LT-2.3 Corona Set09

Embed Size (px)

Citation preview

  • 8/13/2019 LT-2.3 Corona Set09

    1/152

    LneasdeTransmis

    inUNI-FASP

    Fredy Saravia PoicnIng. Electricista, [email protected]

    Lima, Setiembre del 2009

    Efecto Corona en Lneas deTransmisin

    Lneas de Transmisin

    Universidad Nacional de IngenieraFacultad de Ingeniera Mecnica

    Departamento de Electricidad

  • 8/13/2019 LT-2.3 Corona Set09

    2/152

    LneasdeTransmis

    inUNI-FASP

    Efecto Corona

    Descarga Elctrica autosostenida en lacual la intensidad de campo de ionizacines localizada sobre una parte en elespaciamiento entre conductores.

    La descarga puede ser unipolar o bipolar. La corriente de descarga corona se

    compone de impulsos de frente de ondamuy cortos (decenas de nanosegundos)con altas frecuencias creando unaradiacin electromgntica intensa.

    -

    N

    ++

    +

    +

    +

    +

    +

    +

    +

    ----

    --

    --

    --

    --

    --

    --

    ----

    ----

    --

    --

    --

    --

    + --

    + --

    + -- --

    --

    --

    -- --

    +

    ++

    + ++

    +

    +

    +

    +

    +

    +

    + +

    ++

    ++

    +

    -- --

    ----

    ----

    --

    --+

    +

    +

    ++

    +

    ++

    ++

    +

    +

    +

    ++

    +

    +

    ++

    +

    +

    +

    +

    +

    --

    --

    --

    --

    --

    --

    --

    ++

    +

    +

    +

  • 8/13/2019 LT-2.3 Corona Set09

    3/152

    LneasdeTransmis

    inUNI-FASP

    Fenmeno Corona

    Tensin Crtica Disruptiva

    Tensin a la cual se produce la perforacin del dielctrico. Corresponde a ungradiente en la superficie igual a la resistencia dielctrica del aire: go= 30 kV/cm bajo25C y 76 mm HG

    Tensin Visual Disruptiva

    Tensin a la cual el fenmeno

    corona es observado

    x

    d

    +q

    -q

    N

    P

    c

    cdrdlnrmV 1.21

    otb27392.3

    - Factor densidad aire

    b - mm Hg

    m - rugosidad (0.87-1)

    rC- radio conductor, cm

    d - entre fases, cm.

    Cc

    cVVrr

    dlnrmV

    3.011.21

  • 8/13/2019 LT-2.3 Corona Set09

    4/152

    LneasdeTransmis

    inUNI-FASP

    Prdidas por EfectoCorona

    Para condiciones de mal tiempo la Vdse afecta por 0.8

    Prdidas Corona:Es la potencia que requieren tomar del sistema para que losiones producidos por el campo elctrico (cargas) se muevan alrededor delconductor. Es un fenmeno resistivo.

    Las prdidas corona se determinan experimentalemnte mediante balances depotencia y energa. En algunos casos se realizan mediciones especiales.

    kV/km/faseVVd

    rfP

    dOpF

    C

    C

    521025

    241

    Frmula de Peek

  • 8/13/2019 LT-2.3 Corona Set09

    5/152

    LneasdeTransmis

    inUNI-FASP

    Factores en Prdidas Corona

    Elctricos

    Dependen de la frecuencia (CCr => >Pc

    Nmero de conductores por faseEstado de la superficie del conductor

    Calor del conductor por la Icarga

    Mayor E

    Menor Ud

  • 8/13/2019 LT-2.3 Corona Set09

    6/152

    LneasdeTransmis

    inUNI-FASP

    Formas de reducir Corona

    Aumentar el dimetro del conductor.

    Uso de conductores huecos

    Mayor costo

    Mayor seccinOtra tecnologa

    Lneas de fases mltiples

    Unom

    kV

    Conductor

    por fase

    Dimetro

    del

    Conductor

    Mm

    Seccin

    mm2

    110 1 11.3 70

    220 1 21.6 240330 2 (*) 23.5 300

    500 3 25.2 330

    750 4 29.0 400

  • 8/13/2019 LT-2.3 Corona Set09

    7/152

    LneasdeTransmis

    inUNI-FASP

    Diseos Considerando Corona

    Es deseable evitar el efecto coronaen condiciones de tiempo normal yreducirla en condiciones de maltiempo.

    Se requiere evaluar los costos paraadoptar otros diseo (mayoresdistancias al suelo, mayor seccin,disposicin, etc.).

    Se consideran valores aceptables de1 kW/milla en buen tiempo y 3

    kW/milla en mal tiempo.

  • 8/13/2019 LT-2.3 Corona Set09

    8/152

    LneasdeTransmis

    inUNI-FASP

    Ventajas y Desventajas

    Ventajas

    Reduce la alta tensin de la onda de frente inclinada cuando hay descargasatmsfricas sobre las lneas, disipando la energa como prdida corona.

    Desventajas.

    Radio interferencias : La descarga corona emite radiaciones que se introducencomo ruidos en lneas de comunicaciones, radio, TV; siendo importanteevaluarlas en V>200 kV

    Interferencia inductiva entre las lneas de potencia y de comunicaciones.

    Las lneas de transmisin aumentan los campos electromagnticos yelectrostticos en magnitud sufoiciente para inducir corrientes y tensiones enlneas vecinas.

  • 8/13/2019 LT-2.3 Corona Set09

    9/152

    LneasdeTransmis

    inUNI-FASP

    Lneas deTransmisin UNI - FASP

    El efecto corona se presenta cuando elpotencial de un conductor en el aire seeleva hasta valores tales que sobrepasanla rigidez dielctrica del aire que rodea alconductor. El efecto corona se manifiestapor luminiscencias o penachos azuladosque aparecen alrededor del conductor,mas o menos concentrados en lasirregularidades de su superficie.

    SISTEMAS DE TRANSMISINDE ALTO VOLTAJE EN CORRIENTE CONTINUA (HVDC)

    EL EFECTO CORONA

  • 8/13/2019 LT-2.3 Corona Set09

    10/152

    LneasdeTransmis

    inUNI-FASP

    Lneas deTransmisin UNI - FASP

    La descarga va acompaada de unsonido silbante y de olor de ozono. Si hayhumedad apreciable, se produce cido

    nitroso. La corona se debe a la ionizacindel aire. Los iones son repelidos yatrados por el conductor a grandesvelocidades, producindose nuevos ionespor colisin. El aire ionizado resultaconductor (si bien de alta resistencia) yaumenta el dimetro eficaz del conductormetlico.

    SISTEMAS DE TRANSMISINDE ALTO VOLTAJE EN CORRIENTE CONTINUA (HVDC)

    EL EFECTO CORONA

  • 8/13/2019 LT-2.3 Corona Set09

    11/152

    LneasdeTransmis

    inUNI-FASP

    Lneas deTransmisin UNI - FASP

    En las lneas de transmisin, el efectocorona origina prdidas de energa y, sialcanza cierta importancia, produce

    corrosiones en los conductores a causadel cido formado.El efecto corona es funcin de doselementos: el gradiente potencial en lasuperficie del conductor y la rigidezdielctrica del aire en la superficie, valorque a su vez depende de la presinatmosfrica y la temperatura.

    SISTEMAS DE TRANSMISINDE ALTO VOLTAJE EN CORRIENTE CONTINUA (HVDC)

    EL EFECTO CORONA

  • 8/13/2019 LT-2.3 Corona Set09

    12/152

    LneasdeTransmis

    inUNI-FASP

    SISTEMAS DE TRANSMISINDE ALTO VOLTAJE EN CORRIENTE CONTINUA (HVDC)

    Donde: Vces el valor de tensin crtica disruptiva en kV. es el factor de densidad del aire. res el radio del conductor en centmetros. DMGes la distancia media geomtrica entre fases. RMGes el radio medio geomtrico. nes el nmero de conductores por fase.

    kr es el coeficiente de rugosidad del conductor empleado, cuyovalor suele ser: 1 para conductores nuevos. 0,98 - 0,93 para conductores viejos (con

    protuberancias). 0,87 - 0,83 para cables formados por hilos.

    kmes el coeficiente medioambiental, cuyo valor suele ser: 1 cuando el aire es seco. 0,8 para aire hmedo o contaminado.

    kges el factor de cableado.

    El efecto corona se producir cuandola tensin de la lnea supere la tensincrtica disruptiva del aire, es decir,aquel nivel de tensin por encima delcual el aire se ioniza. La frmula msutilizada para la determinacin de latensin crtica disruptiva es lapropuesta por el ingeniero americanoF.W. Peek:

    CLCULO DE LA TENSIN CRTICA DISRUPTIVA

  • 8/13/2019 LT-2.3 Corona Set09

    13/152

    LneasdeTransmis

    inUNI-FASP

    Lneas deTransmisin UNI - FASP

    El clculo de RMGy DMGdepender encada caso de la geometra de la lneaelctrica.El factor de densidad del aire se calcula

    como:

    Donde:T es la temperatura del aire en gradoscelsius

    Pes la presin del aire en milmetros demercurio.

    SISTEMAS DE TRANSMISINDE ALTO VOLTAJE EN CORRIENTE CONTINUA (HVDC)

    CLCULO DE LA TENSIN CRTICA DISRUPTIVA

  • 8/13/2019 LT-2.3 Corona Set09

    14/152

    LneasdeTransmis

    inUNI-FASP

    Lneas deTransmisin UNI - FASP

    Para aquellos casos en los que se produce el efecto corona, laprdida de potencia se calcula segn la frmula:

    Donde:Pces la prdida de potencia en kW/km.es el factor de densidad del aire.fes la frecuencia de la lnea en HzDMGes la distancia media geomtrica entre fases.RMGes el radio medio geomtrico.Vses el valor de la tensin fase-neutro (o tensin simple) en kV.Vces el valor de tensin crtica disruptiva en kV.

    SISTEMAS DE TRANSMISINDE ALTO VOLTAJE EN CORRIENTE CONTINUA (HVDC)

    CLCULO DE LAS PRDIDAS DE POTENCIA

  • 8/13/2019 LT-2.3 Corona Set09

    15/152

    Physics of Corona and Gap

    DischargesAC and DC Transmission Line

    Corona EffectsUV Inspection Users Group MeetingFebruary 11-13, 2004

    ORLANDO, Florida, USABy

    Dr. P. Sarma Maruvada

    Notas en espaol agregadas por Ing. Ariel Lichtigexclusivamente para curso teora de Campos-FIUBA

  • 8/13/2019 LT-2.3 Corona Set09

    16/152

    Introduction

    Electrical Design, Operation & Maintenance of HVTransmission Lines Requires Consideration of:

    -Air Insulation

    - Corona

    - Insulators

    All Three Aspects Require Knowledge of Electrical

    Discharges in Air, Which May Comprise:- Partial Breakdown (Corona)

    - Complete Breakdown (Gap Discharges)

  • 8/13/2019 LT-2.3 Corona Set09

    17/152

    Corona & Gap Discharges

    Coronais an electrical discharge (i.e. partialbreakdown of air insulation) occurring in the highelectric field region, generally in the vicinity ofconducting surfaces, but sometimes also nearinsulating surfaces, due to ionization processes in air.

    Resulta de procesos de avalanchas de electrones bajocondiciones de campo no uniforme que produce quela avalancha cese antes de llegar a tierra.

    Complete electrical breakdown of air insulationbetween two electrodes separated by a very small gapis known as a micro-gap discharge or simply as Gap

    Discharge.

  • 8/13/2019 LT-2.3 Corona Set09

    18/152

    Basic Ionization Processes

    Ionization and excitation by electron impactA: molcula neutra A*: excitada e inestable

    A + e A*+ e (excitation)

    A* A + hfp (photo-emission)A + e A++ e + e (ionization, si E es >, e no slosube de rbita sino que se separa)

    Photo excitation & ionization

    A + hfpA* (photo-excitation)

    A + hfpA++ e (photo-ionization,con ms energa)

  • 8/13/2019 LT-2.3 Corona Set09

    19/152

    Basic Ionization Processes

    Electron attachment

    A + e A-

    RecombinationA++ B-A + B + hfp(radiative recombination, only with electrons)

    The energy of photons, or the frequency of light, depends on thedifference in the orbital energies of the electron

    El nitrgeno no tiene afinidad con electrones

  • 8/13/2019 LT-2.3 Corona Set09

    20/152

    LneasdeTransmisinUNI-FASP

    Discharge in Uniform Fields

    Field intensified ionization & electron avalanche+ : iones, ms lentos - : electrones libres

    electric field

  • 8/13/2019 LT-2.3 Corona Set09

    21/152

    LneasdeTransmisinUNI-FASP

    Discharge in Uniform Fields

    Discharge development & breakdownLos iones positivos golpean el ctodo y liberan ms electrones. Si hay suficiente

    campo, el proceso se autosostiene

    H V

    iA

    Cathode

    Anode

  • 8/13/2019 LT-2.3 Corona Set09

    22/152

    Breakdown and Corona

    Excitation of molecules and photon emission occursimultaneously with ionization.

    Secondary ionization processes, due to impact of ions or

    photons, play a crucial role in breakdown. In non-uniform fields, such as in a conductor-plane gap, only

    partial breakdown or coronaoccurs (al disminuir el campo).

  • 8/13/2019 LT-2.3 Corona Set09

    23/152

    Modes of Corona in Air

    Negative DC CoronaModes:Se crea una carga espacialque cambia la distribucinde campo.

    - Trichel Pulse- Negative Glow

    - Negative streamerDepende se losconstituyentes (N2, O2),generacin de fotones,carga espacial.

    Modes of Corona in Air: Visual

  • 8/13/2019 LT-2.3 Corona Set09

    24/152

    LneasdeTransmisinUNI-FASP

    Modes of Corona in Air: VisualAppearance of Negative DC Modes

    Para punta de d=0,8 cm sobre esfera deD=7cm, gap=19 cm, exposicin

    segundoTrichel

    pulse

    Glow

    Streamer

  • 8/13/2019 LT-2.3 Corona Set09

    25/152

    Modes of Corona in Air

    Positive DC Corona Modes:

    - Onset Streamer (el ms

    importante)- Positive Glow

    - Breakdown Streamer

  • 8/13/2019 LT-2.3 Corona Set09

    26/152

    Appearance of Positive DC Modes

    Para punta de d=0,8 cm sobreesfera de D=7cm, gap=19 cm,

    exposicin segundo

    Onset streamerGlow

  • 8/13/2019 LT-2.3 Corona Set09

    27/152

  • 8/13/2019 LT-2.3 Corona Set09

    28/152

    Gap Discharges in Air

    Gap Discharges may Occur:

    Between metallic hardware parts of transmission and distribution

    lines; Between metallic and insulating surfaces;

    On the surface of polluted insulators

  • 8/13/2019 LT-2.3 Corona Set09

    29/152

    LneasdeTransmisinUNI-FASP

    Gap Discharges in Air

    General Mechanism

    g

    1

    U

    Gap

    Z

    Z U2

    Divisor

    capacitivo

  • 8/13/2019 LT-2.3 Corona Set09

    30/152

    LneasdeTransmisinUNI-FASP

    Gap Discharges in Air

    Typical Current Pulse Produced

    rT

    T

    d

    Current

    I cr

    Time

    ns s

  • 8/13/2019 LT-2.3 Corona Set09

    31/152

    Light Emission from Discharges

    Excitation: A + e A*+ e

    Photo-emission: A*A + hfp

    with hfp= (E2E1)

    where E2is the energy of the excited state and E1is the

    energy of the ground state to which the moleculereturns.

    Light spectrum emitted in air is mainly that of

    molecular nitrogen. Excitation potentials of N2= 6.3 eV and of

    O2= 7.9 eV

    La mayora de los fotones est producida por N2

    Di f th El t i d Vib ti l

  • 8/13/2019 LT-2.3 Corona Set09

    32/152

    Diagram of the Electronic and Vibrational

    Energy Levels of the Nitrogen Molecule

    Distintos tipos de fotnsegn el salto de energa

  • 8/13/2019 LT-2.3 Corona Set09

    33/152

    Light Emission from Discharges

    The frequency band of light emitted is in the UV range, with the

    stronger emissions having wavelengths in the range of 300 nm to500 nm and the weaker emissions in the range of 80 nm to 200 nm.

    The excitation coefficient (i.e. number of molecules excited by anelectron drifting 1 cm in the field direction) depends on the

    composition of air and is a function of E/p (cociente campoelctrico/presin)

  • 8/13/2019 LT-2.3 Corona Set09

    34/152

    Light Emission from Discharges

    Presence of any trace gases such as argon, carbon dioxide etc.,can change the light spectrum emitted by discharges in air.

    Spectroscopic data in air suggest that sparks (breakdown)produce more intense light than streamers (corona).

  • 8/13/2019 LT-2.3 Corona Set09

    35/152

    Photoabsorption

    Photons emitted during the avalanche development in air areabsorbed:

    a) partly by other gas molecules;b) partly by the negative oxygen molecules in the gas,

    leading to photo-detachment;O2

    - + hfp O2 + e

    Other mechanisms leading to the loss of photons are:photoionization, step ionization, dissociation and dissociativeionization

  • 8/13/2019 LT-2.3 Corona Set09

    36/152

    LneasdeTransmi

    sinUNI-FASP

    Photoabsorption

    Overall photoabsorption may be characterized by I (intensidad de

    fotones):where is the absorption coefficient.

    Typical values of at atmospheric pressure are:

    For N2, = 0.3 cm-1,

    O2, = 30 cm-1,Air, = 5 cm-1

    A menor , se propaga mayor distancia

    The presence of moisture in air reduces by about 25%.

    xe0II

  • 8/13/2019 LT-2.3 Corona Set09

    37/152

    Radiation from a Corona Discharge

  • 8/13/2019 LT-2.3 Corona Set09

    38/152

    Radiation from Sun

  • 8/13/2019 LT-2.3 Corona Set09

    39/152

    LneasdeTransmi

    sinUNI-FASP

    Corona Onset Gradient (en kV pico/cm)

    c0c r

    K1EmE

    E0and K are empirical constants (for positive dc,E0=33.7 & K=0.24, for negative dc & ac, E0=30.0

    kV/cm & K = 0.30) = (273+t0).p/(273+t)p0 is the relative air density; t is

    the temperature and p the pressure of ambient air andt0and p0are reference values; (t0= 25C and p0= 760

    mm) rcis the conductor radius in cmm conductor surface irregularity factor, depende de la

    rugosidad superficial del conductor

  • 8/13/2019 LT-2.3 Corona Set09

    40/152

    Corona Effects on AC and DC

    Transmission Lines

    For both ac and dc lines: Corona (power) Loss (CL)

    Electromagnetic Interference (EMI) (Includes RI, TVI, etc.,)

    Audible Noise (AN)

    Ozone, NOxetc.For dc lines:

    Space Charge Effects

  • 8/13/2019 LT-2.3 Corona Set09

    41/152

    AC Space Charges and Corona Loss

    +++

    +++ +

    ++++

    +++

    + + ++

    --

    ------- - -

    -+

    ++++

    +

    +

    ++ + +

    +

    - ---

    ------ - - -

    -

    -----

    ---- - - -

    --

    --

    -------

    -----

    - - - - --

    -----

    --- +

    +

    ++

    +

    +

    +

    +

    ++

    +

    +

    +++

    +++++

    + ++

    --

    -----

    ------

    - - - --

    --

    ---

    ----

    -

    --

    --

    --

    - - --

    --

    --

    -- -

    ++ +

    ++

    +++

    +

    +++

    ++

    +

    ++

    ( a )( b )

    ( c ) ( d )

    ( e ) ( f ) I dba c tc e gfUIcorIcorona es capacitiva, pordesplazamiento de la carga espacial.

  • 8/13/2019 LT-2.3 Corona Set09

    42/152

    LneasdeTransmisinUNI-FASP

    Main Types of DC Transmission Lines

    Unipolar Lines

    Bipolar Lines

    Metallic return

    ( Optional)

    AC System AC SystemAC SystemAC System

  • 8/13/2019 LT-2.3 Corona Set09

    43/152

    LneasdeTransmisinUNI-FASP

    Physical Description of Unipolar Corona

    Unipolar ions created near the conductor drift towards the ground, fillingthe entire space

  • 8/13/2019 LT-2.3 Corona Set09

    44/152

    LneasdeTransmisinUNI-FASP

    Physical Description of Bipolar Corona

    Ions of both polarities fill the space, creating two unipolar regionsand a bipolar region

    PositiveNegative RegionRegion

    BipolarRegion

  • 8/13/2019 LT-2.3 Corona Set09

    45/152

    LneasdeTransmisinUNI-FASP

    Generation of RI

    Corona current pulse

    trains are injected intoconductors

    The high-frequency

    current components

    propagate along the

    conductors andproduce RI near the

    transmission line.

    time

    T

    T

    c+

    DC Positive

    DC Negative

    AC

    time

    time

    c-

    c+TPulsos aleatoriamentePulsos menores

    Ambos tipos

  • 8/13/2019 LT-2.3 Corona Set09

    46/152

    LneasdeTransmisinUNI-FASP

    Corona & Gap Discharge Current Pulse

    Characteristics

    Both positive andnegative corona, aswell as gap

    discharge, currentpulses have a fast-rising front (1 a 50ns) and a slowly

    decaying tail (50 a200 ns) as shown

    cr

    cr0.1 I

    0.9 I

    crI

    Tr Time

    Current

    dT

  • 8/13/2019 LT-2.3 Corona Set09

    47/152

    Corona Current Pulse Characteristics

    Type of Pulse Amplitude

    (mA)

    Rise-time

    (ns)

    Duration

    (ns)

    Repetition

    Rate

    (pulses/s)

    Positive Corona

    Negative Corona

    Gap Discharge

    10 50

    1 10

    500 - 2000

    50

    10

    1

    250

    100

    5

    103 5.10

    3

    104- 10

    5

    102 5.10

    3

  • 8/13/2019 LT-2.3 Corona Set09

    48/152

    LneasdeTransmisinUNI-FASP

    Corona Current Pulse Characteristics

    Frequency Spectra of

    Corona and Gap DischargePulses

    0.01 0.1 1.0 10.0 100.0 1000.050

    110

    100

    90

    80

    70

    60

    Frequency, MHz.

    F(

    )

    ,dB

    PositiveGap

    Negative

    RI Characteristics of AC Lines

  • 8/13/2019 LT-2.3 Corona Set09

    49/152

    LneasdeTransmisinUNI-FASP

    RI Characteristics of AC Lines

    RI from transmission lines is generally defined in terms of threecharacteristics:

    1. Frequency Spectrum

    0

    10

    20

    30

    40

    50

    60

    70

    0.2 0.3 0.5 1 2 3 5 10 20 300.1

    Frequency, MHz

    RI,

    dB(V/m)

    QP

    RI Ch t i ti f AC Li

  • 8/13/2019 LT-2.3 Corona Set09

    50/152

    LneasdeTransmisinUNI-FASP

    RI Characteristics of AC Lines

    2. Lateral Profile (proporcional a 1/D)

    0

    10

    20

    30

    40

    50

    60

    70

    075 50 25 25 50 75 100100- - - -

    RI,dB(V/m

    )QP

    Distance, m

    RI Characteristics of AC Lines

  • 8/13/2019 LT-2.3 Corona Set09

    51/152

    LneasdeTransmisinUNI-FASP

    RI Characteristics of AC Lines

    3. Statistical Distribution

    40 6020 25 30 35 45 50 55 65

    0.51.0

    2.0

    5.0

    10.0

    20.0

    30.040.0

    50.0

    60.0

    70.0

    80.0

    90.0

    95.0

    98.0

    99.0

    99.8

    99.9

    Perce

    ntageTimeAboveA

    bscissa

    RI, dB ( V /m ) QP

    RI Characteristics of DC Lines

  • 8/13/2019 LT-2.3 Corona Set09

    52/152

    LneasdeTransmisinUNI-FASP

    RI Characteristics of DC Lines

    Lateral Profile

    0

    10

    20

    30

    40

    50

    60

    70

    075 50 25 25 50 75 100100- - - -

    RI,dB(V/m

    )QP

    Distance, mEl positivo contribuyemucho ms a laradiointerferencia.Producida por lasdescargas tipo streamer.

    RI Ch t i ti f DC Li

  • 8/13/2019 LT-2.3 Corona Set09

    53/152

    LneasdeTransmisinUNI-FASP

    RI Characteristics of DC Lines

    Statistical Distribution

    40 6020 25 30 35 45 50 55 65

    0.5

    1.0

    2.0

    5.0

    10.0

    20.0

    30.0

    40.0

    50.0

    60.0

    70.0

    80.0

    90.0

    95.0

    98.0

    99.0

    99.8

    99.9

    Percenta

    geTimeAbove

    Abscissa

    RI, dB ( V /m ) QP

    Audible Noise Generation and

  • 8/13/2019 LT-2.3 Corona Set09

    54/152

    Audible Noise Generation andPropagation

    Generated Corona AcousticPulse

    AN Propagation

    - 2

    - 1

    0

    1

    2

    400 10 20 30 50 60 70 80

    Time, s.

    Pressure,

    Pa.

    r

    P

    O

    2

    xx

    R

    1-

    AN Characteristics of AC Lines

  • 8/13/2019 LT-2.3 Corona Set09

    55/152

    LneasdeTransmisinUNI-FASP

    AN Characteristics of AC Lines

    Audible noise from AC lines is described, similar to RI, in terms offrequency spectrum (figure below), lateral profile and statistical

    distribution

    6331 125 250 500 1000 2000 8000 160004000

    30

    40

    50

    60

    SoundPressureL

    evel,dBabove20

    PA

    Frequency, Hz

    Corona-generated Hum Noise

  • 8/13/2019 LT-2.3 Corona Set09

    56/152

    LneasdeTransm

    isinUNI-FASP

    Corona-generated Hum Noise

    Oscillatory movement of the ionic space charge creates hum noise attwice power frequency; Figure shows lateral profile of hum noise

    70

    60

    50

    40

    0 10 20 30 40 50

    Lateral Distance From Center Phase, m.

    SoundPressure

    Level,dBabove

    20PA

    AN Ch t i ti f DC Li

  • 8/13/2019 LT-2.3 Corona Set09

    57/152

    LneasdeTransm

    isinUNI-FASP

    AN Characteristics of DC Lines

    Lateral profile & Statistical distribution are similar to those for RI;Frequency spectrum is given below

    6331 125 250 500 1000 2000 8000 160004000

    30

    40

    50

    60

    SoundPressureL

    evel,dBabove20

    PA

    Frequency, Hz

  • 8/13/2019 LT-2.3 Corona Set09

    58/152

    DC Electric Field & Space Charge

    Profiles

    E

    (kV/m)

    20

    30

    10

    40

    60

    70

    80

    90

    100

    -10 0 10 20 30 40 500

    5

    10

    15

    20

    25

    Computed Electric Field

    j(nA/m

    )

    - +

    Distance from Centre of Line, m

    NegativePole

    Positive P ole

    Measured Electric

    Field

    ComputedCurrent Density

    Measured

    Current Density

    g

    50

    g

    2

  • 8/13/2019 LT-2.3 Corona Set09

    59/152

  • 8/13/2019 LT-2.3 Corona Set09

    60/152

  • 8/13/2019 LT-2.3 Corona Set09

    61/152

  • 8/13/2019 LT-2.3 Corona Set09

    62/152

    DC Fields & Ions Design Criteria

    Design criteria for electric fields and ion currents under DC linesare established on the basis of human perception studies

    Based on such studies, the following design limits have been

    proposed:E = 25 kV/m (en ca 10 kV/m)

    j = 100 nA/m2 (corriente inica)

  • 8/13/2019 LT-2.3 Corona Set09

    63/152

    Corona Tutorial

    Dave PhillipsSubmarine Operating Authority Engineering

    Space and Naval Warfare Systems Center

    IEEE Joint Technical Committee Meeting 200

    Orlando, Florida7 January10 January

  • 8/13/2019 LT-2.3 Corona Set09

    64/152

    What Is Corona?

  • 8/13/2019 LT-2.3 Corona Set09

    65/152

    What Is Corona?

  • 8/13/2019 LT-2.3 Corona Set09

    66/152

    What Is Corona?

  • 8/13/2019 LT-2.3 Corona Set09

    67/152

    What Is Corona?

    Corona is a luminous

    discharge due to ionization ofthe air surrounding anelectrode, caused by a

    voltage gradient exceeding acertain critical value.

    E l f C d C

  • 8/13/2019 LT-2.3 Corona Set09

    68/152

    Example of Conductor Corona

  • 8/13/2019 LT-2.3 Corona Set09

    69/152

    Whats The Fuss?

    Corona from conductors andhardware may cause audible noise

    and radio noise

  • 8/13/2019 LT-2.3 Corona Set09

    70/152

    Whats The Fuss?

    Corona from conductors andhardware may cause audible noise

    and radio noiseAudible noise from conductors may

    violate noise standards

  • 8/13/2019 LT-2.3 Corona Set09

    71/152

    Que es este alboroto?

    Corona from conductors andhardware may cause audible noise

    and radio noiseAudible noise from conductors may

    violate noise standards

    Radio noise from conductors mayinterfere with communications ornavigation

  • 8/13/2019 LT-2.3 Corona Set09

    72/152

    Whats The Fuss?

    Corona from conductors and hardwaremay cause audible noise and radio noise

    Audible noise from conductors mayviolate noise standards

    Radio noise from conductors may

    interfere with communications ornavigation

    Corona loss may be significant whencompared with resistive loss of

  • 8/13/2019 LT-2.3 Corona Set09

    73/152

    Whats The Fuss?

    Corona from conductors and hardware maycause audible noise and radio noise

    Audible noise from conductors may violate noisestandards

    Radio noise from conductors may interfere withcommunications or navigation

    Corona loss may be significant when comparedwith resistive loss of conductors

    Corona can cause possible damage to polymericinsulators

  • 8/13/2019 LT-2.3 Corona Set09

    74/152

    Corona Discharge Currents are Impulsive

    Ic(t)

    t

    0.010.1 sec

  • 8/13/2019 LT-2.3 Corona Set09

    75/152

    Physical Parameters of Corona

    Corona is caused by the ionization of the media (air)surrounding the electrode (conductor)

  • 8/13/2019 LT-2.3 Corona Set09

    76/152

    Physical Parameters of Corona

    Corona is caused by the ionization of the media (air)surrounding the electrode (conductor)

    Corona onset is a function of voltage

  • 8/13/2019 LT-2.3 Corona Set09

    77/152

  • 8/13/2019 LT-2.3 Corona Set09

    78/152

    Physical Parameters of Corona

    Corona is caused by the ionization of the media (air)surrounding the electrode (conductor)

    Corona onset is a function of voltage

    Corona onset is a function of relative air density Corona onset is a function of relative humidity

  • 8/13/2019 LT-2.3 Corona Set09

    79/152

  • 8/13/2019 LT-2.3 Corona Set09

    80/152

    Corona and the Electric Field

    Corona is NOT solely a function of the Electric Field

    Corona is a function of the electric field on the surface of theelectrode (conductor)

  • 8/13/2019 LT-2.3 Corona Set09

    81/152

    Corona and the Electric Field

    Corona is NOT solely a function of the Electric Field

    Corona is a function of the electric field on the surface of theelectrode (conductor)

    Corona is also a function of the radius of curvature of theelectrode (conductor)

  • 8/13/2019 LT-2.3 Corona Set09

    82/152

    Corona and the Electric Field

    Corona is NOT solely a function of the Electric FieldCorona is a function of the electric field on the surface of the

    electrode (conductor)Corona is also a function of the radius of curvature of the

    electrode (conductor)Corona is also a function of the rate of decay of the electric

    field away from the electrode (conductor)

  • 8/13/2019 LT-2.3 Corona Set09

    83/152

    Corona and the Relative Air

  • 8/13/2019 LT-2.3 Corona Set09

    84/152

    Corona and the Relative AirDensity

    Corona and the Relative Air

  • 8/13/2019 LT-2.3 Corona Set09

    85/152

    Corona and the Relative AirDensity

    Corona has an inverse relationship with air density

    Corona and the Relative Air

  • 8/13/2019 LT-2.3 Corona Set09

    86/152

    Corona and the Relative AirDensity

    Corona has an inverse relationship with air density

    Standard line designs that perform well at sea level, mayhave significant corona issues if used on lines that are

    installed over mountainous areas

  • 8/13/2019 LT-2.3 Corona Set09

    87/152

    Corona and the Humidity

  • 8/13/2019 LT-2.3 Corona Set09

    88/152

    Corona and the Humidity

    Corona has an inverse relationship with humidity at powerfrequencies

  • 8/13/2019 LT-2.3 Corona Set09

    89/152

    Corona and the Humidity

    Corona has an inverse relationship with humidity at powerfrequencies

    Fair weather corona is more prevalent in low humidity

    environments

    Corona Is Dependent

  • 8/13/2019 LT-2.3 Corona Set09

    90/152

    Surface Condition Of The

    Conductors

    Corona Is DependentS f C di i Of Th

  • 8/13/2019 LT-2.3 Corona Set09

    91/152

    Surface Condition Of The

    Conductors Corona is enhanced by irregularities on the conductor

    surface

    Corona Is DependentS f C diti Of Th

  • 8/13/2019 LT-2.3 Corona Set09

    92/152

    Surface Condition Of The

    Conductors Corona is enhanced by irregularities on the conductor

    surface

    Irregularities include: dust, insects, burrs and scratches

    and water drops present on new conductors

    Corona Is DependentS f C diti Of Th

  • 8/13/2019 LT-2.3 Corona Set09

    93/152

    Surface Condition Of The

    Conductors Corona is enhanced by irregularities on the conductor

    surface Irregularities include: dust, insects, burrs and scratches

    and water drops present on new conductors Corona will generally be greater on new conductors and

    will decrease to a steady-state value over a period ofapproximately one year in-service

    Corona Is DependentS f C diti Of Th

  • 8/13/2019 LT-2.3 Corona Set09

    94/152

    Surface Condition Of The

    ConductorsCorona is enhanced by irregularities on the

    conductor surface Irregularities include: dust, insects, burrs and

    scratches and water drops present on newconductors

    Corona will generally be greater on newconductors and will decrease to a steady-

    state value over a period of approximatelyone year in-service

    Corona is significantly increased in foulweather.

    Corona Is Dependent On

  • 8/13/2019 LT-2.3 Corona Set09

    95/152

    Corona Is Dependent OnLocal Electrode Geometry

    Corona Is Dependent On

  • 8/13/2019 LT-2.3 Corona Set09

    96/152

    Corona Is Dependent OnLocal Electrode Geometry

    Non-Critical Surfaces

    Non-Critical Surface

    Critical SurfacesNumber of Elements =210

    Critical Section

    Corona Is Dependent On

  • 8/13/2019 LT-2.3 Corona Set09

    97/152

    Corona Is Dependent OnLocal Electrode Geometry

    Corona Is Dependent On

  • 8/13/2019 LT-2.3 Corona Set09

    98/152

    Corona Is Dependent OnLocal Electrode Geometry

    r

    S

    Ground Plane V = 0

    Sphere V = V0

    Corona Is Dependent On

  • 8/13/2019 LT-2.3 Corona Set09

    99/152

    Corona Is Dependent OnLocal Electrode Geometry

    0 0.5 1 1.5 2 2.5 3 3.5 4 4.50

    500

    1000

    1500

    2000

    2500

    3000Actual Electric Field vs. Distance

    Distance (cm)

    ElectricField(V/cm

    )

    1 cm

    2 cm

    3 cm

    4 cm

    5 cm

    6 cm

    7 cm8 cm

    9 cm

    Why is it a special problem for

  • 8/13/2019 LT-2.3 Corona Set09

    100/152

    Why is it a special problem for

    voltage upgrades?If the voltage of a transmission line is increased

    without changing the line design, the electric field

    at the surface of the line conductors (and hardware)

    will increase. This increase will cause additional

    corona

    The same can be said for compact transmission

    lines

    Practical Consequences

  • 8/13/2019 LT-2.3 Corona Set09

    101/152

    1. Larger conductors betterto a point

    2. Use conductor bundles to reduce corona

    3. Corona phenomena much worse in foul we

    4. Compact lines more susceptible5. New conductors can lead to poor corona p

  • 8/13/2019 LT-2.3 Corona Set09

    102/152

  • 8/13/2019 LT-2.3 Corona Set09

    103/152

    Ca tions Regarding Radio Noise

  • 8/13/2019 LT-2.3 Corona Set09

    104/152

    Cautions Regarding Radio Noise

    Radio noise from corona should not be confused with radionoise generated by spark discharge

    High frequency complaints are almost always due to

    sparks

    Cautions Regarding Radio Noise

  • 8/13/2019 LT-2.3 Corona Set09

    105/152

    Cautions Regarding Radio Noise

    Radio noise from corona should not be confused with radionoise generated by spark discharge

    High frequency complaints are almost always due to

    sparks Causes of spark discharges can be located and repaired

    Cautions Regarding Radio Noise

  • 8/13/2019 LT-2.3 Corona Set09

    106/152

    Cautions Regarding Radio Noise

    Radio noise from corona should not be confused with radionoise generated by spark discharge

    High frequency complaints are almost always due to

    sparks Causes of spark discharges can be located and repaired

    Corona is a DESIGN ISSUE

    Cautions Regarding Radio Noise

  • 8/13/2019 LT-2.3 Corona Set09

    107/152

    Cautions Regarding Radio Noise

    Radio noise caused by corona cannot be reduced bychanging the line configuration near where the noiseproblem is occuring. The source of the problem can beseveral miles away

    A dibl N i

  • 8/13/2019 LT-2.3 Corona Set09

    108/152

    Audible Noise

    Can get broadband noise and hum

    Load can affect audible noise

    For measurement see:

    ANSI/IEEE Standard 656-1992IEEE Standard

    For Measurement of Audible Noise from Overhead

    Transmission Lines

    Audible Noise

  • 8/13/2019 LT-2.3 Corona Set09

    109/152

    Audible Noise

    May be present as 120 Hz Hum or broadband noise

    Can be affected by load

    Audible Noise

  • 8/13/2019 LT-2.3 Corona Set09

    110/152

    Audible Noise

    Audible Noise

  • 8/13/2019 LT-2.3 Corona Set09

    111/152

    Audible Noise

    May be present as 120 Hz Hum or broadband noise

    Audible Noise

  • 8/13/2019 LT-2.3 Corona Set09

    112/152

    Audible Noise

    May be present as 120 Hz Hum or broadband noise

    Can be affected by load

    Audible Noise in Context

  • 8/13/2019 LT-2.3 Corona Set09

    113/152

    50

    55

    60

    65

    Audible

    Noise dBA

    30 meters

    from

    centerline

    NumerouscomplaintsModerate

    complaintsNo

    complaints

    Source: BPA study

    Common design limit53 dBA

    EPA RegulationsEffect Level Area

  • 8/13/2019 LT-2.3 Corona Set09

    114/152

    Effect Level Area

    Outdoor

    activity

    Indoor

    activity

    Ldn< 55 dBA

    Residential areas

    and farms where.. quiet is a basis

    for use

    Leq(24)< 55 dBA

    Areas where

    people spend

    limited time

    Ldn< 45 dBA

    Leq(24)< 45 dBA

    Residential

    Other

    Ldn(has a -10 dB adder nightime) Leq(24)(24 hour average)

    Tradeoff: Magnetic Field vs. Audible Noise

  • 8/13/2019 LT-2.3 Corona Set09

    115/152

    x

    y

    Effect of Changing Conductor Phasing

    A

    B

    C

    A or C

    B

    C orA

    WhiteABCABC Super Bundle

    RedABCCBA Low Reactance

    500 kV Double Circuit Line

    Magnetic Field is Reduced

  • 8/13/2019 LT-2.3 Corona Set09

    116/152

    0

    5

    10

    15

    20

    25

    0 20 40 60 80 100 120

    Distance from Center Line

    MagneticF

    ield(mG

    ABCABC Super Bundle

    ABCCBA Low Reactance

    Audible Noise is Increased

  • 8/13/2019 LT-2.3 Corona Set09

    117/152

    52

    54

    56

    58

    60

    62

    64

    0 20 40 60 80 100 120

    Distance from Center Line (m)

    AudibleNoise(dBA

    ABCCBA (Low Reactance)

    ABCABC (Super Bundle)

    Audible Noise is Increased

    Corona Loss

  • 8/13/2019 LT-2.3 Corona Set09

    118/152

    What is it?

    Whenever corona occurs on a transmission line, there is a corresponding loss ofenergy called corona loss. This loss is one of the reasons why the transmission of

    electric energy between two points is not perfect.

    When can it be a problem?

    Generally, corona loss is significantly less than resistive loss. However, at highervoltages, high altitudes and during foul weather, corona loss can actually exceedresistive loss.

    A Word On Corona Losses

  • 8/13/2019 LT-2.3 Corona Set09

    119/152

    A Word On Corona Losses

    A Word On Corona Losses

  • 8/13/2019 LT-2.3 Corona Set09

    120/152

    A Word On Corona Losses

    Whenever corona occurs on a transmission line, there is acorresponding loss of energy called corona loss. This

    loss is one of the reasons why the transmission of electricenergy between two points is not perfect

    A Word On Corona Losses

  • 8/13/2019 LT-2.3 Corona Set09

    121/152

    A Word On Corona Losses

    Whenever corona occurs on a transmissionline, there is a corresponding loss of energycalled corona loss. This loss is one of the

    reasons why the transmission of electricenergy between two points is not perfect

    Generally, corona loss is significantly less

    than resistive loss. However, at highervoltages, high altitudes and during foulweather, corona loss can actually exceedresistive loss

    Example Losses (sea level)

  • 8/13/2019 LT-2.3 Corona Set09

    122/152

    Example Losses (sea level)

    Line

    Voltage (kV)

    Bundle

    n x 2a

    Load

    MVA

    I2R Loss

    kW/km

    Corona Loss (kW/km)

    Average Maximum

    362

    550

    800

    2 x 3.16

    3 x 3.3

    4 x 3.3

    400

    900

    2000

    41

    52

    93

    2

    4

    8

    26

    78

    208

    Corona On Hardware

  • 8/13/2019 LT-2.3 Corona Set09

    123/152

    Transmission line hardware is usually tested in thelaboratory prior to being selected to determinewhether is corona free. This test is often done on asingle phase system in order to conserve laboratory

    space.

    It has been found that the traditional method of

    energizing the system to 110% of the rated line toground voltage is not sufficient, especially for lines

    of more compact design. Apparently, the hardware

    is exposed to higher gradients in the field than those

    Corona On Hardware

  • 8/13/2019 LT-2.3 Corona Set09

    124/152

    Corona On Hardware

    Corona On Hardware

  • 8/13/2019 LT-2.3 Corona Set09

    125/152

    Corona On Hardware

    Transmission line hardware is usually tested in thelaboratory prior to being selected to determine whether iscorona free. This test is often done on a single phasesystem in order to conserve laboratory space

    Corona On Hardware

  • 8/13/2019 LT-2.3 Corona Set09

    126/152

    Corona On Hardware

    Transmission line hardware is usually testedin the laboratory prior to being selected todetermine whether is corona free. This test is

    often done on a single phase system in orderto conserve laboratory space It has been found that the traditional method

    of energizing the system to 110% of the rated

    line to ground voltage is not sufficient,especially for lines of more compact design.Apparently, the hardware is exposed to highergradients in the field than those to which the

    hardware was tested

  • 8/13/2019 LT-2.3 Corona Set09

    127/152

  • 8/13/2019 LT-2.3 Corona Set09

    128/152

  • 8/13/2019 LT-2.3 Corona Set09

    129/152

    DAOS EN LINEAS DE SUB

  • 8/13/2019 LT-2.3 Corona Set09

    130/152

    TRANSMISION

  • 8/13/2019 LT-2.3 Corona Set09

    131/152

    DAOS EN SUBESTACIONES

  • 8/13/2019 LT-2.3 Corona Set09

    132/152

  • 8/13/2019 LT-2.3 Corona Set09

    133/152

    DAOS EN LINEAS DE TRANSMISION

  • 8/13/2019 LT-2.3 Corona Set09

    134/152

  • 8/13/2019 LT-2.3 Corona Set09

    135/152

  • 8/13/2019 LT-2.3 Corona Set09

    136/152

    DEFECTOS TIPICOS

  • 8/13/2019 LT-2.3 Corona Set09

    137/152

  • 8/13/2019 LT-2.3 Corona Set09

    138/152

  • 8/13/2019 LT-2.3 Corona Set09

    139/152

  • 8/13/2019 LT-2.3 Corona Set09

    140/152

    DEFECTOS CAUSADOS POR ELEFECTO CORONA

  • 8/13/2019 LT-2.3 Corona Set09

    141/152

    EFECTO CORONA

  • 8/13/2019 LT-2.3 Corona Set09

    142/152

  • 8/13/2019 LT-2.3 Corona Set09

    143/152

  • 8/13/2019 LT-2.3 Corona Set09

    144/152

  • 8/13/2019 LT-2.3 Corona Set09

    145/152

  • 8/13/2019 LT-2.3 Corona Set09

    146/152

  • 8/13/2019 LT-2.3 Corona Set09

    147/152

  • 8/13/2019 LT-2.3 Corona Set09

    148/152

  • 8/13/2019 LT-2.3 Corona Set09

    149/152

  • 8/13/2019 LT-2.3 Corona Set09

    150/152

  • 8/13/2019 LT-2.3 Corona Set09

    151/152

    FIN DE LA EXPOSICION

  • 8/13/2019 LT-2.3 Corona Set09

    152/152

    eTransmisinUNI-FASP

    MUCHAS GRACIAS

    POR SU ATENCIN

    [email protected]

    UNI Lim a Per

    LIMA - Telf. (051) 1 222 7069 - (051) 1 995 8271