83
M Mode odule eling a e EEE and si E536J2 imula R Amp Sens Syste LTsp 2: Con ation o R. Grossm plifiers sors ems pice ntrol of sen mann & Aut nsors tomat and c tion circui ts

M EEE 536J2: Con & Automation - HS Augsburgragr/Topics/MCA/common/Master... · p AD8541, Ana F58, Cantherm hermistor, Vish ... (constant t at a nod r Wavefor AC analy sweep fr

Embed Size (px)

Citation preview

Page 1: M EEE 536J2: Con & Automation - HS Augsburgragr/Topics/MCA/common/Master... · p AD8541, Ana F58, Cantherm hermistor, Vish ... (constant t at a nod r Wavefor AC analy sweep fr

M

Mode

odule

eling a

e EEE

and si

E536J2

imulaR

Amp

Sens

Syste

LTsp

2: Con

ation oR. Grossm

plifiers

sors

ems

pice

ntrol

of senmann

& Aut

nsors

tomat

and c

tion

circuits

Page 2: M EEE 536J2: Con & Automation - HS Augsburgragr/Topics/MCA/common/Master... · p AD8541, Ana F58, Cantherm hermistor, Vish ... (constant t at a nod r Wavefor AC analy sweep fr

P

1

2

3

A

EEE536J

Prof. Dr.-Ing. Gro

0.1 Goa0.2 Intro

0.2.1 0.2.2 0.2.3 0.2.4

Amplifier 1.1 Idea

1.1.1 1.1.2 1.1.3

1.2 Clos1.2.1 1.2.2 1.2.3 1.2.4 1.2.5 1.2.6

1.3 Rea1.3.1 1.3.2 1.3.3 1.3.4

1.4 Acti1.4.1 1.4.2

2 Sensors 2.1 Clas2.2 Mod

2.2.1 2.2.2 2.2.3

2.3 Volt2.3.1 2.3.2

2.4 Cur2.4.1 2.4.2 2.4.3

2.5 Res2.5.1 2.5.2 2.5.3 2.5.4 2.5.5 2.5.6 2.5.7 2.5.8

2.6 Osc2.6.1 2.6.2 2.6.3

3 Sensor sy3.1 Indu3.2 Com

3.2.1 3.2.2 3.2.3

Appendix: Data sOp amOp amNTC MNTC TGas sePhoto

J2: Contr

oßmann

als of this couroduction to LT

InstallatioSchematAnalysesWaveform

circuits ........al op amp ......

CharacteComparaSchmitt-T

sed-loop ampNegativeNon-inveInverting DifferencInstrumeSimple m

al op amps ....Offset voNon-lineaInput/outLimited b

ive filters .......Filter synControlle

.........ssification .....deling sensor

Simple DControllinDynamic

tage sources .Lambda Thermo c

rrent sources .Photo dioPhoto traCurrent s

sistors ...........NTC ......Gas sensStrain gaEvaluatioWheatstoBridge wLTspice sNon-linea

cillators ..........LC oscillaRC oscillTimer IC

ystems .........uctive proximimplex System

AmplifierModulatoVCO (vo

sheets mp LM741, Natiomp AD8541, AnaMF58, CanthermThermistor, Vishensor TGS822, diode SFH203,

rol & Auto

rse ................Tspice ...........on .................tic Capture ....s ....................m Viewer ................................................

eristic ............ator ...............Trigger ..........

plifiers ............e feedback .....erting amplifier

amplifier ......ce amplifier....entation amplifmodel ..................................

oltage and curar and limited tput impedancbandwidth ..........................

nthesis ..........er .............................................................circuits .........

DC model ......ng physical qu

c behaviour .........................probe ...........couples ..............................ode ...............ansistor .........sources in LTs..........................................sor ................

auges ............on of resistancone bridge ....

with difference simulations ofar resistors ........................ator ...............lator ..............555 ...................................ty switch .......s ...................

r circuits ........or ..................ltage-controlle

onal Semicondualog Devices m hay

Figaro Infineon

omation

V

Tab

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................r / voltage follo............................................fier .............................................................rents .............output ...........

ce ...................................................................................................................................................................................................uantities ...................................................................................................................................................................spice ......................................................................................................ce ........................................amplifier .......

f resistive sens............................................................................................................................................................................................................................ed oscillator) ..

uctor

V3.0

ble of con

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................ower ..............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................sors ................................................................................................................................................................................................................................................................

ntents:

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

2

....... 3

....... 4

....... 4

....... 5

....... 8

....... 9

..... 10

..... 10

..... 10

..... 10

..... 11

..... 12

..... 12

..... 13

..... 13

..... 14

..... 14

..... 15

..... 16

..... 16

..... 18

..... 19

..... 21

..... 22

..... 22

..... 24

..... 25

..... 25

..... 25

..... 25

..... 26

..... 27

..... 29

..... 29

..... 30

..... 32

..... 32

..... 35

..... 36

..... 37

..... 37

..... 38

..... 39

..... 40

..... 40

..... 40

..... 41

..... 43

..... 45

..... 45

..... 45

..... 46

..... 49

..... 49

..... 52

..... 52

..... 53

..... 53

Page 3: M EEE 536J2: Con & Automation - HS Augsburgragr/Topics/MCA/common/Master... · p AD8541, Ana F58, Cantherm hermistor, Vish ... (constant t at a nod r Wavefor AC analy sweep fr

P

0

e

id

a

EEE536J

Prof. Dr.-Ing. Gro

0.1 Goa

• Ana

• Lea

• Sim

• Und

• Ana

• Buil

• Be w

example:

deal resis

advanced

J2: Contr

oßmann

als of th

alyze and

arn about

mulate com

derstand

alyze data

ld useful

wary of s

real resis

stor (simp

d model:

R

rol & Auto

is cours

d understa

limitation

mponents

importan

a sheets

models o

simulators

stor: a lot

ple mode

L

C

omation

V

se

and op am

ns of real

s and sys

t physica

and extra

of sensors

s

t of physi

• Maxw• intern• curre• elect• non-l

el):

V3.0

mp circui

op amps

stems in P

al propert

act neces

s and com

ics

well equanal electrent densitro-magnelinearity,

its useful

s

PSPICE

ties of sen

ssary pro

mponents

ations ric field ty etic fieldsnoise, ov

:

for senso

nsors

perties

s

s verload, …

ors

3

Page 4: M EEE 536J2: Con & Automation - HS Augsburgragr/Topics/MCA/common/Master... · p AD8541, Ana F58, Cantherm hermistor, Vish ... (constant t at a nod r Wavefor AC analy sweep fr

P

0

0

Y

EEE536J

Prof. Dr.-Ing. Gro

0.2 Intro

0.2.1 Inst

• Downlo

• Execut

• Use ac

You should

• In the iIt conta

• Move t

NO!

J2: Contr

oßmann

oductio

tallation

oad LTspi

e LTspic

ccessible in

d find the s

nstallation ains Europ

he downlo

rol & Auto

on to LT

ice.zip;

eIV.exe

nstallation

symbol LTs

folder repean symbo

aded folde

omation

V

spice

extract LT

folder, NO

spice IV

place old fools and add

er projec

V3.0

TspiceIV

OT “progr

V o

older lib wditional mo

ts into the

.exe and

ram files

on your de

with new (dodels.

e installatio

OK!

folders lib

s (x86)“

esktop.

downloade

on folder

b und pro

or system

ed and extr

ojects

folders

racted) lib

4

b.

Page 5: M EEE 536J2: Con & Automation - HS Augsburgragr/Topics/MCA/common/Master... · p AD8541, Ana F58, Cantherm hermistor, Vish ... (constant t at a nod r Wavefor AC analy sweep fr

EEE536J2: Control & Automation

Prof. Dr.-Ing. Großmann V3.0 5

0.2.2 Schematic Capture

Short-cuts:

F5 delete (!) Ctrl-R rotate

F7 move (w/o wires) Ctrl-E mirror

F8 drag (with wires) Ctrl-G toggle grid

Values:

femto pico nano micro milli kilo Mega Giga Tera modifier f, F p, P n, N µ,

u, U m, M k, K meg,

MEG g, G t, T

Units: arbitrary units allowed after number/modifier (without space!)

Examples: 1.2k = 1200; R=1megohm; C=1f = 1femtoFarad (!)

error: 1.2 k; 5 V

simulate

open new schematic

always define ground!

components R, C, L, diode

wire ground

other components

(library)

Page 6: M EEE 536J2: Con & Automation - HS Augsburgragr/Topics/MCA/common/Master... · p AD8541, Ana F58, Cantherm hermistor, Vish ... (constant t at a nod r Wavefor AC analy sweep fr

P

S

EEE536J

Prof. Dr.-Ing. Gro

Sources:

• sources

and cucated in

• changeclick rigchoose

• for PU

if you

J2: Contr

oßmann

s of volta

urrent aren the librar

e behavior ght mouse e Advance

ULSE sour

need recta

rol & Auto

age

e lo-ry

of source:button anded:

rces with T

angular pu

omation

V

d

rise = 0 a

ulses, defin

V3.0

and Tfall

ne very sm

l = 0, LTsp

all values

pice inserts

for Trise

s values >

and Tfal

0!

ll

6

Page 7: M EEE 536J2: Con & Automation - HS Augsburgragr/Topics/MCA/common/Master... · p AD8541, Ana F58, Cantherm hermistor, Vish ... (constant t at a nod r Wavefor AC analy sweep fr

P

L

S

in

•••

EEE536J

Prof. Dr.-Ing. Gro

Labels:

SPICE dire

nsert comm

• parame• special• define

J2: Contr

oßmann

ectives

mand lines

eter definit analyses models

rol & Auto

s and comm

ions

omation

V

ments into

V3.0

• Add in

the netlist

d labels toWaveform

:

o nodes/wirViewer

res for eassier access

7

s

Page 8: M EEE 536J2: Con & Automation - HS Augsburgragr/Topics/MCA/common/Master... · p AD8541, Ana F58, Cantherm hermistor, Vish ... (constant t at a nod r Wavefor AC analy sweep fr

P

0

.

a

T

s

sw

EEE536J

Prof. Dr.-Ing. Gro

0.2.3 Ana

.OP: calcu

after

analyses th

Transient

simulate tim

select time with “step c

J2: Contr

oßmann

alyses

ulate opera

r .OP simu

hat produce

me interval

resolutionceiling”

rol & Auto

ating point

ulation, poin

e output fo

l

n

omation

V

(constant

nt at a nod

or Wavefor

AC analy

sweep fr

sources

V3.0

voltages &

de or curre

rmViewer:

ysis

requencies

& currents)

nt and view

s for all

)

w OP value

DC sw

sweepcurren

DC ch

also ne

e in status

weep

p source (vnt)

aracteristic

ested swe

bar

voltage/

cs only!

eps

8

Page 9: M EEE 536J2: Con & Automation - HS Augsburgragr/Topics/MCA/common/Master... · p AD8541, Ana F58, Cantherm hermistor, Vish ... (constant t at a nod r Wavefor AC analy sweep fr

P

0

P

•••

O

e

S

CC

O

••

EEE536J

Prof. Dr.-Ing. Gro

0.2.4 Wav

Plot voltage

• click (le• click an• click on

Or choose

enter an ex

See Help

Change axClick left on

Other featu

• cursor (

• FFT: me

J2: Contr

oßmann

veform V

es, current

eft) at a wirnd drag to n a pin or A

Add Trac

xpression;

topics

xis propern axis (curs

ures:

(single and

enu View

rol & Auto

Viewer

ts and calc

re to inspeplot a volt

ALT-click o

ce from W

e.g. “I(R1

→ Wavef

rties (plottesor = ruler

d differentia

→ FFT

omation

V

culated qua

ct its voltatage differon a wire to

Waveform V

1) * ( V

orm Arit

ed quantity)

al): click on

V3.0

antities. Pr

age (cursorence o see curre

Viewer men

(in) – V

thmetics

y, limits, tic

n trace nam

robe in Sch

r = measu

ent (curso

nu Plot Se

V(n002)

for availa

cks, linear/l

me

hematicCap

ring tip)

r = current

ettings (

)” yields

able functio

logarithmic

pture:

t clamp)

(shortcut C

power in R

ons.

c):

CTRL-A) an

R1.

9

nd

Page 10: M EEE 536J2: Con & Automation - HS Augsburgragr/Topics/MCA/common/Master... · p AD8541, Ana F58, Cantherm hermistor, Vish ... (constant t at a nod r Wavefor AC analy sweep fr

P

1

1

1

o

•••••

1

v→

c

d

Δ

EEE536J

Prof. Dr.-Ing. Gro

1 Am

1.1 Idea

1.1.1 Cha

operation

• voltage• extrem• no inpu• unlimit• limited

1.1.2 Com

very smal→ approx

check if U

disadvan

ΔUin

Uin

J2: Contr

oßmann

plifier

al op am

aracteris

al amplifi

e amplifiemely high ut currented outpu output v

mparator

ll linear inximately j

Uin > Uref

ntage: n

U +

U -

U +

U -

rol & Auto

circuit

mp

stic

ier:

er gain (105

t ut current voltage

r

nput rangust 2 ou

noisy sign

Uout

Uout

omation

V

s

5 … 108)

ge, mostlytput state

nals lead

U

U

U

V3.0

y es U+/- (su

to “bounc

Uref

Uout

Uin

U +

U -

upply)

cing”

ch aracteris

-10µ

U

Δstic for ga

10µVV

UoutU +

U -

ain g = 10

V ΔU

t

t

10

06

Uin

Page 11: M EEE 536J2: Con & Automation - HS Augsburgragr/Topics/MCA/common/Master... · p AD8541, Ana F58, Cantherm hermistor, Vish ... (constant t at a nod r Wavefor AC analy sweep fr

P

1

in

U

U

U

EEE536J

Prof. Dr.-Ing. Gro

1.1.3 Sch

nverting c

Uin

U1

U2

Uout

Uin

U +

U -

J2: Contr

oßmann

hmitt-Trig

compara

R

RU-

U+

Uref

rol & Auto

gger

tor with 2

R1

R2

Uout

omation

V

2 different

U

U

V3.0

t thresho

U

U

U-

U+

U

Uout

t

t

lds, deriv

Uout = U+

Uout = U-

⋅⋅U1 U

ved from

when

when

Uref U2

the 2 out

Uin < U1

Uin > U2

Uin

tput state

11

es:

Page 12: M EEE 536J2: Con & Automation - HS Augsburgragr/Topics/MCA/common/Master... · p AD8541, Ana F58, Cantherm hermistor, Vish ... (constant t at a nod r Wavefor AC analy sweep fr

P

1

1

o

o

EEE536J

Prof. Dr.-Ing. Gro

1.2 Clos

1.2.1 Neg

op amp w

only nega

+x

Uin

0 V

J2: Contr

oßmann

sed-loo

gative fee

fo

with negat

ative feed

gR

ge

rol & Auto

p ampli

edback

or → ∞

tive feedb

dback yie

Iout

1

omation

V

ifiers

∞:

back:

lds stable

y

Uo

R

R

V3.0

e output:

out

R1

R2

⋅⋅ 11

virtual

1 ⋅

⋅⋅⋅ ⋅

shortcut

; →

⋅ ⋅ 11 ⋅

t: Uin+ = U

→ 0⋅

Uin-

12

Page 13: M EEE 536J2: Con & Automation - HS Augsburgragr/Topics/MCA/common/Master... · p AD8541, Ana F58, Cantherm hermistor, Vish ... (constant t at a nod r Wavefor AC analy sweep fr

P

U

U

U

1

1

U

U

U

EEE536J

Prof. Dr.-Ing. Gro

R2

R3

R1

U2

U3

U1

1.2.2 Non

1.2.3 Inve

Uin

Uin

Iin

R1

Uin

J2: Contr

oßmann

R

n-invertin

erting am

R1

R2

Uou

Uou

R

U

R

rol & Auto

Uout

ng ampli

mplifier

ut

ut

Uout

Uout

omation

V

ifier / vol

volta

adde

V3.0

ltage foll

age follow

r:

lower

wer:

13

Page 14: M EEE 536J2: Con & Automation - HS Augsburgragr/Topics/MCA/common/Master... · p AD8541, Ana F58, Cantherm hermistor, Vish ... (constant t at a nod r Wavefor AC analy sweep fr

P

1

c

1

U

U

EEE536J

Prof. Dr.-Ing. Gro

1.2.4 Diff

combines

1.2.5 Inst

R1

R1

Uin-

Uin+

J2: Contr

oßmann

ference a

s inverting

trumenta

1

1

RG

25kΩ

25kΩ

rol & Auto

amplifier

g & non-i

ation am

R

R

U

Ω

Ω

omation

V

r

nverting a

plifier

Uout

V3.0

amplifiers

s

DataTexament

Δ

asheet as Instru-ts INA118

1 50

14

8:

Ω

Page 15: M EEE 536J2: Con & Automation - HS Augsburgragr/Topics/MCA/common/Master... · p AD8541, Ana F58, Cantherm hermistor, Vish ... (constant t at a nod r Wavefor AC analy sweep fr

P

1

m

L

Y

T

R

C

s

J

EEE536J

Prof. Dr.-Ing. Gro

1.2.6 Sim

most simu

LTspice

You may

Tutorial 1

Resource

Circuit de

scription:

Jobs:

J2: Contr

oßmann

mple mod

ulation pr

provides

enter the

1: open-

e: 126

e- volt

DC

rol & Auto

del

rograms p

s a voltag

e gain as

-loop cha

6_opamp

tage sour

C sweep o

omation

V

provide a

e-control

It includeIf gain is

a table w

aracteristi

_char.as

rce, E_ta

of voltage

V3.0

a “gain blo

lled volta

es a diffes a numbe

with pairs

ic of idea

sc

able, load

e source;

ock” and

ge sourc

erential iner, the ou

of values

With ampl

l op amp

resistor

inspect o

a “limiter

e (compo

put and autput is u

s (Uin, Uo

two pairsifier with

1kΩ, grou

output vo

r”:

onent E):

a gain. nlimited.

out):

s you get limited o

und

oltage

a linear utput.

15

Page 16: M EEE 536J2: Con & Automation - HS Augsburgragr/Topics/MCA/common/Master... · p AD8541, Ana F58, Cantherm hermistor, Vish ... (constant t at a nod r Wavefor AC analy sweep fr

P

1

1

1

D

Δ

EEE536J

Prof. Dr.-Ing. Gro

1.3 Rea

1.3.1 Offs

• charac(Uout =

• due to sistorsnot 0

O1.3.1.1

Datashee

ΔUin

Ip

In

J2: Contr

oßmann

l op am

set volta

cteristic d0 for Uin

operatins input cu

Offset mo

ets: uA74

U +

U -

rol & Auto

mps

age and c

oesn’t pa= UOS ≈

g point ofrrents Ip a

odel

41, AD8

Uout

omation

V

currents

ass thru 0µV…mV)

f input traand In ar

541: dete

V3.0

0 )

an-re

:

:

ermine of

(avera

offset c

ffset volta

• op aage

• bias

if theage

ge) bias

current (

age/curre

U

amp ampljust like a

currentsey produc (passing

current (

(≈ 0)

ent

UOS

UoutU +

U -

lifies offsa signal

s only proce an inpg thru a r

pA … nA

ΔUi

et volt-

oblematic put volt-esistor)

16

A)

n

Page 17: M EEE 536J2: Con & Automation - HS Augsburgragr/Topics/MCA/common/Master... · p AD8541, Ana F58, Cantherm hermistor, Vish ... (constant t at a nod r Wavefor AC analy sweep fr

P

1

n

in

o

a

U

U

U

EEE536J

Prof. Dr.-Ing. Gro

O1.3.1.2

non-inver

nverting o

offset volt

add nega

Rf

U0+

U0-

Rsrc

Usrc

Usrc

I

In

J2: Contr

oßmann

Offset com

rting op a

op amp:

tage com

tive offse

fb

UOS

UOS

Ip

In

R

Ip

n

rol & Auto

mpensat

mp:

mpensatio

et

R

UOS

omation

V

tion

Δ f

Δ

on:

u

R1

R2

Rfb

V3.0

Δfor Ip ≈ In

ΔIp shorted

compens‖

use offset

OS1

1 ⋅compens

1d to grou

sation of b betwe

t compen

U0-

OS1

sation of ‖

⋅nd → ine

bias curreeen “+” in

sation pin

⋅bias curr

effective

ents withnput and

ns (if ava

‖ ⋅rents if

a resistoground

ailable)

17

or

Page 18: M EEE 536J2: Con & Automation - HS Augsburgragr/Topics/MCA/common/Master... · p AD8541, Ana F58, Cantherm hermistor, Vish ... (constant t at a nod r Wavefor AC analy sweep fr

P

1

O

oin

(

O

N

lo

S

R

C

s

J

EEE536J

Prof. Dr.-Ing. Gro

1.3.2 Non

Op amp is

output n most ca0.5“output v

Only for “

Non-linea

ong as

Simulatio

Resource

Circuit de

scription:

Jobs:

J2: Contr

oßmann

n-linear a

s no pow

is limiases eve…1 voltage sw

rail-to-ra

ar charact

on: para

e: 132

132

e- op

sym

sou

• s

c

• s

d

li

• b

s

c

• a

o

c

rol & Auto

and limit

wer plant!

ted to sun less: wing”)

ail” amps

teristic is

is suffi

meters o

2_741_op

2_ua741_

amp “ua7

mmetric s

urce volta

simulate o

check all c

sweep DC

determine

nearity, g

build non-

sweep -1

check out

add sourc

output vol

compensa

omation

V

ted outpu

pply volta

Uout rea

no probl

ciently la

f op amp

p.asc, 13

_offset.as

741” (“-“

supply “VD

age DC=0

operating

currents:

C source

e voltage

gain

-inverting

V to +1 V

tput volta

ce voltage

ltage offs

ation how

V3.0

ut

age rang

0.5…1aches U±

em for fe

arge (

p uA741

32_741_c

sc

input gro

DCSYM”

0 to “+” in

g point; de

how goo

from -10

offset (in

g amplifie

V (step 1m

ge offset

e resistor

set?

w?

e,

±.

eedback a

.

char.asc,

ounded);

(2 x 5V)

nput; loa

etermine

od is the m

0 µV to +

nput & ou

r with AV

mV)

t, linearity

r 100 kΩ,

as

132_741

ad resisto

bias curr

model?

+100 µV,

tput), out

= 10 (R1

y

sweep a

1_uu.asc

or 1kΩ

rents

step 1 µV

tput swin

1 = 9 kΩ,

again

U+

U

U-

,

V

g,

R2 = 1 k

Uout

Δ

Uos

limiteoutpu

nonline

18

kΩ)

ΔUin

edut

n-ar

Page 19: M EEE 536J2: Con & Automation - HS Augsburgragr/Topics/MCA/common/Master... · p AD8541, Ana F58, Cantherm hermistor, Vish ... (constant t at a nod r Wavefor AC analy sweep fr

P

1

d

o

EEE536J

Prof. Dr.-Ing. Gro

1.3.3 Inpu

determine

op amp w

• virtualinput i

• virtual

• virtual

input im

• sour• volta

→ U• input

J2: Contr

oßmann

ut/outpu

e Rout from

with negat

shortcutmpedanc

input im⋅

output im⋅

Rs

Usr

pedance

rce is loadage divideUin ≠ Usrc t capacita

rol & Auto

ut impeda

m loop eq

tive feedb

t betweence (R and

pedance

mpedanc

src

rc

e:

ded er with so

ance dec

omation

V

ance

quation:

back:

n inputs:d C) ineff

increase

ce decrea

Uin

ource res

creases b

V3.0

fective

ed:

ased

Zin

istance

bandwidth

R

U0

ou

h

Uin

0~~

I 0~~

⋅ →

Rout I

U

0

utput res

voltage

decrea(→ Uo

Rlo

Iout

Uout

istance:

e divider w

ases outp

out ≠ U0)

oad

with load

put Uout

Uout

R1

R2

19

t

Iout

RL

Page 20: M EEE 536J2: Con & Automation - HS Augsburgragr/Topics/MCA/common/Master... · p AD8541, Ana F58, Cantherm hermistor, Vish ... (constant t at a nod r Wavefor AC analy sweep fr

P

S

R

C

s

J

EEE536J

Prof. Dr.-Ing. Gro

Simulatio

Resource

Circuit de

scription:

Jobs:

J2: Contr

oßmann

on: redu

e: 133

e- non

(reu

load

add

• sim

di

(h

• ch

rol & Auto

uction of o

3_ua741_

n-invertin

use 132_

d resistor

d SPICE

mulate op

splay

hint: in Wa

hange AV

omation

V

output re

_Rout.asc

g voltage

_741_uu.a

r, enter “

directive

perating

aveformV

→ ∞, de

V3.0

sistance

c

e amplifie

asc)

R” as va

“.step pa

point (inc

Viewer D

etermine

er, AV = 1

alue

aram R lis

cludes ste

D( ) is the

original

10

st 100 1k

epping of

e derivativ

k 100”

f paramet

ve of a qu

ter R):

uantity)

20

Page 21: M EEE 536J2: Con & Automation - HS Augsburgragr/Topics/MCA/common/Master... · p AD8541, Ana F58, Cantherm hermistor, Vish ... (constant t at a nod r Wavefor AC analy sweep fr

P

1

1

o

e

1

c

c

S

R

C

s

J

g

EEE536J

Prof. Dr.-Ing. Gro

1.3.4 Lim

D1.3.4.1

open-loop

exercise:

C1.3.4.2

condition

corner fre

Simulatio

Resource

Circuit de

scription:

Jobs:

g0=105

104

103

1

10

100

1

J2: Contr

oßmann

mited ban

Dynamic

p gain g o

: determin

Constant

for effect

equency

on: band

e: 134

e- non

(po

inp

rep

••

10 10

rol & Auto

ndwidth

gain

of op amp

ne corne

bandwid

tive feedb

of d

dwidth of

4_AD854

n-invertin

ower supp

ut voltage

peat for ga

• simula

• view o

A (f)V

00 1k

omation

V

p is frequ

r frequen

dth-gain

back:

depends

f op amp

1_bwg.a

g voltage

ply +5V a

e: AC = 0

ain = 5 | 2

ate AC sw

output vol

10k

V3.0

uency-dep

1ncy

(BWG)

on 0

AD8541

sc

e amplifie

and AGND

0.01 V an

20 | 100

weep for

ltage, det

f/Hz

pendent:

/2 o

cons

:

er with AD

D)

nd DC = 0

(dimensio

f = 10 Hz

termine b

of uA741

stant abo

D8541

0.01 V

on feedba

z .. 10 MH

bandwidth

.

ove

0 ⋅

ack resis

Hz (“10m

h(3 dB de

tors):

meg”)

ecay)

21

Page 22: M EEE 536J2: Con & Automation - HS Augsburgragr/Topics/MCA/common/Master... · p AD8541, Ana F58, Cantherm hermistor, Vish ... (constant t at a nod r Wavefor AC analy sweep fr

P

1

1

O

A

0

Uin

EEE536J

Prof. Dr.-Ing. Gro

1.4 Acti

1.4.1 Filte

Op amps

Add Bode

0.1

0.1

1

1

1

0.1

0.01

0

-45°

-90°

R1

C

n

J2: Contr

oßmann

ive filter

er synth

increase

e diagram

1

1

10

10

10

10

R2

C1U1

rol & Auto

rs

esis

e gain and

ms of dec

00

00

0

0.

-4

-9

C2U2

omation

V

d/or deco

oupled st

0.1

0.1

1

1

1

0.1

.01

0

45°

90°

Uin

V3.0

ouple stag

tages:

10

10

10

10

R1

C1

ges:

00

00

U1

0

0

1

0.1

0.01

0

-45

-90

-180

RRA

RB

0.1

0.1

1

1

1

1

1

°

°

°

R2

C2

U2

10

10

100

100

2

22

Page 23: M EEE 536J2: Con & Automation - HS Augsburgragr/Topics/MCA/common/Master... · p AD8541, Ana F58, Cantherm hermistor, Vish ... (constant t at a nod r Wavefor AC analy sweep fr

P

S(

S

R

C

s

J

EEE536J

Prof. Dr.-Ing. Gro

Sallen-Ke2nd order

Simulatio

Resource

Circuit de

scription:

Jobs:

J2: Contr

oßmann

ey low par):⋅ ⋅

on: Activ

e: 141

e- bui

add

add

inp

sim

view

com

rol & Auto

ss

// ⋅

ve filter

1_actfilter

ld RC hig

d voltage

d RC low

ut ac volt

mulate AC

w output

mpare 3 d

omation

V

r.asc

gh pass (

follower

pass (R2

tage sour

C sweep

voltage

dB-decay

V3.0

Uin

R1 = 3.3k

with uA7

2 = 3.3kΩ

rce 1V

for f = 1

ys with tim

R1

kΩ, C1 =

741and ±5

Ω, C2 = 4

Hz .. 10

me consta

R2

C1

4.7 µF)

5V suppli

7 nF) + v

kHz

ants

C

ies

voltage fo

,

C2

ollower

23

R3

R4

Uout

Page 24: M EEE 536J2: Con & Automation - HS Augsburgragr/Topics/MCA/common/Master... · p AD8541, Ana F58, Cantherm hermistor, Vish ... (constant t at a nod r Wavefor AC analy sweep fr

P

1

Id

im

EEE536J

Prof. Dr.-Ing. Gro

1.4.2 Con

n controlderivate p

mplemen

R

R

C

J2: Contr

oßmann

ntroller

ler theorypath:

ntation wi

R1

RI

CD

rol & Auto

y, a PID c

th op am

RP

RD

CI

omation

V

controller

mps:

V3.0

r consists

s

R2

R2

R2

s of a pro

source: Wikip

portional

pedia

R3

, an integgral and a

24

a

Page 25: M EEE 536J2: Con & Automation - HS Augsburgragr/Topics/MCA/common/Master... · p AD8541, Ana F58, Cantherm hermistor, Vish ... (constant t at a nod r Wavefor AC analy sweep fr

P

2

2

s

sC

••••••

2

2

• ewso

(

n

EEE536J

Prof. Dr.-Ing. Gro

2 Sen

2.1 Clas

sensor: t

sensors eClassifica

• voltag• curren• resista• capac• induct• freque

2.2 Mod

2.2.1 Sim

• model

• model see LT

• good fo

example:with voltasensitivityoutput lim

with .ST

need no a

J2: Contr

oßmann

nsors

ssificati

ransform

exist for mation by e

e (nt (ance (tcitance (tance (ency (

deling s

mple DC m

physical

sensor aTspice he

or DC sw

: force sege outpu

y = 5V/10mited to 0

TEP comm

additiona

physicquanti

rol & Auto

ion

ms physica

many quaelectrical s

Lambda photo diothermistohumidity proximityindirect fo

ensor c

model

(input) q

as elemenelp on “W

weep (.DC

ensor ut, 00N, …5V

mand you

l .PARAM

calty (

d

omation

V

al quantit

antities, bsensing:

probe, thode/transor, strain sensor, p

y switch, Lor L and

circuits

uantity as

nt V, I, R/aveform

C) or para

u

M)

sensor

non-lineadifferentiaequation

V3.0

ty into ele

ut output

hermo couistor) gauge) proximityLVDT) C; count

s parame

/C/L with Arithmeti

ameter sw

elquar)

aln

ectrical qu

t electrica

uple; acti

switch)

ters)

eter (defin

expressiic”

weep (.S

lectricaluantity

uantity

al quantiti

ve senso

ned in .P

on as va

STEP)

ies are lim

ors)

PARAM dir

lue

mited →

rective)

25

Page 26: M EEE 536J2: Con & Automation - HS Augsburgragr/Topics/MCA/common/Master... · p AD8541, Ana F58, Cantherm hermistor, Vish ... (constant t at a nod r Wavefor AC analy sweep fr

P

2

B

EEE536J

Prof. Dr.-Ing. Gro

2.2.2 Con

• modelvoltag

• modelsource

o E:

o BV

• suitab

BV accep

• voltage

• voltage

• current

• variabl

J2: Contr

oßmann

ntrolling

l physicae source

l sensor ae:

with gain

V: with arb

ble for tran

pts expres

e from a n

e betwee

ts (see W

le time f

rol & Auto

physica

l (input) qe

as contro

n or table

bitrary ex

nsient, AC

ssions inc

node to g

n two no

Waveform

for transie

omation

V

al quantit

quantity a

olled volta

d values

xpression

C, DC an

cluding:

ground (V

des (V(n

mViewer

ent analy

V3.0

ties

as

age

n

nd param

V(node)

node1,no

AddTra

ysis, varia

eter anal

)

ode2))

ces dialo

able freq

ysis

og for ava

q and w fo

ailable cu

or AC an

urrents)

alysis

26

Page 27: M EEE 536J2: Con & Automation - HS Augsburgragr/Topics/MCA/common/Master... · p AD8541, Ana F58, Cantherm hermistor, Vish ... (constant t at a nod r Wavefor AC analy sweep fr

P

2

sin

e

i

F

T

pq

EEE536J

Prof. Dr.-Ing. Gro

2.2.3 Dyn

system den most ca

example:

mpulse r

• final ou

• 95% ofafter 3 respon

Fourier-/L⋅

Transfer f

physicalquantity

x

J2: Contr

oßmann

namic be

escriptionases sep

: 1st orde⋅respons

utput

f final val →

nse time

Laplace-⋅function:

(non-)lchar

y

rol & Auto

ehaviour

n: (non-)arable in

er ODE f

e: ∞lue reach

e ≔ 3-Transfo

linear staracteristic

omation

V

linear ord (non-)lin

or a linea⋅

hed

3

rm: repla

aticc

x

V3.0

dinary diffnear static

ar force s

ace →⋅1

inter-mediatequantity

y

fferential c and line

ensor:

: t:

⋅ → 11

tim

ey

F

Uou

F0

k F0

0

0

8U =

equation ear time-d

time consstatic sen

⋅, resp.: ⋅1 ⋅

me depen

ut

0

0 τ

(ODE) dependen

stant of thnsitivity [V

dency

95% ovalue

nt part

he systemV/N]

outputquantity

u

of final

27

m,

ty

u

t

t

Page 28: M EEE 536J2: Con & Automation - HS Augsburgragr/Topics/MCA/common/Master... · p AD8541, Ana F58, Cantherm hermistor, Vish ... (constant t at a nod r Wavefor AC analy sweep fr

P

S

E

B

d

A

lo

h

EEE536J

Prof. Dr.-Ing. Gro

Sources E

E may be

BV can codelay time

Active fil

ow pass:

high pass

J2: Contr

oßmann

E and BV

either a

ombine ne constan

ter based

s:

rol & Auto

V can mod

linear ga

on-linearnt 0.1

d on BV w

⋅ ⋅

omation

V

del a syst

ain or a ta

r and dyn1 , pulse

with LAPL

V3.0

tem given

able or a L

namic behd input fo

LACE exp

n by its La

LAPLACE

havior (foorce (Tper

pression:

aplace tra

E express

orce sens= 2 s)):

ansfer fu

sion:

sor: limite

nction;

ed output,

28

,

Page 29: M EEE 536J2: Con & Automation - HS Augsburgragr/Topics/MCA/common/Master... · p AD8541, Ana F58, Cantherm hermistor, Vish ... (constant t at a nod r Wavefor AC analy sweep fr

P

2

2

r

m

EEE536J

Prof. Dr.-Ing. Gro

2.3 Volt

2.3.1 Lam

response

model wit

e

J2: Contr

oßmann

tage sou

mbda pro

time: ty

th tabled

O+

O+

exhaust gas

ZrO2

rol & Auto

urces

obe

yp. 1.5 s

values a

air

2

omation

V

→ =

nd delay:

UDiff

V3.0

0.5 s

:

0,2 V

0,45 V

0,8 V

∶ mamas

UDiff

assofair/ssofgazol1 /14.7gline/1g

λ

29

λ

Page 30: M EEE 536J2: Con & Automation - HS Augsburgragr/Topics/MCA/common/Master... · p AD8541, Ana F58, Cantherm hermistor, Vish ... (constant t at a nod r Wavefor AC analy sweep fr

P

2

EEE536J

Prof. Dr.-Ing. Gro

2.3.2 The

Δ tabled

UTh

-200

J2: Contr

oßmann

ermo cou

⋅ Δin specifi

Refjun

kntemp

-10

-5

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

0

UTh

rol & Auto

uples

⋅ Δication IE

ferencenction

nownperature

200

h [mV]

omation

V

⋅ ΔEC 584

∆T

metal A

metal B

400 6

C

V3.0

Δ ⋯

Meaj

utem

A

B

00 800

Chr

omel

/Con

stan

ta

iron/

cons

t

cop

asurementunction

nknownmperature

0 1000

tan

(type

E)

stant

an (t

ype

J)

Chrome

Pla

Pl

pper/constan

different cwelded to

1200

mel/Alumel (ty

pe

atinum-13%R

latinum-10%R

ntan (type T)

conductorsogether

1400

pe K)

Rhodium/Plati

Rhodium/Pla

1600 180

ϑ [°C]

inum (type R

atinum (type S

30

00

R)

S)

Page 31: M EEE 536J2: Con & Automation - HS Augsburgragr/Topics/MCA/common/Master... · p AD8541, Ana F58, Cantherm hermistor, Vish ... (constant t at a nod r Wavefor AC analy sweep fr

P

m

r

s

R

C

s

J

EEE536J

Prof. Dr.-Ing. Gro

model:

• de

• temper

• can

response

simulatio

Resource

Circuit de

scription:

Jobs:

J2: Contr

oßmann

pends no

rature sp

n drive cu

time

on: therm

e: 232

e- cop

add

low

add

DC

wat

rol & Auto

on-linearly

read dela

urrents u

3 ⋅ 2mo couple

2_thermo

py thermo

d INA118

wer right p

d RG for g

C sweep fo

tch outpu

omation

V

y upon te

ayed → in

p to some

6 , in

e with inst

ocp_ina11

o couple

(symme

pin groun

gain ≈ 100

or tempe

ut voltage

V3.0

emperatu

nclude L

e mA →

nternal res

trumentat

18.asc

model a

etric supp

ded)

0

erature T

e

ure →

LAPLACE

internal

sistance

tion amp

bove

ly VDCSY

= 0…500

source B

express

resistor

= 10 Ω

lifier

YM = ±5V

0 K

BV

sion in BV

V,

V

31

Page 32: M EEE 536J2: Con & Automation - HS Augsburgragr/Topics/MCA/common/Master... · p AD8541, Ana F58, Cantherm hermistor, Vish ... (constant t at a nod r Wavefor AC analy sweep fr

P

2

2

P(

D

U

EEE536J

Prof. Dr.-Ing. Gro

2.4 Curr

2.4.1 Pho

Produce aunder ne

Datashee

hf > Wg

UD<0

U0

J2: Contr

oßmann

rent sou

oto diode

a constanegative bi

⋅dark cur

et: SFH2

p+

n+

contact (c

+

hf

ID<0

rol & Auto

urces

e

nt currentas):

1rrent

203

cathode)

+

>> Wg

omation

V

EV1

EV2

EV3

EV=0

p

t

⋅photo cur

contakt(anode)

V3.0

-U

photo dio

Sola

rrent IF

400

1

0,5

0

sp

U0

ode

ar cell = s

600 80

h

ectral sens

UD>0

stand-alon

00 1000

Si

uman eye

itivity of Si a

ID<0

-U0/R

ID

ne photo

1200 140

and Ge

solacell

diode:

λ00 1600

Ge

32

UD

ar

[nm]

e

Page 33: M EEE 536J2: Con & Automation - HS Augsburgragr/Topics/MCA/common/Master... · p AD8541, Ana F58, Cantherm hermistor, Vish ... (constant t at a nod r Wavefor AC analy sweep fr

P

s

R

C

s

J

s

R

C

s

J

s

R

C

s

J

EEE536J

Prof. Dr.-Ing. Gro

simulatio

Resource

Circuit de

scription:

Jobs:

simulatio

Resource

Circuit de

scription:

Jobs:

simulatio

Resource

Circuit de

scription:

Jobs:

J2: Contr

oßmann

on: solar

e: 241

e- mo

par

sup

det

for

pho

on: solar

e: 241

e- sola

par

par

disp

find

on: phot

e: 241

e- bui

1) se

rol & Auto

r cell

1_solar_c

del solar

rallel curr

pply V1: p

termine c

V1 ∈ [-2 V

oto curren

r cell matc

1_solar_c

ar cell (Ip

rallel load

rameter s

play pow

d maximu

to diode

1_photod

ld circuit

photo dio

op amp (

ground);

feedback

earch data

reverse

junction

sensitiv

omation

V

cell.asc

cell as d

ent sourc

parallel vo

urrent vs

V; +1 V] a

nts 0 / 2

ching imp

cell_matc

hoto = 100

d resistor

sweep for

er in load

um and m

iode.asc

on right s

ode (use

(supply +

k R = 5 k

asheet of

e saturatio

n capacita

vity of pho

V3.0

iode BAS

ce (revers

oltage sou

s. voltage

and

25 mA / 5

pedance

ch.asc

0 mA; no

(value in

r global p

d resistor

matching i

, 241_ph

side with

diode +

+5 V /

f SFH203

on curren

ance and

oto curren

S16 and

se biased

urce

characte

0 mA / 75

supply vo

n curly bra

parameter

r

impedanc

otodiode

+ I)

30 for

nt

d

nt to illum

d)

eristic of s

5 mA an

oltage!)

ackets “

r rload

ce

2.asc

mination S

solar cell

d 100 mA

rload”∈ [1 Ω; 1

S [A/lx]

A

”)

10 Ω]

33

Page 34: M EEE 536J2: Con & Automation - HS Augsburgragr/Topics/MCA/common/Master... · p AD8541, Ana F58, Cantherm hermistor, Vish ... (constant t at a nod r Wavefor AC analy sweep fr

P

s

R

C

s

J

EEE536J

Prof. Dr.-Ing. Gro

simulatio

Resource

Circuit de

scription:

Jobs:

J2: Contr

oßmann

2) co

ad

re

.m

sim

(d

3) re

co

ex

4) re

on: dyna

e: 241

e- bui

pho

as a

PUL

Ton

• s

• a

(

• re

• s

e

rol & Auto

onfigure p

dd directiv

name dio

model m

mulate ou

irective:

eplace R w

ompare o

xplain wh

eplace µA

mics of p

1_photo_

ld circuit

oto diode

above an

LSE (I1

n=1ns,

set RL = 1

add param

.step D

epeat wit

set PULSE

explain th

omation

V

photo cur

ve .para

ode mode

mydiode

utput volt

.step d

with 1 MΩ

utput with

at happe

A741 with

photo diod

_dyn1.asc

on right s

: diode w

nd curren

1=0, I2

Tperiod

0 Ω, sim

metric sw

D mydio

th RL = 10

E: Ton

e differen

V3.0

rrent sou

am S=…

el to myd

D(N=2

tage vs. i

dec par

Ω, swee

h ideal ch

ened (hint

h AD8541

de

c, 241_ph

side

with para

t source

=100µA,

d=2ns)

ulate 4 n

weep for m

ode(CJO)

0 kΩ; wh

= 1µs,

nce!

rce (value

iode, ad

IS=…

nput illum

am EV 1

p photo c

haracteris

t: bias cu

and com

hoto_dyn

ameters

,

s transie

model pa

) list

at happe

Tperio

e = S*Ev

dd SPICE

CJO=…)

mination E

1 10k 2

current fro

stic

rrents)

mpare ag

2.asc

nt, view v

rameter C

5p 10p

ned?

od=2µs a

v)

E directiv

)

Ev = 1 lx

20)

om 10 nA2.5ain

voltage a

CJO = 5

15p)

and simu

2.5V

ve:

.. 104 lx

A to 1 µA⋅

t RL

| 10 | 15p

late 4 µs

RL

34

pF

Page 35: M EEE 536J2: Con & Automation - HS Augsburgragr/Topics/MCA/common/Master... · p AD8541, Ana F58, Cantherm hermistor, Vish ... (constant t at a nod r Wavefor AC analy sweep fr

P

2

S

R

C

s

J

UR

EEE536J

Prof. Dr.-Ing. Gro

2.4.2 Pho

• Bas• curr

• lowe

Simulatio

Resource

Circuit de

scription:

Jobs:

B

U0

IC

R

J2: Contr

oßmann

oto trans

se of BJTrent ampl

er bandw

on: phot

e: 242

e- bui

(tra

cur

Ana

IF

hf

C

rol & Auto

sistor

T is open lification:

width than

to transis

2_photo_

ld circuit

ansistor =

rrent: DC=

alyze UR(

IC

np

n

E

C

U

illum

ina

tion

omation

V

to light

n photo d

stor

_transisto

on right s

= BC550C

=2µA and

(IF) (linea

UC

U0

V3.0

iodes

r_DC/AC

side

C;

d AC=2µA

rity, phas

CE

C/tran.asc

A)

se, cut-of

E

C

c

ff frequen

=

IF<5µA

ncy, …)

IF

B

UCE

R

A

5kΩ

I = C

E

C

U0

UR

V1=5V

35

B IF

Page 36: M EEE 536J2: Con & Automation - HS Augsburgragr/Topics/MCA/common/Master... · p AD8541, Ana F58, Cantherm hermistor, Vish ... (constant t at a nod r Wavefor AC analy sweep fr

P

2

v

Af

EEE536J

Prof. Dr.-Ing. Gro

2.4.3 Cur

voltage-co

curren

A generalfunction a

J2: Contr

oßmann

rrent sou

ontrolled

nt = G ⋅ cl controlle

also exist

rol & Auto

urces in

current s

control vo

ed currens:

omation

V

LTspice

sources:

oltage

nt source

syntax: s

V3.0

acceptin

see volta

current

ng expres

age sourc

t = interpo

ssions and

ce BV

olated tab

d Laplace

ble

e transfe

36

r

Page 37: M EEE 536J2: Con & Automation - HS Augsburgragr/Topics/MCA/common/Master... · p AD8541, Ana F58, Cantherm hermistor, Vish ... (constant t at a nod r Wavefor AC analy sweep fr

P

2

2

N

ur

D

R

EEE536J

Prof. Dr.-Ing. Gro

2.5 Res

2.5.1 NTC

Negative

undoped resistance

Datashee

103

104

105

106

R [ ]Ω

-40

J2: Contr

oßmann

istors

C

Tempera

semiconde smaller

et: Visha

0

rol & Auto

ature Coe

ductors inr

ay, Canth

40

omation

V

efficient:

ncrease n

erm

ϑ [°C]

V3.0

number o

120]

of free ch

0

arges witth temperature →

37

Page 38: M EEE 536J2: Con & Automation - HS Augsburgragr/Topics/MCA/common/Master... · p AD8541, Ana F58, Cantherm hermistor, Vish ... (constant t at a nod r Wavefor AC analy sweep fr

P

2

S

••

c

D

cp

y

EEE536J

Prof. Dr.-Ing. Gro

2.5.2 Gas

Semicond

• reduce• heated

character

Datashee

ceramicpipe

101

10

0.1-1

0.01-2

y=log(.)

0.

-1

J2: Contr

oßmann

s sensor

ducting m

ed or oxidd for stab

ristic: stra

et: Figaro

R/R0

0.21

rol & Auto

r

metal oxid

dized by gle operat

aight line

o TGS 82

0.5

omation

V

de:

gases → tion and f

in double

22

wh

meta(SnO

1 2

0

V3.0

change faster rea

e-log diag

wireheating

electrod

al oxideO )2

x=log

2 5

in resistaaction

gram →

de

c/c0

g(.)

10

1

ance

slope:

log

0

Δg

→ ⋅ Δ ⋅ log

38

Page 39: M EEE 536J2: Con & Automation - HS Augsburgragr/Topics/MCA/common/Master... · p AD8541, Ana F58, Cantherm hermistor, Vish ... (constant t at a nod r Wavefor AC analy sweep fr

P

2

EEE536J

Prof. Dr.-Ing. Gro

2.5.3 Stra

J2: Contr

oßmann

ain gaug

µ = 0

∆ϱ= R: nom

rol & Auto

ges

⋅ → Δ

0.5

= 0

minal valu

omation

V

Δ Δstrain

Poisson

change

ue (typ.

V3.0

Δ Δn’s ratio (

e of speci

120 Ω, 3

Δ Δϱ(metals)

fic resista

50 Ω or 1

⋅ 1

ance (me

1000 Ω)

2μ Δϱ

etals)

ϱ

39

Page 40: M EEE 536J2: Con & Automation - HS Augsburgragr/Topics/MCA/common/Master... · p AD8541, Ana F58, Cantherm hermistor, Vish ... (constant t at a nod r Wavefor AC analy sweep fr

P

2

2

if

ifa

b

2

li

EEE536J

Prof. Dr.-Ing. Gro

2.5.4 Eva

2.5.5 Wh

f

f Δand Δbut: non-l

2.5.6 Brid

inear eve

U0

U0

J2: Contr

oßmann

aluation o

eatstone

: Δ Δ

inear for

dge with

en for larg

R + RΔ3 3

R + RΔ1 1

R

R

rol & Auto

of resist

e bridge

single se

differen

ge ∆R >

R +43

R21

UBr

+

R

R+

omation

V

ance

ensor (on

nce ampl

R

+ RΔ 4

+ RΔ2 2

R

+ RΔ

V3.0

⋅ ⋅ 2nly one ∆

ifier

Uout

ΔΔ2 ⋅ Δ

∆Ri ≠ 0)!

⋅ Δ2

Δ ΔΔ ⋅ 2Δ ΔΔΔ

Δ

40

Page 41: M EEE 536J2: Con & Automation - HS Augsburgragr/Topics/MCA/common/Master... · p AD8541, Ana F58, Cantherm hermistor, Vish ... (constant t at a nod r Wavefor AC analy sweep fr

P

2

s

R

C

s

J

EEE536J

Prof. Dr.-Ing. Gro

2.5.7 LTs

simulation

Resource

Circuit de

scription:

Jobs:

J2: Contr

oßmann

spice sim

n: strain

e: 257

e- brid

(R1

volt

cha

sim

view

det

(ma

hint

cha

how

rol & Auto

mulations

gauges

7_straing

dge 4 x 1

and R2 i

tage supp

ange valu

mulate par

w bridge

termine li

ax deviat

t: subtrac

ange valu

w about li

omation

V

s of resis

auge.asc

k resistor

n series,

ply +10 V

ue of R2 t

rameter s

voltage

nearity er

ion from

ct line equ

ue of R1 t

inearity o

V3.0

stive sen

c

rs

R3 and R

V;

to “1k +

sweep fo

rror

line betw

uation fro

to “1k - D

of output?

nsors

R4 in serie

DR”,

r DR = -5

ween start

om outpu

DR”;

?

es)

500 Ω …5

t & end)

t (calcula

500 Ω;

ate slope first)

41

Page 42: M EEE 536J2: Con & Automation - HS Augsburgragr/Topics/MCA/common/Master... · p AD8541, Ana F58, Cantherm hermistor, Vish ... (constant t at a nod r Wavefor AC analy sweep fr

P

s

R

C

s

J

s

R

C

s

J

EEE536J

Prof. Dr.-Ing. Gro

simulatio

Resource

Circuit de

scription:

Jobs:

simulatio

Resource

Circuit de

scription:

Jobs:

J2: Contr

oßmann

on: NTC

e: 257

e- brid

sup

cha

simis o

chadet

sim(i.e

Letwithcur

do

hinThe

on: gas s

e: 257

e- res

det

as d

sim

disp

com

rol & Auto

C sensor

7_NTC1.a

dge with 4

pply volta

ange valu

mulate paroutput stil

ange feedermine B

mulate par. -40 °C…

’s linearizh a resistrvature (s

paramete

nts: 2nd dee derivati

sensor

7_gas.asc

istor + vo

termine fo

detector

mulate for

play Rs/R

mpare wit

omation

V

asc, 257

4 x 4.7kΩ

ge: bridg

ue of feed

rameter sl non-line

dback resB25 and

rameter s…125 °C)

ze the chtor Rp paecond de

er sweep

erivative ve in Wa

c

oltage sou

ormula fo

for ethan

concentr

R0 (= U(s

th datash

V3.0

7_NTC2.a

Ω resistor

ge +10 V,

dback res

sweep foear?

sistor valu T0 from

sweep fo) and plo

aracterisarallel to erivative)

ps for T an

= 0 meanaveformVi

urce

or resistan

nol (for R

rations 5

source) /

heet diagr

asc, 257_

rs + differ

opamp ±

sistor to “

r DR = -4

ue to “1km Vishay N

r T = [233ot tempera

stic arounthe NTC.should b

nd Rp (10

ns 1st derViewer is

nce Rs of

R0 assum

50 ppm …

I(R) / R0)

ram, opti

_NTC_lin

rence am

±10 V

“4.7k + D

4500 Ω …

k * exp(B2NTC data

3 K; 398 ature cha

d 40 °C (. For the be 0 at the

00 Ω…1

rivative hacalled “D

f gas sen

me 5 kΩ)

… 5000 p

)

mize form

.asc

plifier us

DR”

…4500 Ω;

25/T - B2asheet

K] aracterist

(T =313 Kbest resue center.

kΩ, step

as a max()”.

nsor TGS

)

ppm

mula if ne

ing µA74

25/T0)”,

ic

K) ult, the

100 Ω).

ximum.

822

eeded

42

41

Page 43: M EEE 536J2: Con & Automation - HS Augsburgragr/Topics/MCA/common/Master... · p AD8541, Ana F58, Cantherm hermistor, Vish ... (constant t at a nod r Wavefor AC analy sweep fr

P

2

2

•••

e

2

w

u

EEE536J

Prof. Dr.-Ing. Gro

2.5.8 Non

S2.5.8.1

• non-lin• curren• model:

example:

F2.5.8.2

when u ch

-x

p region

u

J2: Contr

oßmann

n-linear r

Static mo

nearity wit i is a fun: current

: diode

From phy

hanges →

n(x)

n

iF

Cd

rol & Auto

resistors

odel

th respecnction of source co⋅ e

ysical to

→ Q chan

p(x

pn ju

nct

ion

u

iQ

d

omation

V

s

ct to U-I cvoltage uontrolled exp ⋅

electron

nges → a

x)

n region

V3.0

characteru across by its ow1 ;

nic mode

cha(dio

distbutrep

additional

x

n

ristic → pins →

wn voltage

l

arge distrode) with

tribution it charge cplaced aft→ current

: non-

e 25.85

ibution arvoltage u⋅ ex

is stable carriers reer averag

, model

-linear!

@300

round pnu; total chxp ⋅(for ecombinege “transfled by pa

0

junction harge:

) e and arefer time”

arallel C:

43

e tT

Page 44: M EEE 536J2: Con & Automation - HS Augsburgragr/Topics/MCA/common/Master... · p AD8541, Ana F58, Cantherm hermistor, Vish ... (constant t at a nod r Wavefor AC analy sweep fr

P

n

2

c

t

F

EEE536J

Prof. Dr.-Ing. Gro

non-linea

B2.5.8.3

capacitor

otal curre

Fourier/La

→ model

J2: Contr

oßmann

r capacito

Behaviou

current:

ent:

aplace:

with sou

rol & Auto

ors in LT

ural mode

rce BI al

omation

V

spice pro

el ⋅⋅ 1

one:

V3.0

ovide exp

⋅⋅ ⋅

pression f

for charge

e Q:

44

Page 45: M EEE 536J2: Con & Automation - HS Augsburgragr/Topics/MCA/common/Master... · p AD8541, Ana F58, Cantherm hermistor, Vish ... (constant t at a nod r Wavefor AC analy sweep fr

P

2

2

2

EEE536J

Prof. Dr.-Ing. Gro

2.6 Osc

• Amp• Res• Safe• Use

2.6.1 LC

2.6.2 RC

R

C C

J2: Contr

oßmann

cillators

plifiers wsonant free transm

ed with co

oscillato

oscillato

R

C C

rol & Auto

ith positivequency ission of ounters a

or

or

R

omation

V

ve feed-badjusted pulses ov

as receive

V3.0

back for oby compver disto

ers

one filtereponents Rrted lines

ed frequeR, L or C s

ncy

45

Page 46: M EEE 536J2: Con & Automation - HS Augsburgragr/Topics/MCA/common/Master... · p AD8541, Ana F58, Cantherm hermistor, Vish ... (constant t at a nod r Wavefor AC analy sweep fr

P

2

T

2

S

T

t

n

EEE536J

Prof. Dr.-Ing. Gro

2.6.3 Tim

Timer-IC:

M2.6.3.1

Start/Res

Trigger:

hreshold

new start

R

C

Trigger

7

6

5

2

J2: Contr

oßmann

mer IC 55

NE555

Monoflop

et: Q C

tr Q lo

: fo Q

only upo

Ri

Ri

Ri

8

1

rol & Auto

5

(single),

p

Q = L; diC dischar

rigger < VQ = H; dioad C, tim

or t ≈ 1,1Q = L

on new tri

VCC

Timer 5

K1

K2

omation

V

556 (dou

ischarge rged (UC =

VCC/3 →ischargeme consta⋅RC: UC

gger imp

R Q

S Q

5554

V3.0

uble); ICM

8765

= short to= 0)

→ K1 sets high impant τ = R

≈ 2/3⋅VC

pulse

3

M7555/6

8: VCC7: discha6: thresh5: contro

o ground

FF pedance RC

CC (thresh

1313

23

K1: s

(CMOS s

arge old l

(open sw

hold at K

VCCVCC

VCC

trig

Uc

ou

set FF

single/do

4: r3: o2: t1: G

witch) →

K2) →

gger

c

ut

K2

ouble)

reset output rigger

GND

: reset FF

46

F

t

Page 47: M EEE 536J2: Con & Automation - HS Augsburgragr/Topics/MCA/common/Master... · p AD8541, Ana F58, Cantherm hermistor, Vish ... (constant t at a nod r Wavefor AC analy sweep fr

P

2

S

o

o

EEE536J

Prof. Dr.-Ing. Gro

O2.6.3.2

Start/Res

out = H:

out = L:

→ periodi

RA

RB

C

7

6

5

2

J2: Contr

oßmann

Oscillator

et: U

C w

C w

ic operati

8

1

rol & Auto

r

UC = 0 (di

C loads vwhen UC >

C discharwhen UC <

ion, frequ

VCC

Timer 5

K1

K2

omation

V

ischarge

ia RA+RB

> 2/3⋅VC

rges via R< VCC/3

uency:

R Q

S Q

5554

V3.0

→ groun

B (discharC → FF

RB and dis→ FF se

VV

V

1313

23

d) → trig

rge open)reset

scharge tet

VCCVCC

VCCUc

out

gger → FF

)

to ground

1,492 ⋅

t

F set

d

47

Page 48: M EEE 536J2: Con & Automation - HS Augsburgragr/Topics/MCA/common/Master... · p AD8541, Ana F58, Cantherm hermistor, Vish ... (constant t at a nod r Wavefor AC analy sweep fr

P

2

2

R

C

s

J

O

l

d

EEE536J

Prof. Dr.-Ing. Gro

P2.6.3.3

L2.6.3.4

Resource

Circuit de

scription:

Jobs:

R

R

RB1

C

Oscillator

load: VC

discharge

J2: Contr

oßmann

Pulse wid

Tspice a

e: 262

e- Bui

(co

Tra

disp

trigthre

dis

RA

RB2

r with sho

CC via RA

e: via RB2

rol & Auto

dth modu

analysis

2_timer55

ld a Mon

mponent

ansient an

play volta

ggereshold

scharge

out

ort trigger

A and RB1

2 to disch

omation

V

ulator (PW

of Timer

55.asc

oflop, an

t NE555)

nalysis;

ages

tCM

R

r pulses

arge

V3.0

WM):

r 555 circ

oscillato

M

mo(duR a

cuits

or and a P

triggerthreshold

discharg

onostableuty cycle and CM)

PWM with

d

ge

out

e vibrator depends

h Timer 5

s on

555

48

Page 49: M EEE 536J2: Con & Automation - HS Augsburgragr/Topics/MCA/common/Master... · p AD8541, Ana F58, Cantherm hermistor, Vish ... (constant t at a nod r Wavefor AC analy sweep fr

P

3

3

EEE536J

Prof. Dr.-Ing. Gro

3 Sen

3.1 Indu

• coil

• eddincr

• osc

J2: Contr

oßmann

nsor sy

uctive p

emits ma

dy currentreased lo

illation da

rol & Auto

ystems

proximit

agnetic fi

ts inducesses (mo

amped, e

omation

V

s

ty switc

eld

d in metaodeled as

even stop

V3.0

ch

al objectss ohmic re

pped

s close toesistance

coil → e)

49

Page 50: M EEE 536J2: Con & Automation - HS Augsburgragr/Topics/MCA/common/Master... · p AD8541, Ana F58, Cantherm hermistor, Vish ... (constant t at a nod r Wavefor AC analy sweep fr

P

s

R

C

s

J

EEE536J

Prof. Dr.-Ing. Gro

simulatio

Resource

Circuit de

scription:

Jobs:

J2: Contr

oßmann

on: LC o

e: 310

e- cop

disc

set

situ

add

How

rol & Auto

oscillator

0_LC_osc

py circuit

cuss the

series re

uation do

d a peak-

w large is

omation

V

and com

c.asc

above. L

function

esistance

we see h

-type rect

s its outpu

V3.0

mparator

L1 is sens

of the cir

e of L1 to

here?

tifier to ou

ut?

sor coil

rcuit (amp

50 Ω and

utput (dio

plifier, fee

d view ou

ode + C=1

edback, re

utput volta

10 µF to g

esonance

age. Whic

ground).

50

e)

ch

Page 51: M EEE 536J2: Con & Automation - HS Augsburgragr/Topics/MCA/common/Master... · p AD8541, Ana F58, Cantherm hermistor, Vish ... (constant t at a nod r Wavefor AC analy sweep fr

P

R

C

s

J

EEE536J

Prof. Dr.-Ing. Gro

Resource

Circuit de

scription:

Jobs:

J2: Contr

oßmann

e: 310

e- Cop

volt

Exa

com

(ca

exa

rol & Auto

0_prox_s

py circuit

tage sour

amine ou

mplete Sc

lculate re

amine out

omation

V

witch.asc

above (s

rce)

tput – wh

chmitt trig

esistors a

tput again

V3.0

c

simple inv

hat happe

gger; thre

and ref vo

n – still d

verting co

ened?

esholds U

oltage firs

istorted?

omparato

U1 = 1.5 V

st)

or, additio

V and U2

onal seria

2 = 2.5 V

51

al

Page 52: M EEE 536J2: Con & Automation - HS Augsburgragr/Topics/MCA/common/Master... · p AD8541, Ana F58, Cantherm hermistor, Vish ... (constant t at a nod r Wavefor AC analy sweep fr

P

3

3

a

•••••

a

••

eBac

s

R

C

s

J

EEE536J

Prof. Dr.-Ing. Gro

3.2 Com

3.2.1 Am

already co

• voltage• non-lin• input/o• dynam• active

• specia

additional

• F: curr• H: volt

example:BJT (operamplifier rcurrent ga

simulatio

Resource

Circuit de

scription:

Jobs:

J2: Contr

oßmann

mplex Sy

plifier ci

overed:

e amplifienearity output imp

mic behavfilters

al resistor

l current-

rent sourcage sour

: rating poregion) wain

on: mode

e: 321

e- MO

BI

pro

ver

Lim

rol & Auto

ystems

rcuits

ers

pedance viour

s

-controlle

ce rce

int in with

el of a FET

1_FET.as

OSFET IR

with curr

oduce cha

rsus UGS

mit of this

omation

V

s

d sources

T

sc

RF510, in

rent = 0.6aracterist

(DC swe

simple m

B

V3.0

s:

The covoltageIf nece

put sourc8 ² ⋅tics of cha

eep for U

model? Ho

C

E

ontrolling e source.essary, ad

ce UGS, v3.8annel cur

UGS = 2 V

ow can y

Zin

current m

dd a 0V s

oltage so²; load re

rrent ID an

… 4 V).

ou impro

sourTABLAP

sourTABLAP

must flow

source in

ource UDS

esistor 1

nd GVAL

ove it?

rce E/BVBLEPLACE

rce G/BIBLEPLACE

w through

path.

S = 10 V,

LUE curre

Rout

52

a

ent

t

Page 53: M EEE 536J2: Con & Automation - HS Augsburgragr/Topics/MCA/common/Master... · p AD8541, Ana F58, Cantherm hermistor, Vish ... (constant t at a nod r Wavefor AC analy sweep fr

P

3

mft

3

o

h

EEE536J

Prof. Dr.-Ing. Gro

3.2.2 Mod

multiply infrequencyransmiss

3.2.3 VCO

output fre

hint:

inte

J2: Contr

oßmann

dulator

nput signy carrier (sion over

O (voltag

equency d

gral in LT

rol & Auto

al with hi(before antenna)

ge-contro

dependin

Tspice is

omation

V

gh

):

olled osc

g on inpu

→ sine

idt(x)

V3.0

cillator)

ut voltage

e phase

e:

2 ⋅ ⋅⋅

53

Page 54: M EEE 536J2: Con & Automation - HS Augsburgragr/Topics/MCA/common/Master... · p AD8541, Ana F58, Cantherm hermistor, Vish ... (constant t at a nod r Wavefor AC analy sweep fr

LM741Operational AmplifierGeneral DescriptionThe LM741 series are general purpose operational amplifi-ers which feature improved performance over industry stan-dards like the LM709. They are direct, plug-in replacementsfor the 709C, LM201, MC1439 and 748 in most applications.

The amplifiers offer many features which make their appli-cation nearly foolproof: overload protection on the input and

output, no latch-up when the common mode range is ex-ceeded, as well as freedom from oscillations.

The LM741C is identical to the LM741/LM741A except thatthe LM741C has their performance guaranteed over a 0˚C to+70˚C temperature range, instead of −55˚C to +125˚C.

Features

Connection Diagrams

Metal Can Package Dual-In-Line or S.O. Package

00934102

Note 1: LM741H is available per JM38510/10101

Order Number LM741H, LM741H/883 (Note 1),LM741AH/883 or LM741CH

See NS Package Number H08C

00934103

Order Number LM741J, LM741J/883, LM741CNSee NS Package Number J08A, M08A or N08E

Ceramic Flatpak

00934106

Order Number LM741W/883See NS Package Number W10A

Typical Application

Offset Nulling Circuit

00934107

August 2000LM

741O

perationalAm

plifier

© 2004 National Semiconductor Corporation DS009341 www.national.com

Page 55: M EEE 536J2: Con & Automation - HS Augsburgragr/Topics/MCA/common/Master... · p AD8541, Ana F58, Cantherm hermistor, Vish ... (constant t at a nod r Wavefor AC analy sweep fr

Absolute Maximum Ratings (Note 2)

If Military/Aerospace specified devices are required,please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

(Note 7)

LM741A LM741 LM741C

Supply Voltage ±22V ±22V ±18V

Power Dissipation (Note 3) 500 mW 500 mW 500 mW

Differential Input Voltage ±30V ±30V ±30V

Input Voltage (Note 4) ±15V ±15V ±15V

Output Short Circuit Duration Continuous Continuous Continuous

Operating Temperature Range −55˚C to +125˚C −55˚C to +125˚C 0˚C to +70˚C

Storage Temperature Range −65˚C to +150˚C −65˚C to +150˚C −65˚C to +150˚C

Junction Temperature 150˚C 150˚C 100˚C

Soldering Information

N-Package (10 seconds) 260˚C 260˚C 260˚C

J- or H-Package (10 seconds) 300˚C 300˚C 300˚C

M-Package

Vapor Phase (60 seconds) 215˚C 215˚C 215˚C

Infrared (15 seconds) 215˚C 215˚C 215˚C

See AN-450 “Surface Mounting Methods and Their Effect on Product Reliability” for other methods ofsoldering

surface mount devices.

ESD Tolerance (Note 8) 400V 400V 400V

Electrical Characteristics (Note 5)

Parameter Conditions LM741A LM741 LM741C Units

Min Typ Max Min Typ Max Min Typ Max

Input Offset Voltage TA = 25˚C

RS ≤ 10 kΩ 1.0 5.0 2.0 6.0 mV

RS ≤ 50Ω 0.8 3.0 mV

TAMIN ≤ TA ≤ TAMAX

RS ≤ 50Ω 4.0 mV

RS ≤ 10 kΩ 6.0 7.5 mV

Average Input Offset 15 µV/˚C

Voltage Drift

Input Offset Voltage TA = 25˚C, VS = ±20V ±10 ±15 ±15 mV

Adjustment Range

Input Offset Current TA = 25˚C 3.0 30 20 200 20 200 nA

TAMIN ≤ TA ≤ TAMAX 70 85 500 300 nA

Average Input Offset 0.5 nA/˚C

Current Drift

Input Bias Current TA = 25˚C 30 80 80 500 80 500 nA

TAMIN ≤ TA ≤ TAMAX 0.210 1.5 0.8 µA

Input Resistance TA = 25˚C, VS = ±20V 1.0 6.0 0.3 2.0 0.3 2.0 MΩTAMIN ≤ TA ≤ TAMAX, 0.5 MΩVS = ±20V

Input Voltage Range TA = 25˚C ±12 ±13 V

TAMIN ≤ TA ≤ TAMAX ±12 ±13 V

LM74

1

www.national.com 2

Page 56: M EEE 536J2: Con & Automation - HS Augsburgragr/Topics/MCA/common/Master... · p AD8541, Ana F58, Cantherm hermistor, Vish ... (constant t at a nod r Wavefor AC analy sweep fr

Electrical Characteristics (Note 5) (Continued)

Parameter Conditions LM741A LM741 LM741C Units

Min Typ Max Min Typ Max Min Typ Max

Large Signal Voltage Gain TA = 25˚C, RL ≥ 2 kΩVS = ±20V, VO = ±15V 50 V/mV

VS = ±15V, VO = ±10V 50 200 20 200 V/mV

TAMIN ≤ TA ≤ TAMAX,

RL ≥ 2 kΩ,

VS = ±20V, VO = ±15V 32 V/mV

VS = ±15V, VO = ±10V 25 15 V/mV

VS = ±5V, VO = ±2V 10 V/mV

Output Voltage Swing VS = ±20V

RL ≥ 10 kΩ ±16 V

RL ≥ 2 kΩ ±15 V

VS = ±15V

RL ≥ 10 kΩ ±12 ±14 ±12 ±14 V

RL ≥ 2 kΩ ±10 ±13 ±10 ±13 V

Output Short Circuit TA = 25˚C 10 25 35 25 25 mA

Current TAMIN ≤ TA ≤ TAMAX 10 40 mA

Common-Mode TAMIN ≤ TA ≤ TAMAX

Rejection Ratio RS ≤ 10 kΩ, VCM = ±12V 70 90 70 90 dB

RS ≤ 50Ω, VCM = ±12V 80 95 dB

Supply Voltage Rejection TAMIN ≤ TA ≤ TAMAX,

Ratio VS = ±20V to VS = ±5V

RS ≤ 50Ω 86 96 dB

RS ≤ 10 kΩ 77 96 77 96 dB

Transient Response TA = 25˚C, Unity Gain

Rise Time 0.25 0.8 0.3 0.3 µs

Overshoot 6.0 20 5 5 %

Bandwidth (Note 6) TA = 25˚C 0.437 1.5 MHz

Slew Rate TA = 25˚C, Unity Gain 0.3 0.7 0.5 0.5 V/µs

Supply Current TA = 25˚C 1.7 2.8 1.7 2.8 mA

Power Consumption TA = 25˚C

VS = ±20V 80 150 mW

VS = ±15V 50 85 50 85 mW

LM741A VS = ±20V

TA = TAMIN 165 mW

TA = TAMAX 135 mW

LM741 VS = ±15V

TA = TAMIN 60 100 mW

TA = TAMAX 45 75 mW

Note 2: “Absolute Maximum Ratings” indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device isfunctional, but do not guarantee specific performance limits.

LM741

www.national.com3

Page 57: M EEE 536J2: Con & Automation - HS Augsburgragr/Topics/MCA/common/Master... · p AD8541, Ana F58, Cantherm hermistor, Vish ... (constant t at a nod r Wavefor AC analy sweep fr

Electrical Characteristics (Note 5) (Continued)Note 3: For operation at elevated temperatures, these devices must be derated based on thermal resistance, and Tj max. (listed under “Absolute MaximumRatings”). Tj = TA + (θjA PD).

Thermal Resistance Cerdip (J) DIP (N) HO8 (H) SO-8 (M)

θjA (Junction to Ambient) 100˚C/W 100˚C/W 170˚C/W 195˚C/W

θjC (Junction to Case) N/A N/A 25˚C/W N/A

Note 4: For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.

Note 5: Unless otherwise specified, these specifications apply for VS = ±15V, −55˚C ≤ TA ≤ +125˚C (LM741/LM741A). For the LM741C/LM741E, thesespecifications are limited to 0˚C ≤ TA ≤ +70˚C.

Note 6: Calculated value from: BW (MHz) = 0.35/Rise Time(µs).

Note 7: For military specifications see RETS741X for LM741 and RETS741AX for LM741A.

Note 8: Human body model, 1.5 kΩ in series with 100 pF.

Schematic Diagram

00934101

LM74

1

www.national.com 4

Page 58: M EEE 536J2: Con & Automation - HS Augsburgragr/Topics/MCA/common/Master... · p AD8541, Ana F58, Cantherm hermistor, Vish ... (constant t at a nod r Wavefor AC analy sweep fr

General-Purpose CMOS Rail-to-Rail Amplifiers

AD8541/AD8542/AD8544

Rev. F Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2008 Analog Devices, Inc. All rights reserved.

FEATURES Single-supply operation: 2.7 V to 5.5 V Low supply current: 45 μA/amplifier Wide bandwidth: 1 MHz No phase reversal Low input currents: 4 pA Unity gain stable Rail-to-rail input and output

APPLICATIONS ASIC input or output amplifiers Sensor interfaces Piezoelectric transducer amplifiers Medical instrumentation Mobile communications Audio outputs Portable systems

GENERAL DESCRIPTION The AD8541/AD8542/AD8544 are single, dual, and quad rail-to-rail input and output, single-supply amplifiers featuring very low supply current and 1 MHz bandwidth. All are guaranteed to operate from a 2.7 V single supply as well as a 5 V supply. These parts provide 1 MHz bandwidth at a low current consumption of 45 μA per amplifier.

Very low input bias currents enable the AD8541/AD8542/AD8544 to be used for integrators, photodiode amplifiers, piezoelectric sensors, and other applications with high source impedance. The supply current is only 45 μA per amplifier, ideal for battery operation.

Rail-to-rail inputs and outputs are useful to designers buffering ASICs in single-supply systems. The AD8541/AD8542/AD8544 are optimized to maintain high gains at lower supply voltages, making them useful for active filters and gain stages.

The AD8541/AD8542/AD8544 are specified over the extended industrial temperature range (–40°C to +125°C). The AD8541 is available in 5-lead SOT-23, 5-lead SC70, and 8-lead SOIC packages. The AD8542 is available in 8-lead SOIC, 8-lead MSOP, and 8-lead TSSOP surface-mount packages. The AD8544 is available in 14-lead narrow SOIC and 14-lead TSSOP surface-mount packages. All MSOP, SC70, and SOT versions are available in tape and reel only.

PIN CONFIGURATIONS

1

2

3

5

4 –IN A+IN A

V+OUT AAD8541

V–

0093

5-00

1

Figure 1. 5-Lead SC70 and 5-Lead SOT-23

(KS and RJ Suffixes)

NC

–IN A

+IN A

V–

V+

OUT A

NC

NC1

2

3

4

8

7

6

5

AD8541

NC = NO CONNECT 0093

5-00

2

Figure 2. 8-Lead SOIC

(R Suffix)

AD85421

2

3

4

8

7

6

5

OUT A

–IN A

+IN A

V– +IN B

–IN B

OUT B

V+

0093

5-00

3

Figure 3. 8-Lead SOIC, 8-Lead MSOP, and 8-Lead TSSOP

(R, RM, and RU Suffixes)

AD8544

1

2

3

4

14

13

12

11

OUT A

–IN A

+IN A

V+ V–

+IN D

–IN D

OUT D

5

6

7

10

9

8

+IN B

–IN B

OUT B OUT C

–IN C

+IN C

0093

5-00

4

Figure 4. 14-Lead SOIC and 14-Lead TSSOP

(R and RU Suffixes)

Page 59: M EEE 536J2: Con & Automation - HS Augsburgragr/Topics/MCA/common/Master... · p AD8541, Ana F58, Cantherm hermistor, Vish ... (constant t at a nod r Wavefor AC analy sweep fr

AD8541/AD8542/AD8544

Rev. F | Page 2 of 20

TABLE OF CONTENTS Features .............................................................................................. 1 Applications....................................................................................... 1 General Description ......................................................................... 1 Pin Configurations ........................................................................... 1 Revision History ............................................................................... 2 Specifications..................................................................................... 3

Electrical Characteristics ............................................................. 3 Absolute Maximum Ratings............................................................ 6

Thermal Resistance ...................................................................... 6 ESD Caution.................................................................................. 6

Typical Performance Characteristics ..............................................7 Theory of Operation ...................................................................... 13

Notes on the AD854x Amplifiers............................................. 13 Applications..................................................................................... 14

Notch Filter ................................................................................. 14 Comparator Function ................................................................ 14 Photodiode Application ............................................................ 15

Outline Dimensions ....................................................................... 16 Ordering Guide .......................................................................... 18

REVISION HISTORY 1/08—Rev. E to Rev. F Inserted Figure 21; Renumbered Sequentially.............................. 9 Changes to Figure 22 Caption......................................................... 9 Changes to Notch Filter Section, Figure 35, Figure 36, and Figure 37 .......................................................................................... 13 Updated Outline Dimensions ....................................................... 16

1/07—Rev. D to Rev. E Updated Format..................................................................Universal Changes to Photodiode Application Section .............................. 14 Changes to Ordering Guide .......................................................... 17

8/04—Rev. C to Rev. D Changes to Ordering Guide .............................................................5 Changes to Figure 3........................................................................ 10 Updated Outline Dimensions....................................................... 12

1/03—Rev. B to Rev. C Updated Format..................................................................Universal Changes to General Description .....................................................1 Changes to Ordering Guide .............................................................5 Changes to Outline Dimensions .................................................. 12

Page 60: M EEE 536J2: Con & Automation - HS Augsburgragr/Topics/MCA/common/Master... · p AD8541, Ana F58, Cantherm hermistor, Vish ... (constant t at a nod r Wavefor AC analy sweep fr

AD8541/AD8542/AD8544

Rev. F | Page 3 of 20

SPECIFICATIONS ELECTRICAL CHARACTERISTICS VS = 2.7 V, VCM = 1.35 V, TA = 25°C, unless otherwise noted.

Table 1. Parameter Symbol Conditions Min Typ Max Unit INPUT CHARACTERISTICS

Offset Voltage VOS 1 6 mV −40°C ≤ TA ≤ +125°C 7 mV Input Bias Current IB 4 60 pA −40°C ≤ TA ≤ +85°C 100 pA −40°C ≤ TA ≤ +125°C 1000 pA Input Offset Current IOS 0.1 30 pA −40°C ≤ TA ≤ +85°C 50 pA −40°C ≤ TA ≤ +125°C 500 pA Input Voltage Range 0 2.7 V Common-Mode Rejection Ratio CMRR VCM = 0 V to 2.7 V 40 45 dB −40°C ≤ TA ≤ +125°C 38 dB Large Signal Voltage Gain AVO RL = 100 kΩ, VO = 0.5 V to 2.2 V 100 500 V/mV −40°C ≤ TA ≤ +85°C 50 V/mV −40°C ≤ TA ≤ +125°C 2 V/mV Offset Voltage Drift ΔVOS/ΔT −40°C ≤ TA ≤ +125°C 4 μV/°C Bias Current Drift ΔIB/ΔT −40°C ≤ TA ≤ +85°C 100 fA/°C −40°C ≤ TA ≤ +125°C 2000 fA/°C Offset Current Drift ΔIOS/ΔT −40°C ≤ TA ≤ +125°C 25 fA/°C

OUTPUT CHARACTERISTICS

Output Voltage High VOH IL = 1 mA 2.575 2.65 V −40°C ≤ TA ≤ +125°C 2.550 V Output Voltage Low VOL IL = 1 mA 35 100 mV −40°C ≤ TA ≤ +125°C 125 mV Output Current IOUT VOUT = VS − 1 V 15 mA ISC ±20 mA Closed-Loop Output Impedance ZOUT f = 200 kHz, AV = 1 50 Ω

POWER SUPPLY

Power Supply Rejection Ratio PSRR VS = 2.5 V to 6 V 65 76 dB −40°C ≤ TA ≤ +125°C 60 dB Supply Current/Amplifier ISY VO = 0 V 38 55 μA

−40°C ≤ TA ≤ +125°C 75 μA

DYNAMIC PERFORMANCE

Slew Rate SR RL = 100 kΩ 0.4 0.75 V/μs Settling Time tS To 0.1% (1 V step) 5 μs Gain Bandwidth Product GBP 980 kHz Phase Margin

ΦM

63 Degrees

NOISE PERFORMANCE

Voltage Noise Density en f = 1 kHz 40 nV/√Hz en f = 10 kHz 38 nV/√Hz Current Noise Density in <0.1 pA/√Hz

Page 61: M EEE 536J2: Con & Automation - HS Augsburgragr/Topics/MCA/common/Master... · p AD8541, Ana F58, Cantherm hermistor, Vish ... (constant t at a nod r Wavefor AC analy sweep fr

AD8541/AD8542/AD8544

Rev. F | Page 4 of 20

VS = 3.0 V, VCM = 1.5 V, TA = 25°C, unless otherwise noted.

Table 2. Parameter Symbol Conditions Min Typ Max Unit INPUT CHARACTERISTICS

Offset Voltage VOS 1 6 mV −40°C ≤ TA ≤ +125°C 7 mV Input Bias Current IB 4 60 pA −40°C ≤ TA ≤ +85°C 100 pA −40°C ≤ TA ≤ +125°C 1000 pA Input Offset Current IOS 0.1 30 pA −40°C ≤ TA ≤ +85°C 50 pA −40°C ≤ TA ≤ +125°C 500 pA Input Voltage Range 0 3 V Common-Mode Rejection Ratio CMRR VCM = 0 V to 3 V 40 45 dB −40°C ≤ TA ≤ +125°C 38 dB Large Signal Voltage Gain AVO RL = 100 kΩ, VO = 0.5 V to 2.2 V 100 500 V/mV −40°C ≤ TA ≤ +85°C 50 V/mV −40°C ≤ TA ≤ +125°C 2 V/mV Offset Voltage Drift ΔVOS/ΔT −40°C ≤ TA ≤ +125°C 4 μV/°C Bias Current Drift ΔIB/ΔT −40°C ≤ TA ≤ +85°C 100 fA/°C −40°C ≤ TA ≤ +125°C 2000 fA/°C Offset Current Drift ΔIOS/ΔT −40°C ≤ TA ≤ +125°C 25 fA/°C

OUTPUT CHARACTERISTICS Output Voltage High VOH IL = 1 mA 2.875 2.955 V −40°C ≤ TA ≤ +125°C 2.850 V Output Voltage Low VOL IL = 1 mA 32 100 mV −40°C ≤ TA ≤ +125°C 125 mV Output Current IOUT VOUT = VS − 1 V 18 mA ISC ±25 mA Closed-Loop Output Impedance ZOUT f = 200 kHz, AV = 1 50 Ω

POWER SUPPLY Power Supply Rejection Ratio PSRR VS = 2.5 V to 6 V 65 76 dB −40°C ≤ TA ≤ +125°C 60 dB Supply Current/Amplifier ISY VO = 0 V 40 60 μA

−40°C ≤ TA ≤ +125°C 75 μA DYNAMIC PERFORMANCE

Slew Rate SR RL = 100 kΩ 0.4 0.8 V/μs Settling Time tS To 0.01% (1 V step) 5 μs Gain Bandwidth Product GBP 980 kHz Phase Margin ΦM 64 Degrees

NOISE PERFORMANCE Voltage Noise Density en f = 1 kHz 42 nV/√Hz en f = 10 kHz 38 nV/√Hz Current Noise Density in <0.1 pA/√Hz

Page 62: M EEE 536J2: Con & Automation - HS Augsburgragr/Topics/MCA/common/Master... · p AD8541, Ana F58, Cantherm hermistor, Vish ... (constant t at a nod r Wavefor AC analy sweep fr

AD8541/AD8542/AD8544

Rev. F | Page 5 of 20

VS = 5.0 V, VCM = 2.5 V, TA = 25°C, unless otherwise noted.

Table 3. Parameter Symbol Conditions Min Typ Max Unit INPUT CHARACTERISTICS

Offset Voltage VOS 1 6 mV −40°C ≤ TA ≤ +125°C 7 mV Input Bias Current IB 4 60 pA −40°C ≤ TA ≤ +85°C 100 pA −40°C ≤ TA ≤ +125°C 1000 pA Input Offset Current IOS 0.1 30 pA −40°C ≤ TA ≤ +85°C 50 pA −40°C ≤ TA ≤ +125°C 500 pA Input Voltage Range 0 5 V Common-Mode Rejection Ratio CMRR VCM = 0 V to 5 V 40 48 dB −40°C ≤ TA ≤ +125°C 38 dB Large Signal Voltage Gain AVO RL = 100 kΩ, VO = 0.5 V to 2.2 V 20 40 V/mV −40°C ≤ TA ≤ +85°C 10 V/mV −40°C ≤ TA ≤ +125°C 2 V/mV Offset Voltage Drift ΔVOS/ΔT −40°C ≤ TA ≤ +125°C 4 μV/°C Bias Current Drift ΔIB/ΔT −40°C ≤ TA ≤ +85°C 100 fA/°C −40°C ≤ TA ≤ +125°C 2000 fA/°C Offset Current Drift ΔIOS/ΔT −40°C ≤ TA ≤ +125°C 25 fA/°C

OUTPUT CHARACTERISTICS

Output Voltage High VOH IL = 1 mA 4.9 4.965 V −40°C ≤ TA ≤ +125°C 4.875 V Output Voltage Low VOL IL = 1 mA 25 100 mV −40°C ≤ TA ≤ +125°C 125 mV Output Current IOUT VOUT = VS − 1 V 30 mA ISC ±60 mA Closed-Loop Output Impedance ZOUT f = 200 kHz, AV = 1 45 Ω

POWER SUPPLY

Power Supply Rejection Ratio PSRR VS = 2.5 V to 6 V 65 76 dB −40°C ≤ TA ≤ +125°C 60 dB Supply Current/Amplifier ISY VO = 0 V 45 65 μA −40°C ≤ TA ≤ +125°C 85 μA

DYNAMIC PERFORMANCE

Slew Rate SR RL = 100 kΩ, CL = 200 pF 0.45 0.92 V/μs Full Power Bandwidth BWP 1% distortion 70 kHz Settling Time tS To 0.1% (1 V step) 6 μs Gain Bandwidth Product GBP 1000 kHz Phase Margin ΦM 67 Degrees

NOISE PERFORMANCE

Voltage Noise Density en f = 1 kHz 42 nV/√Hz en f = 10 kHz 38 nV/√Hz Current Noise Density in <0.1 pA/√Hz

Page 63: M EEE 536J2: Con & Automation - HS Augsburgragr/Topics/MCA/common/Master... · p AD8541, Ana F58, Cantherm hermistor, Vish ... (constant t at a nod r Wavefor AC analy sweep fr

AD8541/AD8542/AD8544

Rev. F | Page 6 of 20

ABSOLUTE MAXIMUM RATINGS Table 4. Parameter Rating Supply Voltage (VS) 6 V Input Voltage GND to VS

Differential Input Voltage1 ±6 V Storage Temperature Range −65°C to +150°C Operating Temperature Range −40°C to +125°C Junction Temperature Range −65°C to +150°C Lead Temperature (Soldering, 60 sec) 300°C

1 For supplies less than 6 V, the differential input voltage is equal to ±VS.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE θJA is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages.

Table 5. Package Type θJA θJC Unit 5-Lead SC70 (KS) 376 126 °C/W 5-Lead SOT-23 (RJ) 230 146 °C/W 8-Lead SOIC (R) 158 43 °C/W 8-Lead MSOP (RM) 210 45 °C/W 8-Lead TSSOP (RU) 240 43 °C/W 14-Lead SOIC (R) 120 36 °C/W 14-Lead TSSOP (RU) 240 43 °C/W

ESD CAUTION

Page 64: M EEE 536J2: Con & Automation - HS Augsburgragr/Topics/MCA/common/Master... · p AD8541, Ana F58, Cantherm hermistor, Vish ... (constant t at a nod r Wavefor AC analy sweep fr

AD8541/AD8542/AD8544

Rev. F | Page 7 of 20

TYPICAL PERFORMANCE CHARACTERISTICS

INPUT OFFSET VOLTAGE (mV)–4.5 –3.5 4.5–2.5 –1.5 –0.5 0.5

NU

MB

ER O

F A

MPL

IFIE

RS

180

160

0

80

60

40

20

140

100

120

1.5 2.5 3.5

VS = 5VVCM = 2.5VTA = 25°C

0093

5-00

5

Figure 5. Input Offset Voltage Distribution

INPU

T O

FFSE

T VO

LTA

GE

(mV)

1.0

–2.5

–4.0–55 –35 –15

0.5

–2.0

–3.0

–3.5

–1.0

–1.5

0

–0.5

1455 25 45 65 85 105 125TEMPERATURE (°C)

VS = 2.7V AND 5VVCM = VS/2

0093

5-00

6

Figure 6. Input Offset Voltage vs. Temperature

COMMON-MODE VOLTAGE (V)

INPU

T B

IAS

CU

RR

ENT

(pA

)

9

8

0

4

3

2

1

7

5

6

–0.5 0.5 1.5 2.5 3.5 4.5 5.5

VS = 2.7V AND 5VVCM = VS/2

0093

5-00

7

Figure 7. Input Bias Current vs. Common-Mode Voltage

TEMPERATURE (°C)

INPU

T B

IAS

CU

RR

ENT

(pA

)

400

0

350

200

150

100

50

300

250

–40 –20 0 20 40 60 80 100 120 140

VS = 2.7V AND 5VVCM = VS/2

0093

5-00

8

Figure 8. Input Bias Current vs. Temperature

TEMPERATURE (°C)

INPU

T O

FFSE

T C

UR

REN

T (p

A)

7

–1

6

3

2

1

0

5

4

VS = 2.7V AND 5VVCM = VS/2

–55 –35 –15 5 25 45 65 85 105 125 145

0093

5-00

9

Figure 9. Input Offset Current vs. Temperature

FREQUENCY (Hz)

POW

ER S

UPP

LY R

EJEC

TIO

N (d

B)

160

140

–40

120

100

80

60

40

20

0

–20

100 1k 10k 100k 1M 10M

+PSRR

–PSRR

VS = 2.7VTA = 25°C

0093

5-01

0

Figure 10. Power Supply Rejection vs. Frequency

Page 65: M EEE 536J2: Con & Automation - HS Augsburgragr/Topics/MCA/common/Master... · p AD8541, Ana F58, Cantherm hermistor, Vish ... (constant t at a nod r Wavefor AC analy sweep fr

AD8541/AD8542/AD8544

Rev. F | Page 8 of 20

LOAD CURRENT (mA)

Δ O

UTP

UT

VOLT

AG

E (m

V)

10k

100

0.01

1

0.1

10

1k

0.001 0.01 0.1 1 10 100

VS = 2.7VTA = 25°C

SOURCE

SINK

0093

5-01

1

Figure 11. Output Voltage to Supply Rail vs. Load Current

OU

TPU

T SW

ING

(V p

-p)

3.0

2.5

0

2.0

1.5

0.5

1.0

FREQUENCY (Hz)1k 10k 100k 1M 10M

VS = 2.7VVIN = 2.5V p-pRL = 2kΩTA = 25°C

0093

5-01

2

Figure 12. Closed-Loop Output Voltage Swing vs. Frequency

CAPACITANCE (pF)

SMA

LL S

IGN

AL

OVE

RSH

OO

T (%

)

60

0

30

20

10

40

50

10 100 1k 10k

+OS

–OS

VS = 2.7VRL =∞TA = 25°C

0093

5-01

3

Figure 13. Small Signal Overshoot vs. Load Capacitance

SMA

LL S

IGN

AL

OVE

RSH

OO

T (%

)

60

0

30

20

10

40

50

CAPACITANCE (pF)10 100 1k 10k

+OS

–OS

VS = 2.7VRL = 10kΩTA = 25°C

0093

5-01

4

Figure 14. Small Signal Overshoot vs. Load Capacitance

SMA

LL S

IGN

AL

OVE

RSH

OO

T (%

)

60

0

30

20

10

40

50

CAPACITANCE (pF)10 100 1k 10k

+OS

–OS

VS = 2.7VRL = 2kΩTA = 25°C

0093

5-01

5

Figure 15. Small Signal Overshoot vs. Load Capacitance

1.35V

50mV 10µs

VS = 2.7VRL = 100kΩCL = 300pFAV = 1TA = 25°C

0093

5-01

6

Figure 16. Small Signal Transient Response

Page 66: M EEE 536J2: Con & Automation - HS Augsburgragr/Topics/MCA/common/Master... · p AD8541, Ana F58, Cantherm hermistor, Vish ... (constant t at a nod r Wavefor AC analy sweep fr

AD8541/AD8542/AD8544

Rev. F | Page 9 of 20

1.35V

VS = 2.7VRL = 2kΩAV = 1TA = 25°C

500mV 10µs

0093

5-01

7

Figure 17. Large Signal Transient Response

GA

IN (d

B)

80

60

40

20

0

45

90

135

180

PHA

SE S

HIF

T (D

egre

es)

FREQUENCY (Hz)1k 10k 100k 1M 10M

VS = 2.7VRL = NO LOADTA = 25°C

0093

5-01

8

Figure 18. Open-Loop Gain and Phase vs. Frequency

POW

ER S

UPP

LY R

EJEC

TIO

N R

ATI

O (d

B)

160

140

–40

120

100

80

60

40

20

–20

0

FREQUENCY (Hz)100 1k 10k 100k 1M 10M

+PSRR

–PSRR

VS = 5VTA = 25°C

0093

5-01

9

Figure 19. Power Supply Rejection Ratio vs. Frequency

CO

MM

ON

-MO

DE

REJ

ECTI

ON

(dB

)

60

50

40

30

20

10

0

–10

70

80

90

FREQUENCY (Hz)1k 10k 100k 1M 10M

VS = 5VTA = 25°C

0093

5-02

0

Figure 20. Common-Mode Rejection vs. Frequency

5

4

3

2

1

0

–1

–2

–3

–4

–50 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

0093

5-04

0

INPU

T O

FFSE

T VO

LTA

GE

(mV)

COMMON-MODE VOLTAGE (V)

VS = 5VRL = NO LOADTA = 25°C

Figure 21. Input Offset Voltage vs. Common-Mode Voltage

LOAD CURRENT (mA)

Δ O

UTP

UT

VOLT

AG

E (m

V)

100

0.01

1

0.1

10

1k

0.001 0.01 0.1 1 10 100

VS = 5VTA = 25°C

SOURCE

SINK

10k

0093

5-02

1

Figure 22. Output Voltage to Supply Rail vs. Load Current

Page 67: M EEE 536J2: Con & Automation - HS Augsburgragr/Topics/MCA/common/Master... · p AD8541, Ana F58, Cantherm hermistor, Vish ... (constant t at a nod r Wavefor AC analy sweep fr

AD8541/AD8542/AD8544

Rev. F | Page 10 of 20

OU

TPU

T SW

ING

(V p

-p)

3.0

2.5

0

2.0

1.5

0.5

1.0

4.0

3.5

5.0

4.5

FREQUENCY (Hz)1k 10k 100k 1M 10M

VS = 5VVIN = 4.9V p-pRL = NO LOADTA = 25°C

0093

5-02

2

Figure 23. Closed-Loop Output Voltage Swing vs. Frequency,

OU

TPU

T SW

ING

(V p

-p)

3.0

2.5

0

2.0

1.5

0.5

1.0

4.0

3.5

5.0

4.5

FREQUENCY (Hz)1k 10k 100k 1M 10M

VS = 5VVIN = 4.9V p-pRL = 2kΩTA = 25°C

0093

5-02

3

Figure 24. Closed-Loop Output Voltage Swing vs. Frequency

SMA

LL S

IGN

AL

OVE

RSH

OO

T (%

)

60

0

30

20

10

40

50

CAPACITANCE (pF)10 100 1k 10k

+OS

–OS

VS = 5VRL = 10kΩTA = 25°C

0093

5-02

4

Figure 25. Small Signal Overshoot vs. Load Capacitance

SMA

LL S

IGN

AL

OVE

RSH

OO

T (%

)

60

0

30

20

10

40

50

CAPACITANCE (pF)10 100 1k 10k

VS = 5VRL = 2kΩTA = 25°C

+OS

–OS

0093

5-02

5

Figure 26. Small Signal Overshoot vs. Load Capacitance

SMA

LL S

IGN

AL

OVE

RSH

OO

T (%

)

60

0

30

20

10

40

50

CAPACITANCE (pF)10 100 1k 10k

+OS

–OS

VS = 5VRL =∞TA = 25°C

0093

5-02

6

Figure 27. Small Signal Overshoot vs. Load Capacitance

2.5V

VS = 5VRL = 100kΩCL = 300pFAV = 1TA = 25°C

50mV 10µs

0093

5-02

7

Figure 28. Small Signal Transient Response

Page 68: M EEE 536J2: Con & Automation - HS Augsburgragr/Topics/MCA/common/Master... · p AD8541, Ana F58, Cantherm hermistor, Vish ... (constant t at a nod r Wavefor AC analy sweep fr

AD8541/AD8542/AD8544

Rev. F | Page 11 of 20

2.5V

VS = 5VRL = 2kΩAV = 1TA = 25°C

1V 10µs

0093

5-02

8

Figure 29. Large Signal Transient Response

GA

IN (d

B)

80

60

40

20

0

45

90

135

180

PHA

SE S

HIF

T (D

egre

es)

FREQUENCY (Hz)1k 10k 100k 1M 10M

VS = 5VRL = NO LOADTA = 25°C

0093

5-02

9

Figure 30. Open-Loop Gain and Phase vs. Frequency

2.5V

VS = 5VRL = 10kΩAV = 1TA = 25°C

1V 20µs

VIN

VOUT

0093

5-03

0

Figure 31. No Phase Reversal

SUPPLY VOLTAGE (V)

SUPP

LY C

UR

REN

T/A

MPL

IFIE

R (µ

A)

60

0

50

40

30

20

10

TA = 25°C

0 1 2 3 4 5 6

0093

5-03

1

Figure 32. Supply Current per Amplifier vs. Supply Voltage

Page 69: M EEE 536J2: Con & Automation - HS Augsburgragr/Topics/MCA/common/Master... · p AD8541, Ana F58, Cantherm hermistor, Vish ... (constant t at a nod r Wavefor AC analy sweep fr

AD8541/AD8542/AD8544

Rev. F | Page 12 of 20

FREQUENCY (kHz)

15nV

/DIV

VS = 5VMARKER SET @ 10kHzMARKER READING: 37.6nV/ HzTA = 25°C

0 5 10 15 20 25

0093

5-03

4

SUPP

LY C

UR

REN

T/A

MPL

IFIE

R (µ

A)

55

20

50

45

40

35

30

25

TEMPERATURE (°C)–55 –35 –15 5 25 45 65 85 105 125 145

VS = 5V

VS = 2.7V

0093

5-03

2

Figure 35. Voltage Noise

Figure 33. Supply Current per Amplifier vs. Temperature

IMPE

DA

NC

E (Ω

)

1000

900

0

800

700

600

500

400

300

200

100

FREQUENCY (Hz)1k 10k 100k 1M 10M 100M

VS = 2.7V AND 5VAV = 1TA = 25°C

0093

5-03

3

Figure 34. Closed-Loop Output Impedance vs. Frequency

Page 70: M EEE 536J2: Con & Automation - HS Augsburgragr/Topics/MCA/common/Master... · p AD8541, Ana F58, Cantherm hermistor, Vish ... (constant t at a nod r Wavefor AC analy sweep fr

AD8541/AD8542/AD8544

Rev. F | Page 13 of 20

THEORY OF OPERATION NOTES ON THE AD854X AMPLIFIERS The AD8541/AD8542/AD8544 amplifiers are improved performance, general-purpose operational amplifiers. Performance has been improved over previous amplifiers in several ways, including lower supply current for 1 MHz gain bandwidth, higher output current, and better performance at lower voltages.

Lower Supply Current for 1 MHz Gain Bandwidth

The AD854x series typically uses 45 μA of current per amplifier, which is much less than the 200 μA to 700 μA used in earlier generation parts with similar performance. This makes the AD854x series a good choice for upgrading portable designs for longer battery life. Alternatively, additional functions and performance can be added at the same current drain.

Higher Output Current

At 5 V single supply, the short-circuit current is typically 60 μA. Even 1 V from the supply rail, the AD854x amplifiers can provide a 30 mA output current, sourcing, or sinking.

Sourcing and sinking are strong at lower voltages, with 15 mA available at 2.7 V and 18 mA at 3.0 V. For even higher output currents, see the AD8531/AD8532/AD8534 parts for output currents to 250 mA. Information on these parts is available from your Analog Devices, Inc. representative, and data sheets are available at www.analog.com.

Better Performance at Lower Voltages

The AD854x family of parts was designed to provide better ac performance at 3.0 V and 2.7 V than previously available parts. Typical gain bandwidth product is close to 1 MHz at 2.7 V. Voltage gain at 2.7 V and 3.0 V is typically 500,000. Phase margin is typically over 60°C, making the part easy to use.

Page 71: M EEE 536J2: Con & Automation - HS Augsburgragr/Topics/MCA/common/Master... · p AD8541, Ana F58, Cantherm hermistor, Vish ... (constant t at a nod r Wavefor AC analy sweep fr

AD8541/AD8542/AD8544

Rev. F | Page 14 of 20

APPLICATIONS NOTCH FILTER The AD854x have very high open-loop gain (especially with a supply voltage below 4 V), which makes it useful for active filters of all types. For example, Figure 36 illustrates the AD8542 in the classic twin-T notch filter design. The twin-T notch is desired for simplicity, low output impedance, and minimal use of op amps. In fact, this notch filter can be designed with only one op amp if Q adjustment is not required. Simply remove U2 as illustrated in Figure 37. However, a major drawback to this circuit topology is ensuring that all the Rs and Cs closely match. The components must closely match or notch frequency offset and drift causes the circuit to no longer attenuate at the ideal notch frequency. To achieve desired performance, 1% or better component tolerances or special component screens are usually required. One method to desensitize the circuit-to-component mismatch is to increase R2 with respect to R1, which lowers Q. A lower Q increases attenuation over a wider frequency range but reduces attenuation at the peak notch frequency.

1/2 AD8542 5

6 7

8 3

2 4

1

1/2 AD8542

5.0V

U1 VOUT

U2

R22.5kΩ

R197.5kΩ

2.5VREF

C26.7nF

C26.7nF

2.5VREF R/250kΩ

R100kΩ

R100kΩ

2C53.6µF

f0 =

f0 = 12πRC

1R1

R1 + R24 1 –

0093

5-03

5

VIN

VIN

Figure 36. 60 Hz Twin-T Notch Filter, Q = 10

C

2C

R/2

R R 7 3

2 4

6

AD8541

5.0V

C

VOUT

2.5VREF

VIN

0093

5-03

6

U1

Figure 37. 60 Hz Twin-T Notch Filter, Q = ∞ (Ideal)

Figure 38 is an example of the AD8544 in a notch filter circuit. The frequency dependent negative resistance (FDNR) notch filter has fewer critical matching requirements than the twin-T notch, where as the Q of the FDNR is directly proportional to a single resistor R1. Although matching component values is still important, it is also much easier and/or less expensive to accomplish in the FDNR circuit. For example, the twin-T notch uses three capacitors with two unique values, whereas the FDNR circuit uses only two capacitors, which may be of the same value. U3 is simply a buffer that is added to lower the output impedance of the circuit.

4

1/4 AD854411

6

1/4 AD8544

1/4 AD8544

10 8

9

2 1

3 1/4 AD8544

1214

13

57

U3

U1

U4

U2

C21µF

C11µF

R1Q ADJUST

200Ω

R2.61kΩ

R2.61kΩ

R2.61kΩ

R2.61kΩ

VOUT

2.5VREF

2.5VREF

2.5VREF

NC

f = 12π LC1

L = R2C2

0093

5-03

7

VIN

Figure 38. FDNR 60 Hz Notch Filter with Output Buffer

COMPARATOR FUNCTION A comparator function is a common application for a spare op amp in a quad package. Figure 39 illustrates ¼ of the AD8544 as a comparator in a standard overload detection application. Unlike many op amps, the AD854x family can double as comparators because this op amp family has a rail-to-rail differential input range, rail-to-rail output, and a great speed vs. power ratio. R2 is used to introduce hysteresis. The AD854x, when used as comparators, have 5 μs propagation delay at 5 V and 5 μs overload recovery time.

1/4 AD8541

R11kΩ

VOUT

2.5VREF

VIN

R21MΩ

2.5VDC

0093

5-03

8

Figure 39. AD854x Comparator Application—Overload Detector

Page 72: M EEE 536J2: Con & Automation - HS Augsburgragr/Topics/MCA/common/Master... · p AD8541, Ana F58, Cantherm hermistor, Vish ... (constant t at a nod r Wavefor AC analy sweep fr

AD8541/AD8542/AD8544

Rev. F | Page 15 of 20

PHOTODIODE APPLICATION The AD854x family has very high impedance with an input bias current typically around 4 pA. This characteristic allows the AD854x op amps to be used in photodiode applications and other applications that require high input impedance. Note that the AD854x has significant voltage offset that can be removed by capacitive coupling or software calibration.

Figure 40 illustrates a photodiode or current measurement application. The feedback resistor is limited to 10 MΩ to avoid excessive output offset. In addition, a resistor is not needed on the noninverting input to cancel bias current offset because the bias current-related output offset is not significant when compared to the voltage offset contribution. For best performance, follow the standard high impedance layout techniques, which include the following:

• Shielding the circuit.

• Cleaning the circuit board.

• Putting a trace connected to the noninverting input around the inverting input.

• Using separate analog and digital power supplies.

AD85414

67

3

2

D

ORV+

2.5VREF

C100pF

R10MΩ

2.5VREF

VOUT

0093

5-03

9

Figure 40. High Input Impedance Application—Photodiode Amplifier

Page 73: M EEE 536J2: Con & Automation - HS Augsburgragr/Topics/MCA/common/Master... · p AD8541, Ana F58, Cantherm hermistor, Vish ... (constant t at a nod r Wavefor AC analy sweep fr

8415 Mountain Sights Avenue • Montreal (Quebec), H4P 2B8, CanadaTel: (514) 739-3274 • 1-800-561-7207 • Fax: (514) 739-2902E-mail: [email protected] • Website: www.cantherm.com

The MF58 is a NTC thermistor which is manufactured using a combination of ceramic and semiconductor techniques. It is equipped with tinned axial leads and then wrapped with purified glass.

MF58 Glass Shell Precision NTC Thermistors

2008/Feb

ApplicationsTemperature compensation and detection for:• Household appliances (air conditioners, microwave ovens, electric fans, electric heaters etc.)• Office equipment (copiers, printers etc.)• Industrial, medical, environmental, weather and food processing equipment• Liquid level detection and flow rate measurement• Mobile phone battery• Apparatus coils, integrated circuits, quartz crystal oscillators and thermocouples.

Dimensions(mm)

Specifications

Main Techno-Parameter• Zero power resistance range (R25): 0.1~1000KΩ• Available tolerances of R25: F=±1% G=±2% H=±3% J=±5% K=±10%• B value (B25/50°C) range: 3100~4500K• Available tolerances of B value: ±0.5%, ±1%, ±2%• Dissipation factor: ≥2mW/°C (In Still Air)• Thermal time constant: ≤20S (In Still Air)• Operating temperature range: -55°C ~ +200°C• Rated Power: ≤50mW

Features• Good stability and repeatability• High reliability• Wide range of resistance: 0.1~1000KΩ• Tight tolerance on resistance and Beta values• Usable in high-temperature and high-moisture environments• Small, light, strong package,• Suitable for automatic insertion on thru-hole PCBs• Rapid response• High sensitivity

Page 74: M EEE 536J2: Con & Automation - HS Augsburgragr/Topics/MCA/common/Master... · p AD8541, Ana F58, Cantherm hermistor, Vish ... (constant t at a nod r Wavefor AC analy sweep fr

NTC Thermistors, Accuracy Line

2322 640 3/4/6....

Vishay BCcomponents

www.vishay.com For technical questions contact: [email protected] Document Number: 2904970 Revision: 10-Oct-03

FEATURES

Accuracy over a wide temperature range

High stability over a long life

Excellent price/performance ratio

APPLICATIONS

Temperature sensing and control

These thermistors have a negative temperature coefficient. The device consists of a chip with two tinned solid copper-plated leads. It is grey lacquered and colour coded, but not insulated.

PACKAGING

The thermistors are packed in bulk or tape on reel;see code numbers and relevant packaging quantities.

QUICK REFERENCE DATA

PARAMETER VALUE

Resistance value at 25

°

C 3.3

Ω

to 470 k

Ω

Tolerance on R

25

-value

±

2%;

±

3%;

±

5%;

±

10%Tolerance on B

25/85

-value

±

0.5% to

±

3%Maximum dissipation 500 mWDissipation factor

δ

(for information only)7 mW/K

8.5 mW/K (for 640..338 to 689)

Response time 1.2 sThermal time constant

τ

(for information only)

15 s

Operating temperature range:at zero dissipation; continuously

40 to +125

°

Cat zero dissipation;for short periods

150

°

C

at maximum dissipation (500 mW) 0 to 55

°

CClimatic category 40/125/56Mass

0.3 g

ELECTRICAL DATA AND ORDERING INFORMATION

R

25

(

ΩΩΩΩ

)B

25/85

-VALUECATALOG NUMBER 2322 640 6....

COLOR CODE

(see dimensions drawing and note 1)

R

25

±±±±

2% R

25

±±±±

3% R

25

±±±±

5% R

25

±±±±

10% I II III

3.3 2880 K

±

3% 4338 6338 3338 2338 orange orange gold4.7 2880 K

±

3% 4478 6478 3478 2478 yellow violet gold6.8 2880 K

±

3% 4688 6688 3688 2688 blue grey gold10 2990 K

±

3% 4109 6109 3109 2109 brown black black15 3041 K

±

3% 4159 6159 3159 2159 brown green black22 3136 K

±

3% 4229 6229 3229 2229 red red black33 3390 K

±

3% 4339 6339 3339 2339 orange orange black47 3390 K

±

3% 4479 6479 3479 2479 yellow violet black68 3390 K

±

3% 4689 6689 3689 2689 blue grey black100 3560 K

±

0.75% 4101 6101 3101 2101 brown black brown150 3560 K

±

0.75% 4151 6151 3151 2151 brown green brown220 3560 K

±

0.75% 4221 6221 3221 2221 red red brown330 3560 K

±

0.75% 4331 6331 3331 2331 orange orange brown470 3560 K

±

0.5% 4471 6471 3471 2471 yellow violet brown680 3560 K

±

0.5% 4681 6681 3681 2681 blue grey brown1000 3528 K

±

0.5% 4102 6102 3102 2102 brown black red1500 3528 K

±

0.5% 4152 6152 3152 2152 brown green red

Page 75: M EEE 536J2: Con & Automation - HS Augsburgragr/Topics/MCA/common/Master... · p AD8541, Ana F58, Cantherm hermistor, Vish ... (constant t at a nod r Wavefor AC analy sweep fr

2322 640 3/4/6....

NTC Thermistors, Accuracy Line

Vishay BCcomponents

Document Number: 29049 For technical questions contact: [email protected] www.vishay.comRevision: 10-Oct-03 71

DERATING AND TEMPERATURE TOLERANCES

0 5540 85 125T ( C)o

100

0

P(%)

amb

Power derating curve.

DIMENSIONS

in millimeters

PHYSICAL DIMENSIONS FOR RELEVANT TYPE

MARKING

The thermistors are marked with coloured bands; see dimensions drawing and “Electrical data and ordering information”.

MOUNTING

By soldering in any position.

2322 640 6.338 to 6.474.

L

TB

H2

H1

ΛΙΙΙΙΙΙΙ

dP

CODE NUMBER 2322 640

.....

B

max

dH

1

H

2

max

L P T

max

MIN. MAX.

6.338 to6.221

5.0 0.6

±

0.061.0 4.0 6.0 24

±

1.52.54 4.0

6.331 to6.474

3.3

±

0.50.6

±

0.06

2.0

±

1.06.0 24

±

1.52.54 3.0

Notes

1. Dependent upon R

25

-tolerance, the band IV is coloured as follows:

a) for R

25

±

2%, band IV is coloured red

b) for R

25

±

3%, band IV is coloured orange

c) for R

25

±

5%, band IV is coloured gold

d) for R

25

±

10%, band IV is coloured silver.

2000 3528 K

±

0.5% 4202 6202 3202 2202

red

black red2200 3977 K

±

0.75% 4222 6222 3222 2222 red red red2700 3977 K

±

0.75% 4272 6272 3272 2272 red violet red3300 3977 K

±

0.75% 4332 6332 3332 2332 orange orange red4700 3977 K

±

0.75% 4472 6472 3472 2472 yellow violet red6800 3977 K

±

0.75% 4682 6682 3682 2682 blue grey red10000 3977 K

±

0.75% 4103 6103 3103 2103 brown black orange12000 3740 K

±

2% 4123 6123 3123 2123 brown red orange15000 3740 K

±

2% 4153 6153 3153 2153 brown green orange22000 3740 K

±

2% 4223 6223 3223 2223 red red orange33000 4090 K

±

1.5% 4333 6333 3333 2333 orange orange orange47000 4090 K

±

1.5% 4473 6473 3473 2473 yellow violet orange68000 4190 K

±

1.5% 4683 6683 3683 2683 blue grey orange100000 4190 K

±

1.5% 4104 6104 3104 2104 brown black yellow150000 4370 K

±

2.5% 4154 6154 3154 2154 brown green yellow220000 4370 K

±

2.5% 4224 6224 3224 2224 red red yellow330000 4570 K

±

1.5% 4334 6334 3334 2334 orange orange yellow470000 4570 K

±

1.5% 4474 6474 3474 2474 yellow violet yellow

R

25

(

ΩΩΩΩ

)B

25/85

-VALUECATALOG NUMBER 2322 640 6....

COLOR CODE

(see dimensions drawing and note 1)

R

25

±±±±

2% R

25

±±±±

3% R

25

±±±±

5% R

25

±±±±

10% I II III

Page 76: M EEE 536J2: Con & Automation - HS Augsburgragr/Topics/MCA/common/Master... · p AD8541, Ana F58, Cantherm hermistor, Vish ... (constant t at a nod r Wavefor AC analy sweep fr

2322 640 3/4/6....

Vishay BCcomponents

NTC Thermistors, Accuracy Line

www.vishay.com For technical questions contact: [email protected] Document Number: 2904972 Revision: 10-Oct-03

Curves valid for 68 to 100 kΩ.

Curve 1: ∆R25/R25 = 5%.

Curve 2: ∆R25/R25 = 3%.

Curve 3: ∆R25/R25 = 2%.

Curve 4: ∆R25/R25 = 1% (for 2322 640 5.... series only).

40 160

4.0

0

1.0

2.0

2.5

0.5

1.5

3.5

3.0

0 40 80 120

3

∆T

(K)

oT ( C)

4

2

1

TEMPERATURE DEVIATION AS A FUNCTION OF THE AMBIENT TEMPERATURE.

Curves valid for 2.2 to 10 kΩ.

Curve 1: ∆R25/R25 = 5%.

Curve 2: ∆R25/R25 = 3%.

Curve 3: ∆R25/R25 = 2%.

Curve 4: ∆R25/R25 = 1% (for 2322 640 5.... series only).

40 160

3.0

0

1.0

2.0

2.5

0.5

1.5

0 40 80 120

1

2

4

3

∆T

(K)

oT ( C)

Curves valid for 33 to 47 kΩ.

Curve 1: ∆R25/R25 = 5%.

Curve 2: ∆R25/R25 = 3%.

Curve 3: ∆R25/R25 = 2%.

Curve 4: ∆R25/R25 = 1% (for 2322 640 5.... series only).

40 160

4.0

0

1.0

2.0

2.5

0.5

1.5

3.5

3.0

0 40 80 120

1

2

3

∆T

(K)

oT ( C)

4

TEMPERATURE DEVIATION AS A FUNCTION OF THE AMBIENT TEMPERATURE.

40 1600

2

4

5

1

3

0 40 80 120

1

2

3

∆T

(K)

oT ( C)

Curves valid for 12 to 22 kΩ.

Curve 1: ∆R25/R25 = 5%.

Curve 2: ∆R25/R25 = 3%.

Curve 3: ∆R25/R25 = 2%.

40 160

6

0

2

4

5

1

3

0 40 80 120

3

∆T

(K)

oT ( C)

2

1

Curves valid for 150 to 220 kΩ.

Curve 1: ∆R25/R25 = 5%.

Curve 2: ∆R25/R25 = 3%.

Curve 3: ∆R25/R25 = 2%.

40 160

4.0

0

1.0

2.0

2.5

0.5

1.5

3.5

3.0

0 40 80 120

1

3

∆T

(K)

oT ( C)

2

Curves valid for 330 to 470 kΩ.

Curve 1: ∆R25/R25 = 5%.

Curve 2: ∆R25/R25 = 3%.

Curve 3: ∆R25/R25 = 2%.

TEMPERATURE DEVIATION AS A FUNCTION OF THE AMBIENT TEMPERATURE.

TEMPERATURE DEVIATION AS A FUNCTION OF THE AMBIENT TEMPERATURE.

TEMPERATURE DEVIATION AS A FUNCTION OF THE AMBIENT TEMPERATURE.

TEMPERATURE DEVIATION AS A FUNCTION OF THE AMBIENT TEMPERATURE.

Page 77: M EEE 536J2: Con & Automation - HS Augsburgragr/Topics/MCA/common/Master... · p AD8541, Ana F58, Cantherm hermistor, Vish ... (constant t at a nod r Wavefor AC analy sweep fr

2322 640 3/4/6....NTC Thermistors, Accuracy Line Vishay BCcomponents

Document Number: 29049 For technical questions contact: [email protected] www.vishay.comRevision: 10-Oct-03 73

RT VALUE AND TOLERANCE

These thermistors have a narrow tolerance on the B-value, the result of which provides a very small tolerance on the nominal resistance value over a wide temperature range. For this reason the usual graphs of R = f(T) are replaced by Resistance Values at Intermediate Temperatures Tables, together with a formula to calculate the characteristics with a high precision.

FORMULAE TO DETERMINE NOMINAL RESISTANCE VALUES

The resistance values at intermediate temperatures, or the operating temperature values, can be calculated using the following interpolation laws(extended “Steinhart and Hart”):

(1)

(2)

where:

A, B, C, D, A1, B1, C1 and D1 are constant values depending on the material concerned; see table below.

Rref is the resistance value at a reference temperature (in this event 25 °C).T is the temperature in K.

Formulae numbered (1) and (2) are interchangeable with an error of max. 0.005 °C in the range 25 °C to 125 °C and max. 0.015 °C in the range −40 °C to +25 °C.

DETERMINATION OF THE RESISTANCE/TEMPERATURE DEVIATION FROM NOMINAL VALUE

The total resistance deviation is obtained by combining the ‘R25-tolerance’ and the ‘resistance deviation due to B-tolerance’.

When:

X = R25-tolerance

Y = resistance deviation due to B-toleranceZ = complete resistance deviation,

then: or Z ≈ X + Y.

When:

TC = temperature coefficient

∆T = temperature deviation,

then:

The temperature tolerances are plotted in the graphs on the previous page.

Example: at 0 °C, assume X = 5%, Y = 0.89% and TC = 5.08%/K (see Table ), then:

A NTC with a R25-value of 10 kΩ has a value of 32.56 kΩ between −1.17 and +1.17 °C.

R (T) R= ref e×A B T⁄ C T2⁄ D T3⁄++ +( )

T (R) = A1 B1R

Rref----------ln C1ln2 R

Rref---------- D1ln3 R

Rref----------+ ++⎝ ⎠

⎛ ⎞ 1–

Z 1 X100----------+⎝ ⎠

⎛ ⎞ 1 Y100----------+⎝ ⎠

⎛ ⎞ 1–×= 100× %

∆T ZTC--------=

Z 1 5100----------+ 1 0.89

100-----------+ 1–×

⎩ ⎭⎨ ⎬⎧ ⎫

100%×=

1.05 1.0089 1–× 100% 5.9345% 5.93%≈( )=× ˙=

∆T ZTC-------- 5.93

5.08----------- 1.167 °C 1.17≈ ° C)(= = =

PARAMETERS FOR DETERMINING NOMINAL RESISTANCE VALUES

Notes

1. Temperature < 25 °C.

2. Temperature ≥25 °C.

B25/85-VALUE(K)

AB

(K)C

(105K2)D

(106K3)A1

(10−−−−3)B1

(10−4K−1)C1

(10−6K−2)D1

(10−7K−3)

2880 −9.094 2251.74 229098 −27.4482 3.354016 3.495020 2.095959 4.2606152990 −10.2296 2887.62 132336 −25.0251 3.354016 3.415560 4.955455 4.3642363041 −11.1334 3658.73 −102895 0.516652 3.354016 3.349290 3.683843 7.0504553136 −12.4493 4702.74 −402687 31.96830 3.354016 3.243880 2.658012 −2.701563390 −12.6814 4391.97 −232807 15.09643 3.354016 2.993410 2.135133 −8.056723528(1) −12.0596 3687.667 −7617.13 −5914730 3.354016 2.909670 1.632136 0.7192203528(2) −21.0704 11903.95 −2504699 247033800 3.354016 2.933908 3.494314 −7.712693560 −13.0723 4190.574 −47158.4 −11992560.91 3.354016 2.884193 4.118032 1.7867903740 −13.8973 4557.725 −98275 −7522357 3.354016 2.744032 3.666944 1.3754923977 −14.6337 4791.842 −115334 −3730535 3.354016 2.569355 2.626311 0.6752784090 −15.5322 5229.973 −160451 −5414091 3.354016 2.519107 3.510939 1.1051794190 −16.0349 5459.339 −191141 −3328322 3.354016 2.460382 3.405377 1.0342404370 −16.8717 5759.15 −194267 −6869149 3.354016 2.367720 3.585140 1.2553494570 −17.6439 6022.726 −203157 −7183526 3.354016 2.264097 3.278184 1.097628

Page 78: M EEE 536J2: Con & Automation - HS Augsburgragr/Topics/MCA/common/Master... · p AD8541, Ana F58, Cantherm hermistor, Vish ... (constant t at a nod r Wavefor AC analy sweep fr

PRODUCT INFORMATIONPRODUCT INFORMATION

0.1

1

10

-20 -10 0 10 20 30 40 50

Rs/Ro

Ambient Temperature (°C)

2

5

.5

R.H. 35% 50% 65% 100%

0.1

1

10

100 1000

Rs/Ro

Air

Methane

Concentration (ppm)

Carbon- monoxideIsobutane

n-HexaneBenzeneEthanol

Acetone

50 500 5000

Applications:Features:

TGS 822 - for the detection of Organic Solvent Vapors

The figure below represents typical sensitivity characteristics, all data having been gathered at standard test conditions (see reverse side of this sheet). The Y-axis is indicated as sensor resistance ratio (Rs/Ro) which is defined as follows: Rs = Sensor resistance of displayed gases at various concentrations Ro = Sensor resistance in 300ppm ethanol

The figure below represents typical temperature and humidity dependency characteristics. Again, the Y-axis is indicated as sensor resistance ratio (Rs/Ro), defined as follows: Rs = Sensor resistance at 300ppm of ethanol at various temperatures/humidities Ro = Sensor resistance at 300ppm of ethanol at 20°C and 65% R.H.

* High sensitivity to organic solvent vapors such as ethanol

* High stability and reliability over a long period

* Long life and low cost * Uses simple electrical circuit

* Breath alcohol detectors* Gas leak detectors/alarms* Solvent detectors for factories, dry

cleaners, and semiconductor

The sensing element of Figaro gas sensors is a tin dioxide (SnO2) semiconductor which has low conductivity in clean air. In the presence of a detectable gas, the sensor's conductivity increases depending on the gas concentration in the air. A simple electrical circuit can convert the change in conductivity to an output signal which corresponds to the gas concentration.The TGS 822 has high sensitivity to the vapors of organic solvents as well as other volatile vapors. It also has sensitivity to a variety of combustible gases such as carbon monoxide, making it a good general purpose sensor. Also available with a ceramic base which is highly resistant to severe environments as high as 200°C (model# TGS 823).

Temperature/Humidity Dependency:Sensitivity Characteristics:

IMPORTANT NOTE: OPERATING CONDITIONS IN WHICH FIGARO SENSORS ARE USED WILL VARY WITH EACH CUSTOMER’S SPECIFIC APPLICATIONS. FIGARO STRONGLY RECOMMENDS CONSULTING OUR TECHNICAL STAFF BEFORE DEPLOYING FIGARO SENSORS IN YOUR APPLICATION AND, IN PARTICULAR, WHEN CUSTOMER’S TARGET GASES ARE NOT LISTED HEREIN. FIGARO CANNOT ASSUME ANY RESPONSIBILITY FOR ANY USE OF ITS SENSORS IN A PRODUCT OR APPLICATION FOR WHICH SENSOR HAS NOT BEEN SPECIFICALLY TESTED BY FIGARO.

Page 79: M EEE 536J2: Con & Automation - HS Augsburgragr/Topics/MCA/common/Master... · p AD8541, Ana F58, Cantherm hermistor, Vish ... (constant t at a nod r Wavefor AC analy sweep fr

PRODUCT INFORMATIONPRODUCT INFORMATION

Item Symbol Condition Specification

Sensor Resistance Rs Ethanol at 300ppm/air 1kΩ ~ 10kΩ

Change Ratio of Sensor Resistance Rs/Ro Rs(Ethanol at 300ppm/air)

Rs(Ethanol at 50ppm/air) 0.40 ± 0.10

Heater Resistance RH Room temperature 38.0 ± 3.0Ω

Heater Power Consumption PH VH=5.0V 660mW (typical)

Structure and Dimensions:

1 Sensing Element: SnO2 is sintered to form a thick film on the surface of an alumina ceramic tube which contains an internal heater.2 Cap: Nylon 66 3 Sensor Base: Nylon 664 Flame Arrestor: 100 mesh SUS 316 double gauze

Item Symbol Rated Values Remarks

Heater Voltage VH 5.0±0.2V AC or DC

Circuit Voltage VC Max. 24V DC onlyPs≤15mW

Load Resistance RL Variable 0.45kΩ min.

Standard Circuit Conditions:

Pin Connection and Basic Measuring Circuit:The numbers shown around the sensor symbol in the circuit diagram at the right correspond with the pin numbers shown in the sensor's structure drawing (above). When the sensor is connected as shown in the basic circuit, output across the Load Resistor (VRL) increases as the sensor's resistance (Rs) decreases, depending on gas concentration.

Sensor Resistance (Rs) is calculated by the following formula:

Power dissipation across sensor electrodes (Ps) is calculated by the following formula:

Electrical Characteristics:

Basic Measuring Circuit:

REV: 09/02

Standard Test Conditions:TGS 822 complies with the above electrical characteristics when the sensor is tested in standard conditions as specified below:

Test Gas Conditions: 20°±2°C, 65±5%R.H.Circuit Conditions: VC = 10.0±0.1V (AC or DC), VH = 5.0±0.05V (AC or DC), RL = 10.0kΩ±1%Preheating period before testing: More than 7 days

FIGARO USA, INC.121 S. Wilke Rd. Suite 300Arlington Heights, IL 60005Phone: (847)-832-1701Fax: (847)-832-1705email: [email protected]

For information on warranty, please refer to Standard Terms and Conditions of Sale of Figaro USA Inc.

Rs = ( -1) x RLVC

VRL

Ps = VC2 x Rs(Rs + RL)2

17 ± 0.5

9.5

16.5

±0.5

6.5±

0.5

1.0±

0.56

34

25

1

45˚

45˚

um : mm

Page 80: M EEE 536J2: Con & Automation - HS Augsburgragr/Topics/MCA/common/Master... · p AD8541, Ana F58, Cantherm hermistor, Vish ... (constant t at a nod r Wavefor AC analy sweep fr

SFH 2030SFH 2030 F

Semiconductor Group 442

Silizium-PIN-Fotodiode mit sehr kurzer SchaltzeitSilizium-PIN-Fotodiode mit TageslichtsperrfilterSilicon PIN Photodiode with Very Short Switching TimeSilicon PIN Photodiode with Daylight Filter

Typ (*ab 4/95)Type (*as of 4/95)

BestellnummerOrdering Code

GehäusePackage

SFH 2030(*SFH 203)

Q62702-P955 T13/4, klares bzw schwarzes Epoxy-Gieβharz, Löt-spieβe im 2.54-mm-Raster (1/10),Kathodenkennzeichnung: kürzerer Lötspieβ, flacham Gehäusebund

transparent and black epoxy resin, solder tab2.54 mm (1/10) lead spacing, cathode marking: shortsolder tab, flat at package

SFH 2030 F(*SFH 203 FA)

Q62702-P956

SFH 2030SFH 2030 F

Maβe in mm, wenn nicht anders angegeben/Dimensions in mm, unless otherwise specified.

Wesentliche Merkmale

Speziell geeignet für Anwendungen imBereich von 400 nm bis 1100 nm(SFH 2030) und bei 880 nm (SFH 2030 F)

Kurze Schaltzeit (typ. 5 ns) 5 mm-Plastikbauform im LED-Gehäuse Auch gegurtet lieferbar

Anwendungen

Industrieelektronik “Messen/Steuern/Regeln” Schnelle Lichtschranken für Gleich- und

Wechsellichtbetrieb LWL

Features

Especially suitable for applications from400 nm to 1100 nm (SFH 2030) and of880 nm (SFH 2030 F)

Short switching time (typ. 5 ns) 5 mm LED plastic package Also available on tape

Applications

Industrial electronics For control and drive circuits Light-reflecting switches for steady and

varying intensity Fiber optic transmission systems

Page 81: M EEE 536J2: Con & Automation - HS Augsburgragr/Topics/MCA/common/Master... · p AD8541, Ana F58, Cantherm hermistor, Vish ... (constant t at a nod r Wavefor AC analy sweep fr

SFH 2030SFH 2030 F

Semiconductor Group 443

GrenzwerteMaximum Ratings

BezeichnungDescription

SymbolSymbol

WertValue

EinheitUnit

Betriebs- und LagertemperaturOperating and storage temperature range

Top; Tstg –55 ... +100 oC

Löttemperatur (Lötstelle 2 mm vomGehäuse entfernt bei Lötzeit t ≤ 3s)Soldering temperature in 2 mm distancefrom case bottom (t ≤ 3s)

TS 300 oC

SperrspannungReverse voltage

VR 50 V

VerlustleistungTotal power dissipation

Ptot 100 mW

Kennwerte (TA = 25 oC)Characteristics

BezeichnungDescription

SymbolSymbol

WertValue

EinheitUnit

SFH 2030 SFH 2030 F

FotoempfindlichkeitSpectral sensitivityVR = 5 V, Normlicht/standard light A,T = 2856 K,VR = 5 V, λ = 950 nm, Ee = 0.5 mW/cm2

S

S

80 (≥ 50)

25 (≥ 15)

nA/Ix

µA

Wellenlänge der max. FotoempfindlichkeitWavelength of max. sensitivity

λS max 850 900 nm

Spektraler Bereich der FotoempfindlichkeitS = 10% von SmaxSpectral range of sensitivityS = 10% of Smax

λ 400 ...1100 800 ... 1100 nm

Bestrahlungsempfindliche FlächeRadiant sensitive area

A 1 1 mm2

Abmessung der bestrahlungsempfindlichenFlächeDimensions of radiant sensitive area

L x B

L x W

1 x 1 1 x 1 mm

Abstand Chipoberfläche zu Gehäuseober-flächeDistance chip front to case surface

H 4.0 ... 4.6 4.0 ... 4.6 mm

Page 82: M EEE 536J2: Con & Automation - HS Augsburgragr/Topics/MCA/common/Master... · p AD8541, Ana F58, Cantherm hermistor, Vish ... (constant t at a nod r Wavefor AC analy sweep fr

SFH 2030SFH 2030 F

Semiconductor Group 444

HalbwinkelHalf angle

ϕ ± 20 ± 20 Graddeg.

Dunkelstrom, VR = 20 VDark current

IR 1 (≤ 5) 1 (≤ 5) nA

Spektrale Fotoempfindlichkeit, λ = 850 nmSpectral sensitivity

Sλ 0.62 0.59 A/W

Quantenausbeute, λ = 850 nmQuantum yield

η 0.89 0.86 ElectronsPhoton

LeerlaufspannungOpen-circuit voltageEv = 1000 Ix, Normlicht/standard light A,T = 2856 KEe = 0.5 mW/cm2, λ = 950 nm

VL

VL

420 (≥ 350)

370 (≥ 300)

mV

mV

KurzschluβstromShort-circuit currentEv = 1000 Ix, Normlicht/standard light A,T = 2856 KEe = 0.5 mW/cm2, λ = 950 nm

IK

IK

80

25

µA

µA

Anstiegs und Abfallzeit des FotostromesRise and fall time of the photocurrentRL= 50 kΩ; VR = 20 V; λ = 850 nm; Ip = 800 µA

tr, tf 5 5 ns

Durchlaβspannung, IF = 80 mA, E = 0Forward voltage

VF 1.3 1.3 V

Kapazität, VR = 0 V, f = 1 MHz, E = 0Capacitance

C0 11 11 pF

Temperaturkoeffizient von VLTemperature coefficient of VL

TCV –2.6 –2.6 mV/K

Temperaturkoeffizient von IK,Temperature coefficient of IKNormlicht/standard light Aλ = 950 nm

TCI

0.18–

–0.2

%/K

Rauschäquivalente StrahlungsleistungNoise equivalent powerVR = 10 V, λ = 850 nm

NEP 2.9 x 10–14 2.9 x 10–14 W√Hz

Nachweisgrenze, VR = 20 V, λ = 850 nmDetection limit

D* 3.5 x 1012 3.5 x 1012 cm · √Hz W

Kennwerte (TA = 25 oC)Characteristics

BezeichnungDescription

SymbolSymbol

WertValue

EinheitUnit

SFH 2030 SFH 2030 F

Page 83: M EEE 536J2: Con & Automation - HS Augsburgragr/Topics/MCA/common/Master... · p AD8541, Ana F58, Cantherm hermistor, Vish ... (constant t at a nod r Wavefor AC analy sweep fr

SFH 2030SFH 2030 F

Semiconductor Group 445

Relative spectral sensitivity SFH 2030Srel = f (λ)

Photocurrent IP = f (Ee), VR = 5 VOpen-circuit-voltage VL= f (Ee)SFH 2030 F

Relative spectral sensitivity SFH 2030 FSrel = f (λ)

Total power dissipation Ptot = f (TA)

Photocurrent IP = f (Ev), VR = 5 VOpen-circuit-voltage VL= f (Ev) SFH 2030

Dark currentIR = f (VR), E = 0

Directional characteristics Srel = f (ϕ)