1DQ10VDDDQ7VSS

    DQ2

    A2A5A17WA10A14

    A1A3A6A9A12A15

    RP A18

    DQ4DQ13 G

    DQ12

    DQ11

    WP A19

    A20A21

  • 7/28/2019 M28W640FCB

    8/55

    M28W640FCT, M28W640FCB

    8/55

    Figure 5. Block Addresses

    Note: Also see APPENDIX A., Tables 24 and 25 for a full listing of the Block Addresses.

    Figure 6. Protection Register Memory Map

    AI09905

    4 KWords

    3FFFFF

    3FF000

    32 KWords

    00FFFF

    008000

    32 KWords007FFF

    000000

    M28W640FCTTop Boot Block Addresses

    4 KWords

    3F8FFF

    3F8000

    32 KWords

    3F0000

    3F7FFF

    Total of 84 KWord Blocks

    Total of 12732 KWord Blocks

    4 KWords

    3FFFFF

    3F8000

    32 KWords

    32 KWords

    000FFF

    000000

    M28W640FCBBottom Boot Block Addresses

    4 KWords

    3F7FFF

    00FFFF

    32 KWords

    3F0000

    008000

    Total of 12732 KWord Blocks

    Total of 84 KWord Blocks

    007FFF

    007000

    AI05520b

    User Programmable OTP

    Unique device number

    Protection Register Lock 1 0

    8Ch

    85h

    84h

    81h

    80h

    PROTECTION REGISTER

  • 7/28/2019 M28W640FCB

    9/55

    9/55

    M28W640FCT, M28W640FCB

    SIGNAL DESCRIPTIONSSee Figure 2., Logic Diagram and Table 1., SignalNames, for a brief overview of the signals connect-ed to this device.

    Address Inputs (A0-A21). The Address Inputsselect the cells in the memory array to access dur-ing Bus Read operations. During Bus Write opera-tions they control the commands sent to theCommand Interface of the internal state machine.

    Data Input/Output (DQ0-DQ15). The Data I/Ooutputs the data stored at the selected addressduring a Bus Read operation or inputs a commandor the data to be programmed during a Write Busoperation.

    Chip Enable (E). The Chip Enable input acti-vates the memory control logic, input buffers, de-coders and sense amplifiers. When Chip Enable is

    at VILandReset is at VIH the device is in activemode. When Chip Enable is at VIH the memory isdeselected, the outputs are high impedance andthe power consumption is reduced to the stand-bylevel.

    Output Enable (G). The Output Enable controlsdata outputs during the Bus Read operation of thememory.

    Write Enable (W). The Write Enable controls theBus Write operation of the memorys CommandInterface. The data and address inputs are latchedon the rising edge of Chip Enable, E, or Write En-able, W, whichever occurs first.

    Write Protect (WP). Write Protect is an inputthat gives an additional hardware protection foreach block. When Write Protect is at VIL, the Lock-Down is enabled and the protection status of theblock cannot be changed. When Write Protect is atVIH, the Lock-Down is disabled and the block canbe locked or unlocked. (refer to Table 7., ReadProtection Register and Lock Register).

    Reset (RP). The Reset input provides a hard-ware reset of the memory. When Reset is at VIL,the memory is in reset mode: the outputs are highimpedance and the current consumption is mini-mized. After Reset all blocks are in the Locked

    state. When Reset is at VIH, the device is in normaloperation. Exiting reset mode the device entersread array mode, but a negative transition of Chip

    Enable or a change of the address is required toensure valid data outputs.

    VDD Supply Voltage. VDD provides the powersupply to the internal core of the memory device.It is the main power supply for all operations(Read, Program and Erase).

    VDDQ Supply Voltage. VDDQ provides the powersupply to the I/O pins and enables all Outputs tobe powered independently from VDD. VDDQ can betied to VDD or can use a separate supply.

    VPP Program Supply Voltage. VPP is both acontrol input and a power supply pin. The twofunctions are selected by the voltage range ap-

    plied to the pin. The Supply Voltage VDD and theProgram Supply Voltage VPP can be applied inany order.

    If VPP is kept in a low voltage range (0V to 3.6V)VPP is seen as a control input. In this case a volt-age lower than VPPLK gives an absolute protectionagainst program or erase, while VPP > VPP1 en-ables these functions (see Table 15., DC Charac-teristics, for the relevant values). VPP is onlysampled at the beginning of a program or erase; achange in its value after the operation has starteddoes not have any effect on Program or Erase,however for Double or Quadruple Word Programthe results are uncertain.

    If VPP is in the range 11.4V to 12.6V it acts as apower supply pin. In this condition VPP must bestable until the Program/Erase algorithm is com-pleted (see Table 17. and Table 18.).

    VSS Ground. VSS is the reference for all voltagemeasurements.

    Note: Each device in a system should haveVDD,VDDQ and VPP decoupled with a 0.1F ca-pacitor close to the pin. See Figure 8., AC Mea-surement Load Circuit. The PCB track widthsshould be sufficient to carry the required VPPprogram and erase currents.

  • 7/28/2019 M28W640FCB

    10/55

    M28W640FCT, M28W640FCB

    10/55

    BUS OPERATIONSThere are six standard bus operations that controlthe device. These are Bus Read, Bus Write, Out-put Disable, Standby, Automatic Standby and Re-

    set. See Table 2., Bus Operations, for a summary.Typically glitches of less than 5ns on Chip Enableor Write Enable are ignored by the memory and donot affect bus operations.

    Read. Read Bus operations are used to outputthe contents of the Memory Array, the ElectronicSignature, the Status Register and the CommonFlash Interface. Both Chip Enable and Output En-able must be at VIL in order to perform a read op-eration. The Chip Enable input should be used toenable the device. Output Enable should be usedto gate data onto the output. The data read de-pends on the previous command written to the

    memory (see Command Interface section). SeeFigure 9., Read AC Waveforms, and Table16., Read AC Characteristics, for details of whenthe output becomes valid.

    Read mode is the default state of the device whenexiting Reset or after power-up.

    Write. Bus Write operations write Commands tothe memory or latch Input Data to be programmed.A write operation is initiated when Chip Enableand Write Enable are at VIL with Output Enable atVIH. Commands, Input Data and Addresses arelatched on the rising edge of Write Enable or ChipEnable, whichever occurs first.

    See Figure 10. and Figure 11., Write AC Wave-forms, and Table 17. and Table 18., Write AC

    Characteristics, for details of the timing require-ments.

    Output Disable. The data outputs are high im-pedance when the Output Enable is at VIH.

    Standby. Standby disables most of the internalcircuitry allowing a substantial reduction of the cur-rent consumption. The memory is in stand-bywhen Chip Enable is at VIH and the device is inread mode. The power consumption is reduced tothe stand-by level and the outputs are set to highimpedance, independently from the Output Enableor Write Enable inputs. If Chip Enable switches toVIH during a program or erase operation, the de-vice enters Standby mode when finished.

    Automatic Standby. Automatic Standby pro-vides a low power consumption state during Read

    mode. Following a read operation, the device en-ters Automatic Standby after 150ns of bus inactiv-ity even if Chip Enable is Low, V IL, and the supplycurrent is reduced to IDD1. The data Inputs/Out-puts will still output data if a bus Read operation isin progress.

    Reset. During Reset mode when Output Enableis Low, VIL, the memory is deselected and the out-puts are high impedance. The memory is in Resetmode when Reset is at VIL. The power consump-tion is reduced to the Standby level, independentlyfrom the Chip Enable, Output Enable or Write En-able inputs. If Reset is pulled to VSS during a Pro-gram or Erase, this operation is aborted and the

    memory content is no longer valid.

    Table 2. Bus Operations

    Note: X = VIL or VIH, VPPH = 12V 5%.

    Operation E G W RP WP VPP DQ0-DQ15

    Bus Read VIL VIL VIH VIH X Don't Care Data Output

    Bus Write VIL VIH VIL VIH X VDD or VPPH Data Input

    Output Disable VIL VIH VIH VIH X Don't Care Hi-Z

    Standby VIH X X VIH X Don't Care Hi-Z

    Reset X X X VIL X Don't Care Hi-Z

  • 7/28/2019 M28W640FCB

    11/55

    11/55

    M28W640FCT, M28W640FCB

    COMMAND INTERFACEAll Bus Write operations to the memory are inter-preted by the Command Interface. Commandsconsist of one or more sequential Bus Write oper-

    ations. An internal Program/Erase Controller han-dles all timings and verifies the correct executionof the Program and Erase commands. The Pro-gram/Erase Controller provides a Status Registerwhose output may be read at any time during, tomonitor the progress of the operation, or the Pro-gram/Erase states. See Table 3., CommandCodes, for a summary of the commands and seeAPPENDIX D., Table 32., Write State MachineCurrent/Next, sheet 1 of 2., for a summary of theCommand Interface.

    The Command Interface is reset to Read modewhen power is first applied, when exiting from Re-set or whenever VDD is lower than VLKO. Com-mand sequences must be followed exactly. Anyinvalid combination of commands will reset the de-vice to Read mode. Refer to Table 4., Commands,in conjunction with the text descriptions below.

    Read Memory Array Command

    The Read command returns the memory to itsRead mode. One Bus Write cycle is required to is-sue the Read Memory Array command and returnthe memory to Read mode. Subsequent read op-erations will read the addressed location and out-put the data. When a device Reset occurs, thememory defaults to Read mode.

    Read Status Register Command

    The Status Register indicates when a program orerase operation is complete and the success orfailure of the operation itself. Issue a Read StatusRegister command to read the Status Registerscontents. Subsequent Bus Read operations readthe Status Register at any address, until anothercommand is issued. See Table 11., Status Regis-ter Bits, for details on the definitions of the bits.

    The Read Status Register command may be is-sued at any time, even during a Program/Eraseoperation. Any Read attempt during a Program/Erase operation will automatically output the con-tent of the Status Register.

    Read Electronic Signature CommandThe Read Electronic Signature command readsthe Manufacturer and Device Codes and the BlockLocking Status, or the Protection Register.

    The Read Electronic Signature command consistsof one write cycle, a subsequent read will outputthe Manufacturer Code, the Device Code, theBlock Lock and Lock-Down Status, or the Protec-tion and Lock Register. See Tables 5, 6 and 7 forthe valid address.

    Table 3. Command Codes

    Read CFI Query Command

    The Read Query Command is used to read datafrom the Common Flash Interface (CFI) MemoryArea, allowing programming equipment or appli-cations to automatically match their interface tothe characteristics of the device. One Bus Writecycle is required to issue the Read Query Com-mand. Once the command is issued subsequentBus Read operations read from the CommonFlash Interface Memory Area. See APPENDIXB., COMMON FLASH INTERFACE (CFI), Tables26, 27, 28, 29, 30 and 31 for details on the infor-mation contained in the Common Flash Interfacememory area.

    Block Erase CommandThe Block Erase command can be used to erasea block. It sets all the bits within the selected blockto 1. All previous data in the block is lost. If theblock is protected then the Erase operation willabort, the data in the block will not be changed andthe Status Register will output the error.

    Two Bus Write cycles are required to issue thecommand.

    The first bus cycle sets up the Erasecommand.

    Hex Code Command

    01h Block Lock confirm

    10h Program

    20h Erase

    2Fh Block Lock-Down confirm

    30h Double Word Program

    40h Program

    50h Clear Status Register

    56h Quadruple Word Program

    60hBlock Lock, Block Unlock, Block Lock-

    Down

    70h Read Status Register

    90h Read Electronic Signature

    98h Read CFI Query

    B0h Program/Erase Suspend

    C0h Protection Register Program

    D0hProgram/Erase Resume, Block Unlockconfirm

    FFh Read Memory Array

  • 7/28/2019 M28W640FCB

    12/55

    M28W640FCT, M28W640FCB

    12/55

    The second latches the block address in theinternal state machine and starts the Program/Erase Controller.

    If the second bus cycle is not Write Erase Confirm

    (D0h), Status Register bits b4 and b5 are set andthe command aborts.

    Erase aborts if Reset turns to VIL. As data integritycannot be guaranteed when the Erase operation isaborted, the block must be erased again.

    During Erase operations the memory will acceptthe Read Status Register command and the Pro-gram/Erase Suspend command, all other com-mands will be ignored. Typical Erase times aregiven in Table 8., Program, Erase Times and Pro-gram/Erase Endurance Cycles.

    See APPENDIX C., Figure 21., Erase Flowchartand Pseudo Code, for a suggested flowchart for

    using the Erase command.Program Command

    The memory array can be programmed word-by-word. Two bus write cycles are required to issuethe Program Command.

    The first bus cycle sets up the Programcommand.

    The second latches the Address and the Datato be written and starts the Program/EraseController.

    During Program operations the memory will ac-cept the Read Status Register command and theProgram/Erase Suspend command. Typical Pro-

    gram times are given in Table 8., Program, EraseTimes and Program/Erase Endurance Cycles.

    Programming aborts if Reset goes to VIL. As dataintegrity cannot be guaranteed when the programoperation is aborted, the block containing thememory location must be erased and repro-grammed.

    See APPENDIX C., Figure 17., Program Flow-chart and Pseudo Code, for the flowchart for usingthe Program command.

    Double Word Program Command

    This feature is offered to improve the programmingthroughput, writing a page of two adjacent words

    in parallel.The two words must differ only for theaddress A0. Programming should not be attempt-ed when VPP is not at VPPH.

    Three bus write cycles are necessary to issue theDouble Word Program command.

    The first bus cycle sets up the Double WordProgram Command.

    The second bus cycle latches the Address andthe Data of the first word to be written.

    The third bus cycle latches the Address andthe Data of the second word to be written andstarts the Program/Erase Controller.

    Read operations output the Status Register con-tent after the programming has started. Program-ming aborts if Reset goes to VIL. As data integritycannot be guaranteed when the program opera-

    tion is aborted, the block containing the memorylocation must be erased and reprogrammed.

    See APPENDIX C., Figure 18., Double Word Pro-gram Flowchart and Pseudo Code for the flow-chart for using the Double Word Programcommand.

    Quadruple Word Program Command

    This feature is offered to improve the programmingthroughput, writing a page of four adjacent wordsin parallel.The four words must differ only for theaddresses A0 and A1. Programming should not beattempted when VPP is not at VPPH.

    Five bus write cycles are necessary to issue the

    Quadruple Word Program command. The first bus cycle sets up the Quadruple

    Word Program Command.

    The second bus cycle latches the Address andthe Data of the first word to be written.

    The third bus cycle latches the Address andthe Data of the second word to be written.

    The fourth bus cycle latches the Address andthe Data of the third word to be written.

    The fifth bus cycle latches the Address and theData of the fourth word to be written and startsthe Program/Erase Controller.

    Read operations output the Status Register con-tent after the programming has started. Program-ming aborts if Reset goes to VIL. As data integritycannot be guaranteed when the program opera-tion is aborted, the block containing the memorylocation must be erased and reprogrammed.

    See APPENDIX C., Figure 19., Quadruple WordProgram Flowchart and Pseudo Code, for theflowchart for using the Quadruple Word Programcommand.

    Clear Status Register Command

    The Clear Status Register command can be usedto reset bits 1, 3, 4 and 5 in the Status Register to0. One bus write cycle is required to issue the

    Clear Status Register command.The bits in the Status Register do not automatical-ly return to 0 when a new Program or Erase com-mand is issued. The error bits in the StatusRegister should be cleared before attempting anew Program or Erase command.

    Program/Erase Suspend Command

    The Program/Erase Suspend command is used topause a Program or Erase operation. One buswrite cycle is required to issue the Program/Erasecommand and pause the Program/Erase control-ler.

  • 7/28/2019 M28W640FCB

    13/55

    13/55

    M28W640FCT, M28W640FCB

    During Program/Erase Suspend the Command In-terface will accept the Program/Erase Resume,Read Array, Read Status Register, Read Electron-ic Signature and Read CFI Query commands. Ad-

    ditionally, if the suspend operation was Erase thenthe Program, Double Word Program, QuadrupleWord Program, Block Lock, Block Lock-Down orProtection Program commands will also be ac-cepted. The block being erased may be protectedby issuing the Block Protect, Block Lock or Protec-tion Program commands. When the Program/Erase Resume command is issued the operationwill complete. Only the blocks not being erasedmay be read or programmed correctly.

    During a Program/Erase Suspend, the device canbe placed in a pseudo-standby mode by takingChip Enable to VIH. Program/Erase is aborted ifReset turns to VIL.

    See APPENDIX C., Figure 20., Program Suspend& Resume Flowchart and Pseudo Code, and Fig-ure 22., Erase Suspend & Resume Flowchart andPseudo Code, for flowcharts for using the Pro-gram/Erase Suspend command.

    Program/Erase Resume Command

    The Program/Erase Resume command can beused to restart the Program/Erase Controller aftera Program/Erase Suspend operation has pausedit. One Bus Write cycle is required to issue thecommand. Once the command is issued subse-quent Bus Read operations read the Status Reg-ister.

    See APPENDIX C., Figure 20., Program Suspend& Resume Flowchart and Pseudo Code, and Fig-ure 22., Erase Suspend & Resume Flowchart andPseudo Code, for flowcharts for using the Pro-gram/Erase Resume command.

    Protection Register Program Command

    The Protection Register Program command isused to Program the 128 bit user One-Time-Pro-grammable (OTP) segment of the Protection Reg-ister. The segment is programmed 16 bits at atime. When shipped all bits in the segment are setto 1. The user can only program the bits to 0.

    Two write cycles are required to issue the Protec-

    tion Register Program command. The first bus cycle sets up the Protection

    Register Program command.

    The second latches the Address and the Datato be written to the Protection Register andstarts the Program/Erase Controller.

    Read operations output the Status Register con-tent after the programming has started.

    The segment can be protected by programming bit1 of the Protection Lock Register (see Figure6., Protection Register Memory Map). Attemptingto program a previously protected Protection Reg-

    ister will result in a Status Register error. The pro-tection of the Protection Register is not reversible.

    The Protection Register Program cannot be sus-pended.

    Block Lock CommandThe Block Lock command is used to lock a blockand prevent Program or Erase operations fromchanging the data in it. All blocks are locked atpower-up or reset.

    Two Bus Write cycles are required to issue theBlock Lock command.

    The first bus cycle sets up the Block Lockcommand.

    The second Bus Write cycle latches the blockaddress.

    The lock status can be monitored for each block

    using the Read Electronic Signature command.Table 10. shows the protection status after issuinga Block Lock command.

    The Block Lock bits are volatile, once set they re-main set until a hardware reset or power-down/power-up. They are cleared by a Blocks Unlockcommand. Refer to the section, Block Locking, fora detailed explanation.

    Block Unlock Command

    The Block Unlock command is used to unlock ablock, allowing the block to be programmed orerased. Two Bus Write cycles are required to is-sue the Block Unlock command.

    The first bus cycle sets up the Block Unlockcommand.

    The second Bus Write cycle latches the blockaddress.

    The lock status can be monitored for each blockusing the Read Electronic Signature command.Table 10. shows the protection status after issuinga Block Unlock command. Refer to the section,Block Locking, for a detailed explanation.

    Block Lock-Down Command

    A locked block cannot be Programmed or Erased,or have its protection status changed when WP islow, VIL. When WP is high, VIH, the Lock-Down

    function is disabled and the locked blocks can beindividually unlocked by the Block Unlock com-mand.

    Two Bus Write cycles are required to issue theBlock Lock-Down command.

    The first bus cycle sets up the Block Lockcommand.

    The second Bus Write cycle latches the blockaddress.

    The lock status can be monitored for each blockusing the Read Electronic Signature command.Locked-Down blocks revert to the locked (and not

  • 7/28/2019 M28W640FCB

    14/55

    M28W640FCT, M28W640FCB

    14/55

    locked-down) state when the device is reset onpower-down. Table 10. shows the protection sta-tus after issuing a Block Lock-Down command.

    Refer to the section, Block Locking, for a detailedexplanation.

    Table 4. Commands

    Note: 1. X = Don't Care, RA=Read Address, RD=Read Data, SRD=Status Register Data, ID=Identifier (Manufacture and Device Code),QA=Query Address, QD=Query Data, BA=Block Address, PA=Program Address, PD=Program Data, PRA=Protection Register Ad-dress, PRD=Protection Register Data.

    2. The signature addresses are listed in Tables 5,6 and 7.

    3. Program Addresses 1 and 2 must be consecutive Addresses differing only for A0.4. Program Addresses 1,2,3 and 4 must be consecutive Addresses differing only for A0 and A1.

    Table 5. Read Electronic Signature

    Note: RP = VIH.

    Commands

    Cycles

    Bus Write Operations

    1st Cycle 2nd Cycle 3rd Cycle 4th Cycle 5th Cycle

    Op. Add Data Op. Add Data Op. Add Data Op. Add Data Op. Add Data

    Read MemoryArray

    1+ Write X FFh Read RA RD

    Read StatusRegister

    1+ Write X 70h Read X SRD

    Read ElectronicSignature

    1+ Write X 90h Read SA(2) IDh

    Read CFI Query 1+ Write X 98h Read QA QD

    Erase 2 Write X 20h Write BA D0h

    Program 2 Write X40h or

    10hWrite PA PD

    Double Word

    Program(3)3 Write X 30h Write PA1 PD1 Write PA2 PD2

    Quadruple Word

    Program(4)5 Write X 56h Write PA1 PD1 Write PA2 PD2 Write PA3 PD3 Write PA4 PD4

    Clear StatusRegister

    1 Write X 50h

    Program/EraseSuspend

    1 Write X B0h

    Program/EraseResume

    1 Write X D0h

    Block Lock 2 Write X 60h Write BA 01h

    Block Unlock 2 Write X 60h Write BA D0h

    Block Lock-Down 2 Write X 60h Write BA 2Fh

    ProtectionRegister Program

    2 Write X C0h Write PRA PRD

    Code Device E G W A0 A1 A2-A7 A8-A21 DQ0-DQ7 DQ8-DQ15

    ManufactureCode

    VIL VIL VIH VIL VIL 0 Don't Care 20h 00h

    Device CodeM28W640FCT VIL VIL VIH VIH VIL 0 Don't Care 48h 88h

    M28W640FCB VIL VIL VIH VIH VIL 0 Don't Care 49h 88h

  • 7/28/2019 M28W640FCB

    15/55

    15/55

    M28W640FCT, M28W640FCB

    Table 6. Read Block Lock Signature

    Note: 1. A Locked-Down Block can be locked "DQ0 = 1" or unlocked "DQ0 = 0"; see Block Locking section.

    Table 7. Read Protection Register and Lock Register

    Block Status E G W A0 A1 A2-A7 A8-A11 A12-A21 DQ0 DQ1 DQ2-DQ15

    Locked Block VIL VIL VIH VIL VIH 0 Don't Care Block Address 1 0 00h

    Unlocked Block VIL VIL VIH VIL VIH 0 Don't Care Block Address 0 0 00h

    Locked-DownBlock

    VIL VIL VIH VIL VIH 0 Don't Care Block Address X (1) 1 00h

    Word E G W A0-A7 A8-A21 DQ0 DQ1 DQ2 DQ3-DQ7 DQ8-DQ15

    Lock VIL VIL VIH 80h Don't Care 0OTP Prot.

    data0 00h 00h

    Unique ID 0 VIL VIL VIH 81h Don't Care ID data ID data ID data ID data ID data

    Unique ID 1 VIL VIL VIH 82h Don't Care ID data ID data ID data ID data ID data

    Unique ID 2 VIL VIL VIH 83h Don't Care ID data ID data ID data ID data ID data

    Unique ID 3 VIL VIL VIH 84h Don't Care ID data ID data ID data ID data ID data

    OTP 0 VIL VIL VIH 85h Don't Care OTP data OTP data OTP data OTP data OTP data

    OTP 1 VIL VIL VIH 86h Don't Care OTP data OTP data OTP data OTP data OTP data

    OTP 2 VIL VIL VIH 87h Don't Care OTP data OTP data OTP data OTP data OTP data

    OTP 3 VIL VIL VIH 88h Don't Care OTP data OTP data OTP data OTP data OTP data

    OTP 4 VIL VIL VIH 89h Don't Care OTP data OTP data OTP data OTP data OTP data

    OTP 5 VIL VIL VIH 8Ah Don't Care OTP data OTP data OTP data OTP data OTP data

    OTP 6 VIL VIL VIH 8Bh Don't Care OTP data OTP data OTP data OTP data OTP data

    OTP 7 VIL VIL VIH 8Ch Don't Care OTP data OTP data OTP data OTP data OTP data

  • 7/28/2019 M28W640FCB

    16/55

    M28W640FCT, M28W640FCB

    16/55

    Table 8. Program, Erase Times and Program/Erase Endurance Cycles

    Note: 1. Typical time to program a Main or Parameter Block using the Double Word Program and the Quadruple Word Program commandsrespectively.

    Parameter Test ConditionsM28W640FCT, M28W640FCB

    UnitMin Typ Max

    Word Program VPP = VDD 10 200 s

    Double Word Program VPP = 12V 5% 10 200 s

    Quadruple Word Program VPP = 12V 5% 10 200 s

    Main Block ProgramVPP = 12V 5% 0.16/0.08 (1) 5 s

    VPP = VDD 0.32 5 s

    Parameter Block ProgramVPP = 12V 5% 0.02/0.01 (1) 4 s

    VPP = VDD 0.04 4 s

    Main Block EraseVPP = 12V 5% 1 10 s

    VPP = VDD 1 10 s

    Parameter Block EraseVPP = 12V 5% 0.4 10 s

    VPP = VDD 0.4 10 s

    Program/Erase Cycles (per Block) 100,000 cycles

  • 7/28/2019 M28W640FCB

    17/55

    17/55

    M28W640FCT, M28W640FCB

    BLOCK LOCKINGThe M28W640FCT and M28W640FCB feature aninstant, individual block locking scheme that al-lows any block to be locked or unlocked with no la-

    tency. This locking scheme has three levels ofprotection.

    Lock/Unlock - this first level allows software-only control of block locking.

    Lock-Down - this second level requireshardware interaction before locking can bechanged.

    VPP VPPLK - the third level offers a completehardware protection against program anderase on all blocks.

    The protection status of each block can be set toLocked, Unlocked, and Lock-Down. Table 10., de-fines all of the possible protection states (WP,

    DQ1, DQ0), and APPENDIX C., Figure 23., showsa flowchart for the locking operations.

    Reading a Blocks Lock Status

    The lock status of every block can be read in theRead Electronic Signature mode of the device. Toenter this mode write 90h to the device. Subse-quent reads at the address specified in Table 6.,will output the protection status of that block. Thelock status is represented by DQ0 and DQ1. DQ0indicates the Block Lock/Unlock status and is setby the Lock command and cleared by the Unlockcommand. It is also automatically set when enter-ing Lock-Down. DQ1 indicates the Lock-Down sta-

    tus and is set by the Lock-Down command. Itcannot be cleared by software, only by a hardwarereset or power-down.

    The following sections explain the operation of thelocking system.

    Locked State

    The default status of all blocks on power-up or af-ter a hardware reset is Locked (states (0,0,1) or(1,0,1)). Locked blocks are fully protected fromany program or erase. Any program or erase oper-ations attempted on a locked block will return anerror in the Status Register. The Status of aLocked block can be changed to Unlocked or

    Lock-Down using the appropriate software com-mands. An Unlocked block can be Locked by issu-ing the Lock command.

    Unlocked State

    Unlocked blocks (states (0,0,0), (1,0,0) (1,1,0)),can be programmed or erased. All unlockedblocks return to the Locked state after a hardwarereset or when the device is powered-down. Thestatus of an unlocked block can be changed toLocked or Locked-Down using the appropriate

    software commands. A locked block can be un-locked by issuing the Unlock command.

    Lock-Down State

    Blocks that are Locked-Down (state (0,1,x))areprotected from program and erase operations (asfor Locked blocks) but their protection status can-not be changed using software commands alone.A Locked or Unlocked block can be Locked-Downby issuing the Lock-Down command. Locked-Down blocks revert to the Locked state when thedevice is reset or powered-down.

    The Lock-Down function is dependent on the WPinput pin. When WP=0 (VIL), the blocks in theLock-Down state (0,1,x) are protected from pro-gram, erase and protection status changes. WhenWP=1 (VIH) the Lock-Down function is disabled

    (1,1,1) and Locked-Down blocks can be individu-ally unlocked to the (1,1,0) state by issuing thesoftware command, where they can be erased andprogrammed. These blocks can then be relocked(1,1,1) and unlocked (1,1,0) as desired while WPremains high. When WP is low , blocks that werepreviously Locked-Down return to the Lock-Downstate (0,1,x) regardless of any changes madewhile WP was high. Device reset or power-downresets all blocks , including those in Lock-Down, tothe Locked state.

    Locking Operations During Erase Suspend

    Changes to block lock status can be performedduring an erase suspend by using the standardlocking command sequences to unlock, lock orlock-down a block. This is useful in the case whenanother block needs to be updated while an eraseoperation is in progress.

    To change block locking during an erase opera-tion, first write the Erase Suspend command, thencheck the status register until it indicates that theerase operation has been suspended. Next writethe desired Lock command sequence to a blockand the lock status will be changed. After complet-ing any desired lock, read, or program operations,resume the erase operation with the Erase Re-sume command.

    If a block is locked or locked-down during an erasesuspend of the same block, the locking status bitswill be changed immediately, but when the eraseis resumed, the erase operation will complete.

    Locking operations cannot be performed during aprogram suspend. Refer to APPENDIX D., Com-mand Interface and Program/Erase ControllerState, for detailed information on which com-mands are valid during erase suspend.

  • 7/28/2019 M28W640FCB

    18/55

    M28W640FCT, M28W640FCB

    18/55

    Table 9. Block Lock Status

    Table 10. Protection Status

    Note: 1. The lock status is defined by the write protect pin and by DQ1 (1 for a locked-down block) and DQ0 (1 for a locked block) as readin the Read Electronic Signature command with A1 = VIH and A0 = VIL.

    2. All blocks are locked at power-up, so the default configuration is 001 or 101 according to WP status.3. A WP transition to VIH on a locked block will restore the previous DQ0 value, giving a 111 or 110.

    Item Address Data

    Block Lock Configuration

    xx002

    LOCK

    Block is Unlocked DQ0=0

    Block is Locked DQ0=1

    Block is Locked-Down DQ1=1

    Current Protection Status(1)

    (WP, DQ1, DQ0)Next Protection Status(1)

    (WP, DQ1, DQ0)

    Current StateProgram/Erase

    AllowedAfter Block

    Lock Command

    After BlockUnlock

    Command

    After Block Lock-Down Command

    After WPtransition

    1,0,0 yes 1,0,1 1,0,0 1,1,1 0,0,0

    1,0,1(2) no 1,0,1 1,0,0 1,1,1 0,0,1

    1,1,0 yes 1,1,1 1,1,0 1,1,1 0,1,1

    1,1,1 no 1,1,1 1,1,0 1,1,1 0,1,1

    0,0,0 yes 0,0,1 0,0,0 0,1,1 1,0,0

    0,0,1(2) no 0,0,1 0,0,0 0,1,1 1,0,1

    0,1,1 no 0,1,1 0,1,1 0,1,1 1,1,1 or 1,1,0 (3)

  • 7/28/2019 M28W640FCB

    19/55

    19/55

    M28W640FCT, M28W640FCB

    STATUS REGISTERThe Status Register provides information on thecurrent or previous Program or Erase operation.The various bits convey information and errors on

    the operation. To read the Status register theRead Status Register command can be issued, re-fer to Read Status Register Command section. Tooutput the contents, the Status Register is latchedon the falling edge of the Chip Enable or OutputEnable signals, and can be read until Chip Enableor Output Enable returns to VIH. Either Chip En-able or Output Enable must be toggled to updatethe latched data.

    Bus Read operations from any address alwaysread the Status Register during Program andErase operations.

    The bits in the Status Register are summarized in

    Table 11., Status Register Bits. Refer to Table 11.in conjunction with the following text descriptions.

    Program/Erase Controller Status (Bit 7). TheProgram/Erase Controller Status bit indicateswhether the Program/Erase Controller is active orinactive. When the Program/Erase Controller Sta-tus bit is Low (set to 0), the Program/Erase Con-troller is active; when the bit is High (set to 1), theProgram/Erase Controller is inactive, and the de-vice is ready to process a new command.

    The Program/Erase Controller Status is Low im-mediately after a Program/Erase Suspend com-mand is issued until the Program/Erase Controllerpauses. After the Program/Erase Controller paus-

    es the bit is High .During Program, Erase, operations the Program/Erase Controller Status bit can be polled to find theend of the operation. Other bits in the Status Reg-ister should not be tested until the Program/EraseController completes the operation and the bit isHigh.

    After the Program/Erase Controller completes itsoperation the Erase Status, Program Status, VPPStatus and Block Lock Status bits should be testedfor errors.

    Erase Suspend Status (Bit 6). The Erase Sus-pend Status bit indicates that an Erase operation

    has been suspended or is going to be suspended.When the Erase Suspend Status bit is High (set to1), a Program/Erase Suspend command hasbeen issued and the memory is waiting for a Pro-gram/Erase Resume command.

    The Erase Suspend Status should only be consid-ered valid when the Program/Erase Controller Sta-tus bit is High (Program/Erase Controller inactive).Bit 7 is set within 30s of the Program/Erase Sus-pend command being issued therefore the memo-ry may still complete the operation rather thanentering the Suspend mode.

    When a Program/Erase Resume command is is-sued the Erase Suspend Status bit returns Low.

    Erase Status (Bit 5). The Erase Status bit can beused to identify if the memory has failed to verifythat the block has erased correctly. When theErase Status bit is High (set to 1), the Program/Erase Controller has applied the maximum num-ber of pulses to the block and still failed to verifythat the block has erased correctly. The Erase Sta-tus bit should be read once the Program/EraseController Status bit is High (Program/Erase Con-troller inactive).

    Once set High, the Erase Status bit can only be re-set Low by a Clear Status Register command or ahardware reset. If set High it should be reset be-fore a new Program or Erase command is issued,

    otherwise the new command will appear to fail.Program Status (Bit 4). The Program Status bitis used to identify a Program failure. When theProgram Status bit is High (set to 1), the Pro-gram/Erase Controller has applied the maximumnumber of pulses to the byte and still failed to ver-ify that it has programmed correctly. The ProgramStatus bit should be read once the Program/EraseController Status bit is High (Program/Erase Con-troller inactive).

    Once set High, the Program Status bit can only bereset Low by a Clear Status Register command ora hardware reset. If set High it should be reset be-fore a new command is issued, otherwise the new

    command will appear to fail.VPP Status (Bit 3). The VPP Status bit can beused to identify an invalid voltage on the VPP pinduring Program and Erase operations. The VPPpin is only sampled at the beginning of a Programor Erase operation. Indeterminate results can oc-cur if VPP becomes invalid during an operation.

    When the VPP Status bit is Low (set to 0), the volt-age on the VPP pin was sampled at a valid voltage;when the VPP Status bit is High (set to 1), the VPPpin has a voltage that is below the VPP LockoutVoltage, VPPLK, the memory is protected and Pro-gram and Erase operations cannot be performed.

    Once set High, the VPP Status bit can only be resetLow by a Clear Status Register command or ahardware reset. If set High it should be reset be-fore a new Program or Erase command is issued,otherwise the new command will appear to fail.

    Program Suspend Status (Bit 2). The ProgramSuspend Status bit indicates that a Program oper-ation has been suspended. When the ProgramSuspend Status bit is High (set to 1), a Program/Erase Suspend command has been issued andthe memory is waiting for a Program/Erase Re-sume command. The Program Suspend Statusshould only be considered valid when the Pro-

  • 7/28/2019 M28W640FCB

    20/55

    M28W640FCT, M28W640FCB

    20/55

    gram/Erase Controller Status bit is High (Program/Erase Controller inactive). Bit 2 is set within 5s ofthe Program/Erase Suspend command being is-sued therefore the memory may still complete the

    operation rather than entering the Suspend mode.When a Program/Erase Resume command is is-sued the Program Suspend Status bit returns Low.

    Block Protection Status (Bit 1). The Block Pro-tection Status bit can be used to identify if a Pro-gram or Erase operation has tried to modify thecontents of a locked block.

    When the Block Protection Status bit is High (setto 1), a Program or Erase operation has been at-tempted on a locked block.

    Once set High, the Block Protection Status bit can

    only be reset Low by a Clear Status Register com-mand or a hardware reset. If set High it should bereset before a new command is issued, otherwisethe new command will appear to fail.

    Reserved (Bit 0). Bit 0 of the Status Register isreserved. Its value must be masked.

    Note: Refer to APPENDIX C., FLOWCHARTSAND PSEUDO CODES, for using the StatusRegister.

    Table 11. Status Register Bits

    Note: Logic level '1' is High, '0' is Low.

    Bit Name Logic Level Definition

    7 P/E.C. Status '1' Ready

    '0' Busy

    6 Erase Suspend Status'1' Suspended

    '0' In progress or Completed

    5 Erase Status'1' Erase Error

    '0' Erase Success

    4 Program Status'1' Program Error

    '0' Program Success

    3 VPP

    Status'1' VPP Invalid, Abort

    '0' VPP OK

    2 Program Suspend Status'1' Suspended

    '0' In Progress or Completed

    1 Block Protection Status'1' Program/Erase on protected Block, Abort

    '0' No operation to protected blocks

    0 Reserved

  • 7/28/2019 M28W640FCB

    21/55

    21/55

    M28W640FCT, M28W640FCB

    MAXIMUM RATINGStressing the device above the rating listed in theAbsolute Maximum Ratings table may cause per-manent damage to the device. These are stress

    ratings only and operation of the device at these orany other conditions above those indicated in theOperating sections of this specification is not im-

    plied. Exposure to Absolute Maximum Rating con-ditions for extended periods may affect devicereliability. Refer also to the STMicroelectronics

    SURE Program and other relevant quality docu-ments.

    Table 12. Absolute Maximum Ratings

    Note: 1. Depends on range.2. Compliant with the JEDEC Std J-STD-020B (for small body, Sn-Pb or Pb assermbly), the ST ECOPACK7191395 specification,

    and the European directive on Restrictions on Hazardous Substances (RoHS) 2002/95/EU.

    Symbol ParameterValue

    UnitMin Max

    TA Ambient Operating Temperature (1) 40 85 C

    TBIAS Temperature Under Bias 40 125 C

    TSTG Storage Temperature 55 155 C

    TLEAD Lead Temperature during Soldering (2) C

    VIO Input or Output Voltage 0.6 VDDQ+0.6 V

    VDD, VDDQ Supply Voltage 0.6 4.1 V

    VPP Program Voltage 0.6 13 V

  • 7/28/2019 M28W640FCB

    22/55

    M28W640FCT, M28W640FCB

    22/55

    DC AND AC PARAMETERSThis section summarizes the operating and mea-surement conditions, and the DC and AC charac-teristics of the device. The parameters in the DC

    and AC characteristics Tables that follow, are de-rived from tests performed under the Measure-

    ment Conditions summarized in Table13., Operating and AC Measurement Conditions.Designers should check that the operating condi-

    tions in their circuit match the measurement condi-tions when relying on the quoted parameters.

    Table 13. Operating and AC Measurement Conditions

    Figure 7. AC Measurement I/O Waveform Figure 8. AC Measurement Load Circuit

    Table 14. Capacitance

    Note: Sampled only, not 100% tested.

    Parameter

    M28W640FCT, M28W640FCB

    70 85 90 10Units

    Min Max Min Max Min Max Min Max

    VDD Supply Voltage 2.7 3.6 2.7 3.6 2.7 3.6 2.7 3.6 V

    VDDQ Supply Voltage (VDDQ VDD)

    2.7 3.6 2.7 3.6 2.7 3.6 1.65 3.6 V

    Ambient Operating Temperature 40 85 40 85 40 85 40 85 C

    Load Capacitance (CL) 50 50 50 50 pF

    Input Rise and Fall Times 5 5 5 5 ns

    Input Pulse Voltages 0 to VDDQ 0 to VDDQ 0 to VDDQ 0 to VDDQ V

    Input and Output Timing Ref.Voltages

    VDDQ/2 VDDQ/2 VDDQ/2 VDDQ/2 V

    AI00610

    VDDQ

    0V

    VDDQ/2

    AI00609C

    VDDQ

    CL

    CL includes JIG capacitance

    25k

    DEVICEUNDERTEST

    0.1F

    VDD

    0.1F

    VDDQ

    25k

    Symbol Parameter Test Condition Min Max Unit

    CIN Input Capacitance VIN = 0V 6 pF

    COUT Output Capacitance VOUT = 0V 12 pF

  • 7/28/2019 M28W640FCB

    23/55

    23/55

    M28W640FCT, M28W640FCB

    Table 15. DC Characteristics

    Symbol Parameter Test Condition Min Typ Max Unit

    ILI Input Leakage Current 0V VIN VDDQ 1 A

    ILO Output Leakage Current 0V

    VOUTVDDQ 10 A

    IDD Supply Current (Read) E = VSS, G = VIH, f = 5MHz 9 18 mA

    IDD1Supply Current (Stand-by orAutomatic Stand-by)

    E = VDDQ 0.2V,

    RP = VDDQ 0.2V15 50 A

    IDD2Supply Current(Reset)

    RP = VSS 0.2V 15 50 A

    IDD3 Supply Current (Program)

    Program in progressVPP = 12V 5%

    5 10 mA

    Program in progressVPP = VDD

    10 20 mA

    IDD4 Supply Current (Erase)

    Erase in progressVPP = 12V 5%

    5 20 mA

    Erase in progressVPP = VDD

    10 20 mA

    IDD5Supply Current(Program/Erase Suspend)

    E = VDDQ 0.2V,

    Erase suspended15 50 A

    IPPProgram Current(Read or Stand-by)

    VPP > VDD 400 A

    IPP1Program Current(Read or Stand-by)

    VPP VDD 1 5 A

    IPP2 Program Current (Reset) RP = VSS 0.2V 1 5 A

    IPP3 Program Current (Program)

    Program in progressVPP = 12V 5%

    1 10 mA

    Program in progress

    VPP = VDD

    1 5 A

    IPP4 Program Current (Erase)

    Erase in progressVPP = 12V 5%

    3 10 mA

    Erase in progressVPP = VDD

    1 5 A

    VIL Input Low Voltage0.5 0.4 V

    VDDQ 2.7V 0.5 0.8 V

    VIH Input High VoltageVDDQ0.4 VDDQ +0.4 V

    VDDQ 2.7V 0.7 VDDQ VDDQ +0.4 V

    VOL Output Low VoltageIOL = 100A, VDD = VDD min,

    VDDQ = VDDQ min0.1 V

    VOH Output High VoltageIOH = 100A, VDD = VDD min,

    VDDQ = VDDQ min VDDQ 0.1 V

    VPP1Program Voltage (Program orErase operations)

    1.65 3.6 V

    VPPH

    Program Voltage(Program or Eraseoperations)

    11.4 12.6 V

    VPPLKProgram Voltage(Program and Erase lock-out)

    1 V

    VLKOVDD Supply Voltage (Program

    and Erase lock-out)2 V

  • 7/28/2019 M28W640FCB

    24/55

    M28W640FCT, M28W640FCB

    24/55

    Figure 9. Read AC Waveforms

    Table 16. Read AC Characteristics

    Note: 1. Sampled only, not 100% tested.2. G may be delayed by up to tELQV - tGLQV after the falling edge of E without increasing tELQV.

    Symbol Alt ParameterM28W640FCT, M28W640FCB

    Unit70 85 90 10

    tAVAV tRC Address Valid to Next Address Valid Min 70 85 90 100 ns

    tAVQV tACC Address Valid to Output Valid Max 70 85 90 100 ns

    tAXQX(1) tOH Address Transition to Output Transition Min 0 0 0 0 ns

    tEHQX(1) tOH Chip Enable High to Output Transition Min 0 0 0 0 ns

    tEHQZ(1) tHZ Chip Enable High to Output Hi-Z Max 20 20 25 25 ns

    tELQV(2) tCE Chip Enable Low to Output Valid Max 70 85 90 100 ns

    tELQX(1) tLZ Chip Enable Low to Output Transition Min 0 0 0 0 ns

    tGHQX(1) tOH Output Enable High to Output Transition Min 0 0 0 0 ns

    tGHQZ(1) tDF Output Enable High to Output Hi-Z Max 20 20 25 25 ns

    tGLQV(2) tOE Output Enable Low to Output Valid Max 20 20 30 30 ns

    tGLQX(1) tOLZ Output Enable Low to Output Transition Min 0 0 0 0 ns

    DQ0-DQ15

    AI04387

    VALIDA0-A21

    E

    tAXQX

    tAVAV

    VALID

    tAVQV

    tELQV

    tELQX

    tGLQV

    tGLQX

    ADDR. VALIDCHIP ENABLE

    OUTPUTSENABLED

    DATA VALID STANDBY

    G

    tGHQX

    tGHQZ

    tEHQX

    tEHQZ

  • 7/28/2019 M28W640FCB

    25/55

    25/55

    M28W640FCT, M28W640FCB

    Figure 10. Write AC Waveforms, Write Enable Controlled

    E G W DQ0-DQ15

    COMMAND

    CMDorDATA

    STATUSREGISTER

    VPP

    VALID

    A0-A21

    tAVAV

    tQVVPL

    tAVWH

    tWHAX

    PROGRAMOR

    ERASE

    tELWL

    tWHEH

    tWHDX

    tDVWH

    tWLWH

    tWHWL

    tVPHWH

    SET-UP

    COMMAND

    CONFIRMCOMMAND

    ORDATAINPUT

    STATUSREGISTER

    READ

    1stPOLLING

    tELQV

    AI04388

    tWPHWH

    WP

    tWHGL

    tQVWPL

    tWHEL

  • 7/28/2019 M28W640FCB

    26/55

    M28W640FCT, M28W640FCB

    26/55

    Table 17. Write AC Characteristics, Write Enable Controlled

    Note: 1. Sampled only, not 100% tested.

    2. Applicable if VPP is seen as a logic input (VPP < 3.6V).

    Symbol Alt ParameterM28W640FCT, M28W640FCB

    Unit70 85 90 10

    tAVAV tWC Write Cycle Time Min 70 85 90 100 ns

    tAVWH tAS Address Valid to Write Enable High Min 45 45 50 50 ns

    tDVWH tDS Data Valid to Write Enable High Min 45 45 50 50 ns

    tELWL tCS Chip Enable Low to Write Enable Low Min 0 0 0 0 ns

    tELQV Chip Enable Low to Output Valid Min 70 85 90 100 ns

    tQVVPL(1,2) Output Valid to VPP Low Min 0 0 0 0 ns

    tQVWPL Output Valid to Write Protect Low Min 0 0 0 0 ns

    tVPHWH(1) tVPS VPP High to Write Enable High Min 200 200 200 200 ns

    tWHAX tAH Write Enable High to Address Transition Min 0 0 0 0 ns

    tWHDX tDH Write Enable High to Data Transition Min 0 0 0 0 ns

    tWHEH tCH Write Enable High to Chip Enable High Min 0 0 0 0 ns

    tWHEL Write Enable High to Chip Enable Low Min 25 25 30 30 ns

    tWHGL Write Enable High to Output Enable Low Min 20 20 30 30 ns

    tWHWL tWPH Write Enable High to Write Enable Low Min 25 25 30 30 ns

    tWLWH tWP Write Enable Low to Write Enable High Min 45 45 50 50 ns

    tWPHWH Write Protect High to Write Enable High Min 45 45 50 50 ns

  • 7/28/2019 M28W640FCB

    27/55

    27/55

    M28W640FCT, M28W640FCB

    Figure 11. Write AC Waveforms, Chip Enable Controlled

    EG DQ0-DQ15

    COMMAND

    CMDorDATA

    STATUSREGISTER

    VPP

    VALID

    A0-A21

    tAVAV

    tQVVPL

    tAVEH

    tEHAX

    PROGRAMOR

    ERASE

    tWL

    EL

    tEHWH

    tEHDX

    tDVEH

    tELEH

    tEHEL

    tVPHEH

    POWER-UPAND

    SET-UPCOMMAND

    CONFIRMCOMMAND

    ORDATAINPUT

    STATUSREGISTER

    READ

    1stPOLLING

    tELQV

    AI04389

    W

    tWPHEH

    WP

    tEHGL

    tQVWPL

  • 7/28/2019 M28W640FCB

    28/55

    M28W640FCT, M28W640FCB

    28/55

    Table 18. Write AC Characteristics, Chip Enable Controlled

    Note: 1. Sampled only, not 100% tested.

    2. Applicable if VPP is seen as a logic input (VPP < 3.6V).

    Symbol Alt ParameterM28W640FCT, M28W640FCB

    Unit70 85 90 10

    tAVAV tWC Write Cycle Time Min 70 85 90 100 ns

    tAVEH tAS Address Valid to Chip Enable High Min 45 45 50 50 ns

    tDVEH tDS Data Valid to Chip Enable High Min 45 45 50 50 ns

    tEHAX tAHChip Enable High to AddressTransition

    Min 0 0 0 0 ns

    tEHDX tDH Chip Enable High to Data Transition Min 0 0 0 0 ns

    tEHEL tCPH Chip Enable High to Chip Enable Low Min 25 25 30 30 ns

    tEHGLChip Enable High to Output EnableLow

    Min 25 25 30 30 ns

    tEHWH tWH Chip Enable High to Write Enable High Min 0 0 0 0 nstELEH tCP Chip Enable Low to Chip Enable High Min 45 45 50 50 ns

    tELQV Chip Enable Low to Output Valid Min 70 85 90 100 ns

    tQVVPL(1,2) Output Valid to VPP Low Min 0 0 0 0 ns

    tQVWPL Data Valid to Write Protect Low Min 0 0 0 0 ns

    tVPHEH(1) tVPS VPP High to Chip Enable High Min 200 200 200 200 ns

    tWLEL tCS Write Enable Low to Chip Enable Low Min 0 0 0 0 ns

    tWPHEH Write Protect High to Chip Enable High Min 45 45 50 50 ns

  • 7/28/2019 M28W640FCB

    29/55

    29/55

    M28W640FCT, M28W640FCB

    Figure 12. Power-Up and Reset AC Waveforms

    Table 19. Power-Up and Reset AC Characteristics

    Note: 1. The device Reset is possible but not guaranteed if tPLPH < 100ns.2. Sampled only, not 100% tested.3. It is important to assert RP in order to allow proper CPU initialization during power up or reset.

    Symbol Parameter Test ConditionM28W640FCT, M28W640FCB

    Unit70 85 90 10

    tPHWLtPHELtPHGL

    Reset High to Write Enable Low, ChipEnable Low, Output Enable Low

    During Programand Erase

    Min 50 50 50 50 s

    others Min 30 30 30 30 ns

    tPLPH(1,2) Reset Low to Reset High Min 100 100 100 100 ns

    tVDHPH(3) Supply Voltages High to Reset High Min 50 50 50 50 s

    AI03537b

    W,

    RP

    tPHWLtPHEL

    tPHGL

    E, G

    VDD, VDDQ

    tVDHPH

    tPHWLtPHELtPHGL

    tPLPH

    Power-Up Reset

  • 7/28/2019 M28W640FCB

    30/55

    M28W640FCT, M28W640FCB

    30/55

    PACKAGE MECHANICAL

    Figure 13. TSOP48 - 48 lead Plastic Thin Small Outline, 12 x 20mm, Package Outline

    Note: Drawing is not to scale.

    Table 20. TSOP48 - 48 lead Plastic Thin Small Outline, 12 x 20mm, Package Mechanical Data

    Symbolmillimeters inches

    Typ Min Max Typ Min Max

    A 1.200 0.0472

    A1 0.100 0.050 0.150 0.0039 0.0020 0.0059

    A2 1.000 0.950 1.050 0.0394 0.0374 0.0413

    B 0.220 0.170 0.270 0.0087 0.0067 0.0106

    C 0.100 0.210 0.0039 0.0083

    CP 0.100 0.0039

    D1 12.000 11.900 12.100 0.4724 0.4685 0.4764

    E 20.000 19.800 20.200 0.7874 0.7795 0.7953

    E1 18.400 18.300 18.500 0.7244 0.7205 0.7283

    e 0.500 0.0197

    L 0.600 0.500 0.700 0.0236 0.0197 0.0276

    L1 0.800 0.0315

    3 0 5 3 0 5

    TSOP-G

    B

    e

    DIE

    C

    LA1

    E1

    E

    AA2

    1

    24

    48

    25

    D1

    L1

    CP

  • 7/28/2019 M28W640FCB

    31/55

    31/55

    M28W640FCT, M28W640FCB

    Figure 14. TFBGA48 6.39x10.5mm - 8x6 ball array, 0.75mm pitch, Bottom View Package Outline

    Note: Drawing is not to scale.

    Table 21. TFBGA48 6.39x10.5mm - 8x6 ball array, 0.75mm pitch, Package Mechanical Data

    Symbolmillimeters inches

    Typ Min Max Typ Min Max

    A 1.200 0.0472

    A1 0.260 0.0102

    A2 1.000 0.0394

    b 0.400 0.350 0.450 0.0157 0.0138 0.0177

    D 6.390 6.290 6.490 0.2516 0.2476 0.2555

    D1 5.250 0.2067

    ddd 0.100 0.0039

    E 10.500 10.400 10.600 0.4134 0.4094 0.4173

    E1 3.750 0.1476

    e 0.750 0.0295

    FD 0.570 0.0224

    FE 3.375 0.1329

    SD 0.375 0.0148

    SE 0.375 0.0148

    E1E

    D1

    D

    A2

    A1A

    BGA-Z34

    ddd

    e

    e

    SD

    SE

    b

    FE

    FD

    BALL "A1"

  • 7/28/2019 M28W640FCB

    32/55

    M28W640FCT, M28W640FCB

    32/55

    Figure 15. TFBGA48 Daisy Chain - Package Connections (Top view through package)

    Figure 16. TFBGA48 Daisy Chain - PCB Connections proposal (Top view through package)

    AI04390

    C

    B

    A

    87654321

    E

    D

    F

    AI04391

    C

    B

    A

    87654321

    E

    D

    F

    START

    POINT

    END

    POINT

  • 7/28/2019 M28W640FCB

    33/55

    33/55

    M28W640FCT, M28W640FCB

    PART NUMBERING

    Table 22. Ordering Information Scheme

    Example: M28W640FCT 90 N 6 T

    Device Type

    M28

    Operating Voltage

    W = VDD = 2.7V to 3.6V; VDDQ = 1.65V to 3.6V

    Device Function

    640FC = 64 Mbit (4 Mb x16), Boot Block, 0.13m

    Array Matrix

    T = Top BootB = Bottom Boot

    Speed

    70 = 70ns

    85 = 85ns

    90 = 90ns

    10 = 100ns

    Package

    N = TSOP48: 12 x 20 mm

    ZB = TFBGA48: 6.39 x 10.5mm, 0.75 mm pitch

    Temperature Range

    1 = 0 to 70 C

    6 = 40 to 85 C

    Option

    Blank = Standard Package

    T = Tape & Reel Packing

    E = Lead-Free and RoHS Package, Standard Packing

    F = Lead-Free and RoHS Package, Tape & Reel Packing

  • 7/28/2019 M28W640FCB

    34/55

    M28W640FCT, M28W640FCB

    34/55

    Table 23. Daisy Chain Ordering Scheme

    Note:Devices are shipped from the factory with the memory content bits erased to 1. For a list of available

    options (Speed, Package, etc.) or for further information on any aspect of this device, please contact

    the ST Sales Office nearest to you.

    Example: M28W640FC -ZB T

    Device TypeM28W640FC

    Daisy Chain

    -ZB = TFBGA48: 6.39 x 10.5mm, 0.75 mm pitch

    Option

    Blank = Standard Packing

    E = Lead-Free and RoHS Package, Standard Packing

    F = Lead-Free and RoHS Package, Tape & Reel Packing, 24mm

    T = Tape & Reel Packing, 24mm

  • 7/28/2019 M28W640FCB

    35/55

    35/55

    M28W640FCT, M28W640FCB

    APPENDIX A. BLOCK ADDRESS TABLES

    Table 24. Top Boot Block Addresses,M28W640FCT

    #Size

    (KWord)Address Range

    0 4 3FF000-3FFFFF

    1 4 3FE000-3FEFFF

    2 4 3FD000-3FDFFF

    3 4 3FC000-3FCFFF

    4 4 3FB000-3FBFFF

    5 4 3FA000-3FAFFF

    6 4 3F9000-3F9FFF

    7 4 3F8000-3F8FFF

    8 32 3F0000-3F7FFF

    9 32 3E8000-3EFFFF

    10 32 3E0000-3E7FFF

    11 32 3D8000-3DFFFF

    12 32 3D0000-3D7FFF

    13 32 3C8000-3CFFFF

    14 32 3C0000-3C7FFF

    15 32 3B8000-3BFFFF

    16 32 3B0000-3B7FFF

    17 32 3A8000-3AFFFF

    18 32 3A0000-3A7FFF

    19 32 398000-39FFFF

    20 32 390000-397FFF

    21 32 388000-38FFFF

    22 32 380000-387FFF

    23 32 378000-37FFFF

    24 32 370000-377FFF

    25 32 368000-36FFFF

    26 32 360000-367FFF

    27 32 358000-35FFFF

    28 32 350000-357FFF

    29 32 348000-34FFFF

    30 32 340000-347FFF31 32 338000-33FFFF

    32 32 330000-337FFF

    33 32 328000-32FFFF

    34 32 320000-327FFF

    35 32 318000-31FFFF

    36 32 310000-317FFF

    37 32 308000-30FFFF

    38 32 300000-307FFF

    39 32 2F8000-2FFFFF

    40 32 2F0000-2F7FFF

    41 32 2E8000-2EFFFF

    42 32 2E0000-2E7FFF

    43 32 2D8000-2DFFFF

    44 32 2D0000-2D7FFF

    45 32 2C8000-2CFFFF

    46 32 2C0000-2C7FFF

    47 32 2B8000-2BFFFF

    48 32 2B0000-2B7FFF

    49 32 2A8000-2AFFFF

    50 32 2A0000-2A7FFF51 32 298000-29FFFF

    52 32 290000-297FFF

    53 32 288000-28FFFF

    54 32 280000-287FFF

    55 32 278000-27FFFF

    56 32 270000-277FFF

    57 32 268000-26FFFF

    58 32 260000-267FFF

    59 32 258000-25FFFF

    60 32 250000-257FFF

    61 32 248000-24FFFF62 32 240000-247FFF

    63 32 238000-23FFFF

    64 32 230000-237FFF

    65 32 228000-22FFFF

    66 32 220000-227FFF

    67 32 218000-21FFFF

    68 32 210000-217FFF

    69 32 208000-20FFFF

    70 32 200000-207FFF

    71 32 1F8000-1FFFFF

    72 32 1F0000-1F7FFF

    73 32 1E8000-1EFFFF

    74 32 1E0000-1E7FFF

    75 32 1D8000-1DFFFF

    76 32 1D0000-1D7FFF

    77 32 1C8000-1CFFFF

    78 32 1C0000-1C7FFF

    79 32 1B8000-1BFFFF

    80 32 1B0000-1B7FFF

    81 32 1A8000-1AFFFF

    #Size

    (KWord)Address Range

  • 7/28/2019 M28W640FCB

    36/55

    M28W640FCT, M28W640FCB

    36/55

    82 32 1A0000-1A7FFF

    83 32 198000-19FFFF

    84 32 190000-197FFF

    85 32 188000-18FFFF

    86 32 180000-187FFF

    87 32 178000-17FFFF

    88 32 170000-177FFF

    89 32 168000-16FFFF

    90 32 160000-167FFF

    91 32 158000-15FFFF

    92 32 150000-157FFF

    93 32 148000-14FFFF

    94 32 140000-147FFF95 32 138000-13FFFF

    96 32 130000-137FFF

    97 32 128000-12FFFF

    98 32 120000-127FFF

    99 32 118000-11FFFF

    100 32 110000-117FFF

    101 32 108000-10FFFF

    102 32 100000-107FFF

    103 32 0F8000-0FFFFF

    104 32 0F0000-0F7FFF

    105 32 0E8000-0EFFFF106 32 0E0000-0E7FFF

    107 32 0D8000-0DFFFF

    108 32 0D0000-0D7FFF

    109 32 0C8000-0CFFFF

    110 32 0C0000-0C7FFF

    111 32 0B8000-0BFFFF

    112 32 0B0000-0B7FFF

    113 32 0A8000-0AFFFF

    114 32 0A0000-0A7FFF

    115 32 098000-09FFFF

    116 32 090000-097FFF

    117 32 088000-08FFFF

    118 32 080000-087FFF

    119 32 078000-07FFFF

    120 32 070000-077FFF

    121 32 068000-06FFFF

    122 32 060000-067FFF

    123 32 058000-05FFFF

    124 32 050000-057FFF

    125 32 048000-04FFFF

    #Size

    (KWord)Address Range

    126 32 040000-047FFF

    127 32 038000-03FFFF

    128 32 030000-037FFF

    129 32 028000-02FFFF

    130 32 020000-027FFF

    131 32 018000-01FFFF

    132 32 010000-017FFF

    133 32 008000-00FFFF

    134 32 000000-007FFF

    #Size

    (KWord)Address Range

  • 7/28/2019 M28W640FCB

    37/55

    37/55

    M28W640FCT, M28W640FCB

    Table 25. Bottom Boot Block Addresses,M28W640FCB

    #Size

    (KWord)Address Range

    134 32 3F8000-3FFFFF

    133 32 3F0000-3F7FFF

    132 32 3E8000-3EFFFF

    131 32 3E0000-3E7FFF

    130 32 3D8000-3DFFFF

    129 32 3D0000-3D7FFF

    128 32 3C8000-3CFFFF

    127 32 3C0000-3C7FFF

    126 32 3B8000-3BFFFF

    125 32 3B0000-3B7FFF

    124 32 3A8000-3AFFFF

    123 32 3A0000-3A7FFF

    122 32 398000-39FFFF

    121 32 390000-397FFF

    120 32 388000-38FFFF

    119 32 380000-387FFF

    118 32 378000-37FFFF

    117 32 370000-377FFF

    116 32 368000-36FFFF

    115 32 360000-367FFF

    114 32 358000-35FFFF

    113 32 350000-357FFF

    112 32 348000-34FFFF

    111 32 340000-347FFF

    110 32 338000-33FFFF

    109 32 330000-337FFF

    108 32 328000-32FFFF

    107 32 320000-327FFF

    106 32 318000-31FFFF

    105 32 310000-317FFF

    104 32 308000-30FFFF

    103 32 300000-307FFF

    102 32 2F8000-2FFFFF101 32 2F0000-2F7FFF

    100 32 2E8000-2EFFFF

    99 32 2E0000-2E7FFF

    98 32 2D8000-2DFFFF

    97 32 2D0000-2D7FFF

    96 32 2C8000-2CFFFF

    95 32 2C0000-2C7FFF

    94 32 2B8000-2BFFFF

    93 32 2B0000-2B7FFF

    92 32 2A8000-2AFFFF

    91 32 2A0000-2A7FFF

    90 32 298000-29FFFF

    89 32 290000-297FFF

    88 32 288000-28FFFF

    87 32 280000-287FFF

    86 32 278000-27FFFF

    85 32 270000-277FFF

    84 32 268000-26FFFF

    83 32 260000-267FFF

    82 32 258000-25FFFF

    81 32 250000-257FFF

    80 32 248000-24FFFF79 32 240000-247FFF

    78 32 238000-23FFFF

    77 32 230000-237FFF

    76 32 228000-22FFFF

    75 32 220000-227FFF

    74 32 218000-21FFFF

    73 32 210000-217FFF

    72 32 208000-20FFFF

    71 32 200000-207FFF

    70 32 1F8000-1FFFFF

    69 32 1F0000-1F7FFF68 32 1E8000-1EFFFF

    67 32 1E0000-1E7FFF

    66 32 1D8000-1DFFFF

    65 32 1D0000-1D7FFF

    64 32 1C8000-1CFFFF

    63 32 1C0000-1C7FFF

    62 32 1B8000-1BFFFF

    61 32 1B0000-1B7FFF

    60 32 1A8000-1AFFFF

    59 32 1A0000-1A7FFF

    58 32 198000-19FFFF

    57 32 190000-197FFF

    56 32 188000-18FFFF

    55 32 180000-187FFF

    54 32 178000-17FFFF

    53 32 170000-177FFF

    52 32 168000-16FFFF

    51 32 160000-167FFF

    50 32 158000-15FFFF

    49 32 150000-157FFF

    #Size

    (KWord)Address Range

  • 7/28/2019 M28W640FCB

    38/55

    M28W640FCT, M28W640FCB

    38/55

    48 32 148000-14FFFF

    47 32 140000-147FFF

    46 32 138000-13FFFF

    45 32 130000-137FFF

    44 32 128000-12FFFF

    43 32 120000-127FFF

    42 32 118000-11FFFF

    41 32 110000-117FFF

    40 32 108000-10FFFF

    39 32 100000-107FFF

    38 32 0F8000-0FFFFF

    37 32 0F0000-0F7FFF

    36 32 0E8000-0EFFFF35 32 0E0000-0E7FFF

    34 32 0D8000-0DFFFF

    33 32 0D0000-0D7FFF

    32 32 0C8000-0CFFFF

    31 32 0C0000-0C7FFF

    30 32 0B8000-0BFFFF

    29 32 0B0000-0B7FFF

    28 32 0A8000-0AFFFF

    27 32 0A0000-0A7FFF

    26 32 098000-09FFFF

    25 32 090000-097FFF24 32 088000-08FFFF

    23 32 080000-087FFF

    22 32 078000-07FFFF

    21 32 070000-077FFF

    20 32 068000-06FFFF

    19 32 060000-067FFF

    18 32 058000-05FFFF

    17 32 050000-057FFF

    16 32 048000-04FFFF

    15 32 040000-047FFF

    14 32 038000-03FFFF

    13 32 030000-037FFF

    12 32 028000-02FFFF

    11 32 020000-027FFF

    10 32 018000-01FFFF

    9 32 010000-017FFF

    8 32 008000-00FFFF

    7 4 007000-007FFF

    6 4 006000-006FFF

    5 4 005000-005FFF

    #Size

    (KWord)Address Range

    4 4 004000-004FFF

    3 4 003000-003FFF

    2 4 002000-002FFF

    1 4 001000-001FFF

    0 4 000000-000FFF

    #Size

    (KWord)Address Range

  • 7/28/2019 M28W640FCB

    39/55

    39/55

    M28W640FCT, M28W640FCB

    APPENDIX B. COMMON FLASH INTERFACE (CFI)The Common Flash Interface is a JEDEC ap-proved, standardized data structure that can beread from the Flash memory device. It allows a

    system software to query the device to determinevarious electrical and timing parameters, densityinformation and functions supported by the mem-ory. The system can interface easily with the de-vice, enabling the software to upgrade itself whennecessary.

    When the CFI Query Command (RCFI) is issuedthe device enters CFI Query mode and the data

    structure is read from the memory. Tables 26, 27,28, 29, 30 and 31 show the addresses used to re-trieve the data.

    The CFI data structure also contains a securityarea where a 64 bit unique security number is writ-ten (see Table 31., Security Code Area). This areacan be accessed only in Read mode by the finaluser. It is impossible to change the security num-ber after it has been written by ST. Issue a Readcommand to return to Read mode.

    Table 26. Query Structure Overview

    Note: Query data are always presented on the lowest order data outputs.

    Table 27. CFI Query Identification String

    Note: Query data are always presented on the lowest order data outputs (DQ7-DQ0) only. DQ8-DQ15 are 0.

    Offset Sub-section Name Description

    00h Reserved Reserved for algorithm-specific information

    10h CFI Query Identification String Command set ID and algorithm data offset

    1Bh System Interface Information Device timing & voltage information

    27h Device Geometry Definition Flash device layout

    P Primary Algorithm-specific Extended Query tableAdditional information specific to the PrimaryAlgorithm (optional)

    A Alternate Algorithm-specific Extended Query tableAdditional information specific to the AlternateAlgorithm (optional)

    Offset Data Description Value

    00h 0020h Manufacturer Code ST

    01h8848h8849h

    Device CodeTop

    Bottom

    02h-0Fh reserved Reserved

    10h 0051h "Q"

    11h 0052h Query Unique ASCII String "QRY" "R"

    12h 0059h "Y"

    13h 0003h Primary Algorithm Command Set and Control Interface ID code 16 bit ID codedefining a specific algorithm

    Intelcompatible14h 0000h

    15h 0035hAddress for Primary Algorithm extended Query table (see Table 29.) P = 35h

    16h 0000h

    17h 0000h Alternate Vendor Command Set and Control Interface ID Code second vendor -specified algorithm supported (0000h means none exists)

    NA18h 0000h

    19h 0000h Address for Alternate Algorithm extended Query table(0000h means none exists)

    NA1Ah 0000h

  • 7/28/2019 M28W640FCB

    40/55

    M28W640FCT, M28W640FCB

    40/55

    Table 28. CFI Query System Interface Information

    Offset Data Description Value

    1Bh 0027h

    VDD Logic Supply Minimum Program/Erase or Write voltage

    bit 7 to 4BCD value in voltsbit 3 to 0BCD value in 100 mV 2.7V

    1Ch 0036hVDD Logic Supply Maximum Program/Erase or Write voltage

    bit 7 to 4BCD value in voltsbit 3 to 0BCD value in 100 mV

    3.6V

    1Dh 00B4hVPP [Programming] Supply Minimum Program/Erase voltage

    bit 7 to 4HEX value in voltsbit 3 to 0BCD value in 100 mV

    11.4V

    1Eh 00C6hVPP [Programming] Supply Maximum Program/Erase voltage

    bit 7 to 4HEX value in voltsbit 3 to 0BCD value in 100 mV

    12.6V

    1Fh 0004h Typical time-out per single word program = 2n s 16s

    20h 0004h Typical time-out for Double/Quadruple Word Program = 2n s 16s

    21h 000Ah Typical time-out per individual block erase = 2n ms 1s

    22h 0000h Typical time-out for full chip erase = 2n ms NA

    23h 0005h Maximum time-out for Word program = 2n times typical 512s

    24h 0005h Maximum time-out for Double/Quadruple Word Program = 2n times typical 512s

    25h 0003h Maximum time-out per individual block erase = 2n times typical 8s

    26h 0000h Maximum time-out for chip erase = 2n times typical NA

  • 7/28/2019