28
M1120 Class 8 Dan Barbasch September 18, 2011 http://www.math.cornell.edu/ ˜ web1120/index.html Dan Barbasch () M1120 Class 8 September 18, 2011 1 / 13

M1120 Class 8 - Cornell Universitypi.math.cornell.edu/~web1120/slides/fall12/sep18.pdfGeneral Strategy 1 When at least one of sinx or cosx appears to an odd powersay sinx, change variables

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: M1120 Class 8 - Cornell Universitypi.math.cornell.edu/~web1120/slides/fall12/sep18.pdfGeneral Strategy 1 When at least one of sinx or cosx appears to an odd powersay sinx, change variables

M1120 Class 8

Dan Barbasch

September 18, 2011

http://www.math.cornell.edu/˜web1120/index.html

Dan Barbasch () M1120 Class 8 September 18, 2011 1 / 13

Page 2: M1120 Class 8 - Cornell Universitypi.math.cornell.edu/~web1120/slides/fall12/sep18.pdfGeneral Strategy 1 When at least one of sinx or cosx appears to an odd powersay sinx, change variables

Trigonometric integrals

∫sinm x cosn x dx ,

∫sin ax cos bx dx .

Example.∫sin4 x cos2 x dx .

The other type will arise as we compute the example.

Dan Barbasch () M1120 Class 8 September 18, 2011 2 / 13

Page 3: M1120 Class 8 - Cornell Universitypi.math.cornell.edu/~web1120/slides/fall12/sep18.pdfGeneral Strategy 1 When at least one of sinx or cosx appears to an odd powersay sinx, change variables

∫sin4 x · cos2 x dx .

Double Angle Formulas:

sin2 θ =1− cos 2θ

2cos2 θ =

1 + cos 2θ

2∫ (sin2 x

)2cos2 x dx =

∫ (1− cos 2x

2

)2

·(1 + cos 2x

2

)dx .

The powers have decreased, but instead the angles have doubled.

Dan Barbasch () M1120 Class 8 September 18, 2011 3 / 13

Page 4: M1120 Class 8 - Cornell Universitypi.math.cornell.edu/~web1120/slides/fall12/sep18.pdfGeneral Strategy 1 When at least one of sinx or cosx appears to an odd powersay sinx, change variables

∫sin4 x cos2 x dx

∫sin4 x cos2 x dx =

1

8

∫ (1− 2 cos 2x + cos2 2x

)(1 + cos 2x) dx =

=1

8

∫ (1− cos 2x − cos2 2x + cos3 2x

)dx =

=x

8− 1

8

∫cos 2x dx − 1

8

∫cos2 2x dx +

1

8

∫cos3 2x dx .

Then ∫cos 2x dx =

1

2sin 2x + C ,

and ∫cos2 2x dx =

∫ (1 + cos 4x

2

)dx =

1

2x +

1

8sin 4x + C .

Remains to compute

∫cos3 2x dx .

Dan Barbasch () M1120 Class 8 September 18, 2011 4 / 13

Page 5: M1120 Class 8 - Cornell Universitypi.math.cornell.edu/~web1120/slides/fall12/sep18.pdfGeneral Strategy 1 When at least one of sinx or cosx appears to an odd powersay sinx, change variables

∫cos3 2x dx .

Change variables u = 2x , du = 2dx :∫cos3 2x dx =

∫cos3 u

du

2=

1

2

∫cos3 u du.

Dan Barbasch () M1120 Class 8 September 18, 2011 5 / 13

Page 6: M1120 Class 8 - Cornell Universitypi.math.cornell.edu/~web1120/slides/fall12/sep18.pdfGeneral Strategy 1 When at least one of sinx or cosx appears to an odd powersay sinx, change variables

∫cos3 x dx , odd powers

Dan Barbasch () M1120 Class 8 September 18, 2011 6 / 13

Page 7: M1120 Class 8 - Cornell Universitypi.math.cornell.edu/~web1120/slides/fall12/sep18.pdfGeneral Strategy 1 When at least one of sinx or cosx appears to an odd powersay sinx, change variables

∫cos3 x dx , odd powers

Apply the identity sin2 u + cos2 u = 1 :∫cos3 u du =

∫cos2 u · cos u du =

∫ (1− sin2 u

)· (cos u du) .

Change variables w = sin u so dw = cos u du :∫cos3 u du =

∫ (1− w2

)dw = w − w3

3+ C = sin u − sin3 u

3+ C =

=sin 2x − sin3 2x

3+ C .

Dan Barbasch () M1120 Class 8 September 18, 2011 6 / 13

Page 8: M1120 Class 8 - Cornell Universitypi.math.cornell.edu/~web1120/slides/fall12/sep18.pdfGeneral Strategy 1 When at least one of sinx or cosx appears to an odd powersay sinx, change variables

General Strategy

1 When at least one of sin x or cos x appears to an odd power say sin x ,change variables u = cos θ, and use sin2 θ + cos2 θ = 1. This willconvert ∫

sinn x cosm x dx

to the integral of a polynomial, assuming n,m are positive integers.

2 For even powers, half angle formulas (or reduction formulas) reducethe powers.

Dan Barbasch () M1120 Class 8 September 18, 2011 7 / 13

Page 9: M1120 Class 8 - Cornell Universitypi.math.cornell.edu/~web1120/slides/fall12/sep18.pdfGeneral Strategy 1 When at least one of sinx or cosx appears to an odd powersay sinx, change variables

∫cos3 x dx , products of cosines

cos3 x = cos x · cos2 x = cos x · 1 + cos 2x

2=

1

2cos x +

1

2cos x · cos 2x ,

So ∫cos3 x dx =

1

2

∫cos x dx +

1

2

∫cos x cos 2x dx =

=1

2sin x +

1

2

∫cos x · cos 2x dx .

We need to compute ∫cos x · cos 2x dx .

Dan Barbasch () M1120 Class 8 September 18, 2011 8 / 13

Page 10: M1120 Class 8 - Cornell Universitypi.math.cornell.edu/~web1120/slides/fall12/sep18.pdfGeneral Strategy 1 When at least one of sinx or cosx appears to an odd powersay sinx, change variables

Trigonometry Formulas

(1) cos (u + v) = cos u cos v − sin u sin v .

(2) cos (u − v) = cos u cos v + sin u sin v .

(3) sin (u + v) = sin u cos v + cos u sin v .

(4) sin (u − v) = sin u cos v − cos u sin v .

Solving,

(5) cos u cos v =1

2(cos (u − v) + cos (u + v)) .

(6) sin u sin v =1

2(cos (u − v)− cos (u + v)) .

(7) sin u cos v =1

2(sin (u + v) + sin (u − v)) .

Dan Barbasch () M1120 Class 8 September 18, 2011 9 / 13

Page 11: M1120 Class 8 - Cornell Universitypi.math.cornell.edu/~web1120/slides/fall12/sep18.pdfGeneral Strategy 1 When at least one of sinx or cosx appears to an odd powersay sinx, change variables

∫cos x cos 2x dx

cos u cos v =1

2(cos (u + v) + cos (u − v)) .

Dan Barbasch () M1120 Class 8 September 18, 2011 10 / 13

Page 12: M1120 Class 8 - Cornell Universitypi.math.cornell.edu/~web1120/slides/fall12/sep18.pdfGeneral Strategy 1 When at least one of sinx or cosx appears to an odd powersay sinx, change variables

∫cos x · cos 2x dx

cos u cos v = 12 cos(u + v) + 1

2 cos(u − v).∫cos x · cos 2x dx =

1

2

∫cos(x − 2x) dx +

1

2

∫cos(x + 2x) dx =

=1

2

∫cos(−x) dx +

1

2

∫cos 3x dx =

1

2sin x +

1

6sin 3x + C .

We used the relation cos(−x) = cos x . Plug this answer into the formulaon a previous page.

Question: This answer does not seem to coincide with the previousone.Why?!

Dan Barbasch () M1120 Class 8 September 18, 2011 11 / 13

Page 13: M1120 Class 8 - Cornell Universitypi.math.cornell.edu/~web1120/slides/fall12/sep18.pdfGeneral Strategy 1 When at least one of sinx or cosx appears to an odd powersay sinx, change variables

∫sin4 x cos2 x dx

Remark: There are a lot of steps and calculations, the answer is supposedto be

1

16x − 1

64sin 2x − 1

64sin 4x +

1

192sin 6x + C .

With this in mind, recall sin 2x = 2 sin x cos x . So we can write

sin4x cos2 x = (sin x cos x)2 · sin2 x =

(sin 2x

2

)2

·(1− cos 2x

2

)=

=1

8

(1− cos 4x

2

)· (1− cos 2x) =

=1

16(1− cos 2x − cos 4x + cos 2x cos 4x) .

Now use cos 2x cos 4x = 12 cos(−2x) +

12 cos 6x to get the answer above.

Check the arithmetic carefully.

Dan Barbasch () M1120 Class 8 September 18, 2011 12 / 13

Page 14: M1120 Class 8 - Cornell Universitypi.math.cornell.edu/~web1120/slides/fall12/sep18.pdfGeneral Strategy 1 When at least one of sinx or cosx appears to an odd powersay sinx, change variables

Exercises for next time

(a)

∫sin5 x cos x dx (b)

∫sin4 x cos3 x dx (c)

∫sin8 x cos7 x dx

(d)

∫sin2 x dx (e)

∫sin4 x dx (f )

∫sin8 x cos2 x dx

(g)

∫sin 5x cos 2x dx (h)

∫ 2π

0sin 2x sin 4x dx

Dan Barbasch () M1120 Class 8 September 18, 2011 13 / 13

Page 15: M1120 Class 8 - Cornell Universitypi.math.cornell.edu/~web1120/slides/fall12/sep18.pdfGeneral Strategy 1 When at least one of sinx or cosx appears to an odd powersay sinx, change variables

Trigonometric substitution

Changes integrals involving square roots, into trigonometric integrals ofthe type we studied. The formulas

1− sin2 θ = cos2 θ

1 + tan2 θ = sec2 θ

sec2 θ − 1 = tan2 θ

allow you to replace expressions with square roots by trigonometricfunctions.In one of the problems you also used the trick

1− sin x =1− 2 sinx

2cos

x

2= sin2

x

2− 2 sin

x

2cos

x

2+ cos2

x

2=

=(sin

x

2− cos

x

2

)2,√1− sin x =

∣∣∣sin x

2− cos

x

2

∣∣∣.We want methods to use systematically.

Dan Barbasch () M1120 Class 8 September 18, 2011 14 / 13

Page 16: M1120 Class 8 - Cornell Universitypi.math.cornell.edu/~web1120/slides/fall12/sep18.pdfGeneral Strategy 1 When at least one of sinx or cosx appears to an odd powersay sinx, change variables

1

√a2 − x2 : x = a sin θ, dx = cos θ dθ, −π/2 ≤ θ ≤ π/2.

a2 − x2 = a2 − a2 sin2 θ = a2(1− sin2 θ

)= a2 cos2 θ.√

a2 − x2 = a| cos θ| = a cos θ.

Crucial fact: −π/2 ≤ θ ≤ π/2, so that cos θ ≥ 0.

2

√a2 + x2 : x = a tan θ, dx = sec2 θ dθ, −π/2 ≤ θ ≤ π/2.

a2 + x2 = a2 + a2 tan2 θ = a2(1 + tan2 θ

)= a2 sec2 θ.√

a2 + x2 = a| sec θ| = a sec θ.

Crucial fact: −π/2 ≤ θ ≤ π/2, so that cos θ ≥ 0.

3

√x2 − a2 : x = a sec θ, dx = sec θ tan θ dθ, 0 ≤ θ < π/2 if x ≥ a,

but π/2 < θ ≤ π if x < −a.x2 − a2 = a2 sec2 θ − a2 = a2

(sec2θ − 1

)= a2 tan2 θ.√

x2 − a2 = a| tan θ|.

Crucial fact : x ≥ a√

x2 − a2 = a tan θ, 0 ≤ θ < π/2

x ≤ −a√x2 − a2 = −a tan θ, π/2 < θ ≤ π

Dan Barbasch () M1120 Class 8 September 18, 2011 15 / 13

Page 17: M1120 Class 8 - Cornell Universitypi.math.cornell.edu/~web1120/slides/fall12/sep18.pdfGeneral Strategy 1 When at least one of sinx or cosx appears to an odd powersay sinx, change variables

ExamplesCompute the area enclosed by the ellipse x2

a2+ y2

b2= 1

Dan Barbasch () M1120 Class 8 September 18, 2011 16 / 13

Page 18: M1120 Class 8 - Cornell Universitypi.math.cornell.edu/~web1120/slides/fall12/sep18.pdfGeneral Strategy 1 When at least one of sinx or cosx appears to an odd powersay sinx, change variables

Examples

Using symmetry, A = 4

∫ a

0

√b2 − b2

a2x2 dx .

Some algebra:√b2 − b2

a2x2 =

√a2b2 − b2x2

a2=

√b2

a2(a2 − x2) dx =

b

a

√a2 − x2

A = 4b

a

∫ a

0

√a2 − x2 dx

From the previous page, x = a sin θ, dx = a cos θ dθ,√a2 − x2 = a cos θ :

A =4b

a

∫ π/2

0(a cos θ)(a cos θ dθ) = 4ab

∫ π/2

0cos2 θ dθ =

=4ab

∫ π/2

0

1 + cos 2θ

2dθ = 4ab

∫ π/2

0

1

2dθ + 4ab

∫ π/2

0

cos 2θ

2dθ = πab

Dan Barbasch () M1120 Class 8 September 18, 2011 16 / 13

Page 19: M1120 Class 8 - Cornell Universitypi.math.cornell.edu/~web1120/slides/fall12/sep18.pdfGeneral Strategy 1 When at least one of sinx or cosx appears to an odd powersay sinx, change variables

Examples

Dan Barbasch () M1120 Class 8 September 18, 2011 16 / 13

Page 20: M1120 Class 8 - Cornell Universitypi.math.cornell.edu/~web1120/slides/fall12/sep18.pdfGeneral Strategy 1 When at least one of sinx or cosx appears to an odd powersay sinx, change variables

Examples

Compute

∫ −3

−6

1√x2 − 4

dx .

Observation: This integral is a POSITIVE number!From the previous page, x = 2 sec θ, dx = 2 sec θ tan θ. Because the limitsof integration are negative, π/2 < θ < π. So

√x2 − 4 = −2 tan θ.

The limits of integration are Arcsec −62 ≤ θ ≤ Arcsec −3

2 .

Dan Barbasch () M1120 Class 8 September 18, 2011 16 / 13

Page 21: M1120 Class 8 - Cornell Universitypi.math.cornell.edu/~web1120/slides/fall12/sep18.pdfGeneral Strategy 1 When at least one of sinx or cosx appears to an odd powersay sinx, change variables

Examples

∫ −3

−6

1√x2 − 4

dx =

∫ Arcsec(−3/2)

Arcsec(−3)

2 sec θ tan θ dθ

−2 tan θ=

=−∫ Arcsec(−3/2)

Arcsec(−3)sec θ dθ = − ln | sec θ + tan θ|

∣∣∣∣∣Arcsec(−3/2)

Arcsec(−3)

=

=− (ln | − 3/2− tanArcsec(−3/2)|+ ln | − 3 + tanArcsec(−3)|)

To evaluate, we use the fact that tan (Arcsec t) = −√t2 − 1 for t < 0.

This comes from reasoning on a right triangle with hypothenuse −t > 0and adjacent side 1. The opposite side is

√t2 − 1, and the tangent

function is (negative) −(√t2 − 1/1).∫ −3

−6

1√x2 − 4

dx = −(ln | − 3/2−

√5/3| − ln | − 3−

√8|)=

= ln(3 +√8)− ln(3/2 +

√5/3) (which is positive!)

Dan Barbasch () M1120 Class 8 September 18, 2011 16 / 13

Page 22: M1120 Class 8 - Cornell Universitypi.math.cornell.edu/~web1120/slides/fall12/sep18.pdfGeneral Strategy 1 When at least one of sinx or cosx appears to an odd powersay sinx, change variables

Examples

Easier Way: Change variables u = −x :∫ −3

−6

1√x2 − 4

dx =

∫ 6

3

1√u2 − 4

du.

Then 0 ≤ θ < π/2 and sec θ, tan θ and so on are all positive!

Dan Barbasch () M1120 Class 8 September 18, 2011 16 / 13

Page 23: M1120 Class 8 - Cornell Universitypi.math.cornell.edu/~web1120/slides/fall12/sep18.pdfGeneral Strategy 1 When at least one of sinx or cosx appears to an odd powersay sinx, change variables

Examples

Dan Barbasch () M1120 Class 8 September 18, 2011 16 / 13

Page 24: M1120 Class 8 - Cornell Universitypi.math.cornell.edu/~web1120/slides/fall12/sep18.pdfGeneral Strategy 1 When at least one of sinx or cosx appears to an odd powersay sinx, change variables

Completing the square

∫1√

x2 + 2x + 6dx .

x2+ax+b = x2+ax+(a2

)2+

(b −

(a2

)2)=(x +

a

2

)2+c , c = b −

(a2

)2.

x2 + 2x + 6 = x2 + 2x + 1 + (6− 1) = (x + 1)2 + 5.

Change variables u = x + 1, du = dx :∫1√

x2 + 2x + 6dx =

∫1√

u2 + 5du.

Then apply the method on the previous slide.

Dan Barbasch () M1120 Class 8 September 18, 2011 17 / 13

Page 25: M1120 Class 8 - Cornell Universitypi.math.cornell.edu/~web1120/slides/fall12/sep18.pdfGeneral Strategy 1 When at least one of sinx or cosx appears to an odd powersay sinx, change variables

Partial FractionsCompute

∫sec θ dθ=

∫dθ

cos θ=

cos θ dθ

cos2 θ=

∫cos θ dθ

1− sin2 θ

Change variables x = sin θ, dx = cos θ dθ :∫sec θ dθ =

∫dx

1− x2=

∫dx

(1− x)(1 + x)

Method of Partial Fractions. Write

1

(1− x)(1 + x)=

A

1− x+

B

1 + xA,B constants

and solve for A and B. Each integral separately is computable.Answer: A = 1/2, and B = 1/2.∫

dx

(1− x)(1 + x)=

1

2

∫dx

1− x+

1

2

∫dx

1 + x=

=− 1

2ln |1− x |+ 1

2ln |1 + x |+ C =

1

2ln

∣∣∣∣1 + x

1− x

∣∣∣∣+ C .

Dan Barbasch () M1120 Class 8 September 18, 2011 18 / 13

Page 26: M1120 Class 8 - Cornell Universitypi.math.cornell.edu/~web1120/slides/fall12/sep18.pdfGeneral Strategy 1 When at least one of sinx or cosx appears to an odd powersay sinx, change variables

Partial Fractions

∫sec θ dθ =

1

2ln |1 + sin θ| − 1

2ln |1− sin θ|+ C =

1

2ln

∣∣∣∣1 + sin θ

1− sin θ

∣∣∣∣+ C =

= ln

√∣∣∣∣1 + sin θ

1− sin θ

∣∣∣∣+ C .

(The absolute values are not needed, the expressions are all positive!)

This does not look like ln | sec θ + tan θ|.

Dan Barbasch () M1120 Class 8 September 18, 2011 18 / 13

Page 27: M1120 Class 8 - Cornell Universitypi.math.cornell.edu/~web1120/slides/fall12/sep18.pdfGeneral Strategy 1 When at least one of sinx or cosx appears to an odd powersay sinx, change variables

Partial Fractions

1 + sin u

1− sin u=(1 + sin u)(1 + sin u)

(1− sin u)(1 + sin u)=

1 + 2 sin u + sin2 u

1− sin2 u=

=(1 + sin u)2

1− sin2 u=

(1 + sin u)2

cos2 u.

√1 + sin u

1− sin u=

√(1 + sin u)2

cos2 u=

∣∣∣∣1 + sin u

cos u

∣∣∣∣ = ∣∣∣∣ 1

cos u+

sin u

cos u

∣∣∣∣ ==| sec u + tan u|.

Dan Barbasch () M1120 Class 8 September 18, 2011 18 / 13

Page 28: M1120 Class 8 - Cornell Universitypi.math.cornell.edu/~web1120/slides/fall12/sep18.pdfGeneral Strategy 1 When at least one of sinx or cosx appears to an odd powersay sinx, change variables

Problems for next time:

Section 8.3 56, 58

Section 8.4 40, 60

Dan Barbasch () M1120 Class 8 September 18, 2011 19 / 13