36
LT3045-1 1 30451fa For more information www.linear.com/LT3045-1 TYPICAL APPLICATION FEATURES DESCRIPTION 20V, 500mA, Ultralow Noise, Ultrahigh PSRR Linear Regulator with VIOC Control The LT ® 3045-1 is a high performance low dropout linear regulator featuring LTC’s ultralow noise and ultrahigh PSRR architecture for powering noise sensitive applications. De- signed as a precision current reference followed by a high performance voltage buffer, the LT3045-1 can be easily paralleled to further reduce noise, increase output current and spread heat on the PCB. In addition to the LT3045 feature set, the LT3045-1 incorporates a VIOC tracking function to control an upstream switching converter to maintain a constant voltage across the LT3045-1 and hence minimize power dissipation. The device supplies 500mA at a typical 260mV dropout voltage. Operating quiescent current is nominally 2.3mA and drops to <<1µA in shutdown. The LT3045-1’s wide output voltage range (0V to 15V) while maintaining unity- gain operation provides virtually constant output noise, PSRR, bandwidth and load regulation, independent of the programmed output voltage. Additionally, the regulator features programmable current limit, fast start-up capa- bility and programmable power good to indicate output voltage regulation. The LT3045-1 is stable with a minimum 10µF ceramic output capacitor. Built-in protection includes reverse- battery protection, reverse-current protection, internal current limit with foldback and thermal limit with hysteresis. The LT3045-1 is available in thermally enhanced 12-Lead MSOP and 3mm × 3mm DFN packages. Noise Spectral Density APPLICATIONS n Ultralow RMS Noise: 0.8µV RMS (10Hz to 100kHz) n Ultralow Spot Noise: 2nV/√Hz at 10kHz n Ultrahigh PSRR: 76dB at 1MHz n Output Current: 500mA n Wide Input Voltage Range: 1.8V to 20V n Single Capacitor Improves Noise and PSRR n 100µA SET Pin Current: ±1% Initial Accuracy n VIOC Pin Controls Upstream Regulator to Minimize Power Dissipation n Single Resistor Programs Output Voltage n Programmable Current Limit n Low Dropout Voltage: 260mV n Output Voltage Range: 0V to 15V n Programmable Power Good n Fast Start-Up Capability n Precision Enable/UVLO n Parallelable for Lower Noise and Higher Current n Internal Current Limit with Foldback n Minimum Output Capacitor: 10µF Ceramic n Reverse-Battery and Reverse-Current Protection n 12-Lead MSOP and 3mm × 3mm DFN Packages n RF Power Supplies: PLLs, VCOs, Mixers, LNAs, PAs n Very Low Noise Instrumentation n High Speed/High Precision Data Converters n Medical Applications: Imaging, Diagnostics n Post-Regulator for Switching Supplies L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Analog Devices, Inc. Patents pending. All other trademarks are the property of their respective owners. LDO IN = 4.3V LDO OUT = 3.3V I LOAD = 500mA LDO OUT LDO IN Noise Floor FREQUENCY (Hz) 10 100 1k 10k 100k 1M 10M 0.01 0.1 1 10 100 1000 NOISE (μV/√ Hz ) 30451 TA01b + 100μA IN EN/UV PGFB VIOC GND OUT LT3045-1 ILIM PG 10μF 47μF V IN 12V 4.7μF V OUT : VARIABLE I OUT(MAX) : 500mA 30451 TA01a 249Ω SET OUTS LT8608 BST SW PG FB IN EN/UV TR/SS MODE R T INTV CC 7.68k 40.2k 2.2μH 2.21k GND 10nF 1μF 0.22μF f SW = 1MHz L: XFL4020-222MEC V LDOIN – V LDOUT = 1V

LT3045-1: 20V, 500mA, Ultralow Noise,FREQUENCY (Hz) 10 100 1k 10k 100k 1M 10M 0.01 0.1 1 10 100 1000 NOISE (µV/∆ Hz) 30451 TA01b + – 100µA IN EN/UV PGFB VIOC GND OUT LT3045-1

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: LT3045-1: 20V, 500mA, Ultralow Noise,FREQUENCY (Hz) 10 100 1k 10k 100k 1M 10M 0.01 0.1 1 10 100 1000 NOISE (µV/∆ Hz) 30451 TA01b + – 100µA IN EN/UV PGFB VIOC GND OUT LT3045-1

LT3045-1

130451fa

For more information www.linear.com/LT3045-1

TYPICAL APPLICATION

FEATURES DESCRIPTION

20V, 500mA, Ultralow Noise, Ultrahigh PSRR Linear Regulator with VIOC Control

The LT®3045-1 is a high performance low dropout linear regulator featuring LTC’s ultralow noise and ultrahigh PSRR architecture for powering noise sensitive applications. De-signed as a precision current reference followed by a high performance voltage buffer, the LT3045-1 can be easily paralleled to further reduce noise, increase output current and spread heat on the PCB. In addition to the LT3045 feature set, the LT3045-1 incorporates a VIOC tracking function to control an upstream switching converter to maintain a constant voltage across the LT3045-1 and hence minimize power dissipation.

The device supplies 500mA at a typical 260mV dropout voltage. Operating quiescent current is nominally 2.3mA and drops to <<1µA in shutdown. The LT3045-1’s wide output voltage range (0V to 15V) while maintaining unity-gain operation provides virtually constant output noise, PSRR, bandwidth and load regulation, independent of the programmed output voltage. Additionally, the regulator features programmable current limit, fast start-up capa-bility and programmable power good to indicate output voltage regulation.

The LT3045-1 is stable with a minimum 10µF ceramic output capacitor. Built-in protection includes reverse-battery protection, reverse-current protection, internal current limit with foldback and thermal limit with hysteresis. The LT3045-1 is available in thermally enhanced 12-Lead MSOP and 3mm × 3mm DFN packages.

Noise Spectral Density

APPLICATIONS

n Ultralow RMS Noise: 0.8µVRMS (10Hz to 100kHz) n Ultralow Spot Noise: 2nV/√Hz at 10kHz n Ultrahigh PSRR: 76dB at 1MHz n Output Current: 500mA n Wide Input Voltage Range: 1.8V to 20V n Single Capacitor Improves Noise and PSRR n 100µA SET Pin Current: ±1% Initial Accuracy n VIOC Pin Controls Upstream Regulator to Minimize

Power Dissipation n Single Resistor Programs Output Voltage n Programmable Current Limit n Low Dropout Voltage: 260mV n Output Voltage Range: 0V to 15V n Programmable Power Good n Fast Start-Up Capability n Precision Enable/UVLO n Parallelable for Lower Noise and Higher Current n Internal Current Limit with Foldback n Minimum Output Capacitor: 10µF Ceramic n Reverse-Battery and Reverse-Current Protection n 12-Lead MSOP and 3mm × 3mm DFN Packages

n RF Power Supplies: PLLs, VCOs, Mixers, LNAs, PAs n Very Low Noise Instrumentation n High Speed/High Precision Data Converters n Medical Applications: Imaging, Diagnostics n Post-Regulator for Switching Supplies L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Analog

Devices, Inc. Patents pending. All other trademarks are the property of their respective owners.

LDOIN = 4.3VLDOOUT = 3.3VILOAD = 500mA

LDOOUTLDOINNoise Floor

FREQUENCY (Hz)10 100 1k 10k 100k 1M 10M

0.01

0.1

1

10

100

1000

NOIS

E (µ

V/√H

z)

30451 TA01b

+–

100µA

IN

EN/UV

PGFB

VIOC

GND

OUT

LT3045-1

ILIM PG 10µF

47µF

VIN12V

4.7µF

VOUT: VARIABLEIOUT(MAX): 500mA

30451 TA01a

249Ω

SET

OUTS

LT8608BST

SW

PG

FB

IN

EN/UV

TR/SS

MODE

RT

INTVCC7.68k40.2k

2.2µH

2.21k

GND

10nF

1µF

0.22µF

fSW = 1MHzL: XFL4020-222MEC

VLDOIN – VLDOUT = 1V

Page 2: LT3045-1: 20V, 500mA, Ultralow Noise,FREQUENCY (Hz) 10 100 1k 10k 100k 1M 10M 0.01 0.1 1 10 100 1000 NOISE (µV/∆ Hz) 30451 TA01b + – 100µA IN EN/UV PGFB VIOC GND OUT LT3045-1

LT3045-1

230451fa

For more information www.linear.com/LT3045-1

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGSIN Pin Voltage .........................................................±22VVIOC Pin Voltage (Note 10) ..............................–0.3V, 4VEN/UV Pin Voltage ..................................................±22VIN-to-EN/UV Differential..........................................±22VPG Pin Voltage (Note 10) ...............................–0.3V, 22VILIM Pin Voltage (Note 10) ...............................–0.3V, 1VPGFB Pin Voltage (Note 10) ...........................–0.3V, 22VSET Pin Voltage (Note 10) ..............................–0.3V, 16VSET Pin Current (Note 7) .................................... ±20mAOUTS Pin Voltage (Note 10) ...........................–0.3V, 16VOUTS Pin Current (Note 7) ................................. ±20mA

(Note 1)

TOP VIEW

DD PACKAGE12-LEAD (3mm × 3mm) PLASTIC DFN

12

11

8

9

104

5

3

2

1 OUT

OUT

OUTS

GND

SET

PGFB

IN

IN

VIOC

EN/UV

PG

ILIM 6 7

13GND

TJMAX = 150°C, θJA = 34°C/W, θJC = 5.5°C/W

EXPOSED PAD (PIN 13) IS GND, MUST BE SOLDERED TO PCB

123456

ININ

VIOCEN/UV

PGILIM

121110987

OUTOUTOUTSGNDSETPGFB

TOP VIEW

MSE PACKAGE12-LEAD PLASTIC MSOP

13GND

TJMAX = 150°C, θJA = 33°C/W, θJC = 8°C/W

EXPOSED PAD (PIN 13) IS GND, MUST BE SOLDERED TO PCB

ORDER INFORMATIONLEAD FREE FINISH TAPE AND REEL PART MARKING* PACKAGE DESCRIPTION TEMPERATURE RANGE

LT3045EDD-1#PBF LT3045EDD-1#TRPBF LHBR 12-Lead (3mm × 3mm) Plastic DFN –40°C to 125°C

LT3045IDD-1#PBF LT3045IDD-1#TRPBF LHBR 12-Lead (3mm × 3mm) Plastic DFN –40°C to 125°C

LT3045EMSE-1#PBF LT3045EMSE-1#TRPBF 30451 12-Lead Plastic MSOP –40°C to 125°C

LT3045IMSE-1#PBF LT3045IMSE-1#TRPBF 30451 12-Lead Plastic MSOP –40°C to 125°C

Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.For more information on lead free part marking, go to: http://www.linear.com/leadfree/ For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/. Some packages are available in 500 unit reels through designated sales channels with #TRMPBF suffix.

LT3045 Options

PART NUMBER VIOC FUNCTION

LT3045-1 Yes

LT3045 No

OUT Pin Voltage (Note 10) .............................–0.3V, 16VOUT-to-OUTS Differential (Note 14) ....................... ±1.2VIN-to-OUT Differential .............................................±22VIN-to-OUTS Differential ...........................................±22VOutput Short-Circuit Duration .......................... IndefiniteOperating Junction Temperature Range (Note 9)

E-Grade, I-Grade ............................... –40°C to 125°CStorage Temperature Range .................. –65°C to 150°CLead Temperature (Soldering, 10 Sec) MSE Package ................................................... 300°C

http://www.linear.com/product/LT3045-1#orderinfo

Page 3: LT3045-1: 20V, 500mA, Ultralow Noise,FREQUENCY (Hz) 10 100 1k 10k 100k 1M 10M 0.01 0.1 1 10 100 1000 NOISE (µV/∆ Hz) 30451 TA01b + – 100µA IN EN/UV PGFB VIOC GND OUT LT3045-1

LT3045-1

330451fa

For more information www.linear.com/LT3045-1

ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C.PARAMETER CONDITIONS MIN TYP MAX UNITSInput Voltage Range l 2 20 V

Minimum IN Pin Voltage (Note 2)

ILOAD = 500mA, VIN UVLO Rising VIN UVLO Hysteresis

l 1.78 75

2 V mV

Output Voltage Range VIN > VOUT l 0 15 V

SET Pin Current (ISET) VIN = 2V, ILOAD = 1mA, VOUT = 1.3V 2V < VIN < 20V, 0V < VOUT < 15V, 1mA < ILOAD < 500mA (Note 3)

l

99 98

100 100

101 102

µA µA

Fast Start-Up Set Pin Current

VPGFB = 289mV, VIN = 2.8V, VSET = 1.3V 2 mA

Output Offset Voltage VOS (VOUT – VSET) (Note 4)

VIN = 2V, ILOAD = 1mA, VOUT = 1.3V 2V < VIN < 20V, 0V < VOUT < 15V, 1mA < ILOAD < 500mA (Note 3)

l

–1 –2

1 2

mV mV

Line Regulation: ∆ISET Line Regulation: ∆VOS

VIN = 2V to 20V, ILOAD = 1mA, VOUT = 1.3V VIN = 2V to 20V, ILOAD = 1mA, VOUT = 1.3V (Note 4)

l

l

0.5 0.5

±2 ±3

nA/V µV/V

Load Regulation: ∆ISET Load Regulation: ∆VOS

ILOAD = 1mA to 500mA, VIN = 2V, VOUT = 1.3V ILOAD = 1mA to 500mA, VIN = 2V, VOUT = 1.3V (Note 4)

l

3 0.1

0.5

nA mV

Change in ISET with VSET Change in VOS with VSET Change in ISET with VSET Change in VOS with VSET

VSET = 1.3V to 15V, VIN = 20V, ILOAD = 1mA VSET = 1.3V to 15V, VIN = 20V, ILOAD = 1mA (Note 4) VSET = 0V to 1.3V, VIN = 20V, ILOAD = 1mA VSET = 0V to 1.3V, VIN = 20V, ILOAD = 1mA (Note 4)

l

l

l

l

30 0.03 150 0.3

400 0.6 600

2

nA mV nA

mV

Dropout Voltage (Note 5)

ILOAD = 1mA, 50mA

l

220 275 330

mV mV

ILOAD = 300mA

l

220 280 350

mV mV

ILOAD = 500mA

l

260 350 450

mV mV

GND Pin Current VIN = VOUT(NOMINAL) (Note 6)

ILOAD = 10µA ILOAD = 1mA ILOAD = 50mA ILOAD = 100mA ILOAD = 500mA

l

l

l

l

2.2 2.4 3.5 4.3 15

4

5.5 7

25

mA mA mA mA mA

Output Noise Spectral Density (Notes 4, 8)

ILOAD = 500mA, Frequency = 10Hz, COUT = 10µF, CSET = 0.47µF, VOUT = 3.3V ILOAD = 500mA, Frequency = 10Hz, COUT = 10µF, CSET = 4.7µF, 1.3V ≤ VOUT ≤ 15V ILOAD = 500mA, Frequency = 10kHz, COUT = 10µF, CSET = 0.47µF, 1.3V ≤ VOUT ≤ 15V ILOAD = 500mA, Frequency = 10kHz, COUT = 10µF, CSET = 0.47µF, 0V ≤ VOUT < 1.3V

500 70 2 5

nV/√Hz nV/√Hz nV/√Hz nV/√Hz

Output RMS Noise (Notes 4, 8)

ILOAD = 500mA, BW = 10Hz to 100kHz, COUT = 10µF, CSET = 0.47µF, VOUT = 3.3V ILOAD = 500mA, BW = 10Hz to 100kHz, COUT = 10µF, CSET = 4.7µF, 1.3V ≤ VOUT ≤ 15V ILOAD = 500mA, BW = 10Hz to 100kHz, COUT = 10µF, CSET = 4.7µF, 0V ≤ VOUT < 1.3V

2.5 0.8 1.8

µVRMS µVRMS µVRMS

Reference Current RMS Output Noise (Notes 4, 8)

BW = 10Hz to 100kHz 6 nARMS

Ripple Rejection 1.3V ≤ VOUT ≤ 15V VIN – VOUT = 2V (Avg) (Notes 4, 8)

VRIPPLE = 500mVP-P, fRIPPLE = 120Hz, ILOAD = 500mA, COUT = 10µF, CSET = 4.7µF VRIPPLE = 150mVP-P, fRIPPLE = 10kHz, ILOAD = 500mA, COUT = 10µF, CSET = 0.47µF VRIPPLE = 150mVP-P, fRIPPLE = 100kHz, ILOAD = 500mA, COUT = 10µF, CSET = 0.47µF VRIPPLE = 150mVP-P, fRIPPLE = 1MHz, ILOAD = 500mA, COUT = 10µF, CSET = 0.47µF VRIPPLE = 80mVP-P, fRIPPLE = 10MHz, ILOAD = 500mA, COUT = 10µF, CSET = 0.47µF

117 90 77 76 53

dB dB dB dB dB

Ripple Rejection 0V ≤ VOUT < 1.3V VIN – VOUT = 2V (Avg) (Notes 4, 8)

VRIPPLE = 500mVP-P, fRIPPLE = 120Hz, ILOAD = 500mA, COUT = 10µF, CSET = 0.47µF VRIPPLE = 50mVP-P, fRIPPLE = 10kHz, ILOAD = 500mA, COUT = 10µF, CSET = 0.47µF VRIPPLE = 50mVP-P, fRIPPLE = 100kHz, ILOAD = 500mA, COUT = 10µF, CSET = 0.47µF VRIPPLE = 50mVP-P, fRIPPLE = 1MHz, ILOAD = 500mA, COUT = 10µF, CSET = 0.47µF VRIPPLE = 50mVP-P, fRIPPLE = 10MHz, ILOAD = 500mA, COUT = 10µF, CSET = 0.47µF

104 85 72 64 54

dB dB dB dB dB

EN/UV Pin Threshold EN/UV Trip Point Rising (Turn-On), VIN = 2V l 1.18 1.24 1.32 V

EN/UV Pin Hysteresis EN/UV Trip Point Hysteresis, VIN = 2V 130 mV

Page 4: LT3045-1: 20V, 500mA, Ultralow Noise,FREQUENCY (Hz) 10 100 1k 10k 100k 1M 10M 0.01 0.1 1 10 100 1000 NOISE (µV/∆ Hz) 30451 TA01b + – 100µA IN EN/UV PGFB VIOC GND OUT LT3045-1

LT3045-1

430451fa

For more information www.linear.com/LT3045-1

ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C.PARAMETER CONDITIONS MIN TYP MAX UNITSEN/UV Pin Current VEN/UV = 0V, VIN = 20V

VEN/UV = 1.24V, VIN = 20V VEN/UV = 20V, VIN = 0V

l

l

0.03

8

±1

15

µA µA µA

Quiescent Current in Shutdown (VEN/UV = 0V)

VIN = 6V

l

0.3 1 10

µA µA

Internal Current Limit (Note 12)

VIN = 2V, VOUT = 0V VIN = 12V, VOUT = 0V VIN = 20V, VOUT = 0V

l

l

570

230

710 700 330

850

430

mA mA mA

Programmable Current Limit

Programming Scale Factor: 2V < VIN < 20V (Note 11) VIN = 2V, VOUT = 0V, RILIM = 300Ω VIN = 2V, VOUT = 0V, RILIM = 1.5kΩ

l

l

450 90

150 500 100

550 110

mA • kΩ mA mA

PGFB Trip Point PGFB Trip Point Rising l 291 300 309 mV

PGFB Hysteresis PGFB Trip Point Hysteresis 7 mV

PGFB Pin Current VIN = 2V, VPGFB = 300mV 25 nA

PG Output Low Voltage IPG = 100µA l 30 100 mV

PG Leakage Current VPG = 20V l 1 µA

Reverse Input Current VIN = –20V, VEN/UV = 0V, VOUT = 0V, VSET = 0V l 100 µA

Reverse Output Current VIN = 0, VOUT = 5V, SET = Open 14 25 µA

Minimum Load Required (Note 13)

VOUT < 1V l 10 µA

Thermal Shutdown TJ Rising Hysteresis

165 8

°C °C

Start-Up Time VOUT(NOM) = 5V, ILOAD = 500mA, CSET = 0.47µF, VIN = 6V, VPGFB = 6V VOUT(NOM) = 5V, ILOAD = 500mA, CSET = 4.7µF, VIN = 6V, VPGFB = 6V VOUT(NOM) = 5V, ILOAD = 500mA, CSET = 4.7µF, VIN = 6V, RPG1 = 50kΩ, RPG2 = 700kΩ (with Fast Start-Up to 90% of VOUT)

55 550 10

ms ms ms

Thermal Regulation 10ms Pulse –0.01 %/W

Input-to-Output Differential Voltage Control (VIOC) (Note 15)

VIOC Amplifier Gain 1 V/V

VIOC Pin Voltage Range: VOUT > VVIOC + 0.5V l 1 4 V

VIOC Pin Voltage: VOUT ≤ 1.5V, VIN = 2.5V 1 V

VIOC Pin Source Current l 200 µA

VIOC Pin Sink Current: VIN ≥ 2.5V l 15 µA

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.Note 2: The EN/UV pin threshold must be met to ensure device operation.Note 3: Maximum junction temperature limits operating conditions. The regulated output voltage specification does not apply for all possible combinations of input voltage and output current, especially due to the internal current limit foldback which starts to decrease current limit at VIN – VOUT > 12V. If operating at maximum output current, limit the input voltage range. If operating at the maximum input voltage, limit the output current range.

Note 4: OUTS ties directly to OUT.Note 5: Dropout voltage is the minimum input-to-output differential voltage needed to maintain regulation at a specified output current. The dropout voltage is measured when output is 1% out of regulation. This definition results in a higher dropout voltage compared to hard dropout — which is measured when VIN = VOUT(NOMINAL). For lower output voltages, below 1.5V, dropout voltage is limited by the minimum input voltage specification. Please consult the Typical Performance Characteristics for curves of dropout voltage as a function of output load current and temperature measured in a typical application circuit.

Page 5: LT3045-1: 20V, 500mA, Ultralow Noise,FREQUENCY (Hz) 10 100 1k 10k 100k 1M 10M 0.01 0.1 1 10 100 1000 NOISE (µV/∆ Hz) 30451 TA01b + – 100µA IN EN/UV PGFB VIOC GND OUT LT3045-1

LT3045-1

530451fa

For more information www.linear.com/LT3045-1

ELECTRICAL CHARACTERISTICSNote 6: GND pin current is tested with VIN = VOUT(NOMINAL) and a current source load. Therefore, the device is tested while operating in dropout. This is the worst-case GND pin current. GND pin current decreases at higher input voltages. Note that GND pin current does not include SET pin or ILIM pin current but Quiescent current does include them.Note 7: SET and OUTS pins are clamped using diodes and two 25Ω series resistors. For less than 5ms transients, this clamp circuitry can carry more than the rated current. Refer to Applications Information for more information.Note 8: Adding a capacitor across the SET pin resistor decreases output voltage noise. Adding this capacitor bypasses the SET pin resistor’s thermal noise as well as the reference current’s noise. The output noise then equals the error amplifier noise. Use of a SET pin bypass capacitor also increases start-up time.Note 9: The LT3045-1 is tested and specified under pulsed load conditions such that TJ ≈ TA. The LT3045-1E is 100% tested at 25°C and performance is guaranteed from 0°C to 125°C. Specifications over the –40°C to 125°C operating temperature range are assured by design, characterization, and correlation with statistical process controls. The LT3045-1I is guaranteed over the full –40°C to 125°C operating temperature range. High junction

temperatures degrade operating lifetimes. Operating lifetime is derated at junction temperatures greater than 125°C.Note 10: Parasitic diodes exist internally between the VIOC, ILIM, PG, PGFB, SET, OUTS, and OUT pins and the GND pin. Do not drive these pins more than 0.3V below the GND pin during a fault condition. These pins must remain at a voltage more positive than GND during normal operation.Note 11: The current limit programming scale factor is specified while the internal backup current limit is not active. Note that the internal current limit has foldback protection for VIN – VOUT differentials greater than 12V.Note 12: The internal back-up current limit circuitry incorporates foldback protection that decreases current limit for VIN – VOUT > 12V. Some level of output current is provided at all VIN – VOUT differential voltages. Consult the Typical Performance Characteristics graph for current limit vs VIN – VOUT.Note 13: For output voltages less than 1V, the LT3045-1 requires a 10µA minimum load current for stability.Note 14: Maximum OUT-to-OUTS differential is guaranteed by design.Note 15: The VIOC buffer outputs a voltage equal to VIN – VOUT or VIN – 1.5V (for VOUT ≤ 1.5V). See Block Diagram and Applications Information for further information. The VIOC pin’s source current should be set between 10µA and 200µA.

Page 6: LT3045-1: 20V, 500mA, Ultralow Noise,FREQUENCY (Hz) 10 100 1k 10k 100k 1M 10M 0.01 0.1 1 10 100 1000 NOISE (µV/∆ Hz) 30451 TA01b + – 100µA IN EN/UV PGFB VIOC GND OUT LT3045-1

LT3045-1

630451fa

For more information www.linear.com/LT3045-1

SET Pin Current Offset Voltage (VOUT – VSET) Load Regulation

IL = 1mAVIN = 20V

150°C125°C25°C–55°C

OUTPUT VOLTAGE (V)0 1.5 3 4.5 6 7.5 9 10.5 12 13.5 15

99.0

99.2

99.4

99.6

99.8

100.0

100.2

100.4

100.6

100.8

101.0

SET

PIN

CURR

ENT

(µA)

30451 G07

IL = 1mAVIN = 20V

150°C125°C25°C–55°C

OUTPUT VOLTAGE (V)0 1.5 3 4.5 6 7.5 9 10.5 12 13.5 15

–2.0

–1.5

–1.0

–0.5

0

0.5

1.0

1.5

2.0

OFFS

ET V

OLTA

GE (m

V)

30451 G08

VIN = 2.5V∆IL= 1mA to 500mAVOUT = 1.3V

VOS

ISET

TEMPERATURE (°C)–75 –50 –25 0 25 50 75 100 125 150

0

2

4

6

8

10

12

14

16

18

20

0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

∆ISE

T (n

A)

∆ VOS (mV)

30451 G09

TYPICAL PERFORMANCE CHARACTERISTICS

Offset Voltage SET Pin Current Offset Voltage (VOUT – VSET)

SET Pin Current SET Pin Current Offset Voltage (VOUT – VSET)

TJ = 25°C, unless otherwise noted.

VIN = 2VIL = 1mAVOUT = 1.3V

TEMPERATURE (°C)–75 –50 –25 0 25 50 75 100 125 150

99.0

99.2

99.4

99.6

99.8

100.0

100.2

100.4

100.6

100.8

101.0

SET

PIN

CURR

ENT

(µA)

30451 G01

N = 3250

ISET DISTRIBUTION (µA)98 99 100 101 102

30451 G02

VIN = 2VIL = 1mAVOUT = 1.3V

TEMPERATURE (°C)–75 –50 –25 0 25 50 75 100 125 150

–2.0

–1.5

–1.0

–0.5

0

0.5

1.0

1.5

2.0

OFFS

ET V

OLTA

GE (m

V)

30451 G03

N = 3250

VOS DISTRIBUTION (mV)–2 –1 0 1 2

30451 G04

IL = 1mAVOUT = 1.3V

150°C125°C25°C–55°C

INPUT VOLTAGE (V)0 2 4 6 8 10 12 14 16 18 20

99.0

99.2

99.4

99.6

99.8

100.0

100.2

100.4

100.6

100.8

101.0

SET

PIN

CURR

ENT

(µA)

30451 G05

IL = 1mAVOUT = 1.3V

150°C125°C25°C–55°C

INPUT VOLTAGE (V)0 2 4 6 8 10 12 14 16 18 20

–2.0

–1.5

–1.0

–0.5

0

0.5

1.0

1.5

2.0

OFFS

ET V

OLTA

GE (m

V)

30451 G06

Page 7: LT3045-1: 20V, 500mA, Ultralow Noise,FREQUENCY (Hz) 10 100 1k 10k 100k 1M 10M 0.01 0.1 1 10 100 1000 NOISE (µV/∆ Hz) 30451 TA01b + – 100µA IN EN/UV PGFB VIOC GND OUT LT3045-1

LT3045-1

730451fa

For more information www.linear.com/LT3045-1

TYPICAL PERFORMANCE CHARACTERISTICS

Quiescent Current Typical Dropout Voltage Dropout Voltage

Quiescent Current Quiescent Current Quiescent Current

TJ = 25°C, unless otherwise noted.

VIN = 2VVEN/UV = VINIL = 10µARSET = 13k

TEMPERATURE (°C)–75 –50 –25 0 25 50 75 100 125 150

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

QUIE

SCEN

T CU

RREN

T (m

A)

30451 G10

VEN/UV = 0V

VIN = 20V

VIN = 2V

TEMPERATURE (°C)–75 –50 –25 0 25 50 75 100 125 150

0

5

10

15

20

25

30

35

40

45

50

QUIE

SCEN

T CU

RREN

T (µ

A)

30451 G11

VEN/UV = VINIL = 10µARSET = 33.2kΩIVIOC = 10µA

INPUT VOLTAGE (V)0 2 4 6 8 10 12 14 16 18 20

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

QUIE

SCEN

T CU

RREN

T (m

A)

30451 G12

VIN = 6VVEN/UV = VINIL = 10µA

150°C125°C25°C–55°C

OUTPUT VOLTAGE (V)0 2 41 3 5

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

QUIE

SCEN

T CU

RREN

T (m

A)

30451 G13

RSET = 33.2k

150°C125°C25°C–55°C

OUTPUT CURRENT (mA)0 50 100 150 200 250 300 350 400 450 500

0

50

100

150

200

250

300

350

400

450

500

DROP

OUT

VOLT

AGE

(mV)

30451 G14

RSET = 33.2k

IL = 500mA

IL = 400mA

IL = 1mA

TEMPERATURE (°C)–75 –50 –25 0 25 50 75 100 125 150

0

50

100

150

200

250

300

350

400

450

500

DROP

OUT

VOLT

AGE

(mV)

30451 G15

GND Pin Current GND Pin Current GND Pin Current

VIN = 5VRSET = 33.2k

IL = 500mA

IL = 300mA

IL = 100mA

IL = 1mA

TEMPERATURE (°C)–75 –50 –25 0 25 50 75 100 125 150

0

2

4

6

8

10

12

14

16

18

20

GND

PIN

CURR

ENT

(mA)

30451 G16

VIN = 4.3VRSET = 33.2k

150°C125°C25°C–55°C

OUTPUT CURRENT (mA)0 50 100 150 200 250 300 350 400 450 500

0

2

4

6

8

10

12

14

16

18

20

22

GND

PIN

CURR

ENT

(mA)

30451 G17

RSET = 33.2k

RL = 6.6Ω

RL = 11Ω

RL = 33Ω

RL = 330Ω

RL = 3.3kΩ

INPUT VOLTAGE (V)0 1 2 3 4 5 6 7 8 9 10

0

2

4

6

8

10

12

14

16

18

GND

PIN

CURR

ENT

(mA)

30451 G18

Page 8: LT3045-1: 20V, 500mA, Ultralow Noise,FREQUENCY (Hz) 10 100 1k 10k 100k 1M 10M 0.01 0.1 1 10 100 1000 NOISE (µV/∆ Hz) 30451 TA01b + – 100µA IN EN/UV PGFB VIOC GND OUT LT3045-1

LT3045-1

830451fa

For more information www.linear.com/LT3045-1

TYPICAL PERFORMANCE CHARACTERISTICS

EN/UV Pin Current EN/UV Pin Current Negative Enable Pin Current

Minimum Input Voltage EN/UV Turn-On Threshold EN/UV Pin Hysteresis

TJ = 25°C, unless otherwise noted.

RISING UVLOFALLING UVLO

TEMPERATURE (°C)–75 –50 –25 0 25 50 75 100 125 150

0

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

INPU

T UV

LO T

HRES

HOLD

(V)

30451 G19

VIN = 2V

VIN = 10V

TEMPERATURE (°C)–75 –50 –25 0 25 50 75 100 125 150

1.18

1.20

1.22

1.24

1.26

1.28

1.30

1.32

TURN

-ON

THRE

SHOL

D (V

)

30451 G20

VIN = 2V

VIN = 10V

TEMPERATURE (°C)–75 –50 –25 0 25 50 75 100 125 150

50

65

80

95

110

125

140

155

170

185

200

EN/U

V PI

N HY

STER

ESIS

(mV)

30451 G21

VIN = 20V

150°C125°C25°C–55°C

ENABLE PIN VOLTAGE (V)0 2 4 6 8 10 12 14 16 18 20

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

EN/U

V PI

N CU

RREN

T (µ

A)

30451 G22

VIN = 20V

VIN = 2V

ENABLE PIN VOLTAGE (V)0 2 4 6 8 10 12 14 16 18 20

0

1

2

3

4

5

6

7

8

9

10

EN/U

V PI

N CU

RREN

T (µ

A)

30451 G23

VIN = 2V

150°C125°C25°C–55°C

ENABLE PIN VOLTAGE (V)–20 –18 –16 –14 –12 –10 –8 –6 –4 –2 0

–100

–90

–80

–70

–60

–50

–40

–30

–20

–10

0

EN/U

V PI

N CU

RREN

T (µ

A)

30451 G24

Input Pin Current Internal Current Limit Internal Current Limit

VIN = 2V 150°C125°C25°C–55°C

ENABLE PIN VOLTAGE (V)–20 –18 –16 –14 –12 –10 –8 –6 –4 –2 0

0

0.1

0.2

0.3

INPU

T CU

RREN

T (µ

A)

30451 G25

RILIM = 0ΩVOUT = 0V

VIN = 2.5VVIN = 12V

TEMPERATURE (°C)–75 –50 –25 0 25 50 75 100 125 150

0

100

200

300

400

500

600

700

800

900

1000

CURR

ENT

LIM

IT (m

A)

30451 G26

VIN = 20VRILIM = 0ΩVOUT = 0V

TEMPERATURE (°C)–75 –50 –25 0 25 50 75 100 125 150

0

100

200

300

400

500

600

CURR

ENT

LIM

IT (m

A)

30451 G27

Page 9: LT3045-1: 20V, 500mA, Ultralow Noise,FREQUENCY (Hz) 10 100 1k 10k 100k 1M 10M 0.01 0.1 1 10 100 1000 NOISE (µV/∆ Hz) 30451 TA01b + – 100µA IN EN/UV PGFB VIOC GND OUT LT3045-1

LT3045-1

930451fa

For more information www.linear.com/LT3045-1

TYPICAL PERFORMANCE CHARACTERISTICS

ILIM Pin Current PGFB Rising Threshold PGFB Hysteresis

Internal Current Limit Programmable Current Limit Programmable Current Limit

TJ = 25°C, unless otherwise noted.

RILIM = 0Ω

150°C125°C25°C–55°C

INPUT-TO-OUTPUT DIFFERENTIAL (V)0 2 4 6 8 10 12 14 16 18 20

0

100

200

300

400

500

600

700

800

900

1000

CURR

ENT

LIM

IT (m

A)

30451 G28

RILIM = 300ΩVOUT = 0V

VIN = 2.5VVIN = 12V

TEMPERATURE (°C)–75 –50 –25 0 25 50 75 100 125 150

0

100

200

300

400

500

600

700

800

900

1000

CURR

ENT

LIM

IT (m

A)

30451 G29

RILIM = 1.5kVOUT = 0V

VIN = 2.5V

VIN = 12V

TEMPERATURE (°C)–75 –50 –25 0 25 50 75 100 125 150

0

20

40

60

80

100

120

140

160

180

200

CURR

ENT

LIM

IT (m

A)

30451 G30

VILIM = 0VRSET = 13k

2.5VIN5VIN10VIN

OUTPUT CURRENT (mA)0 50 100 150 200 250 300 350 400 450 500

0

100

200

300

400

500

600

700

800

900

1000

ILIM

PIN

CUR

RENT

(uA)

30451 G31

VIN = 2V

TEMPERATURE (°C)–75 –50 –25 0 25 50 75 100 125 150

290

292

294

296

298

300

302

304

306

308

310

PGFB

RIS

ING

THRE

SHOL

D (m

V)

30451 G32

VIN = 2V

TEMPERATURE (°C)–75 –50 –25 0 25 50 75 100 125 150

0

1

2

3

4

5

6

7

8

PGFB

HYS

TERE

SIS

(mV)

30451 G33

PG Output Low Voltage PG Pin Leakage CurrentISET During Start-Up with Fast Start-Up Enabled

VIN = 2VVPGFB = 290mVIPG = 100µA

TEMPERATURE (°C)–75 –50 –25 0 25 50 75 100 125 150

0

5

10

15

20

25

30

35

40

45

50

V PG

(mV)

30451 G34

VPG = 2VVPGFB = 310mV

TEMPERATURE (°C)–75 –50 –25 0 25 50 75 100 125 150

0

10

20

30

40

50

60

70

80

90

100

I PG

(nA)

30451 G35

VIN = 2.5VVPGFB = 290mVVSET = 1.3V

TEMPERATURE (°C)–75 –50 –25 0 25 50 75 100 125 150

0

0.5

1.0

1.5

2.0

2.5

3.0

I SET

(mA)

30451 G36

Page 10: LT3045-1: 20V, 500mA, Ultralow Noise,FREQUENCY (Hz) 10 100 1k 10k 100k 1M 10M 0.01 0.1 1 10 100 1000 NOISE (µV/∆ Hz) 30451 TA01b + – 100µA IN EN/UV PGFB VIOC GND OUT LT3045-1

LT3045-1

1030451fa

For more information www.linear.com/LT3045-1

TYPICAL PERFORMANCE CHARACTERISTICS

VOUT Forced Above VOUT(NOMINAL) Power Supply Ripple Rejection Power Supply Ripple Rejection

ISET During Start-Up with Fast Start-Up Enabled

Output Overshoot Recovery Current Sink

Output Overshoot Recovery Current Sink

TJ = 25°C, unless otherwise noted.

VPGFB = 290mVVSET = 1.3V

VIN-TO-VSET DIFFERENTIAL (V)0 2 4 6 8 10 12 14 16 18 20

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

I SET

(mA)

30451 G37

VIN = 5VRSET = 33.2k

150°C125°C25°C–55°C

VOUT – VSET (mV)0 5 10 15 20

0

2

4

6

8

10

12

OUTP

UT S

INK

CURR

ENT

(mA)

30451 G38

VIN = 5VRSET = 33.2kVOUT – VSET > 5mV

TEMPERATURE (°C)–75 –50 –25 0 25 50 75 100 125 150

0

1

2

3

4

5

6

7

OUTP

UT S

INK

CURR

ENT

(mA)

30451 G39

VIN = 5VRSET = 33.2k

OUTPUT VOLTAGE (V)4 5 6 7 8 9 10 11 12 13 14 15

0

2

4

6

8

CURR

ENT

(mA)

30451 G40

IIN WHEN VEN = 0VIOUT WHEN VEN = 0VIIN WHEN VEN = VINIOUT WHEN VEN = VIN

VIN = 5VRSET = 30.1kCOUT = 10µFIL = 500mA

CSET = 4.7µFCSET = 0.47µF

FREQUENCY (Hz)10 100 1k 10k 100k 1M 10M

20

30

40

50

60

70

80

90

100

110

120

PSRR

(dB)

30451 G41

VIN = 5VRSET = 30.1kCSET = 0.47µFIL = 500mA

COUT = 10µFCOUT = 22µF

FREQUENCY (Hz)10 100 1k 10k 100k 1M 10M

20

30

40

50

60

70

80

90

100

110

120

PSRR

(dB)

30451 G42

Power Supply Ripple Rejection

Power Supply Ripple Rejection as a Function of Error Amplifier Input Pair Power Supply Ripple Rejection

VIN = 5VRSET = 30.1kCOUT = 10µFCSET = 0.47µF

IL = 500mAIL = 300mAIL = 100mAIL = 50mAIL = 1mA

FREQUENCY (Hz)10 100 1k 10k 100k 1M 10M

20

40

60

80

100

120

140

PSRR

(dB)

30451 G43

VIN = VOUT + 2VIL = 500mACOUT = 10µFCSET = 0.47µF

VOUT ≥ 1.3V0.6V < VOUT < 1.3VVOUT ≤ 0.6V

FREQUENCY (Hz)10 100 1k 10k 100k 1M 10M

20

30

40

50

60

70

80

90

100

110

120

PSRR

(dB)

30451 G44

IL = 500mARSET = 30.1kCOUT = 10µFCSET = 0.47µF

100kHz500kHz1MHz2MHz

INPUT–TO–OUTPUT DIFFERENTIAL (V)0 1 2 3 4 5

0

10

20

30

40

50

60

70

80

90

100

PSRR

(dB)

30451 G45

Page 11: LT3045-1: 20V, 500mA, Ultralow Noise,FREQUENCY (Hz) 10 100 1k 10k 100k 1M 10M 0.01 0.1 1 10 100 1000 NOISE (µV/∆ Hz) 30451 TA01b + – 100µA IN EN/UV PGFB VIOC GND OUT LT3045-1

LT3045-1

1130451fa

For more information www.linear.com/LT3045-1

TYPICAL PERFORMANCE CHARACTERISTICS

Integrated RMS Output Noise (10Hz to 100kHz)

Noise Spectral Density

Integrated RMS Output Noise (10Hz to 100kHz)

Noise Spectral Density

Integrated RMS Output Noise (10Hz to 100kHz)

Noise Spectral Density

TJ = 25°C, unless otherwise noted.

VIN = 5VRSET = 33.2kCOUT = 10µFCSET = 4.7µF

LOAD CURRENT (mA)0 50 100 150 200 250 300 350 400 450 500

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

RMS

OUTP

UT N

OISE

(µV R

MS)

30451 G46

VIN = 5VCOUT = 10µFRSET = 33.2kILOAD = 500mA

SET PIN CAPACITANCE (µF)0.01 0.1 1 10 1000

1

2

3

4

5

6

7

8

9

RMS

OUTP

UT N

OISE

(µV R

MS)

30451 G47

VIN = VOUT + 2VCOUT = 10µFCSET = 4.7µFILOAD = 500mA

OUTPUT VOLTAGE (V)0 1.5 3 4.5 6 7.5 9 10.5 12 13.5 15

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

RMS

OUTP

UT N

OISE

(µV R

MS)

30451 G48

VIN = 5VRSET = 33.2kCOUT = 10µFILOAD = 500mA

CSET = 0.047µFCSET = 0.47µFCSET = 1µFCSET = 4.7µFCSET = 22µF

FREQUENCY (Hz)10 100 1k 10k 100k 1M 10M

0.1

1

10

100

1000

OUTP

UT N

OISE

(nV/

√Hz)

30451 G49

VIN = 5VRSET = 33.2kCSET = 4.7µFILOAD = 500mA

COUT = 10µF

COUT = 22µF

FREQUENCY (Hz)10 100 1k 10k 100k 1M 10M

0.1

1

10

100

1000

OUTP

UT N

OISE

(nV/

√Hz)

30451 G50

VIN = 5VRSET = 33.2kCSET = 4.7µFCOUT = 10µF

IL = 500mAIL = 300mAIL = 100mAIL = 10mAIL = 1mA

FREQUENCY (Hz)10 100 1k 10k 100k 1M 10M

0.1

1

10

100

1000

OUTP

UT N

OISE

(nV/

√Hz)

30451 G51

Noise Spectral Density as a Function of Error Amplifier Input Pair Output Noise: 10Hz to 100kHz Load Transient Response

VIN = VOUT + 2VIL = 500mACOUT = 10µFCSET = 4.7µF

VOUT ≥ 1.3V0.6V < VOUT < 1.3VVOUT ≤ 0.6V

FREQUENCY (Hz)10 100 1k 10k 100k 1M 10M

0.1

1

10

100

1000

OUTP

UT N

OISE

(nV/

√Hz)

30451 G52

VIN = 5VRSET = 33.2kCOUT = 10µFCSET = 4.7µFIL = 500mA

1ms/DIV

5µV/DIV

30451 G53

VIN = 5VRSET = 33.2kCOUT = 10µFCSET = 0.47µFLOAD STEP = 10mA TO 500mA

20µs/DIV

OUTPUTCURRENT

500mA/DIV

OUTPUTVOLTAGE

20mV/DIV

30451 G54

Page 12: LT3045-1: 20V, 500mA, Ultralow Noise,FREQUENCY (Hz) 10 100 1k 10k 100k 1M 10M 0.01 0.1 1 10 100 1000 NOISE (µV/∆ Hz) 30451 TA01b + – 100µA IN EN/UV PGFB VIOC GND OUT LT3045-1

LT3045-1

1230451fa

For more information www.linear.com/LT3045-1

TYPICAL PERFORMANCE CHARACTERISTICSStart-Up Time with and without Fast Start-Up Circuitry for Large CSET

Input Supply Ramp-Up and Ramp-DownLine Transient Response

TJ = 25°C, unless otherwise noted.

VIN = 4.5V TO 5VRSET = 33.2kCOUT = 10µFCSET = 0.47µFIL = 500mA

5µs/DIV

INPUTVOLTAGE

500mV/DIV

OUTPUTVOLTAGE1mV/DIV

30451 G55

VIN = 5VRSET = 33.2kCOUT = 10µFCSET = 4.7µFRL = 6.6Ω

500mV/DIV

2V/DIV

OUTPUT WITH FAST START–UP(SET AT 90%)

OUTPUT WITHOUT FAST START–UP

PULSE EN/UV

100ms/DIV30451 G56

INPUT VOLTAGE

OUTPUT VOLTAGE

VIN = 0V TO 5VVEN/UV = VINRSET = 33.2kCOUT = 10µFCSET = 0.47µFRL = 6.6Ω

50ms/DIV

2V/DIV

30451 G57

VIOC VoltageVIOC Voltage

TEMPERATURE (°C)–75 –50 –25 0 25 50 75 100 125 150

0.90

0.92

0.94

0.96

0.98

1.00

1.02

1.04

1.06

1.08

1.10

VIOC

VOL

TAGE

(V)

30451 G58

VIN = 4.3VVOUT = 3.3VIVIOC = 100µAIOUT = 1mA

TEMPERATURE (°C)–75 –50 –25 0 25 50 75 100 125 150

0

–2

–4

–6

–8

–10

–12

–14

–16

–18

–20

VIOC

SIN

K CU

RREN

T (µ

A)

30451 G60

VIN = 4.3VVOUT = 3.3VVVIOC = 2VIOUT = 1mA

VIOC SOURCE CURRENT (µA)0 25 50 75 100 125 150 175 200

0.90

0.92

0.94

0.96

0.98

1.00

1.02

1.04

1.06

1.08

1.10

VIOC

VOL

TAGE

(V)

30451 G59

150°C125°C25°C–55°C

VIN = 4.3VVOUT = 3.3VIOUT = 1mA

OUTPUT LOAD CURRENT (mA)0 50 100 150 200 250 300 350 400 450 500

0.90

0.92

0.94

0.96

0.98

1.00

1.02

1.04

1.06

1.08

1.10

VIOC

VOL

TAGE

(V)

30451 G61

150°C125°C25°C–55°C

VIN = 4.3VVOUT = 3.3VIVIOC = 100µA

VIOC VoltageVIOC Sink Current

Page 13: LT3045-1: 20V, 500mA, Ultralow Noise,FREQUENCY (Hz) 10 100 1k 10k 100k 1M 10M 0.01 0.1 1 10 100 1000 NOISE (µV/∆ Hz) 30451 TA01b + – 100µA IN EN/UV PGFB VIOC GND OUT LT3045-1

LT3045-1

1330451fa

For more information www.linear.com/LT3045-1

PIN FUNCTIONSIN (Pins 1, 2): Input. These pins supply power to the regulator. The LT3045-1 requires a bypass capacitor at the IN pin. In general, a battery’s output impedance rises with frequency, so include a bypass capacitor in battery-powered applications. While a 4.7µF input bypass capacitor gener-ally suffices, applications with large load transients may require higher input capacitance to prevent input supply droop. Consult the Applications Information section on the proper use of an input capacitor and its effect on circuit performance, in particular PSRR. The LT3045-1 withstands reverse voltages on IN with respect to GND, OUTS and OUT. In the case of a reversed input, which occurs if a battery is plugged-in backwards, the LT3045-1 acts as if a diode is in series with its input. Hence, no reverse-current flows into the LT3045-1 and no negative voltage appears at the load. The device protects itself and the load.

VIOC (Pin 3): Voltage for Input-to-Output Control. The LT3045-1 incorporates a tracking function to control the switching pre-regulator powering the LT3045-1. The VIOC pin is the output of this tracking function that drives the pre-regulator’s feedback (FB) pin to maintain the LT3045-1’s input voltage at VOUT + VVIOC. This function minimizes power dissipation while maintaining PSRR performance. See Applications Information section for details.

EN/UV (Pin 4): Enable/UVLO. Pulling the LT3045-1’s EN/UV pin low places the part in shutdown. Quiescent current in shutdown drops to less than 1µA and the output volt-age turns off. Alternatively, the EN/UV pin can set an input supply undervoltage lockout (UVLO) threshold using a resistor divider between IN, EN/UV and GND. The LT3045-1 typically turns on when the EN/UV voltage exceeds 1.24V on its rising edge, with a 130mV hysteresis on its falling edge. The EN/UV pin can be driven above the input voltage and maintain proper functionality. If unused, tie EN/UV to IN. Do not float the EN/UV pin.

PG (Pin 5): Power Good. PG is an open-collector flag that indicates output voltage regulation. PG pulls low if PGFB is below 300mV. If the power good functionality is not needed, float the PG pin. A parasitic substrate diode exists between PG and GND pins of the LT3045-1; do not drive PG more than 0.3V below GND during normal operation or during a fault condition.

ILIM (Pin 6): Current Limit Programming Pin. Connecting a resistor between ILIM and GND programs the current limit. For best accuracy, Kelvin connect this resistor directly to the LT3045-1’s GND pin. The programming scale factor is nominally 150mA•kΩ. The ILIM pin sources current proportional (1:500) to output current; therefore, it also serves as a current monitoring pin with a 0V to 300mV range. If the programmable current limit functionality is not needed, tie ILIM to GND. A parasitic substrate diode exists between ILIM and GND pins of the LT3045-1; do not drive ILIM more than 0.3V below GND during normal operation or during a fault condition.

PGFB (Pin 7): Power Good Feedback. The PG pin pulls high if PGFB increases beyond 300mV on its rising edge, with 7mV hysteresis on its falling edge. Connecting an external resistor divider between OUT, PGFB and GND sets the programmable power good threshold with the following transfer function: 0.3V • (1 + RPG2/RPG1). As discussed in the Applications Information section, PGFB also activates the fast start-up circuitry. Tie PGFB to IN if power good and fast start-up functionalities are not needed, and if reverse input protection is additionally required, tie the anode of a 1N4148 diode to IN and its cathode to PGFB. See the Typical Applications section for details. A parasitic substrate diode exists between PGFB and GND pins of the LT3045-1; do not drive PGFB more than 0.3V below GND during normal operation or during a fault condition.

SET (Pin 8): SET. This pin is the inverting input of the er-ror amplifier and the regulation set-point for the LT3045-1. SET sources a precision 100µA current that flows through an external resistor connected between SET and GND. The LT3045-1’s output voltage is determined by VSET = ISET • RSET. Output voltage range is from zero to 15V. Adding a capacitor from SET to GND improves noise, PSRR and transient response at the expense of increased start-up time. For optimum load regulation, Kelvin con-nect the ground side of the SET pin resistor directly to the load. A parasitic substrate diode exists between SET and GND pins of the LT3045-1; do not drive SET more than 0.3V below GND during normal operation or during a fault condition.

Page 14: LT3045-1: 20V, 500mA, Ultralow Noise,FREQUENCY (Hz) 10 100 1k 10k 100k 1M 10M 0.01 0.1 1 10 100 1000 NOISE (µV/∆ Hz) 30451 TA01b + – 100µA IN EN/UV PGFB VIOC GND OUT LT3045-1

LT3045-1

1430451fa

For more information www.linear.com/LT3045-1

PIN FUNCTIONSGND (Pin 9, Exposed Pad Pin 13): Ground. The exposed backside is an electrical connection to GND. To ensure proper electrical and thermal performance, solder the exposed backside to the PCB ground and tie it directly to the GND pin.

OUTS (Pin 10): Output Sense. This pin is the noninvert-ing input to the error amplifier. For optimal transient performance and load regulation, Kelvin connect OUTS directly to the output capacitor and the load. Also, tie the GND connections of the output capacitor and the SET pin capacitor directly together. A parasitic substrate diode exists between OUTS and GND pins of the LT3045-1; do not drive OUTS more than 0.3V below GND during normal operation or during a fault condition.

OUT (Pins 11, 12): Output. These pins supply power to the load. For stability, use a minimum 10µF output capacitor with an ESR below 20mΩ and an ESL below 2nH. Large load transients require larger output capacitance to limit peak voltage transients. Refer to the Applications Informa-tion section for more information on output capacitance. A parasitic substrate diode exists between OUT and GND pins of the LT3045-1; do not drive OUT more than 0.3V below GND during normal operation or during a fault condition.

Page 15: LT3045-1: 20V, 500mA, Ultralow Noise,FREQUENCY (Hz) 10 100 1k 10k 100k 1M 10M 0.01 0.1 1 10 100 1000 NOISE (µV/∆ Hz) 30451 TA01b + – 100µA IN EN/UV PGFB VIOC GND OUT LT3045-1

LT3045-1

1530451fa

For more information www.linear.com/LT3045-1

BLOCK DIAGRAM

V+ –OU

TPUT

OVE

RSHO

OTRE

COVE

RY

ERRO

RAM

PLIF

IER

INTE

RNAL

CUR

RENT

LIM

IT

PROG

RAM

MAB

LE

CURR

ENT

LIM

IT

QCQP

OUT

C OUTC I

NV IN

R L

V OUT

1.5V

100µ

A2m

A

V+ –30

0mV

215Ω

QPW

R

+–

DRIV

ER

+ –

–+V

+ –300m

V

ILIM R ILI

M

–+

IN 1, 2

THER

MAL

SHDN

CURR

ENT

REFE

RENC

E

FAST

STA

RT-U

P

INPU

TUV

LO

SET-

TO-O

UTS

PROT

ECTI

ONCL

AMP

INPU

T UV

LOCU

RREN

T LI

MIT

THER

MAL

SHD

NDR

OPOU

T

R SET

R PG

R PG2

R PG1

C SET

FAST

STA

RT-U

PDI

SABL

E LO

GIC

OUTS

3045

1 BD

SET

PGPG

FB

EN/U

VVI

OC

GND

V+ –30

0mV

V+ –1.

24V

PROG

RAM

MAB

LEPO

WER

GOO

D

+ –ENAB

LECO

MPA

RATO

RINPU

T-TO

-OU

TPUT

CONT

ROL

BIAS

+–

–A V

= 1

1.5V

+ –

43

75

9, 1

38

106

11, 1

2

Page 16: LT3045-1: 20V, 500mA, Ultralow Noise,FREQUENCY (Hz) 10 100 1k 10k 100k 1M 10M 0.01 0.1 1 10 100 1000 NOISE (µV/∆ Hz) 30451 TA01b + – 100µA IN EN/UV PGFB VIOC GND OUT LT3045-1

LT3045-1

1630451fa

For more information www.linear.com/LT3045-1

APPLICATIONS INFORMATIONThe LT3045-1 is a high performance low dropout linear regulator featuring LTC’s ultralow noise (2nV/√Hz at 10kHz) and ultrahigh PSRR (76dB at 1MHz) architecture for powering noise sensitive applications. Designed as a precision current source followed by a high performance rail-to-rail voltage buffer, the LT3045-1 can be easily paral-leled to further reduce noise, increase output current and spread heat on the PCB. The device additionally features programmable current limit, fast start-up capability and programmable power good.

The LT3045-1 is easy to use and incorporates all of the protection features expected in high performance regula-tors. Included are short-circuit protection, safe operating area protection, reverse-battery protection, reverse-current protection, and thermal shutdown with hysteresis.

In addition to the LT3045 feature set, the LT3045-1 incor-porates a VIOC tracking function to control an upstream switching converter to maintain a constant voltage across the LT3045-1 and hence minimize power dissipation.

Output Voltage

The LT3045-1 incorporates a precision 100µA current source flowing out of the SET pin, which also ties to the error amplifier’s inverting input. Figure 1 illustrates that connecting a resistor from SET to ground generates a refer-ence voltage for the error amplifier. This reference voltage is simply the product of the SET pin current and the SET pin resistor. The error amplifier’s unity-gain configuration produces a low impedance version of this voltage on its noninverting input, i.e. the OUTS pin, which is externally tied to the OUT pin.

Figure 1. Basic Adjustable Regulator

The LT3045-1’s rail-to-rail error amplifier and current reference allows for a wide output voltage range from 0V (using a 0Ω resistor) to VIN minus dropout — up to 15V. A PNP-based input pair is active for 0V to 0.6V output and an NPN-based input pair is active for output volt-ages greater than 1.3V, with a smooth transition between the two input pairs from 0.6V to 1.3V output. While the NPN-based input pair is designed to offer the best overall performance, refer to the Electrical Characteristics Table for details on offset voltage, SET pin current, output noise and PSRR variation with the error amp input pair. Table 1 lists many common output voltages and their corresponding 1% RSET resistors.

Table 1. 1% Resistor for Common Output VoltagesVOUT (V) RSET (kΩ)

2.5 24.9

3.3 33.2

5 49.9

12 121

15 150

The benefit of using a current reference compared with a voltage reference as used in conventional regulators is that the regulator always operates in unity gain configuration, independent of the programmed output voltage. This al-lows the LT3045-1 to have loop gain, frequency response and bandwidth independent of the output voltage. As a result, noise, PSRR and transient performance do not change with output voltage. Moreover, since none of the error amp gain is needed to amplify the SET pin voltage to a higher output voltage, output load regulation is more tightly specified in the hundreds of microvolts range and not as a fixed percentage of the output voltage.

Since the zero TC current source is highly accurate, the SET pin resistor can become the limiting factor in achiev-ing high accuracy. Hence, it should be a precision resistor. Additionally, any leakage paths to or from the SET pin create errors in the output voltage. If necessary, use high quality insulation (e.g., Teflon, Kel-F); moreover, clean-ing of all insulating surfaces to remove fluxes and other residues may be required. High humidity environments may require a surface coating at the SET pin to provide a moisture barrier.

+–

100µA

IN

EN/UV

PGFB

VIOC GND

OUT

LT3045-1

ILIM PG10µF

4.7µF

VIN5V ±5%

0.47µF

VOUT, 3.3VIOUT(MAX), 500mA

30451 F01

33.2k

SET

OUTS

Page 17: LT3045-1: 20V, 500mA, Ultralow Noise,FREQUENCY (Hz) 10 100 1k 10k 100k 1M 10M 0.01 0.1 1 10 100 1000 NOISE (µV/∆ Hz) 30451 TA01b + – 100µA IN EN/UV PGFB VIOC GND OUT LT3045-1

LT3045-1

1730451fa

For more information www.linear.com/LT3045-1

APPLICATIONS INFORMATIONMinimize board leakage by encircling the SET pin with a guard ring operated at a potential close to itself — ideally tied to the OUT pin. Guarding both sides of the circuit board is recommended. Bulk leakage reduction depends on the guard ring width. Leakages of 100nA into or out of the SET pin creates a 0.1% error in the reference voltage. Leakages of this magnitude, coupled with other sources of leakage, can cause significant errors in the output volt-age, especially over wide operating temperature range. Figure 2 illustrates a typical guard ring layout technique.

Figure 2. DFN Guard Ring Layout

Figure 3, minimize the effects of PCB trace and solder inductance by tying the OUTS pin directly to COUT and the GND side of CSET directly to the GND side of COUT, as well as keep the GND sides of CIN and COUT reasonably close. Refer to the LT3045-1 demo board manual for more information on the recommended layout that meets these requirements. While the LT3045-1 is robust enough not to oscillate if the recommended layout is not followed, depending on the actual layout, phase/gain margin, noise and PSRR performance may degrade.

Stability and Output Capacitance

The LT3045-1 requires an output capacitor for stability. Given its high bandwidth, LTC recommends low ESR and ESL ceramic capacitors. A minimum 10µF output capaci-tance with an ESR below 20mΩ and an ESL below 2nH is required for stability.

Given the high PSRR and low noise performance attained using a single 10µF ceramic output capacitor, larger values of output capacitor only marginally improves the perfor-mance because the regulator bandwidth decreases with increasing output capacitance — hence, there is little to be gained by using larger than the minimum 10µF output capacitor. Nonetheless, larger values of output capacitance do decrease peak output deviations during a load transient. Note that bypass capacitors used to decouple individual components powered by the LT3045-1 increase the ef-fective output capacitance.

Figure 3. COUT and CSET Connections for Best Performance

30451 F02

OUT

SET

12

11

8

9

104

5

3

2

1

6 7

13

Since the SET pin is a high impedance node, unwanted signals may couple into the SET pin and cause erratic behavior. This is most noticeable when operating with a minimum output capacitor at heavy load currents. By-passing the SET pin with a small capacitance to ground resolves this issue — 10nF is sufficient.

For applications requiring higher accuracy or an adjust-able output voltage, the SET pin may be actively driven by an external voltage source capable of sinking 100µA. Connecting a precision voltage reference to the SET pin eliminates any errors present in the output voltage due to the reference current and SET pin resistor tolerances.

Output Sensing and Stability

The LT3045-1’s OUTS pin provides a Kelvin sense con-nection to the output. The SET pin resistor’s GND side provides a Kelvin sense connection to the load’s GND side.

Additionally, for ultrahigh PSRR, the LT3045-1 bandwidth is made quite high (~1MHz), making it very close to a typical 10µF (1206 case size) ceramic output capacitor’s self-resonance frequency (~1.6MHz). Therefore, it is very important to avoid adding extra impedance (ESR and ESL) outside the feedback loop. To that end, as shown in

COUT

RSET CSET

CIN

OUT

IN

SETVIOC

LT3045-1 DEMO BOARD PCB LAYOUT ILLUSTRATES 4-TERMINALCONNECTION TO COUT

100µA

OUTSPG

ILIM

30451 F03

GND

PGFB

EN/UV

VOUTIOUT(MAX): 500mA

VIN

Page 18: LT3045-1: 20V, 500mA, Ultralow Noise,FREQUENCY (Hz) 10 100 1k 10k 100k 1M 10M 0.01 0.1 1 10 100 1000 NOISE (µV/∆ Hz) 30451 TA01b + – 100µA IN EN/UV PGFB VIOC GND OUT LT3045-1

LT3045-1

1830451fa

For more information www.linear.com/LT3045-1

APPLICATIONS INFORMATIONGive extra consideration to the type of ceramic capacitors used. They are manufactured with a variety of dielectrics, each with different behavior across temperature and applied voltage. The most common dielectrics used are specified with EIA temperature characteristic codes of Z5U, Y5V, X5R and X7R. The Z5U and Y5V dielectrics are good for providing high capacitance in the small packages, but they tend to have stronger voltage and temperature coefficients as shown in Figure 4 and Figure 5. When used with a 5V regulator, a 16V 10µF Y5V capacitor can exhibit an effective value as low as 1µF to 2µF for the DC bias voltage applied over the operating temperature range.

X5R and X7R dielectrics result in more stable character-istics and are thus more suitable for LT3045-1. The X7R dielectric has better stability across temperature, while the X5R is less expensive and is available in higher values. Nonetheless, care must still be exercised when using X5R and X7R capacitors. The X5R and X7R codes only specify operating temperature range and the maximum capacitance change over temperature. While capacitance change due to DC bias for X5R and X7R is better than Y5V and Z5U dielectrics, it can still be significant enough to drop capacitance below sufficient levels. As shown in Figure 6, capacitor DC bias characteristics tend to improve as component case size increases, but verification of expected capacitance at the operating voltage is highly recommended. Due to its good voltage coefficient in small case sizes, LTC recommends using Murata’s GJ8 series ceramic capacitors.

High Vibration Environments

Voltage and temperature coefficients are not the only sources of problems. Some ceramic capacitors have a piezoelectric response. A piezoelectric device generates voltage across its terminals due to mechanical stress upon it, similar to how a piezoelectric microphone works. For a ceramic capacitor, this stress can be induced by mechanical vibrations within the system or due to thermal transients.

LT3045-1 applications in high vibration environments have three distinct piezoelectric noise generators: ceramic output, input, and SET pin capacitors. However, due to LT3045-1’s very low output impedance over a wide fre-quency range, negligible output noise is generated using

Figure 4. Ceramic Capacitor DC Bias Characteristics

Figure 5. Ceramic Capacitor Temperature Characteristics

Figure 6. Capacitor Voltage Coefficient for Different Case Sizes

DC BIAS VOLTAGE (V)

BOTH CAPACITORS ARE 16V,1210 CASE SIZE, 10µF

0–100

CHAN

GE IN

VAL

UE (%

)

–80

642 8 10 12

30451 F04

14

0

20

–60

–40

X5R

Y5V

–20

16

TEMPERATURE (°C)–50

–100

CHAN

GE IN

VAL

UE (%

)

–80

250–25 50 75 100

30451 F05

0

20

40

–60

–40 Y5V

–20

125

BOTH CAPACITORS ARE 16V,1210 CASE SIZE, 10µF

X5R

DC BIAS (V)1

–100

CHAN

GE IN

VAL

UE (%

)

–80

–60

–40

–20

0

20

5 10 15 20

30451 F06

25

GRM SERIES, 0805, 1.45mm THICKGRM SERIES, 1206, 1.8mm THICKGRM SERIES, 1210, 2.2mm THICKGJ8 SERIES, 1206, 1.9mm THICK

MURATA: 25V,10%, X7R/X5R, 10µF CERAMIC

Page 19: LT3045-1: 20V, 500mA, Ultralow Noise,FREQUENCY (Hz) 10 100 1k 10k 100k 1M 10M 0.01 0.1 1 10 100 1000 NOISE (µV/∆ Hz) 30451 TA01b + – 100µA IN EN/UV PGFB VIOC GND OUT LT3045-1

LT3045-1

1930451fa

For more information www.linear.com/LT3045-1

APPLICATIONS INFORMATIONa ceramic output capacitor. Similarly, due to LT3045-1’s ultrahigh PSRR, negligible output noise is generated using a ceramic input capacitor. Nonetheless, given the high SET pin impedance, any piezoelectric response from a ceramic SET pin capacitor generates significant output noise – peak-to-peak excursions of hundreds of µVs. However, due to the SET pin capacitor’s high ESR and ESL tolerance, any non-piezoelectrically responsive (tantalum, electrolytic, or film) capacitor can be used at the SET pin – although electrolytic capacitors tend to have high 1/f noise. In any case, use of a surface mount capacitor is highly recommended.

Stability and Input Capacitance

The LT3045-1 is stable with a minimum 4.7µF IN pin capaci-tor. LTC recommends using low ESR ceramic capacitors. In cases where long wires connect the power supply to the LT3045-1’s input and ground terminals, the use of low value input capacitors combined with a large load current can result in instability. The resonant LC tank circuit formed by the wire inductance and the input capacitor is the cause and not because of LT3045-1’s instability.

The self-inductance, or isolated inductance, of a wire is directly proportional to its length. The wire diameter, however, has less influence on its self-inductance. For example, the self-inductance of a 2-AWG isolated wire with a diameter of 0.26" is about half the inductance of a 30-AWG wire with a diameter of 0.01". One foot of 30-AWG wire has 465nH of self-inductance.

Several methods exist to reduce a wire’s self-inductance. One method divides the current flowing towards the LT3045-1 between two parallel conductors. In this case, placing the wires further apart reduces the inductance; up to a 50% reduction when placed only a few inches apart. Splitting the wires connect two equal inductors in parallel. However, when placed in close proximity to each other, their mutual inductance adds to the overall self inductance of the wires — therefore a 50% reduction is not possible in such cases. The second and more effective technique to reduce the overall inductance is to place the forward and return current conductors (the input and ground wires) in close proximity. Two 30-AWG wires separated

by 0.02" reduce the overall inductance to about one-fifth of a single wire.

If a battery mounted in close proximity powers the LT3045-1, a 4.7µF input capacitor suffices for stability. However, if a distantly located supply powers the LT3045-1, use a larger value input capacitor. Use a rough guideline of 1µF (in addition to the 4.7µF minimum) per 6" of wire length. The minimum input capacitance needed to stabilize the application also varies with the output capacitance as well as the load current. Placing additional capacitance on the LT3045-1’s output helps. However, this requires significantly more capacitance compared to additional input bypassing. Series resistance between the supply and the LT3045-1 input also helps stabilize the application; as little as 0.1Ω to 0.5Ω suffices. This impedance dampens the LC tank circuit at the expense of dropout voltage. A better alternative is to use a higher ESR tantalum or electrolytic capacitor at the LT3045-1 input in parallel with a 4.7µF ceramic capacitor.

PSRR and Input Capacitance

For applications utilizing the LT3045-1 for post-regulating switching converters, placing a capacitor directly at the LT3045-1 input results in AC current (at the switching frequency) to flow near the LT3045-1. This relatively high-frequency switching current generates a magnetic field that couples to the LT3045-1 output, thereby degrading its effective PSRR. While highly dependent on the PCB, the switching pre-regulator, the input capacitance, amongst other factors, the PSRR degradation can be easily over 30dB at 1MHz. This degradation is present even if the LT3045-1 is de-soldered from the board, because it ef-fectively degrades the PSRR of the PC board itself. While negligible for conventional low PSRR LDOs, LT3045-1’s ultrahigh PSRR requires careful attention to higher order parasitics in order to extract the full performance offered by the regulator.

To mitigate the flow of high-frequency switching current near the LT3045-1, the LT3045-1 input capacitor can be entirely removed -- as long as the switching converter’s output capacitor is located more than an inch away from the LT3045-1. Magnetic coupling rapidly decreases with increasing distance. Nonetheless, if the switching pre-

Page 20: LT3045-1: 20V, 500mA, Ultralow Noise,FREQUENCY (Hz) 10 100 1k 10k 100k 1M 10M 0.01 0.1 1 10 100 1000 NOISE (µV/∆ Hz) 30451 TA01b + – 100µA IN EN/UV PGFB VIOC GND OUT LT3045-1

LT3045-1

2030451fa

For more information www.linear.com/LT3045-1

APPLICATIONS INFORMATIONregulator is placed too far away (conservatively more than a couple inches) from the LT3045-1, with no input capacitor present, as with any regulator, the LT3045-1 input will oscillate at the parasitic LC resonance frequency. Besides, it is generally a very common (and a preferred) practice to bypass regulator input with some capacitance. So this option is fairly limited in its scope and not the most palatable solution.

To that end, LTC recommends using the LT3045-1 demo board layout for achieving the best possible PSRR perfor-mance. The LT3045-1 demo board layout utilizes magnetic field cancellation techniques to prevent PSRR degradation caused by this high-frequency current flow—while utilizing the input capacitor.

Filtering High Frequency Spikes

For applications where the LT3045-1 is used to post-regulate a switching converter, its high PSRR effectively suppresses any “noise” present at the switcher’s switching frequency — typically 100kHz to 4MHz. However, the very high frequency (hundreds of MHz) “spikes” — beyond the LT3045-1’s bandwidth — associated with the switcher’s power switch transition times will almost directly pass through the LT3045-1. While the output capacitor is partly intended to absorb these spikes, its ESL will limit its ability at these frequencies. A ferrite bead or even the inductance associated with a short (e.g. 0.5”) PCB trace between the switcher’s output and the LT3045-1’s input can serve as an LC-filter to suppress these very high frequency spikes.

Output Noise

The LT3045-1 offers many advantages with respect to noise performance. Traditional linear regulators have several sources of noise. The most critical noise sources for a traditional regulator are its voltage reference, error amplifier, noise from the resistor divider network used for setting output voltage and the noise gain created by this resistor divider. Many low noise regulators pin out their voltage reference to allow for noise reduction by bypassing the reference voltage.

Unlike most linear regulators, the LT3045-1 does not use a voltage reference; instead, it uses a 100µA current refer-ence. The current reference operates with typical noise

current level of 20pA/√Hz (6nARMS over a 10Hz to 100kHz bandwidth). The resultant voltage noise equals the current noise multiplied by the resistor value, which in turn is RMS summed with the error amplifier’s noise and the resistor’s own noise of √4kTR — whereby k = Boltzmann’s constant 1.38 • 10–23J/K and T is the absolute temperature.

One problem that conventional linear regulators face is that the resistor divider setting the output voltage gains up the reference noise. In contrast, the LT3045-1’s unity-gain follower architecture presents no gain from the SET pin to the output. Therefore, if a capacitor bypasses the SET pin resistor, then the output noise is independent of the programmed output voltage. The resultant output noise is then set just by the error amplifier’s noise — typically 2nV/√Hz from 10kHz to 1MHz and 0.8µVRMS in a 10Hz to 100kHz bandwidth using a 4.7µF SET pin capacitor. Paralleling multiple LT3045-1s further reduces noise by √N, for N parallel regulators.

Refer to the Typical Performance Characteristics section for noise spectral density and RMS integrated noise over various load currents and SET pin capacitances.

Set Pin (Bypass) Capacitance: Noise, PSRR, Transient Response and Soft-Start

In addition to reducing output noise, using a SET pin bypass capacitor also improves PSRR and transient performance. Note that any bypass capacitor leakage deteriorates the LT3045-1’s DC regulation. Capacitor leakage of even 100nA is a 0.1% DC error. Therefore, LTC recommends the use of a good quality low leakage ceramic capacitor.

Using a SET pin bypass capacitor also soft-starts the output and limits inrush current. The RC time constant, formed by the SET pin resistor and capacitor, controls soft-start time. Ramp-up rate from 0 to 90% of nominal VOUT is:

tSS ≈ 2.3 • RSET • CSET (Fast Start-Up Disabled)

Fast Start-Up

For ultralow noise applications that require low 1/f noise (i.e. at frequencies below 100Hz), a larger value SET pin capacitor is required, up to 22µF. While this would normally significantly increase the regulator’s start-up time, the

Page 21: LT3045-1: 20V, 500mA, Ultralow Noise,FREQUENCY (Hz) 10 100 1k 10k 100k 1M 10M 0.01 0.1 1 10 100 1000 NOISE (µV/∆ Hz) 30451 TA01b + – 100µA IN EN/UV PGFB VIOC GND OUT LT3045-1

LT3045-1

2130451fa

For more information www.linear.com/LT3045-1

APPLICATIONS INFORMATIONLT3045-1 incorporates fast start-up circuitry that increases the SET pin current to about 2mA during start-up.

As shown in the Block Diagram, the 2mA current source remains engaged while PGFB is below 300mV, unless the regulator is in current limit, dropout, thermal shutdown or input voltage is below minimum VIN.

If fast start-up capability is not used, tie PGFB to IN or to OUT for output voltages above 300mV. Note that doing so also disables power good functionality.

ENABLE/UVLO

The EN/UV pin is used to put the regulator into a micro-power shutdown state. The LT3045-1 has an accurate 1.24V turn-on threshold on the EN/UV pin with 130mV of hysteresis. This threshold can be used in conjunction with a resistor divider from the input supply to define an accurate undervoltage lockout (UVLO) threshold for the regulator. The EN/UV pin current (IEN) at the threshold from the Electrical Characteristics table needs to be considered when calculating the resistor divider network:

VIN(UVLO) =1.24V • 1+

REN2REN1

⎝⎜

⎠⎟+IEN •REN2

The EN/UV pin current (IEN) can be ignored if REN1 is less than 100k. If unused, tie EN/UV pin to IN.

Programmable Power Good

As illustrated in the Block Diagram, power good thresh-old is user programmable using the ratio of two external resistors, RPG2 and RPG1:

VOUT(PG _ THRESHOLD) =0.3V • 1+

RPG2RPG1

⎝⎜

⎠⎟+IPGFB •RPG2

If the PGFB pin increases above 300mV, the open-collector PG pin de-asserts and becomes high impedance. The power good comparator has 7mV hysteresis and 5µs of deglitching. The PGFB pin current (IPGFB) from the Electrical Characteristics table must be considered when determining the resistor divider network. The PGFB pin current (IPGFB) can be ignored if RPG1 is less than 30k. If power good functionality is not used, float the PG pin. Please note that

programmable power good and fast start-up capabilities are disabled for output voltages below 300mV.

Externally Programmable Current Limit

The ILIM pin’s current limit threshold is 300mV. Connecting a resistor from ILIM to GND sets the maximum current flowing out of the ILIM pin, which in turn programs the LT3045-1’s current limit. With a 150mA • kΩ programming scale factor, the current limit can be calculated as follows:

Current Limit =

150mA •kΩRILIM

For example, a 1kΩ resistor programs the current limit to 150mA and a 2kΩ resistor programs the current limit to 75mA. For good accuracy, Kelvin connect this resistor to the LT3045-1’s GND pin.

In cases where IN-to-OUT differential is greater than 12V, the LT3045-1’s foldback circuitry decreases the internal current limit. As a result, internal current limit may over-ride the externally programmed current limit level to keep the LT3045-1 within its safe-operating-area (SOA). See the Internal Current Limit vs Input-to-Output Differential graph in the Typical Performance Characteristics section.

As shown in the Block Diagram, the ILIM pin sources current proportional (1:500) to output current; therefore, it also serves as a current monitoring pin with a 0V to 300mV range. If external current limit or current monitoring is not used, tie ILIM to GND.

Output Overshoot Recovery

During a load step from full load to no load (or light load), the output voltage overshoots before the regulator responds to turn the power transistor OFF. Given that there is no load (or very light load) present at the output, it takes a long time to discharge the output capacitor.

As illustrated in the Block Diagram, the LT3045-1 incor-porates an overshoot recovery circuitry that turns on a current sink to discharge the output capacitor in the event OUTS is higher than SET. This current is typically about 4mA. No load recovery is disabled for input voltages less than 2.5V or output voltages less than 1.5V.

Page 22: LT3045-1: 20V, 500mA, Ultralow Noise,FREQUENCY (Hz) 10 100 1k 10k 100k 1M 10M 0.01 0.1 1 10 100 1000 NOISE (µV/∆ Hz) 30451 TA01b + – 100µA IN EN/UV PGFB VIOC GND OUT LT3045-1

LT3045-1

2230451fa

For more information www.linear.com/LT3045-1

APPLICATIONS INFORMATIONIf OUTS is externally held above SET, the current sink turns ON in an attempt to restore OUTS to its programmed voltage. The current sink remains ON until the external circuitry releases OUTS.

Direct Paralleling for Higher Current

Higher output current is obtained by paralleling multiple LT3045-1s. Tie all SET pins together and all IN pins together. Connect the OUT pins together using small pieces of PCB trace (used as a ballast resistor) to equalize currents in the LT3045-1s. PCB trace resistance in milliohms/inch is shown in Table 2.

Table 2. PC Board Trace Resistance WEIGHT (oz) 10mil WIDTH 20mil WIDTH

1 54.3 27.1

2 27.1 13.6

Trace resistance is measured in mΩ/in.

The small worst-case offset of 2mV for each paralleled LT3045-1 minimizes the required ballast resistor value. Figure 7 illustrates that two LT3045-1s, each using a 20mΩ PCB trace ballast resistor, provide better than 20% accurate output current sharing at full load. The two 20mΩ external resistors only add 10mV of output regulation drop with a 1A maximum current. With a 3.3V output, this only adds 0.3% to the regulation accuracy. As has been discussed previously, tie the OUTS pin directly to the output capacitor.

More than two LT3045-1s can also be paralleled for even higher output current and lower output noise. Paralleling multiple LT3045-1s is also useful for distributing heat on the PCB. For applications with high input-to-output voltage differential, an input series resistor or resistor in parallel with the LT3045-1 can also be used to spread heat.

PCB Layout Considerations

Given the LT3045-1’s high bandwidth and ultrahigh PSRR, careful PCB layout must be employed to achieve full device performance. Figure 8 shows a recommended layout that delivers full performance of the regulator. Refer to the LT3045-1’s DC2593A demo board manual for further details.

Figure 7. Parallel Devices

Figure 8. Recommended DFN Layout

+–

100µA

IN

EN/UV

PGFB

GND

OUT

LT3045-1

ILIM PG 10µF

20mΩ

VOUT3.3VIOUT(MAX)1A

30451 F07

16.5k

SET

OUTS

+–

100µA

IN

EN/UV

PGFB

GND

OUT

LT3045-1

VIOC

VIOC ILIM PG 10µF

20mΩ

10µF

VIN5V ±5%

SET

OUTS

0.47µF

Page 23: LT3045-1: 20V, 500mA, Ultralow Noise,FREQUENCY (Hz) 10 100 1k 10k 100k 1M 10M 0.01 0.1 1 10 100 1000 NOISE (µV/∆ Hz) 30451 TA01b + – 100µA IN EN/UV PGFB VIOC GND OUT LT3045-1

LT3045-1

2330451fa

For more information www.linear.com/LT3045-1

High Efficiency Linear Regulator: Voltage Input-to-Output Control (VIOC)

The VIOC pin is used to control an upstream switching converter (e.g. buck, boost, buck-boost, etc) to maintain a constant voltage across the LT3045-1, regardless of the LDO’s output voltage. This maximizes efficiency while maintaining PSRR performance. The VIOC pin is the output of a fast unity-gain amplifier that measures the difference between IN and OUT or 1.5V, whichever is higher. As shown in Figure 9, the VIOC feature is simple to use. Just tie the VIOC pin to the upstream switching converter’s feedback (FB) pin, and this will regulate the LT3045-1’s input-to-output differential to the switching converter’s feedback voltage. When paralleling multiple LT3045-1s, tie the VIOC pin of one of the LT3045-1 to the upstream switching converter’s feedback pin and float the remaining VIOC pins.

While the VIOC buffer is inside the switching converter’s feedback loop, given the VIOC buffer’s high bandwidth, the switching converter’s frequency compensation doesn’t need to be adjusted. Phase delay through the VIOC buffer is typically less than 2° for frequencies as high as 100kHz; hence, within the switching converter’s bandwidth (usually much less than 100kHz), the VIOC buffer will be transpar-ent and just act like an ideal wire.

For example, for a switching converter with less than 100kHz bandwidth and a phase margin of 50°, using the VIOC buffer, the phase margin will degrade by at most 2°. Hence, the phase margin for the switching converter (using the VIOC pin) will be at least 48°. Given the VIOC buffer is inside the switching converter’s feedback loop, the total capacitance on the VIOC pin is required to be below 20pF.

As shown in Figure 10, the input-to-output differential voltage is easily programmable to support different ap-

APPLICATIONS INFORMATION

Figure 9. VIOC Basic Operation

LT3045-1VLDOOUT: VARIABLEIOUT(MAX): 500mA

30451 F09

+ –

IN

EN/UV

PGFB

GND

OUT

VIOC

ILIM PG

10µF

VIN

SET

OUTS

R1

UPSTREAMDC/DC

CONVERTER

SWIN

FB

0.47µF

VLDOIN

VFBSWITCHER

Figure 10. Programming Input-to-Output Differential

LT3045-1VOUT: VARIABLEIOUT(MAX): 500mA

30451 F10

+ –

IN

EN/UV

PGFB

GND

OUT

VIOC

ILIM PG

10µF

VIN

SET

OUTS

R3

R1

R2

UPSTREAMDC/DC

CONVERTER

SWIN

FB

0.47µF

Page 24: LT3045-1: 20V, 500mA, Ultralow Noise,FREQUENCY (Hz) 10 100 1k 10k 100k 1M 10M 0.01 0.1 1 10 100 1000 NOISE (µV/∆ Hz) 30451 TA01b + – 100µA IN EN/UV PGFB VIOC GND OUT LT3045-1

LT3045-1

2430451fa

For more information www.linear.com/LT3045-1

APPLICATIONS INFORMATIONplication needs (PSRR vs. power dissipation) using the following equation:

VLDOIN – VLDOOUT = VVIOC = VFBSWITCHER • R1+R2

R1

Furthermore, in the event the LT3045-1 SET pin opens up, the LT3045-1 input voltage can rise up to the switcher’s input voltage, and thus potentially violate the LT3045-1’s absolute maximum rating. To prevent this, the maximum LT3045-1 input voltage can be set using a resistor (R3) between the VIOC and IN pins of the regulator such that:

V(MAX)LDOIN = VFBSWITCHER • R1+R2+R3

R1+ISINK •R3

Moreover, the VIOC pin is capable of sourcing 200µA and sinking 15µA of current. To mitigate the effect of the sink current on the maximum LDO input voltage (shown above), choose R1 such that the resistor divider typically runs at least 100µA.

For VOUT > 1.5V, VIN = VOUT + VVIOC. The VIOC pin volt-age (and hence the input-to-output differential) can be programmed anywhere between a minimum of 1V and a maximum of 4V or VOUT – 0.5V (for VOUT > 1.5V), whichever is lower. For applications where the feedback pin of the switching regulator is below 1V, use resistors R1 and R2 to make sure the VIOC pin is within the afore-mentioned range. Note that the VIOC pin voltage cannot

be programmed below the upstream switching converter’s feedback pin. For VOUT ≤ 1.5V, the VIOC programming range is 1V ±5%. If VIOC is set to be outside this range, then the LT3045-1 input voltage will rise to the maximum value set using R3. If VIOC functionality is not used, float the VIOC pin.

Given the maximum VIOC programming voltage is de-pendent on VOUT, care must be taken in setting the VIOC voltage. For instance, if VIOC is set to 1V, the LDO’s IN-to-OUT differential will be regulated to 1V for VOUT > 1.5V. Similarly, if VIOC is set to 2V, the regulator’s IN-to-OUT differential will be regulated to 2V for VOUT > 2.5V (i.e. VVIOC + 0.5V). However, if the output voltage is below 2.5V, for this example, then the LDO will not be able to drive its VIOC pin to the right level of 2V. As a result, the upstream pre-regulator’s output will rise, thereby caus-ing the LT3045-1 input voltage to rise to the maximum voltage set using R3. Hence, for protection under various fault conditions, the use of R3 to set the maximum VIN voltage (below 20V) is required.

Typical VIOC Application

Figure 11 shows a typical VIOC application used to post-regulate the output of the LT8608 buck converter. The VIOC voltage is set at 1V with the maximum LDO input voltage set to 16.5V. Figure 12 shows the LDO’s input and output voltage when pulsing the LT3045-1’s EN/UV pin, and as

Figure 11. Typical LT3045-1 Post-Regulating Application

+–

100µA

IN

EN/UV

PGFB

VIOC

GND

OUT

LT3045-1

ILIM PG 10µF

47µF

VIN20V

4.7µF

VOUT: VARIABLEIOUT(MAX): 500mA

30451 F11

249Ω

140k

SET

OUTS

LT8608BST

SW

PG

FB

IN

EN/UV

TR/SS

MODE

RT

INTVCC7.68k40.2k

2.2µH

2.21k

GND

10nF

1µF

0.22µF

fSW = 1MHzL: XFL4020-222MEC

VLDOIN – VLDOUT = 1VVMAXLDOIN = 16.5V

Page 25: LT3045-1: 20V, 500mA, Ultralow Noise,FREQUENCY (Hz) 10 100 1k 10k 100k 1M 10M 0.01 0.1 1 10 100 1000 NOISE (µV/∆ Hz) 30451 TA01b + – 100µA IN EN/UV PGFB VIOC GND OUT LT3045-1

LT3045-1

2530451fa

For more information www.linear.com/LT3045-1

APPLICATIONS INFORMATIONcan be seen, when the LDO is disabled, the LDO input volt-age goes to the maximum input voltage set by the resistor divider on the VIOC pin. Figure 13 shows the load step response of the LT8608 using the VIOC buffer. Figure 14 shows the LDO’s input and output voltage response to stepping the set pin from 3V to 4V. Figure 15 shows the LDO’s output and input voltage while ramping the SET pin from 0V to 10V, and as can be seen, the LT8608’s output voltage tracks the LT3045’s output voltage when it is greater than 1.5V. Lastly, Figure 16 shows the noise spectral density at the LT3045-1 input and output.

Figure 12. LT3045-1 EN/UV Pulse

VEN/UVLDOINLDOOUT

RSET = 33.2kΩRL = 6.6ΩVIN LT8608 = 20V

500ms/DIV

0V1V/DIV

5V/DIV

0V

30451 F12

Figure 13. Load Step Response Using the VIOC Buffer

ILOADLDOIN (ac)LDOOUT (ac)

RSET = 33.2kΩILOAD = 10mA to 500mA

200µs/DIV

0mA500mA/DIV

100mV/DIV

50mV/DIV

30451 F13

Figure 14. Stepping VSET from 3V to 4V (and Back to 3V)

VSETLDOINLDOOUT

VSET = 3V TO 4VIL = 500mA

1ms/DIV

0V

1V/DIV

30451 F14

VSET AND LDOOUT ARE OVERLAID

Figure 15. Ramping VSET from 0V to 10V (and Back to 0V)

VSETLDOOUTLDOIN

IL = 500mA 5ms/DIV

2V/DIV

0V

30451 F15

VSET AND LDOOUT ARE OVERLAID

Figure 16. LT3045-1’s Input and Output Noise Spectral Density

LDOIN = 4.3VLDOOUT = 3.3VILOAD = 500mA

LDOOUTLDOINNoise Floor

FREQUENCY (Hz)10 100 1k 10k 100k 1M 10M

0.01

0.1

1

10

100

1000

NOIS

E (µ

V/√H

z)

30451 F16

Page 26: LT3045-1: 20V, 500mA, Ultralow Noise,FREQUENCY (Hz) 10 100 1k 10k 100k 1M 10M 0.01 0.1 1 10 100 1000 NOISE (µV/∆ Hz) 30451 TA01b + – 100µA IN EN/UV PGFB VIOC GND OUT LT3045-1

LT3045-1

2630451fa

For more information www.linear.com/LT3045-1

Thermal Considerations

The LT3045-1 has internal power and thermal limiting circuits that protect the device under overload conditions. The thermal shutdown temperature is nominally 165°C with about 8°C of hysteresis. For continuous normal load conditions, do not exceed the maximum junction temperature (125°C for E- and I-grades). It is important to consider all sources of thermal resistance from junction to ambient. This includes junction-to-case, case-to-heat sink interface, heat sink resistance or circuit board-to-ambient as the application dictates. Additionally, consider all heat sources in close proximity to the LT3045-1.

The undersides of the DFN and MSOP packages have exposed metal from the lead frame to the die attachment. Both packages allow heat to directly transfer from the die junction to the PCB metal to limit maximum operating junction temperature. The dual-in-line pin arrangement allows metal to extend beyond the ends of the package on the topside (component side) of the PCB.

For surface mount devices, heat sinking is accomplished by using the heat spreading capabilities of the PCB and its copper traces. Copper board stiffeners and plated through-holes can also be used to spread the heat generated by the regulator.

Tables 3 and 4 list thermal resistance as a function of copper area on a fixed board size. All measurements were taken in still air on a 4 layer FR-4 board with 1oz solid internal planes and 2oz top/bottom planes with a total board thick-ness of 1.6mm. The four layers were electrically isolated with no thermal vias present. PCB layers, copper weight, board layout and thermal vias affect the resultant thermal resistance. For more information on thermal resistance and high thermal conductivity test boards, refer to JEDEC standard JESD51, notably JESD51-7 and JESD51-12. Achieving low thermal resistance necessitates attention to detail and careful PCB layout.

Table 3. Measured Thermal Resistance for DFN PackageCOPPER AREA

BOARD AREATHERMAL

RESISTANCETOP SIDE* BOTTOM SIDE

2500mm2 2500mm2 2500mm2 34°C/W

1000mm2 2500mm2 2500mm2 34°C/W

225mm2 2500mm2 2500mm2 35°C/W

100mm2 2500mm2 2500mm2 36°C/W

*Device is mounted on topside

Table 4. Measured Thermal Resistance for MSOP PackageCOPPER AREA

BOARD AREATHERMAL

RESISTANCETOP SIDE* BOTTOM SIDE

2500mm2 2500mm2 2500mm2 33°C/W

1000mm2 2500mm2 2500mm2 33°C/W

225mm2 2500mm2 2500mm2 34°C/W

100mm2 2500mm2 2500mm2 35°C/W

*Device is mounted on topside

Calculating Junction Temperature

Example: Given an output voltage of 3.3V and input voltage of 5V ± 5%, output current range from 1mA to 500mA, and a maximum ambient temperature of 85°C, what is the maximum junction temperature?

The LT3045-1’s power dissipation is:

IOUT(MAX) • (VIN(MAX) – VOUT) + IGND • VIN(MAX)

where:

IOUT(MAX) = 500mA

VIN(MAX) = 5.25V

IGND (at IOUT = 500mA and VIN = 5.25V) = 12.5mA

thus:

PDISS = 0.5A • (5.25V – 3.3V) + 12.5mA • 5.25V = 1W

Using a DFN package, the thermal resistance is in the range of 34°C/W to 36°C/W depending on the copper area. Therefore, the junction temperature rise above ambient approximately equals:

1W • 35°C/W = 35°C

APPLICATIONS INFORMATION

Page 27: LT3045-1: 20V, 500mA, Ultralow Noise,FREQUENCY (Hz) 10 100 1k 10k 100k 1M 10M 0.01 0.1 1 10 100 1000 NOISE (µV/∆ Hz) 30451 TA01b + – 100µA IN EN/UV PGFB VIOC GND OUT LT3045-1

LT3045-1

2730451fa

For more information www.linear.com/LT3045-1

APPLICATIONS INFORMATIONThe maximum junction temperature equals the maxi-mum ambient temperature plus the maximum junction temperature rise above ambient:

TJMAX = 85°C + 35°C = 120°C

Overload Recovery

Like many IC power regulators, the LT3045-1 incorporates safe-operating-area (SOA) protection. The SOA protection activates at input-to-output differential voltages greater than 12V. The SOA protection decreases the current limit as the input-to-output differential increases and keeps the power transistor inside a safe operating region for all values of input-to-output voltages up to the LT3045-1’s absolute maximum ratings. The LT3045-1 provides some level of output current for all values of input-to-output dif-ferentials. Refer to the Current Limit curves in the Typical Performance Characteristics section. When power is first applied and input voltage rises, the output follows the input and keeps the input-to-output differential low to allow the regulator to supply large output current and start-up into high current loads.

Due to current limit foldback, however, at high input volt-ages a problem can occur if the output voltage is low and the load current is high. Such situations occur after the removal of a short-circuit or if the EN/UV pin is pulled high after the input voltage has already turned ON. The load line in such cases intersects the output current profile at two points. The regulator now has two stable operating points. With this double intersection, the input power supply may need to be cycled down to zero and brought back up again to make the output recover. Other linear regulators with foldback current limit protection (such as the LT1965 and LT1963A) also exhibit this phenomenon, so it is not unique to the LT3045-1.

Protection Features

The LT3045-1 incorporates several protection features for battery-powered applications. Precision current limit and thermal overload protection protect the LT3045-1 against overload and fault conditions at the device’s output. For normal operation, do not allow the junction temperature to exceed 125°C (E-grade, I-grade).

To protect the LT3045-1’s low noise error amplifier, the SET-to-OUTS protection clamp limits the maximum voltage between SET and OUTS with a maximum DC current of 20mA through the clamp. So for applications where SET is actively driven by a voltage source, the voltage source must be current limited to 20mA or less. Moreover, to limit the transient current flowing through these clamps during a transient fault condition, limit the maximum value of the SET pin capacitor (CSET) to 22µF.

The LT3045-1 also incorporates reverse input protection whereby the IN pin withstands reverse voltages of up to –20V without causing any input current flow and without developing negative voltages at the OUT pin. The regulator protects both itself and the load against batteries that are plugged-in backwards.

In circuits where a backup battery is required, several different input/output conditions can occur. The output voltage may be held up while the input is either pulled to GND, pulled to some intermediate voltage, or left open-circuit. In all of these cases, the reverse-current protection circuitry prevents current flow from output to the input. Nonetheless, due to the OUTS-to-SET clamp, unless the SET pin is floating, current can flow to GND through the SET pin resistor as well as up to 15mA to GND through the output overshoot recovery circuitry. This current flow through the output overshoot recovery circuitry can be significantly reduced by placing a Schottky diode between OUTS and SET pins, with its anode at the OUTS pin.

Page 28: LT3045-1: 20V, 500mA, Ultralow Noise,FREQUENCY (Hz) 10 100 1k 10k 100k 1M 10M 0.01 0.1 1 10 100 1000 NOISE (µV/∆ Hz) 30451 TA01b + – 100µA IN EN/UV PGFB VIOC GND OUT LT3045-1

LT3045-1

2830451fa

For more information www.linear.com/LT3045-1

TYPICAL APPLICATIONS

12VIN to 3.3VOUT with 0.8µVRMS Integrated Noise

100µA

IN

EN/UV

PG

GND

OUT

LT3045-1

VIOCILIM PGFB

453k

10µF

4.7µF

VIN12V ±5%

200k

4.7µF

VOUT3.3VIOUT200mA

49.9k

30451 TA02

33.2k

SET

OUTS

+–

750Ω

Low Noise CC/CV Lab Power Supply Ultralow Noise Current Source for RF Biasing Applications

10µF

4.7µF

OUT

IN

SET

LT3045-1

100µA

OUTS

PGFB

ILIMGND

PG

EN/UV

30451 TA04

+–

4.7µF

OUTPUT CURRENT NOISE = 0.8µVRMS/ROUTINCREASE R1 (AND RSET) TO REDUCE CURRENT NOISE

RSET2k

RLOAD

VOUT(MAX): 15V

ROUT = R1 + RLOAD

R11Ω

VIN1.8V TO 20V

VIOC10µF

0.47µF

4.7µF

RSETRIOUT

VIN

OUT

IN

SET

LT3045-1

VOUT

100µA

OUTS

PGFB

ILIMGND

PG

EN/UV

30451 TA03

+–

VOUT(MAX) = 100μA • RSET

IOUT(MAX) = 150mA • kΩRIOUT

VIOC

Page 29: LT3045-1: 20V, 500mA, Ultralow Noise,FREQUENCY (Hz) 10 100 1k 10k 100k 1M 10M 0.01 0.1 1 10 100 1000 NOISE (µV/∆ Hz) 30451 TA01b + – 100µA IN EN/UV PGFB VIOC GND OUT LT3045-1

LT3045-1

2930451fa

For more information www.linear.com/LT3045-1

TYPICAL APPLICATIONS

Programming Undervoltage Lockout

10µF

33.2k0.47µF

REN2110k

REN149.9k

4.7µF

VIN4V Turn-ON

3.4V Turn-OFF

OUT

IN

SET

LT3045-1

VOUT3.3VIOUT(MAX)500mA

100µA

OUTS

EN/UV

ILIMGND

PG

PGFB

30451 TA05

+–

VIN(UVLO)RISING =1.24V • 1+ 110k

49.9k⎛

⎝⎜

⎠⎟

VIOC

Ratiometric Tracking

10µF

0.1µF

10µF

33.2k

10µF

0.1µF 16.9k

VIN5.5V TO 20V

VOUT3.3VMIN LOAD 200µA

OUT

IN

SET

LT3045-1

VOUT5V

100µA

OUTS

ILIMGND

30451 TA06

+–

PGFB

PG

EN/UV

OUT

IN

SET

LT3045-1

100µA

OUTS

ILIMGND

+–

PGFB

PG

EN/UV

VIOC

VIOC

Page 30: LT3045-1: 20V, 500mA, Ultralow Noise,FREQUENCY (Hz) 10 100 1k 10k 100k 1M 10M 0.01 0.1 1 10 100 1000 NOISE (µV/∆ Hz) 30451 TA01b + – 100µA IN EN/UV PGFB VIOC GND OUT LT3045-1

LT3045-1

3030451fa

For more information www.linear.com/LT3045-1

TYPICAL APPLICATIONS

Paralleling Multiple Devices Using ILIM (Current Monitor) to Cancel Ballast Resistor Drop

Ultralow 1/f Noise Reference Buffer

10µF

4.7µF

4.7µF

OUT

IN

SET

LT3045-1

VOUT = 5VIOUT(MAX)500mA

100µA

OUTS

ILIMGNDLTC6655-5

30451 TA07

+–

1,2

3,4,5

6,7

10µF 49.9k

1k

VIN6V ±5%

PGFB

PG

EN/UV

VIOC

10µF

N = NUMBER OF DEVICES IN PARALLELRCDC = CABLE (BALLAST RESISTOR) DROP CANCELLATION RESISTORRILIM = CURRENT LIMIT PROGRAMMING RESISTORRBALLAST = BALLAST RESISTORILIM = OUTPUT CURRENT LIMIT

10µF

20mΩ

1µF

10µF

OUT

IN

SET

LT3045-1

100µA 100µA

OUTS

PGFB

ILIMGND

PG

EN/UV

IN

PGFB

PG

EN/UV+–

16.5k

RILIM287Ω

RCDC5Ω

RILIM = 150mA • kΩ/ILIM – RCDC • N = 287Ω (FOR 500mA ILIM PER REGULATOR)

RCDC = RBALLAST • 500/N = 5Ω

VOUT = 3.3VIOUT(MAX) = 1A

287Ω

20mΩ

+–

30451 TA08

OUT

LT3045-1

OUTS

SETILIM GND

VIN5V ±5%

VIOC VIOC

Page 31: LT3045-1: 20V, 500mA, Ultralow Noise,FREQUENCY (Hz) 10 100 1k 10k 100k 1M 10M 0.01 0.1 1 10 100 1000 NOISE (µV/∆ Hz) 30451 TA01b + – 100µA IN EN/UV PGFB VIOC GND OUT LT3045-1

LT3045-1

3130451fa

For more information www.linear.com/LT3045-1

TYPICAL APPLICATIONS

Paralleling Multiple LT3045-1s for 2A Output Current

10µF 10µF

20mΩ

4.7µF

OUT

IN

SET

LT3045-1

100µA 100µA

OUTS

PGFB

ILIMGND

PG

EN/UV

IN

PGFB

PG

EN/UV+–

8.25k

20mΩ

+–

30451 TA09

OUT

LT3045-1

OUTS

SETILIM GND

10µF 10µF

20mΩ

22µF

OUT

IN

SET

LT3045-1

100µA 100µA

OUTS

PGFBGND

PG

EN/UV

IN

PGFB

PG

EN/UV+–

453k

200k

49.9k VOUT = 3.3VIOUT(MAX) = 2ADROPOUT = 300mV

20mΩ

+–

OUT

LT3045-1

OUTS

SETILIMILIM GND

OUTPUT NOISE = 0.8µVRMS

4= 0.4µVRMS

VIN5V ±5%

VIOC

VIOC

VIOC

VIOC

Page 32: LT3045-1: 20V, 500mA, Ultralow Noise,FREQUENCY (Hz) 10 100 1k 10k 100k 1M 10M 0.01 0.1 1 10 100 1000 NOISE (µV/∆ Hz) 30451 TA01b + – 100µA IN EN/UV PGFB VIOC GND OUT LT3045-1

LT3045-1

3230451fa

For more information www.linear.com/LT3045-1

TYPICAL APPLICATIONS

Low Noise Wheatstone Bridge Power Supply

10µF

33.2k4.7µF

200k

453k

49.9k

4.7µF

R2

R1 R3

+ –

R4

VIN5V ±5%

OUT

IN

SET

LT3045-1

30451 TA10

VOUT: 3.3V AND IOUT(MAX): 500mA

100µA

OUTS

PGFBILIMGND

PG

EN/UV

RESISTORTOLERANCE BRIDGE PSRR NOISE AT VBRIDGE

USING LT1763

1%

5%

40dB

26dB

8nVRMS

42.5nVRMS

PERFECTMATCHING INFINITE –

NOISE AT VBRIDGEUSING LT3045-1

200nVRMS

1000nVRMS

LT1763 NOISE: 20µVRMS (10Hz TO 100kHz)LT3045-1 NOISE: 0.8µVRMS (10Hz TO 100kHz)

VBRIDGE

+–

VIOC

PGFB Disabled without Reverse Input Protection PGFB Disabled with Reverse Input Protection

RSET

10µF

0.47µF

4.7µF

VIN

OUT

IN

SET

LT3045-1

VOUT

100µA

OUTS

ILIMGND

+–

30451 TA11

PGFB

PG

EN/UV

VIOC

0.47µF

10µF

1N4148

4.7µF

RSET

VIN

OUT

IN

SET

VOUT

100µA

OUTSPGFB

ILIMGNDPG

EN/UV

30451 TA12

+–

LT3045-1

VIOC

Page 33: LT3045-1: 20V, 500mA, Ultralow Noise,FREQUENCY (Hz) 10 100 1k 10k 100k 1M 10M 0.01 0.1 1 10 100 1000 NOISE (µV/∆ Hz) 30451 TA01b + – 100µA IN EN/UV PGFB VIOC GND OUT LT3045-1

LT3045-1

3330451fa

For more information www.linear.com/LT3045-1

PACKAGE DESCRIPTIONPlease refer to http://www.linear.com/product/LT3045-1#packaging for the most recent package drawings.

3.00 ±0.10(4 SIDES)

NOTE:1. DRAWING IS NOT A JEDEC PACKAGE OUTLINE2. DRAWING NOT TO SCALE3. ALL DIMENSIONS ARE IN MILLIMETERS4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE5. EXPOSED PAD AND TIE BARS SHALL BE SOLDER PLATED6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE

0.40 ±0.10

BOTTOM VIEW—EXPOSED PAD

1.65 ±0.10

0.75 ±0.05

R = 0.115TYP

16

127

PIN 1TOP MARK

(SEE NOTE 6)

0.200 REF

0.00 – 0.05

(DD12) DFN 0106 REV A

RECOMMENDED SOLDER PAD PITCH AND DIMENSIONSAPPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED

0.23 ±0.05

0.25 ±0.05

2.25 REF

2.38 ±0.051.65 ±0.052.10 ±0.05

0.70 ±0.05

3.50 ±0.05

PACKAGEOUTLINE

PIN 1 NOTCHR = 0.20 OR0.25 × 45°CHAMFER

2.38 ±0.10

2.25 REF0.45 BSC

0.45 BSC

DD Package12-Lead Plastic DFN (3mm × 3mm)

(Reference LTC DWG # 05-08-1725 Rev A)

Page 34: LT3045-1: 20V, 500mA, Ultralow Noise,FREQUENCY (Hz) 10 100 1k 10k 100k 1M 10M 0.01 0.1 1 10 100 1000 NOISE (µV/∆ Hz) 30451 TA01b + – 100µA IN EN/UV PGFB VIOC GND OUT LT3045-1

LT3045-1

3430451fa

For more information www.linear.com/LT3045-1

PACKAGE DESCRIPTIONPlease refer to http://www.linear.com/product/LT3045-1#packaging for the most recent package drawings.

MSOP (MSE12) 0213 REV G

0.53 ±0.152(.021 ±.006)

SEATINGPLANE

0.18(.007)

1.10(.043)MAX

0.22 – 0.38(.009 – .015)

TYP

0.86(.034)REF

0.650(.0256)

BSC

12

12 11 10 9 8 7

7

DETAIL “B”

1 6

NOTE:1. DIMENSIONS IN MILLIMETER/(INCH)2. DRAWING NOT TO SCALE3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS. INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX6. EXPOSED PAD DIMENSION DOES INCLUDE MOLD FLASH. MOLD FLASH ON E-PAD SHALL NOT EXCEED 0.254mm (.010") PER SIDE.

0.254(.010) 0° – 6° TYP

DETAIL “A”

DETAIL “A”

GAUGE PLANE

RECOMMENDED SOLDER PAD LAYOUT

BOTTOM VIEW OFEXPOSED PAD OPTION

2.845 ±0.102(.112 ±.004)2.845 ±0.102

(.112 ±.004)

4.039 ±0.102(.159 ±.004)

(NOTE 3)

1.651 ±0.102(.065 ±.004)

1.651 ±0.102(.065 ±.004)

0.1016 ±0.0508(.004 ±.002)

1 2 3 4 5 6

3.00 ±0.102(.118 ±.004)

(NOTE 4)

0.406 ±0.076(.016 ±.003)

REF

4.90 ±0.152(.193 ±.006)

DETAIL “B”CORNER TAIL IS PART OF

THE LEADFRAME FEATURE.FOR REFERENCE ONLY

NO MEASUREMENT PURPOSE

0.12 REF

0.35REF

5.10(.201)MIN

3.20 – 3.45(.126 – .136)

0.889 ±0.127(.035 ±.005)

0.42 ±0.038(.0165 ±.0015)

TYP

0.65(.0256)

BSC

MSE Package12-Lead Plastic MSOP, Exposed Die Pad

(Reference LTC DWG # 05-08-1666 Rev G)

Page 35: LT3045-1: 20V, 500mA, Ultralow Noise,FREQUENCY (Hz) 10 100 1k 10k 100k 1M 10M 0.01 0.1 1 10 100 1000 NOISE (µV/∆ Hz) 30451 TA01b + – 100µA IN EN/UV PGFB VIOC GND OUT LT3045-1

LT3045-1

3530451fa

For more information www.linear.com/LT3045-1

Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.

REVISION HISTORYREV DATE DESCRIPTION PAGE NUMBER

A 09/17 Modified Typical Application circuit.Modified conditions for 3 VIOC curves: IOUT = 1mA.Modified Figure 11.

11223

Page 36: LT3045-1: 20V, 500mA, Ultralow Noise,FREQUENCY (Hz) 10 100 1k 10k 100k 1M 10M 0.01 0.1 1 10 100 1000 NOISE (µV/∆ Hz) 30451 TA01b + – 100µA IN EN/UV PGFB VIOC GND OUT LT3045-1

LT3045-1

3630451fa

For more information www.linear.com/LT3045-1

LT 0917 REV A • PRINTED IN USA

LINEAR TECHNOLOGY CORPORATION 2017www.linear.com/LT3045-1

RELATED PARTS

TYPICAL APPLICATION

+–

100µA

IN

EN/UV

PGFB

GND

OUT

LT3045-1

ILIM PG 10µF

20mΩ

VOUT: VARIABLEIOUT(MAX): 1A

30451 TA13

SET

OUTS

+–

100µA

IN

EN/UV

PGFB

GND

OUT

LT3045-1

VIOC

VIOC ILIM PG 10µF

20mΩ

VIN

SET

OUTS

0.47µF

R3

R1

R2

UPSTREAMDC/DC CONVERTER

SWIN

FB

Parallel Devices

PART NUMBER DESCRIPTION COMMENTS

LT1761 100mA, Low Noise LDO 300mV Dropout Voltage, Low Noise: 20µVRMS, VIN = 1.8V to 20V, TSOT-23 Package

LT1763 500mA, Low Noise LDO 300mV Dropout Voltage, Low Noise: 20μVRMS, VIN = 1.8V to 20V, 4mm × 3mm DFN and SO-8 Packages

LT3042 200mA, Ultralow Noise and Ultrahigh PSRR LDO 0.8μVRMS Noise and 79dB PSRR at 1MHz, VIN = 1.8V to 20V, 350mV Dropout Voltage, Programmable Current Limit and Power Good, 3mm × 3mm DFN and MSOP Packages

LT3045 500mA, Ultralow Noise and Ultrahigh PSRR LDO 0.8μVRMS Noise and 76dB PSRR at 1MHz, VIN = 1.8V to 20V, 260mV Dropout Voltage, Programmable Current Limit and Power Good, 3mm × 3mm DFN and MSOP Packages

LT3065 500mA Low Noise LDO with Soft-Start 300mV Dropout Voltage, Low Noise: 25μVRMS, VIN = 1.8V to 45V, 3mm × 3mm DFN and MSOP Packages

LT3080 1.1A, Parallelable, Low Noise, Low Dropout Linear Regulator 300mV Dropout Voltage (2-Supply Operation), Low Noise: 40μVRMS, VIN: 1.2V to 36V, VOUT: 0V to 35.7V, Current-Based Reference with 1-Resistor VOUT Set; Directly Parallelable (No Op Amp Required), Stable with Ceramic Capacitors; TO-220, DD-Pak, SOT-223, MSOP and 3mm × 3mm DFN-8 Packages; LT3080-1 Version Has Integrated Internal Ballast Resistor

LT3085 500mA, Parallelable, Low Noise, Low Dropout Linear Regulator

275mV Dropout (2-Supply Operation), Low Noise: 40μVRMS, VIN: 1.2V to 36V, VOUT: 0V to 35.7V, Current-Based Reference with 1-Resistor VOUT Set, Directly Parallelable (No Op Amp Required), Stable with Ceramic Capacitors; MS8E and 2mm × 3mm DFN-6 Packages