59
© Nicolas Lavarenne, l’exposition ‘A ciel ouvert’ Luc Florack Riemannian and Finslerian geometry for diusion weighted magnetic resonance imaging Computational Brain Connectivity Mapping Winter School Workshop 2017 - November 20-24, Jeans-les-Pins, France

Luc Florack - Inria · Riemann geometry ⊂ Finsler geometry Riemannian and Finslerian geometry for diffusion weighted magnetic resonance imaging Akward: Geometry built upon the

  • Upload
    others

  • View
    11

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Luc Florack - Inria · Riemann geometry ⊂ Finsler geometry Riemannian and Finslerian geometry for diffusion weighted magnetic resonance imaging Akward: Geometry built upon the

© Nicolas Lavarenne, l’exposition ‘A ciel ouvert’

Luc Florack

Riemannian and Finslerian geometry for diffusion weighted magnetic resonance imaging

Computational Brain Connectivity Mapping

Winter School Workshop 2017 - November 20-24, Jeans-les-Pins, France

Page 2: Luc Florack - Inria · Riemann geometry ⊂ Finsler geometry Riemannian and Finslerian geometry for diffusion weighted magnetic resonance imaging Akward: Geometry built upon the

Heuristics

Finsler manifold.

A Finsler manifold is a space (M,F) of spatial base points x∈M, furnished with a notion of a ‘line’ or ‘length element’ ds ≐ F(x,dx).

The ‘infinitesimal displacement vectors’ dx are ‘infinitely scalable’ into finite ‘tangent’ or ‘velocity vectors’ ẋ, viz. dx = ẋ dt.The collection of all (x, ẋ) is called the tangent bundle TM over M.Integrating the line element along a curve C produces the ‘length’ of that curve:

L (C) =

Z

Cds =

Z

CF (x, dx)

Bernhard Riemann Sophus Lie Elie Cartan Albert Einstein Paul Finsler

Page 3: Luc Florack - Inria · Riemann geometry ⊂ Finsler geometry Riemannian and Finslerian geometry for diffusion weighted magnetic resonance imaging Akward: Geometry built upon the

Applications

Examples (anisotropic media).

Mechanics e.g. F(x,dx) := infinitesimal displacement, or infinitesimal travel time, etc.

Optimal control e.g. F(x,dx) := local cost function for infinitesimal movement of Reeds-Shepp car

Opticse.g. F(x,dx) := infinitesimal travel time for light propagation

Seismologye.g. F(x,dx) := infinitesimal travel time for seismic ray propagation

Ecologye.g. F(x,dx) := infinitesimal energy for coral reef state transition

Relativitye.g. F(x,dx) := infinitesimal (pseudo-Finslerian) spacetime line element

Diffusion MRIe.g. F(x,dx) := infinitesimal hydrogen spin diffusion

Page 4: Luc Florack - Inria · Riemann geometry ⊂ Finsler geometry Riemannian and Finslerian geometry for diffusion weighted magnetic resonance imaging Akward: Geometry built upon the

Axiomatics

Literature.

© David Bao et al.© Hanno Rund et al.

Page 5: Luc Florack - Inria · Riemann geometry ⊂ Finsler geometry Riemannian and Finslerian geometry for diffusion weighted magnetic resonance imaging Akward: Geometry built upon the

The Riemann-DTI paradigm

Propagator. P (x, ⇠, ⌧) =

Z

R3

e2⇡iq·⇠ E(x, q, ⌧) dq

DTI. DDTI(x, q, ⌧) = Dij(x)qiqjEDTI(x, q, ⌧) = exp [�⌧DDTI(x, q, ⌧)]

PDTI(x, ⇠, ⌧) =

Z

R3

e2⇡iq·⇠ EDTI(x, q, ⌧) dq =1

p4⇡⌧2

3 exp

� 1

4⌧Dij(x)⇠

i⇠j�

Dik(x)Dkj(x) = �ij

diffusion tensor

q-space variable

inverse diffusion tensor

quadratic assumption…

another quadratic form…

DWMRI signal attenuation. E(x, q, ⌧) = exp [�⌧D(x, q, ⌧)]q = �

Zg(t)dt

Einstein ∑-convention

Page 6: Luc Florack - Inria · Riemann geometry ⊂ Finsler geometry Riemannian and Finslerian geometry for diffusion weighted magnetic resonance imaging Akward: Geometry built upon the

The Riemann-DTI paradigm

quadratic assumption…

kck2 =nX

i,j=1

gijcicj

Page 7: Luc Florack - Inria · Riemann geometry ⊂ Finsler geometry Riemannian and Finslerian geometry for diffusion weighted magnetic resonance imaging Akward: Geometry built upon the

Xiang Hao

Lauren O’Donnell Christophe Lenglet Andrea Fuster

The Riemann-DTI paradigm

Ansatz [1,2].

gij(x) = Dij(x) Dik(x)Dkj(x) = �ij

Adaptations [3,4].

gij(x) = e↵(x)Dij(x)

gij(x) = (adjD)ij(x) (adjD)ik(x)Dkj(x) = �ji detD

•(x)

adjugate diffusion tensor

inverse diffusion tensor

References.

1. Lauren O’Donnell et al, LNCS 2488:459-466 (2002)2. Christophe Lenglet et al, LNCS 3024: 127-140 (2004)3. Xiang Hao et al, LNCS 6801:13-24 (2011)4. Andrea Fuster et al, JMIV 54: 1-14 (2016)

References.

1. Lauren O’Donnell et al, LNCS 2488:459-466 (2002)2. Christophe Lenglet et al, LNCS 3024: 127-140 (2004)3. Xiang Hao et al, LNCS 6801:13-24 (2011)4. Andrea Fuster et al, JMIV 54: 1-14 (2016)

References.

1. Lauren O’Donnell et al, LNCS 2488:459-466 (2002)2. Christophe Lenglet et al, LNCS 3024: 127-140 (2004)3. Xiang Hao et al, LNCS 6801:13-24 (2011)4. Andrea Fuster et al, JMIV 54: 1-14 (2016)

References.

1. Lauren O’Donnell et al, LNCS 2488:459-466 (2002)2. Christophe Lenglet et al, LNCS 3024: 127-140 (2004)3. Xiang Hao et al, LNCS 6801:13-24 (2011)4. Andrea Fuster et al, JMIV 54: 1-14 (2016)

Riemann metric tensor

Page 8: Luc Florack - Inria · Riemann geometry ⊂ Finsler geometry Riemannian and Finslerian geometry for diffusion weighted magnetic resonance imaging Akward: Geometry built upon the

Hypothesis.

Tissue microstructure imparts non-random barriers to water diffusion.© C. Beaulieu, NMR Biomed. 15:7-8, 2002

The Riemann-DTI paradigm

Page 9: Luc Florack - Inria · Riemann geometry ⊂ Finsler geometry Riemannian and Finslerian geometry for diffusion weighted magnetic resonance imaging Akward: Geometry built upon the

Conjecture.

Extrinsic diffusion on Euclidean space ≈ intrinsic geometry of a Riemannian space

The Riemann-DTI paradigm

Page 10: Luc Florack - Inria · Riemann geometry ⊂ Finsler geometry Riemannian and Finslerian geometry for diffusion weighted magnetic resonance imaging Akward: Geometry built upon the

The Riemann-DTI paradigm

Conjecture.

Extrinsic diffusion on Euclidean space ≈ intrinsic geometry of a Riemannian space

Page 11: Luc Florack - Inria · Riemann geometry ⊂ Finsler geometry Riemannian and Finslerian geometry for diffusion weighted magnetic resonance imaging Akward: Geometry built upon the

The Riemann-DTI paradigm

Conjecture.

Extrinsic diffusion on Euclidean space ≈ intrinsic geometry of a Riemannian space

Page 12: Luc Florack - Inria · Riemann geometry ⊂ Finsler geometry Riemannian and Finslerian geometry for diffusion weighted magnetic resonance imaging Akward: Geometry built upon the

Terminology.

gauge figure = unit sphere = indicatrix = Riemannian metric = inner product

The Riemann-DTI paradigm

Page 13: Luc Florack - Inria · Riemann geometry ⊂ Finsler geometry Riemannian and Finslerian geometry for diffusion weighted magnetic resonance imaging Akward: Geometry built upon the

The Riemann-DTI paradigm

Page 14: Luc Florack - Inria · Riemann geometry ⊂ Finsler geometry Riemannian and Finslerian geometry for diffusion weighted magnetic resonance imaging Akward: Geometry built upon the

The Riemann-DTI paradigm

Page 15: Luc Florack - Inria · Riemann geometry ⊂ Finsler geometry Riemannian and Finslerian geometry for diffusion weighted magnetic resonance imaging Akward: Geometry built upon the

The Riemann-DTI paradigm

Page 16: Luc Florack - Inria · Riemann geometry ⊂ Finsler geometry Riemannian and Finslerian geometry for diffusion weighted magnetic resonance imaging Akward: Geometry built upon the

The Riemann-DTI paradigm

Page 17: Luc Florack - Inria · Riemann geometry ⊂ Finsler geometry Riemannian and Finslerian geometry for diffusion weighted magnetic resonance imaging Akward: Geometry built upon the

length2=6

The Riemann-DTI paradigm

kck2 = gijcicj

Page 18: Luc Florack - Inria · Riemann geometry ⊂ Finsler geometry Riemannian and Finslerian geometry for diffusion weighted magnetic resonance imaging Akward: Geometry built upon the

length2=9

The Riemann-DTI paradigm

kck2 = gijcicj

Page 19: Luc Florack - Inria · Riemann geometry ⊂ Finsler geometry Riemannian and Finslerian geometry for diffusion weighted magnetic resonance imaging Akward: Geometry built upon the

The Riemann-DTI paradigm & geodesic tractography

Page 20: Luc Florack - Inria · Riemann geometry ⊂ Finsler geometry Riemannian and Finslerian geometry for diffusion weighted magnetic resonance imaging Akward: Geometry built upon the

‘short’ geodesic

‘long’ geodesic

Riemannian length : Euclidean length

5.0 : 6.0 < 1

7.5 : 6.0 > 1

The Riemann-DTI paradigm & geodesic tractography

Page 21: Luc Florack - Inria · Riemann geometry ⊂ Finsler geometry Riemannian and Finslerian geometry for diffusion weighted magnetic resonance imaging Akward: Geometry built upon the

© Andrea Fuster & Neda Sepasian (unpublished)

tumour infiltration

smooth fibresventricle infiltration

irregular fibres

gij(x) = (adjD)ij(x)gij(x) = Dij(x)

The Riemann-DTI paradigm & geodesic tractography

cf. Pujol et al. The DTI Challenge, MICCAI 2015

Page 22: Luc Florack - Inria · Riemann geometry ⊂ Finsler geometry Riemannian and Finslerian geometry for diffusion weighted magnetic resonance imaging Akward: Geometry built upon the

geodesiccompleteness=

redundantconnec2ons

ellipsoidalgaugefigure=

poorangularresolu2on

pro:pixels→geodesiccongruences

con:destructiveinterferenceoforientationpreferences

The Riemann-DTI paradigm & geodesic tractography

‘100%falseposi2ves’

Page 23: Luc Florack - Inria · Riemann geometry ⊂ Finsler geometry Riemannian and Finslerian geometry for diffusion weighted magnetic resonance imaging Akward: Geometry built upon the

DTI ⊂ generic models

⇳ ⇳

Riemann geometry ⊂ Finsler geometry

Riemannian and Finslerian geometry for diffusion weighted magnetic resonance imaging

Akward: Geometry built upon the limitations of a model…

Page 24: Luc Florack - Inria · Riemann geometry ⊂ Finsler geometry Riemannian and Finslerian geometry for diffusion weighted magnetic resonance imaging Akward: Geometry built upon the

Heuristics

Literature.

© J. Melonakos et al, “Finsler Tractography for White Matter Connectivity Analysis of the Cingulum Bundle”. MICCAI (2007)© J. Melonakos et al, “Finsler Active Countours”. PAMI 30:3 (2008)© De Boer et al., “Statistical Analysis of Minimum Cost Path based Structural Brain Connectivity”. NeuroImage 55:2 (2011)© Astola, “Multi-Scale Riemann-Finsler Geometry: Applications to Diffusion Tensor Imaging and High Angular Resolution Diffusion Imaging”. PhD Thesis (2010)© Astola & Florack, “Finsler Geometry on Higher Order Tensor Fields and Applications to High Angular Resolution Diffusion© Astola et al., “Finsler Streamline Tracking with Single Tensor Orientation Distribution Function for High Angular Resolution Diffusion Imaging”. JMIV 41:3 (2011)© Sepasian et al., “Riemann-Finsler Multi-Valued Geodesic Tractography for HARDI”. In: “Visualisation and Processing of Tensors and Higher Order Descriptors for Multi-Valued Data”, Westin et al. (Eds.), Springer (2014)© Fuster & Pabst, “Finsler pp-Waves”. Phys. Rev. D 94:10 (2016)© Florack et al., “Riemann-Finsler Geometry for Diffusion Weighted Magnetics Resonance Imaging”. In: “Visualisation and Processing of Tensors and Higher Order Descriptors for Multi-Valued Data”, Westin et al. (Eds.), Springer (2014)© Florack et al., “Direction-Controlled DTI Interpolation”. In: “Visualisation and Processing of Higher Order Descriptors for Multi-Valued Data”, Hotz et al. (Eds.), Springer (2015)© Dela Haije et al., “Structural Connectivity Analysis using Finsler Geometry” (submitted)

Page 25: Luc Florack - Inria · Riemann geometry ⊂ Finsler geometry Riemannian and Finslerian geometry for diffusion weighted magnetic resonance imaging Akward: Geometry built upon the

Terminology

(x,ẋ)

Slit tangent bundle.

TM\0 = { (x,ẋ)∈TM | ẋ≠0 }

Sphere bundle.

SM = { (x,ẋ)∈TM | F(x,ẋ)=1 }

Projectivized tangent bundle.

PTM = { (x,ẋ)∈TM | F(x,ẋ)=1 , ẋ~(-ẋ) }

Tangent bundle.

TM = { (x,ẋ) | x∈M, ẋ∈TxM }

Page 26: Luc Florack - Inria · Riemann geometry ⊂ Finsler geometry Riemannian and Finslerian geometry for diffusion weighted magnetic resonance imaging Akward: Geometry built upon the

Finsler function

L (C) =

Z

Cds =

Z

CF (x, dx) =

Z t+

t�

F (x(t), x(t))dt =

Z t+

t�

qgij(x(t), x(t))xi(t)xj(t)dt

Notes.

The Finsler function ‘lives’ on the 2n-dimensional tangent bundle TM.A Finsler function defines a (smoothly varying) local norm ||ẋ||x = F(x,ẋ) for a vector ẋ at anchor point x.The line integral (✻) is independent of curve parametrisation:

(✻)

(positivity)F (x, x) > 0 (x 6= 0)

@2F 2(x, x)

@xi@xj⇠i⇠j > 0 (⇠ 6= 0)(convexity)

Finsler function. (homogeneity)F (x,�x) = |�|F (x, x) (� 2 R)(� 2 R , x 6= 0 , ⇠ 6= 0)

Page 27: Luc Florack - Inria · Riemann geometry ⊂ Finsler geometry Riemannian and Finslerian geometry for diffusion weighted magnetic resonance imaging Akward: Geometry built upon the

Finsler metric

Notes.

The Finsler metric is a second order symmetric positive definite covariant tensor.The Finsler metric is homogeneous of degree 0.The Finsler metric ‘lives’ on the (2n-1)-dimensional projectivized tangent bundle PTM.

Finsler metric. gij(x, x).=

1

2

@2F 2(x, x)

@xi@xjF (x, x) =

qgij(x, x)xixj⟺

Page 28: Luc Florack - Inria · Riemann geometry ⊂ Finsler geometry Riemannian and Finslerian geometry for diffusion weighted magnetic resonance imaging Akward: Geometry built upon the

Riemann metric

Notes.

A Riemann metric defines an inner product induced norm (‘Pythagorean rule’).Finsler geometry is ‘just’ Riemannian geometry without the quadratic assumption.

Pythagorean rule

Riemann metric. FR(x, x) =qgij(x)xixjgij(x) =

1

2

@2F 2R(x, x)

@xi@xj⟺

position only

Page 29: Luc Florack - Inria · Riemann geometry ⊂ Finsler geometry Riemannian and Finslerian geometry for diffusion weighted magnetic resonance imaging Akward: Geometry built upon the

xi .= gij(x, q)qjH(x, q) = F (x, x)

Dual Finsler function.

1

2H

2(x, q) = supx2TMx

hq|xi � 1

2F

2(x, x)

© Dela Haije, “Finsler Geometry and Diffusion MRI”. PhD Thesis (2017)

The Finsler-DTI paradigm

E(x, q, ⌧) = exp [�⌧D(x, q, ⌧)] P (x, ⇠, ⌧) =

Z

R3

e2⇡iq·⇠ E(x, q, ⌧) dq

DWMRI signal attenuation and propagator.

Notes.

(i) Riemann-DTI paradigm ~ central limit theorem:

(ii) Finsler-DTI paradigm: cf. PhD thesis Tom Dela Haije

H2(x, q) /

X

ij

Dij(x)qiqj

Page 30: Luc Florack - Inria · Riemann geometry ⊂ Finsler geometry Riemannian and Finslerian geometry for diffusion weighted magnetic resonance imaging Akward: Geometry built upon the

The Finsler-DTI paradigm

Finsler metric & dual Finsler metric.

gij(x, q) =

1

2

@2H

2(x, q)

@qi@qjgij(x, x) =

1

2

@2F 2(x, x)

@xi@xj

# 2

gij(x,#)xixj = 1gij(x,#)qiqj = 1

Osculating figuratrices & osculating indicatrices.

Note. Z

T⇤Mx

gij(x,#)�(#� q)qiqj d# = gij(x, q)qiqj

Z

TMx

gij(x,#)�(#� x)xixj d# = gij(x, x)xixj

Figuratrix & indicatrix.

H2(x, q) = g

ij(x, q)qiqj = 1 F 2(x, x) = gij(x, x)xixj = 1

Page 31: Luc Florack - Inria · Riemann geometry ⊂ Finsler geometry Riemannian and Finslerian geometry for diffusion weighted magnetic resonance imaging Akward: Geometry built upon the

The Finsler-DTI paradigm

Note. Z

T⇤Mx

gij(x,#)�(#� q)qiqj d# = gij(x, q)qiqj

Z

TMx

gij(x,#)�(#� x)xixj d# = gij(x, x)xixj

Interpretation.

The dual Finsler metric represents an orientation-parametrized family of DTI tensors of the kind considered in the Riemann-DTI paradigm.In the Riemannian limit all members of this family coincide.

# 2

Page 32: Luc Florack - Inria · Riemann geometry ⊂ Finsler geometry Riemannian and Finslerian geometry for diffusion weighted magnetic resonance imaging Akward: Geometry built upon the

Application: DTI interpolation

© Florack, Dela Haije & Fuster. in: Hotz & Schultz, Springer 2015

Page 33: Luc Florack - Inria · Riemann geometry ⊂ Finsler geometry Riemannian and Finslerian geometry for diffusion weighted magnetic resonance imaging Akward: Geometry built upon the

DTI interpolation paradox

Page 34: Luc Florack - Inria · Riemann geometry ⊂ Finsler geometry Riemannian and Finslerian geometry for diffusion weighted magnetic resonance imaging Akward: Geometry built upon the

DTI interpolation paradox

Page 35: Luc Florack - Inria · Riemann geometry ⊂ Finsler geometry Riemannian and Finslerian geometry for diffusion weighted magnetic resonance imaging Akward: Geometry built upon the

DTI interpolation paradox

Page 36: Luc Florack - Inria · Riemann geometry ⊂ Finsler geometry Riemannian and Finslerian geometry for diffusion weighted magnetic resonance imaging Akward: Geometry built upon the

DTI interpolation paradox

Page 37: Luc Florack - Inria · Riemann geometry ⊂ Finsler geometry Riemannian and Finslerian geometry for diffusion weighted magnetic resonance imaging Akward: Geometry built upon the

DTI interpolation paradox

Riemannian frame

Finslerian extension

think out of the box…

Page 38: Luc Florack - Inria · Riemann geometry ⊂ Finsler geometry Riemannian and Finslerian geometry for diffusion weighted magnetic resonance imaging Akward: Geometry built upon the

Claim.

(i) The tensor is a Finsler metric.

(ii) An analytical, closed-form solution exists.

Riemann metric weighted averaging Finsler manifold

F 2g (x, x) = gij(x)x

ixj

F 2h (x, x) = hij(x)x

ixj

F 2(x, x) = F 2↵g (x, x)F 2(1�↵)

h (x, x)

gij(x, x) =1

2

@2F 2(x, x)

@xi@xj

(✻)

Definition.

(i)

(ii)

(iii)

(iv) (✻)

(0 ↵ 1)

input: two 3D-DTI tensors

output: one 5D-DTI tensor

Page 39: Luc Florack - Inria · Riemann geometry ⊂ Finsler geometry Riemannian and Finslerian geometry for diffusion weighted magnetic resonance imaging Akward: Geometry built upon the
Page 40: Luc Florack - Inria · Riemann geometry ⊂ Finsler geometry Riemannian and Finslerian geometry for diffusion weighted magnetic resonance imaging Akward: Geometry built upon the

Cartan tensor

Cartan tensor.

Notes.

The Cartan tensor C is a symmetric third order covariant tensor on the slit tangent bundle (sphere bundle / projectivized tangent bundle).The Cartan tensor is the ẋ-gradient of the metric tensor:Deicke’s theorem: Space is Riemannian iff the Cartan tensor vanishes identically.

Cijk(x, x).=

1

4

@3F 2(x, x)

@xi@xj@xk

Cijk(x, x) = @xkgij(x, x)

Page 41: Luc Florack - Inria · Riemann geometry ⊂ Finsler geometry Riemannian and Finslerian geometry for diffusion weighted magnetic resonance imaging Akward: Geometry built upon the

Cartan scalar maps

Notes.

These scalars live on the slit tangent bundle (sphere bundle / projectivized tangent bundle).They can be projected in various ways onto the spatial base manifold.They can be used as invariant local or tractometric features.They are (locally) nontrivial iff the Riemann-DTI model (locally) fails (Deicke’s theorem).

gij(x, x)Cijk(x, x)gk`(x, x)C`mn(x, x)g

mn(x, x)=

Cijk(x, x)(x, x)gi`(x, x)gjm(x, x)gkn(x, x)C`mn(x, x)=

5D-DTI

Page 42: Luc Florack - Inria · Riemann geometry ⊂ Finsler geometry Riemannian and Finslerian geometry for diffusion weighted magnetic resonance imaging Akward: Geometry built upon the

≠ 0

≠ 0

= 0

= 0

Page 43: Luc Florack - Inria · Riemann geometry ⊂ Finsler geometry Riemannian and Finslerian geometry for diffusion weighted magnetic resonance imaging Akward: Geometry built upon the

Tractography from 5D???

Page 44: Luc Florack - Inria · Riemann geometry ⊂ Finsler geometry Riemannian and Finslerian geometry for diffusion weighted magnetic resonance imaging Akward: Geometry built upon the

HV-splitting

Horizontal versus vertical transport:

V-type: Spinning without walking.H-type: Spinning-walking preserving a forward gaze.

H/V-generators:

V-type:

H-type:�

�xi

.=

@

@xi�N j

i (x, x)@

@xj

@

@xj

© Sean Gryb

H-type

V-type

Page 45: Luc Florack - Inria · Riemann geometry ⊂ Finsler geometry Riemannian and Finslerian geometry for diffusion weighted magnetic resonance imaging Akward: Geometry built upon the

HV-splitting

Nonlinear connection.

A ‘nonlinear connection’ is needed to ensure a geometrically meaningful HV-splitting.

Riemannian limit (linear connection):

‘Christoffel symbols of the 2nd kind’:

�jik(x)

.=

1

2gj`(x)

@g`k(x)

@xi+

@gi`(x)

@xk� @gik(x)

@x`

N ji (x, x) = �j

ik(x)xk

Page 46: Luc Florack - Inria · Riemann geometry ⊂ Finsler geometry Riemannian and Finslerian geometry for diffusion weighted magnetic resonance imaging Akward: Geometry built upon the

HV-splitting

Nonlinear connection.

Finslerian case: nonlinear correction terms, involving the Cartan tensor:

N ij(x, x) = �i

jk(x, x)xk � Ci

jk(x, x)�k`m(x, x)x`xm

geodesic spray coefficients

(✻)N ij(x, x) =

@Gi(x, x)

@xj⟺ Gi(x, x) =

1

2�ijk(x, x)x

j xk =1

2N i

j(x, x)xj

formal Christoffel symbols of the 2nd kind

Page 47: Luc Florack - Inria · Riemann geometry ⊂ Finsler geometry Riemannian and Finslerian geometry for diffusion weighted magnetic resonance imaging Akward: Geometry built upon the

HV-splitting

d

dsf(x(t+ s), y(t+ s))

����s=0

= xi(t)@

@xif(x(t), y(t)) + yi(t)

@

@yif(x(t), y(t))

Rate of change along a curve in TM\0.

d

dsf(x(t+ s), y(t+ s))

����s=0

= xi(t)�

�xif(x(t), y(t)) +

⇥yi(t) +N i

j(x(t), y(t))xj(t)

⇤ @

@yif(x(t), y(t))

@

@xi

˙

def=

d

dt

Page 48: Luc Florack - Inria · Riemann geometry ⊂ Finsler geometry Riemannian and Finslerian geometry for diffusion weighted magnetic resonance imaging Akward: Geometry built upon the

HV-splitting

d

dsf(x(t+ s), y(t+ s))

����s=0

= xi(t)�

�xif(x(t), y(t)) +

⇥yi(t) +N i

j(x(t), y(t))xj(t)

⇤ @

@yif(x(t), y(t))

d

dsf(x(t+ s), y(t+ s))

����s=0

= xi(t)@

@xif(x(t), y(t)) + yi(t)

@

@yif(x(t), y(t))

Rate of change along a curve in TM\0.

H-component V-component

H/V curves.

Vertical curve:

Horizontal curve:

Constant Finslerian speed geodesic (y=ẋ):

yi(t) +N ij(x(t), y(t))x

j(t) = 0

xi(t) +N ij(x(t), x(t))x

j(t) = 0

xi(t) = 0

Finslerian ‘pseudo-force’

xi(t) + 2Gi(x(t), x(t)) = 0

Page 49: Luc Florack - Inria · Riemann geometry ⊂ Finsler geometry Riemannian and Finslerian geometry for diffusion weighted magnetic resonance imaging Akward: Geometry built upon the

Geodesics

L (C) =

Z

CF (x, dx) �! min

xi + 2Gi(x, x) =d lnF (x, x)

dtxi

Geodesic (global definition).

A geodesic is a ‘locally’ shortest path:

Recall (local definition).

Constant Finslerian speed geodesics:Always possibly by slick choice of parametrization (e.g. ‘arclength’, i.e. such that F(x,ẋ)=1).

xi + 2Gi(x, x) = 0

Page 50: Luc Florack - Inria · Riemann geometry ⊂ Finsler geometry Riemannian and Finslerian geometry for diffusion weighted magnetic resonance imaging Akward: Geometry built upon the

Conjecture.

neural fiber bundles correspond to relatively short geodesics in a Riemannian ‘brain space’ the Riemannian structure can be inferred from ‘3D-DTI’

The Riemann-DTI paradigm

Page 51: Luc Florack - Inria · Riemann geometry ⊂ Finsler geometry Riemannian and Finslerian geometry for diffusion weighted magnetic resonance imaging Akward: Geometry built upon the

Conjecture.

neural fiber bundles correspond to relatively short geodesics in a Finslerian ‘brain space’ the Finslerian structure can be inferred from ‘5D-DTI’

The Finsler-DTI paradigm

Page 52: Luc Florack - Inria · Riemann geometry ⊂ Finsler geometry Riemannian and Finslerian geometry for diffusion weighted magnetic resonance imaging Akward: Geometry built upon the

Euclidean

Riemannian

Finslerian

Page 53: Luc Florack - Inria · Riemann geometry ⊂ Finsler geometry Riemannian and Finslerian geometry for diffusion weighted magnetic resonance imaging Akward: Geometry built upon the
Page 54: Luc Florack - Inria · Riemann geometry ⊂ Finsler geometry Riemannian and Finslerian geometry for diffusion weighted magnetic resonance imaging Akward: Geometry built upon the

Diffusion Weighted Magnetic Resonance Imaging

(x,p1), (x,p2), (x,p3),...

Page 55: Luc Florack - Inria · Riemann geometry ⊂ Finsler geometry Riemannian and Finslerian geometry for diffusion weighted magnetic resonance imaging Akward: Geometry built upon the

Riemannmetric:lengths&anglesG(v, v) = kvk2

Levi-Civitaconnection:paralleltransportrxx = 0

Christoffelsymbols:“pseudo-forces”(relativetolocalcoordinateframes)xi +X

jk

�ijk(x) x

j xk = 0

The Riemann-DTI paradigm & geodesic tractography

Page 56: Luc Florack - Inria · Riemann geometry ⊂ Finsler geometry Riemannian and Finslerian geometry for diffusion weighted magnetic resonance imaging Akward: Geometry built upon the

Riemannmetric:lengths&anglesG(v, v) = kvk2

Levi-Civitaconnection:paralleltransportrxx = 0

Christoffelsymbols:“pseudo-forces”(relativetolocalcoordinateframes)xi +X

jk

�ijk(x) x

j xk = 0

The Riemann-DTI paradigm & geodesic tractography

Page 57: Luc Florack - Inria · Riemann geometry ⊂ Finsler geometry Riemannian and Finslerian geometry for diffusion weighted magnetic resonance imaging Akward: Geometry built upon the

Euclideangeodesic

Riemannmetric:lengths&anglesG(v, v) = kvk2

Levi-Civitaconnection:paralleltransportrxx = 0

Christoffelsymbols:“pseudo-forces”(relativetolocalcoordinateframes)xi +X

jk

�ijk(x) x

j xk = 0

The Riemann-DTI paradigm & geodesic tractography

Page 58: Luc Florack - Inria · Riemann geometry ⊂ Finsler geometry Riemannian and Finslerian geometry for diffusion weighted magnetic resonance imaging Akward: Geometry built upon the

Riemanniangeodesic

Riemannmetric:lengths&anglesG(v, v) = kvk2

Levi-Civitaconnection:paralleltransportrxx = 0

Christoffelsymbols:“pseudo-forces”(relativetolocalcoordinateframes)xi +X

jk

�ijk(x) x

j xk = 0

The Riemann-DTI paradigm & geodesic tractography

Page 59: Luc Florack - Inria · Riemann geometry ⊂ Finsler geometry Riemannian and Finslerian geometry for diffusion weighted magnetic resonance imaging Akward: Geometry built upon the

�ij(x, x) =gij(x, x) = F 2(x, x)�ij(x, x)

Riemann metric weighted averaging Finsler manifold

hij(x) =

gij(x) = gij(x)xixj =

hij(x)xixj = hij(x)x

j =

gij(x)xj =

+ + + + +÷

÷

�2↵(1� ↵)

÷

2↵(1� ↵)

÷

2↵(1� ↵)

÷

�2↵(1� ↵)

÷

1� ↵