15
Luminescence of Solids

Luminescence of Solids - Home - Springer978-1-4615-5361...forth, utilizing quantum theory and different basic models. The second chapter deals vii viii PREFACE with the conventional

Embed Size (px)

Citation preview

Luminescence of Solids

Luminescence of Solids

Edited by

D. R. Vij Kurukshetra University Kurukshetra, India

Springer Science+Business Media, LLC

Luminescence of Solids

Edited by

D. R. Vij Kurukshetra University Kurukshetra, India

Springer Science+Business Media, LLC

Llbrary of Congress Cataloglng-ln-Publlcatlon Data

Lumlneseenee of sollds I edlted by O.R. Vlj. p. cm.

Ineludes blbllographleal referenees and index. ISBN 978-1-4613-7446-6 ISBN 978-1-4615-5361-8 (eBook)

00110.1007/978-1-4615-5361-8 1. Lumlnescence. 2. Sol ids--Optleal propertles. 3. Inorganic

eompounds. I. Vlj, O. R. aC476.5.L86 1998 535' .35--dc21 98-18247

ISBN 978-1-4613-7446-6

© 1998 Springer Science+Business Media New York Originally published by Plenum Press,New York in 1998 Softcover reprint ofthe hardcover 1st edition 1998

10987654321

AII rights reserved

CIP

No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanicaJ, photocopying, microfilming, recording, or otherwise, without written permission from the Publisher

Llbrary of Congress Cataloglng-ln-Publlcatlon Data

Lumlneseenee of sollds I edlted by O.R. Vlj. p. cm.

Ineludes blbllographleal referenees and index. ISBN 978-1-4613-7446-6 ISBN 978-1-4615-5361-8 (eBook)

00110.1007/978-1-4615-5361-8 1. Lumlnescence. 2. Sol ids--Optleal propertles. 3. Inorganic

eompounds. I. Vlj, O. R. aC476.5.L86 1998 535' .35--dc21 98-18247

ISBN 978-1-4613-7446-6

© 1998 Springer Science+Business Media New York Originally published by Plenum Press,New York in 1998 Softcover reprint ofthe hardcover 1st edition 1998

10987654321

AII rights reserved

CIP

No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanicaJ, photocopying, microfilming, recording, or otherwise, without written permission from the Publisher

Contributors

L. Yu. Brovko, Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia.

B. P. Chandra, Department of Postgraduate Studies and Research in Physics, Rani Durgavati University, Jabalpur 482001, India.

Sean M. Cordry, Department of Physics and Astronomy, University of Mississippi, Mississippi 38677, United States.

Lawrence A. Crum, Applied Physics Laboratory, University of Washington, Seattle, Washington 98105, United States.

E. 1. Dementieva, Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia.

Debabrata Ghose, Saha Institute of Nuclear Physics, Bidhan Nagar, Calcutta 700064, India.

V. P. Gribkovskii, B. I. Stepanov Institute of Physics, Academy of Sciences of Belarus, Minsk, 220072, Byelorussia.

H.-E. Gumlich, Institut fUr Festkorperphysik, Technische UniversiHit, D-10623, Berlin, Germany.

Rainer Hippler, FakulHit fUr Physik, UniversiHit Bielefeld, D-33501, Bielefeld, Germany. Present address: Institut fUr Physik, Universitat Greifswald, Domstrasse lOa, D-Germany.

R. Mauch, Heinrich Hertz, Institut, 10117 Berlin, Germany.

A. Meijerink, Department of Condensed Matter, Universitat Utrecht, 3508 TA, Utrecht, The Netherlands.

Stefan Myhajlenko, Center for Solid State Electronics Research, College of Engineer­ing and Applied Sciences, Arizona State University, Tempe, Arizona 85287, United States.

v

vi CONTRIBUTORS

George T. Reynolds, Department of Physics, Princeton University, Princeton, New Jersey 08544, United States.

Shigeo Shionoya, Professor Emeritus, The University of Tokyo, Japan.

N. N. Ugarova, Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia.

D. R. Vij, Department of Physics, Kurukshetra University, Kurukshetra, India.

A. Zeinert, Universite de Picardie Jules Verne, F80035 Amiens, France.

Preface

The past three decades have witnessed rapid growth in research and development of luminescent materials because of their diverse applications. Studies have been carried out in almost all branches of luminescence, including photoluminescence, cath­odoluminescence, electroluminescence, thermoluminescence, and lyoluminescence, among others, with a view toward inventing and preparing new materials of practical use.

It has become possible to observe new phenomena in known luminescent substances: e.g., saturation and absorption of luminescence, induced dichroism, depolarization of luminescence with increasing excitation power, two-photon ab­sorption, luminescence at forbidden transitions, hot luminescence, radiation of biexcitons, electron-hole drops, ultrafast processes, self-focusing of light, and non­linear phenomena.

Moreover, the range of luminescent substances has been broadened owing to the production of complex materials and, frequently, materials that do not exist in nature, at all, i.e., hyperfine films of crystals, quantum-dimensional structures, stressed layers, and superlattices.

This volume is the outcome of a clear need to review the recent trends in research on luminescent inorganic materials and new physical phenomena in all the various branches of the field. It has been designed to provide an overview of different areas of luminescence and related properties of important luminescent materials from a practical point of view.

The individual chapters offer in-depth but concise reviews of different classes of luminescence so that the reader can utilize the information to examine the various phenomena with the right perspective.

The volume begins with a chapter on the theory of luminescence, wherein an attempt has been made to present the achievements that led to the establishment of the fundamental laws of luminescence. Phenomenological expressions are given relating to the most important characteristics of luminescence, such as power, spectra, polarization, quantum efficiency, rise and decay times, light sum, and so forth, utilizing quantum theory and different basic models. The second chapter deals

vii

viii PREFACE

with the conventional and modem experimental techniques, different types of light sources, light-dispersing elements, and the detectors in current use in luminescence spectroscopy of solids.

The rest of the volume is a survey of nearly all the different types of classes of luminescence-photo-, cathodo-, iono-, electro-, thermo-, lyo-, sono-, and mechanoluminescence- with each chapter being devoted to a particular type.

In addition to historical background, emphasis has been placed on the models and mechanisms, on materials with their preparation methods and characteristics, measurement techniques, and on future trends. The last chapter is devoted to Bio­and Chemiluminescence, which although not generally exhibited by inorganic solids, have been introduced not only to apprise readers of this class of luminescence, but to provide a complete presentation that includes all the branches of luminescence in one volume.

This book is a valuable collection by a diverse group of outstanding and experienced researchers, and it has an international flavor inasmuch as the contribu­tors are from United States, Germany, Japan, India, Russia, and The Netherlands. It is hoped that it will help advanced students taking courses in luminescence and serve as a review for researchers going into the field. It should be useful as well for material physicists, chemists, biologists, engineers, and all the professionals asso­ciated with luminescence spectroscopy.

It is my pleasant duty to express my thanks to the contributors, who made this volume possible. My own efforts in the planning and preparation of this volume have benefited greatly from many fruitful interactions with colleagues in the Physics Department of Kurukshetra University over the past 30 years. I am also indebted to all those authors and publishers who promptly granted permission to reproduce their copyrighted materials. The patient encouragement of the staff at Plenum Press in New York is also acknowledged with gratitude. The help of Mr. S. C. Verma in connection with the typing of the manuscript is greatly appreciated. Last but not the least, I wish to express my deep appreciation to my wife, Meenakshi, and my daughters, Surabhi and Monica, for their support, encouragement, and patience throughout this time-consuming and seemingly endless task of writing and editing this volume.

Kurukshetra Spring 1998

D. R. Vij

Contents

1. Theory of Luminescence

V. P. Gribkovskii

1. Introduction . 2. Characteristics of Luminescence

2.1. Luminescence Power .. 2.2. Luminescence Spectrum 2.3. Excitation Spectrum. . 2.4. Luminescence Polarization 2.5. Optical Indicatrix . . . . 2.6. Energy and Quantum Yields 2.7. Anti-Stokes Luminescence 2.8. Luminescence Rise and Decay. 2.9. Light Sum . . . . . . 2.10. Thermoluminescence .. 2.11. Negative Luminescence. 2.12. Hot Luminescence. . . 2.13. Superluminescence or Amplified Luminescence . 2.14. Near- and Far-Field Patterns ....... _ .

3. Fundamentals of the Quantum Theory of Radiation . 3.1. Classical, Quantum-Mechanical (Semiclassical), and

Quantum-Electrodynamic Methods. . 3.2. Electronic States in an Ideal Crystal . 3.3. Lattice Vibrations: Phonons . 3.4. Impurity Levels and Bands . _ . . . 3.5. Excitons and Biexcitons. . . 3.6. Probabilities of Spontaneous and Induced Transitions. 3.7. Nonradiative Transitions . . _ . . . . . . _ .

4. Theoretical Models and Mechanisms of Luminescence. 4.1. The Harmonic Oscillator . . _ . . . . . . _ .

ix

1 3 3 4 5 5 6 8 9

10 11 12 12 13 14 15 16

16 19 21 22 24 26 27 27 27

x CONTENTS

4.2. Two-, Three-, and N-Levd Systems ..... 4.3. Band-to-Band Absorption and Luminescence. 4.4. Luminescence in Impurity Solids. . . . . 4.5. Donor-Acceptor-Pair Luminescence . . . 4.6. Luminescence of Free and Bound Excitons . 4.7. Streamer Luminescence . .

5. Conclusions and Future Trends References . . . . . .

2. Experimental Techniques

A. M eijerink

1. Introduction 2. Absorption and Luminescence Spectroscopy .

2.1. Absorption . . . . . 2.2. Luminescence ....

3. Spectroscopic Components 3.1. Excitation Sources . . 3.2. Light-Dispersing Elements. 3.3. Light Detection . . . . .

4. Time-Resolved Spectroscopy .. 5. Hole-Burning, Fluorescence Line-Narrowing, and Photon Echo

5.1. Optical Hole-Burning. . . . 5.2. Fluorescence Line-Narrowing ...... . 5.3. Photon Echo ............. .

6. Quantum Efficiency and Nonradiative Processes. 7. Polarization and Perturbation Spectroscopy.

7.1. Polarization Spectroscopy . 7.2. Perturbation Spectroscopy.

8. New Developments. . . . . . 8.1. Ultrafast Spectroscopy 8.2. Single-Molecule Spectroscopy 8.3. Near-Field Optical Spectroscopy .

References . . . . . . . . . . . . . .

3. Photoluminescence

Shigeo Shionoya

1. Introduction . . . . . . . . . . . . 2. Classification of Photoluminescence in Solids

2.1. Intrinsic Luminescence 2.2. Extrinsic Luminescence . . . .

3. Band-to-Band Luminescence. . .. 3.1. Direct and Indirect Transitions. 3.2. Luminescence Transition Rates and Spectra . 3.3. Recombination Cross Sections and Impurities .

28 30 32 34 35 37 39 40

45 46 46 50 53 53 58 62 67 71 72 73 73 77 81 81 84 87 87 89 91 93

95 96 96 97 99 99

101 102

CONTENTS

4. Wannier Exciton Luminescence ...... . 4.1. Energy States of Wannier Excitons. . . . 4.2. Luminescence of Free and Bound Excitons . 4.3. Luminescence of Self-Trapped Excitons. . 4.4. Luminescence of Excitonic Molecules. . .

5. Characteristics of Localized-Center Luminescence . 5.L Configuration-Coordinate Model ..... 5.2. Theoretical Treatments of Spectral Shapes. . 5.3. Examples of Typical Spectra. . . . . . . . 5.4. Temperature Dependence of Luminescence Efficiency.

6. Extrinsic Luminescence of Unlocalized Type. . . 6.1. Donor-Acceptor Pair Luminescence. . . . 6.2. Luminescence Owing to Isoelectronic Traps .

7. Extrinsic Luminescence of Localized Type. . . . 7.1. Luminescence of Allowed-Transition-Type Ions. 7.2. Luminescence of Forbidden-Transition-Type Ions.

8. Luminescence of Low-Dimensional Systems . References . . . . . . . . . . . . . . . . . . . . .

4. Cathodoluminescence Stefan Myhajlenko

L Introduction . . 1.1. Historical Perspective . 1.2. Current Outlook . . .

2. Fundamental Aspects. . . 2.1. Electron-Beam Interactions in Solids . 2.2. Luminescence Processes in Solids . 2.3. Cathodoluminescence Generation . 2.4. Cathodoluminescence Modeling .

3. Experimental Aspects. . . . . . . . 3.1. Basic Design and Instrumentation 3.2. Configurational Permutations 3.3. Operational Considerations

4. Materials Applications 4.1. Semiconducting Materials . 4.2. Minerals ., . . . . . . 4.3. Ceramics and Superconductors .

5. Recent Applications. . . . . . . . 5.L Stress Anisotropy in Thin Films . 5.2. High-Spatial-Resolution Imaging of Defects and Epitaxial

Films . . . . . . . . . . . . . . ... 5.3. Surface- and Depth-Resolved Information. 5.4. Time-Resolved Measurements

6. Future Trends References . . . . . . . . . . . .

xi

103 103 104 105 106 108 108 109 111 113 114 114 119 120 120 124 130 133

135 135 135 136 136 140 145 147 150 150 154 159 166 166 167 169 170 170

173 179 180 182 183

xii CONTENTS

5. Ionoluminescence

Debabrata Ghose and Rainer Hippler

1. Introduction . . . . . . . . . . 2. Models for Excited Atom Formation.

2.1. Electron-Tunneling Model .... 2.2. Molecular Dissociation Model .. 2.3. Local Thermodynamic Equilibrium Model .

3. Experimental Observations . . . . . . . . . 3.1. Doppler-Broadening of Spectral Lines. . . 3.2. Projectile Energy Dependence of the Photon Yield . 3.3. Target Angular Dependence of the Photon Yield. 3.4. Transients . . . . . . . . .

4. Application to Surface Analysis 5. Other Sources of Light Emission .

5.1. Continuum Emission . . . . 5.2. Light Emission from Excited Projectiles .

6. Conclusions References . . . .

6. Electroluminescence

H.-E. Gumlich, A. Zeinert, and R. Mauch

1. Introduction . . . . . . . . . . . . 2. ZnS-Type Electroluminescence. . . . . . . . . .

2.1. Phenomenology and Basic Physical Processes. 2.2. Free Charge Carrier Generation and Trapping . 2.3. High-Field Charge Transport in ZnS . 2.4. Nonuniform Field . . . .

3. Host Materials and Activators . 3.1. Zinc Sulfide . . . . . . . 3.2. Alkaline-Earth Thiogallates 3.3. SrS:Ce and Other Rare-Earth-Doped Alkaline-Earth Sulfides.

4. Materials Requirements and Deposition Techniques. 4.1. Electrode Material . 4.2. Insulator 4.3. Phosphor Materials . 4.4. Deposition Methods

5. Color Electroluminescence Emission of Thin Films . 5.1. ZnS:Mn-Based Color Electroluminescence .. . 5.2. ZnS:RE-Based Color Electroluminescence .. . 5.3. Alkaline-Earth-Sulfide-Based Color Electroluminescence . 5.4. Alkaline-Earth-Thiogallate-Based Color Electroluminescence . 5.5. Color Concepts .............. .

6. Stability of ACTFEL Displays and Devices. . . . . 6.1. Reliability of ZnS:Mn-Based Electroluminescence .

189 190 190 195 196 197 197 201 204 205 211 213 213 216 217 218

221 223 223 229 231 235 237 237 241 244 247 247 248 249 250 251 251 252 253 254 255 257 257

CONTENTS

6.2. Reliability of Color Electroluminescence . 7. Powder Electroluminescence .

7.1. Introduction . . . . . . . . . . . . 7.2. Materials . . . . . . . . . . . . .

8. Electroluminescence of Organic Materials . References . . . . . . . . . . . . . . . .

7. Thermoluminescence D. R Vij

1. Introduction . . 2. Thermoluminescence Models.

2.1. Jablonski Model . . .. 2.2. Configurational-Coordinate Model 2.3. Energy-Band Model ....

3. Thermoluminescence Mechanisms 4. Methods of Analysis . . . . . .

4.1. Method Using Different Heating Rates 4.2. Half-Width Method . 4.3. Initial-Rise Method. . . . . . . . 4.4. Other Methods. . . . . . . . . .

5. Thermoluminescence-Related Phenomena 5.1. Thermally Stimulated Conductivity. 5.2. Thermally Stimulated Exoelectron Emission . 5.3. Electron Spin Resonance . . . . . . . 5.4. Optical Absorption. . . . . . . . . .

6. Materials: Preparations and Characteristics . 6.1. Materials Characteristics ...... . 6.2. Thermoluminescent Dosimeter Phosphors .

7. Thermoluminescence Measurement Methods . 7.1. Basic Thermoluminescence Apparatus. . 7.2. Heating Systems . . . . . . . . . .. 7.3. Light Detection, Recording, and Display.

8. Applications . . . . . . . . . 8.1. Radiation Dosimetry . . . . 8.2. Environmental Monitoring 8.3. Thermoluminescence Dating .

References . . . . . . . . . . . .

8. Lyoluminescence George T Reynolds

1. Introduction . . 2. Materials and Mechanisms

2.1. Organic Lyoluminescence Phosphors. 2.2. Inorganic Lyoluminescence Phosphors

xiii

258 259 259 259 261 265

271 272 272 273 275 276 278 279 280 281 281 282 282 282 283 283 284 284 287 297 298 299 299 300 300 301 302 302

309 311 313 323

xiv

3. Applications and Future Trends . 3.1. Organic Materials 3.2. Wavelength Shifter. 3.3. Enhancement 3.4. Image Intensification 3.5. Further Instrumentation .

References . . .

9. Sonoluminescence Sean M Cordry and Lawrence A. Crum

1. Introduction . . . . 2. Bubble Dynamics. . .

2.1. Radial Motion .. 2.2. Rectified Diffusion 2.3. Surface Instabilities .

3. Multibubble Sonoluminescence . 4. Single-Bubble Sonoluminescence

4.1. Radius-Time Curves 4.2. Light Emission ..... . 4.3. Factors Affecting Single-Bubble Sonoluminescence .

5. Mechanisms of Sonoluminescence 5.1. Thermal Origins .. 5.2. Electrical Discharge .

6. Applications 7. Conclusions References . .

10. Mechanoluminescence B. P. Chandra

1. Introduction . . . . . . . . . . . . . . . 2. Mechanoluminescent Materials. . . . . . . 3. Mechanoluminescence Measurement Devices . 4. Mechanoluminescence Characteristics .

4.1. Deformation Characteristic 4.2. Temporal Characteristic. 4.3. Thermal Characteristic . . 4.4. Spectral Characteristic

5. Mechanoluminescence Mechanisms . 5.1. Fracto-Mechanoluminescence in Piezoelectric Crystals. 5.2. Noncolored Alkali Halide Crystals. . . . . . . . . 5.3. Colored Alkali Halide Crystals. . . . . . . . . . . 5.4. Plastico-Mechanoluminescence in II-VI Compounds. 5.5. Fracto-Mechanoluminescence in Metals .

6. Mechanoluminescnce Theory

CONTENTS

337 337 338 338 339 339 340

343 344 344 346 348 348 349 350 353 354 355 355 356 357 357 358

361 363 364 365 365 366 370 371 372 373 374 375 376 377 377

CONTENTS xv

6.1. Fracto-Mechanoluminescence in Piezoelectric Crystals. 378 6.2. Plastico-Mechanoluminescence in x- or y-irradiated Alkali

Halide Crystals 380 7. Applications 385 References . . . . . . 387

11. Bioluminescence and Chemiluminescence

N. N. Ugarova, L. Yu, Brovko, and E. L Dementieva

1. Introduction . . . . . . . . . . . . . . . . . 2. Mechanisms of Chemiluminescence and Bioluminescence . 3. Chemiluminescence . . . . . . . . . . . . . . . .

3.1. Chemiluminescent Reactions of Electron Transfer. . . 3.2. Chemiluminescent Reactions of Singlet Oxygen. . . . 3.3 Chemiluminescent Reactions of Peroxide Decomposition .

4. Bioluminescence . . . . . . . . . . . . . . . . . . . . 4.1. Biological Functions and Evolution of Bioluminescence . 4.2. The Primary Bioluminescent Systems: Structures of Luciferins .

5. Applications of Chemiluminescence and Bioluminescence. . 5.1. Biochemiluminescent Analysis of Metabolites. . . . . . 5.2. Bioluminescent Express Methods for Control of Bacterial

Contamination. . . . . . . . . . . . . . . . . . 5.3. Bioluminescent Monitoring of Intracellular Processes . 5.4. Biochemiluminescent Methods for Immuno- and DNA

Analysis .................... . 5.5. Immobilization of Bioluminescent Enzymes . . . . . 5.6. Chemiluminescent and Bioluminescent Reporter Gene

Assays References . . . . . . . . . . . . . . . . . . . . . . .

Index

391 392 394 394 394 395 399 400 400 406 407

408 408

408 410

410 410

413

Luminescence of Solids