37
M a t e r i a l s Swiss Federal Institute of Technology Zürich Nonmetallic Materials Brandon E. Bürgler Nonmetallic Inorganic Materials ETH Zürich Single Chamber Solid Oxide Fuel Cells (SC- SOFC) Thursday, March 19 th , 2004

M a t e r i a l s Swiss Federal Institute of Technology Zürich Nonmetallic Materials Brandon E. Bürgler Nonmetallic Inorganic Materials ETH Zürich Single

  • View
    216

  • Download
    3

Embed Size (px)

Citation preview

M a t e r i a l s

Swiss Federal

Institute of Technology

Zürich

Nonmetallic Materials

Brandon E. Bürgler

Nonmetallic Inorganic Materials

ETH Zürich

Single Chamber Solid Oxide Fuel Cells (SC-SOFC)

Thursday, March 19th, 2004

M a t e r i a l s

Swiss Federal

Institute of Technology

Zürich

Nonmetallic Materials

Outline

• Single Chamber SOFCs

• Experiments

• Modelling Issues

• Outlook

SC-SOFC

M a t e r i a l s

Swiss Federal

Institute of Technology

Zürich

Nonmetallic Materials

• Cathode and anode exposed to same gas mixture of fuel and oxidant

• Selectivity of electrodes for either oxidation or reduction reaction

Single Chamber SOFC

OCV

O2 + N2

H2

+ N2

H2O

O2

ocvCH4 + O2 + N2

CO + CO2 + N2 + H2

CH4 + N2 + O2

Conventional SOFC Single Chamber SOFC

SC-SOFC

M a t e r i a l s

Swiss Federal

Institute of Technology

Zürich

Nonmetallic Materials

SC-SOFC ↔ conventional SOFC

Advantages

• Simplified cell sealing• Elimination of complex flow field structures• Fast start-up possible• Costs

Challenges

• Non-equilibrium gas mixture (explosive from 5 to 15% CH4 in air)

• Fuel utilisation?• Parasitic chemical reactions

SC-SOFC

M a t e r i a l s

Swiss Federal

Institute of Technology

Zürich

Nonmetallic Materials

Basic Designs of SC-SOFCs

CH4 + air

a) classic

b) fully porous

c) planar

SC-SOFC

M a t e r i a l s

Swiss Federal

Institute of Technology

Zürich

Nonmetallic Materials

Open Questions & Aims

• Which parameters influence the OCV and the

maximum power output?

• Fundamental model of SC-SOFC including non-

ideal electrodes and CH4 as the fuel

• High performance SC-SOFC

Experiments

M a t e r i a l s

Swiss Federal

Institute of Technology

Zürich

Nonmetallic Materials

Measurement Setup

CH4Air

CH4AirExhaust

Thermocouple

U

I

Electrical characterisation:

Galvanostatic 4-point

measurements

Temperature:• 400 - 700°C• dT/dt < 2.5°C/min

CH4-air mixture:

• Air: 100-400ml/min

• CH4: 100ml/min,

moistened (~3% H2O)

Experiments

M a t e r i a l s

Swiss Federal

Institute of Technology

Zürich

Nonmetallic Materials

Cell Design & Preparation

Current collector: Pt-mesh

Electrolyte: Ce0.9Gd0.1O1.95 (CGO)

Anode: 60wt% NiO,40wt% CGO

Cathode: Sm0.5Sr0.5CoO3-

10mm 0.2 – 0.53 mm

Current collector: Pt-mesh

Experiments

M a t e r i a l s

Swiss Federal

Institute of Technology

Zürich

Nonmetallic Materials

Fuel Cell Cross Section

Cathode (~140 m)

Anode (~160 m)

Electrolyte (~330m)

Pt-mesh, longitudinal section (~80 m)

Pt-mesh, cross section (~80 m )

Experiments

M a t e r i a l s

Swiss Federal

Institute of Technology

Zürich

Nonmetallic Materials

Open Circuit Voltage

MS14 (0.19mm electrolyte):

Reduction of NiO

strong heat generation

300 350 400 450 500 550 600 650 700 7500.0

0.2

0.4

0.6

0.8

1.0

OC

V [V

olt]

Temperature [°C]

100ml/min air (heating) 100ml/min air (cooling)

Experiments

M a t e r i a l s

Swiss Federal

Institute of Technology

Zürich

Nonmetallic Materials

U-I Characteristics at different flow

0 500 1000 1500 20000.0

0.2

0.4

0.6

0.8

Current Density [mA/cm2]

Vol

tage

[V]

0

100

200

300

400

500P

ower D

ensity [m

W/cm

2]T = 600°C

Experiments

M a t e r i a l s

Swiss Federal

Institute of Technology

Zürich

Nonmetallic Materials

U-I Characteristics at different flow

0 500 1000 1500 20000.0

0.2

0.4

0.6

0.8

100ml/min air

Current Density [mA/cm2]

Vol

tage

[V]

0

100

200

300

400

500P

ower D

ensity [m

W/cm

2]T = 600°C

Experiments

M a t e r i a l s

Swiss Federal

Institute of Technology

Zürich

Nonmetallic Materials

U-I Characteristics at different flow

0 500 1000 1500 20000.0

0.2

0.4

0.6

0.8

100ml/min air 200ml/min air

Current Density [mA/cm2]

Vol

tage

[V]

0

100

200

300

400

500P

ower D

ensity [m

W/cm

2]T = 600°C

Experiments

M a t e r i a l s

Swiss Federal

Institute of Technology

Zürich

Nonmetallic Materials

U-I Characteristics at different flow

0 500 1000 1500 20000.0

0.2

0.4

0.6

0.8

100ml/min air 200ml/min air 300ml/min air

Current Density [mA/cm2]

Vol

tage

[V]

0

100

200

300

400

500P

ower D

ensity [m

W/cm

2]T = 600°C

Experiments

M a t e r i a l s

Swiss Federal

Institute of Technology

Zürich

Nonmetallic Materials

Pmax = 440 mW/cm2 @ 100 ml/min CH4 and

200 ml/min Air at 600°C

U-I Characteristics at different flow

0 500 1000 1500 20000.0

0.2

0.4

0.6

0.8

100ml/min air 200ml/min air 300ml/min air 400ml/min air

Current Density [mA/cm2]

Vol

tage

[V]

0

100

200

300

400

500P

ower D

ensity [m

W/cm

2]T = 600°C

Experiments

M a t e r i a l s

Swiss Federal

Institute of Technology

Zürich

Nonmetallic Materials

U-I characteristic at different Temperatures

0 500 1000 15000.0

0.2

0.4

0.6

0.8

500°C

Current Density [mA/cm2]

Vo

ltag

e [V

olt]

0

100

200

300

400P

ow

er D

en

sity [mW

/cm2]

fAir = 200 ml/min

Experiments

M a t e r i a l s

Swiss Federal

Institute of Technology

Zürich

Nonmetallic Materials

U-I characteristic at different Temperatures

0 500 1000 15000.0

0.2

0.4

0.6

0.8

500°C 600°C

Current Density [mA/cm2]

Vo

ltag

e [V

olt]

0

100

200

300

400P

ow

er D

en

sity [mW

/cm2]

fAir = 200 ml/min

Experiments

M a t e r i a l s

Swiss Federal

Institute of Technology

Zürich

Nonmetallic Materials

U-I characteristic at different Temperatures

0 500 1000 15000.0

0.2

0.4

0.6

0.8

500°C 600°C 700°C

Current Density [mA/cm2]

Vo

ltag

e [V

olt]

0

100

200

300

400P

ow

er D

en

sity [mW

/cm2]

fAir = 200 ml/min

Experiments

M a t e r i a l s

Swiss Federal

Institute of Technology

Zürich

Nonmetallic Materials

Open Circuit Voltage

400 500 600 7000.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

OC

V [

V]

Temperature [°C]

100ml/min air 200ml/min air 300ml/min air 400ml/min air

400 500 600 7000

50

100

150

200

250

300

max

. P

ower

Den

sity

[m

W/c

m2 ]

Temperature [°C]

100ml/min air 200ml/min air 300ml/min air 400ml/min air

Experiments

M a t e r i a l s

Swiss Federal

Institute of Technology

Zürich

Nonmetallic Materials

Electrode Temperatures at OCV

100 200 300 400500

600

700

800

Tnorm

=600°C

Tnorm

=500°C

Tnorm

=700°C

Cathode Temperature Anode Tempearature

Air Flow [ml/min]

Te

mp

era

ture

[°C

]

Pronounced heat generation on the anode

Electrolyte thickness: 390m

Experiments

M a t e r i a l s

Swiss Federal

Institute of Technology

Zürich

Nonmetallic Materials

Conclusions from Experiments

• Cells operate at T > 500°C

• Optimum conditions for maximum Power

output at T= 600°C and fair = 300 ml/min

• Pronounced heat generation at the anode

Modelling

M a t e r i a l s

Swiss Federal

Institute of Technology

Zürich

Nonmetallic Materials

Modelling of SC-SOFCs

1. Single Chamber SOFC versus Double Chamber: Driving force for ionic current?

2. Calculations of Equilibrium gas mixtures at anode

3. Mixed ionic electronic conducting electrolyte

Modelling

M a t e r i a l s

Swiss Federal

Institute of Technology

Zürich

Nonmetallic Materials

What is the driving force for the ionic current?

Assumptions:

-Hydrogen as fuel, air as oxidant

-Reversible and perfectly selective electrodes for H2 or O2

-Electrolyte only O2--conductor

Riess, I., van der Put, P. J. (1995). "Solid oxide fuel cells operating on uniform mixtures of fuel and air." Solid State Ionics 82: 1-4.

Cathode

½ O2 (gas) + 2e- → O2- (C)

Anode

½ H2 (gas) → H+ (A) + 2e-

O2- (SE/A) + 2 H+ (A)→ H2O (gas)(C)

(A) (SE/A)

Modelling

M a t e r i a l s

Swiss Federal

Institute of Technology

Zürich

Nonmetallic Materials

Calculation of O2-

Combination of (7), (8) and (9) yields

½ O2 (gas) + 2e- ↔ O2- (C)

½ H2 (gas) ↔ H+ (A) + e-

O2- (SE/A) + 2 H+ (A)↔ H2O (gas)

GOCV =

2q

The Nernst Voltage is the same for

SC- and conventional SOFCs

Modelling

M a t e r i a l s

Swiss Federal

Institute of Technology

Zürich

Nonmetallic Materials

Comment

• Electrodes are not ideally selective nor reversible.

• Direct oxidation of the fuel (=parasitical) lowers OCV.

• Improving selectivity of the electrodes will improve efficiency and reduce fuel waste.

Modelling

M a t e r i a l s

Swiss Federal

Institute of Technology

Zürich

Nonmetallic Materials

Operation Principles of a SC-SOFC

O2 + 4e- 2O2-

p(O2 )

p(O2 )

OCV

CH4 + air

CH4 + air

H2 + O2- 2H2O + 2e-

CO + O2- CO2 + 2e-

CH4 + 1/2O2 2H2 + CO

cathode2anode2

p(O )kTOCV = ln

4q p(O )

partial oxidation of methane

Modelling

M a t e r i a l s

Swiss Federal

Institute of Technology

Zürich

Nonmetallic Materials

Modelling of SC-SOFCs

1. Single Chamber SOFC versus Double Chamber. Driving force for ionic current?

2. Calculations of Equilibrium gas mixtures at anode

3. Mixed ionic electronic conducting electrolyte

Modelling

M a t e r i a l s

Swiss Federal

Institute of Technology

Zürich

Nonmetallic Materials

Calculation of equilibrium gas mixtures

Input:

T, Composition

X(C), X(O), X(H)

Minimisation of Gibbs

Free Energy

Output:

Concentrations of species: CH4, O2, H2, CO,

CO2

Thermocalc™

Basic idea:

Anode: Equilibrium reached very fast. pO2 ≈ 10-26 atm

Cathode: non-equilibrium gas mixtures remains unreacted

pO2 ≈ 0.05 – 0.17 atm

CH4 + Air

Modelling

M a t e r i a l s

Swiss Federal

Institute of Technology

Zürich

Nonmetallic Materials

Equilibria for Different CH4:O2 Ratios

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

frac

tion

in g

as p

hase

x(O)

CH4

CO

CO2

H2

H2O

O2

Suitable mixtures for SC-SOFCs

X (O)

T = 600°C

Modelling

M a t e r i a l s

Swiss Federal

Institute of Technology

Zürich

Nonmetallic Materials

Carbon deposition at low x(O)

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

mo

lar

fra

cti

on

x(O)

solid

fCH4 = 100 ml/min

fAir= 100 ml/min

Carbon deposition at low x(O)!!

gas

Modelling

M a t e r i a l s

Swiss Federal

Institute of Technology

Zürich

Nonmetallic Materials

Modelling of SC-SOFCs

1. Single Chamber SOFC versus Double Chamber. Driving force for ionic current?

2. Calculations of Equilibrium gas mixtures at anode

3. Mixed ionic electronic conducting electrolyte

Modelling

M a t e r i a l s

Swiss Federal

Institute of Technology

Zürich

Nonmetallic Materials

high pO2 conductance predominantly ionic.

low pO2 partial reduction n-type semiconduction Electronic conductivity ~ [Ce3+] ~ pO2

-1/4.

D. Schneider, M. Gödickemeier and L.J. GaucklerJ. of Electroceramics, 1, [2], (1997), 165-172

Conductivity of Ce0.8Sm0.2O1.9-x vs. pO2

Electrolyte is a mixed ionic electronic conductor

28 24 20 16 12 8 4 01

10

873 K

973 K

1073 K

tot [

S/m

]

-log (pO

2

/atm)

-1/4

Modelling

M a t e r i a l s

Swiss Federal

Institute of Technology

Zürich

Nonmetallic Materials

Transport Model for MIEC- SOFC electrolyte

Gödickemeier, M., Sasaki, K. and Gauckler, L. J. (1997)."Electrochemical Characteristics of Cathodes in Solid Oxide Fuel Cells based on Ceria Electrolytes."J. Electrochem. Soc. 144(5): 1635-1646.

j kT q N

j kT q n

i iNx i x

e enx i x

2

2

Nx

0

nn

qkT th

L V MC0

exp( ( ))

for n p O ( )2

14

V MC V V Vth Nernst th C th A( ) , , jV MC V

L

V

V MC Ve e

L th CellqkT Cell

qkT th Cell

( ) exp( )

exp( ( ( ) ))

1

1j V MC V

Li ith Cell ( )

MIEC

p(O2)low

p(O2)0

p(O2)L

p(O2)high

e

0 L

x

O 2 -

< < <

VCell

air side

fuel side

load

A Cext A ext C

1. transport equations

2. defect distribution

3. electrode overpotentials

jx

jx

i e 0 0

Modelling

M a t e r i a l s

Swiss Federal

Institute of Technology

Zürich

Nonmetallic Materials

Partial currents in MIEC – SOFC electrolytes

ionic & electronic current It

cell current It

Vcell

Vcell = VOC

-Ie = Ii

open circuit voltage

Vth

electronic current Ie

Vcell

electronic current Ie Ie(Vocv)

Vcell = 0Ie = 0

IeRe

Vcell

ionic current Ii

ionic current Ii

Ii(Vocv)

Vcell = Vth, app

Ii = 0

IiRi +Vth,C+ Vth,A

Modelling

M a t e r i a l s

Swiss Federal

Institute of Technology

Zürich

Nonmetallic Materials

Conclusions

1. Single Chamber SOFC versus Double Chamber. Driving force for ionic current?

2. Calculations of Equilibrium gas mixtures at anode

3. Mixed ionic electronic conducting electrolyte

4. Thermal Reactor

----

M a t e r i a l s

Swiss Federal

Institute of Technology

Zürich

Nonmetallic Materials

Acknowledgements

• Prof. Dr. L. J. Gauckler• A. Nicholas Grundy• Michel Prestat• SOFC group• The entire Nonmets Group

Diploma students• Marco Siegrist• Srdan Vasic

M a t e r i a l s

Swiss Federal

Institute of Technology

Zürich

Nonmetallic Materials

Thank you for your kind attention