34
1 Revision 1.0, 2015-10-13 About this document Scope and purpose This application note describes Infineon’s Silicon Germanium Low Noise Amplifier: BGA7L1BN6 as Low Noise Amplifier for LTE Band 5 application (869 - 894 MHz). 1. The BGA7L1BN6 is a Silicon Germanium low noise amplifier. 2. It covers the LTE application in the frequency range of 869 – 894 MHz. 3. In this report, the performance of BGA7L1BN6 for LTE Band 5 (869 – 894 MHz) is presented. The circuit uses only one inductor for input matching. The performance is measured on a FR4 board. 4. Key performance parameters at 2.8 V, 882 MHz (High Gain Mode) Noise Figure = 0.89 dB Gain = 13.1 dB Input return loss = 13.1 dB Output return loss = 13.5 dB Input P1dB = -1.5 dBm Silicon Germanium Low Noise Amplifier: BGA7L1BN6 Low Noise Amplifier for LTE Band 5 (869 – 894 MHz) using 0201 LQP Inductor Application Note AN457

Low Noise Amplifier for LTE band-5

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Low Noise Amplifier for LTE band-5

1 Revision 1.0, 2015-10-13

About this document

Scope and purpose

This application note describes Infineon’s Silicon Germanium Low Noise Amplifier: BGA7L1BN6 as Low Noise Amplifier for LTE Band 5 application (869 - 894 MHz).

1. The BGA7L1BN6 is a Silicon Germanium low noise amplifier. 2. It covers the LTE application in the frequency range of 869 – 894 MHz. 3. In this report, the performance of BGA7L1BN6 for LTE Band 5 (869 – 894 MHz) is presented. The

circuit uses only one inductor for input matching. The performance is measured on a FR4 board. 4. Key performance parameters at 2.8 V, 882 MHz (High Gain Mode)

Noise Figure = 0.89 dB Gain = 13.1 dB Input return loss = 13.1 dB Output return loss = 13.5 dB Input P1dB = -1.5 dBm

Sil icon Germanium Low Noise Ampli f ier : BGA7L1BN6

Low Noise Ampli f ier for LTE Band 5 (869 – 894 MHz) using 0201 LQP Inductor

Application Note AN457

Page 2: Low Noise Amplifier for LTE band-5

Low Noise Amplifier for LTE Band 5

Table of Content

Application Note AN457 2 Revision 1.0, 2015-10-13

Table of Content 1 Introduction of LTE Application ........................................................................................................................ 5 1.1 Key Requirements on LNAs in LTE Applications ............................................................................................. 7

2 BGA7L1BN6 Overview ......................................................................................................................................... 9 2.1 Features............................................................................................................................................................................. 9 2.2 Description....................................................................................................................................................................... 9

3 Application Circuit and Performance Overview .........................................................................................11 3.1 Summary of Measurement Results ..................................................................................................................... 11 3.2 Summary BGA7L1BN6 as 869 – 894 MHz LNA for LTE Band 5 ............................................................. 13 3.3 Schematics and Bill-of-Materials ......................................................................................................................... 14

4 Measurement Graphs ..........................................................................................................................................15 4.1 High Gain Mode ........................................................................................................................................................... 15 4.2 Bypass Mode ................................................................................................................................................................ 23

5 Evaluation Board and Layout Information ...................................................................................................31

6 Author .....................................................................................................................................................................33

Page 3: Low Noise Amplifier for LTE band-5

Low Noise Amplifier for LTE Band 5

Introduction of LTE Application

Application Note AN457 3 Revision 1.0, 2015-10-13

List of Figures1 Figure 1 Block diagram of a 4G LTE RF Frontend ............................................................................................................. 5 Figure 2 BGA7L1BN6 in TSNP-6-2 ........................................................................................................................................... 9 Figure 3 Equivalent Circuit Block diagram of BGA7L1BN6 ........................................................................................ 10 Figure 4 Package and pin connections of BGA7L1BN6 ................................................................................................ 10 Figure 5 Schematics of the BGA7L1BN6 Application Circuit .................................................................................... 14 Figure 6 Wideband Insertion Power Gain of the BGA7L1BN6 for LTE Band 5 in High Gain Mode ........... 15 Figure 7 Narrowband Insertion Power Gain of the BGA7L1BN6 for LTE Band 5 in High Gain Mode ...... 15 Figure 8 Input Matching of the BGA7L1BN6 for LTE Band 5 in High Gain Mode .............................................. 16 Figure 9 Input Matching (Smith Chart) of the BGA7L1BN6 for LTE Band 5 in High Gain Mode ................ 16 Figure 10 Output Matching of the BGA7L1BN6 for LTE Band 5 in High Gain Mode ........................................... 17 Figure 11 Output Matching (Smith Chart) of the BGA7L1BN6 for LTE Band 5 in High Gain Mode ............. 17 Figure 12 Reverse Isolation of the BGA7L1BN6 for LTE Band 5 in High Gain Mode.......................................... 18 Figure 13 Noise Figure of the BGA7L1BN6 for Band 5 in High Gain Mode............................................................. 18 Figure 14 Stability K Factor and Delta Factor of the BGA7L1BN6 for LTE Band 5 in High Gain Mode ....... 19 Figure 15 Stability μ1 Factor of the BGA7L1BN6 for LTE Band 5 in High Gain Mode ....................................... 19 Figure 16 Stability μ2 Factor of the of the BGA7L1BN6 for LTE Band 5 in High Gain Mode........................... 20 Figure 17 IP1dB of the BGA7L1BN6 for LTE Band 5 in High Gain Mode with 1.8 V power supply.............. 20 Figure 18 IP1dB of the BGA7L1BN6 for LTE Band 5 in High Gain Mode with 2.8 V power supply.............. 21 Figure 19 IIP3 of the BGA7L1BN6 for LTE Band 5 in High Gain Mode with 1.8 V power supply .................. 21 Figure 20 IIP3 of the BGA7L1BN6 for LTE Band 5 in High Gain Mode with 2.8 V power supply .................. 22 Figure 21 Wideband Insertion Power Gain of the BGA7L1BN6 for LTE Band 5 in Bypass Mode ................. 23 Figure 22 Narrowband Insertion Power Gain of the BGA7L1BN6 for LTE Band 5 in Bypass Mode ............ 23 Figure 23 Input Matching of the BGA7L1BN6 for LTE Band 5 in Bypass Mode ................................................... 24 Figure 24 Input Matching (Smith Chart) of the BGA7L1BN6 for LTE Band 5 in Bypass Mode ...................... 24 Figure 25 Output Matching of the BGA7L1BN6 for LTE Band 5 in Bypass Mode ................................................ 25 Figure 26 Output Matching (Smith Chart) of the BGA7L1BN6 for LTE Band 5 in Bypass Mode ................... 25 Figure 27 Reverse Isolation of the BGA7L1BN6 for LTE Band 5 in Bypass Mode ............................................... 26 Figure 28 Noise Figure of the BGA7L1BN6 for Band 5 in Bypass Mode .................................................................. 26 Figure 29 Stability K Factor and Delta Factor of the BGA7L1BN6 for LTE Band 5 in Bypass Mode ............ 27 Figure 30 Stability μ1 Factor of the BGA7L1BN6 for LTE Band 5 in Bypass Mode ............................................. 27 Figure 31 Stability μ2 Factor of the of the BGA7L1BN6 for LTE Band 5 in Bypass Mode ................................ 28 Figure 32 IP1dB of the BGA7L1BN6 for LTE Band 5 in Bypass Mode with 1.8 V power supply ................... 28 Figure 33 IP1dB of the BGA7L1BN6 for LTE Band 5 in Bypass Mode with 2.8 V power supply ................... 29 Figure 34 IIP3 of the BGA7L1BN6 for LTE Band 5 in Bypass Mode with 1.8 V power supply ....................... 29 Figure 35 IIP3 of the BGA7L1BN6 for LTE Band 5 in Bypass Mode with 2.8 V power supply ....................... 30 Figure 37 Photo Picture of the Evaluation Board (overview) ...................................................................................... 31 Figure 38 Photo Picture of the Evaluation Board (detailed view) ............................................................................. 31 Figure 39 PCB Layer Information ............................................................................................................................................ 32

List of Tables Table 1 Pin Assignment of BGA7L1BN6............................................................................................................................ 10

Page 4: Low Noise Amplifier for LTE band-5

Low Noise Amplifier for LTE Band 5

Introduction of LTE Application

Application Note AN457 4 Revision 1.0, 2015-10-13

Table 2 Electrical Characteristics of the BGA7L1BN6 (at room temperature) for LTE Band 5 in High Gain Mode ...................................................................................................................................................................... 11

Table 3 Electrical Characteristics of the BGA7L1BN6 (at room temperature) for LTE Band 5 in Bypass Mode ................................................................................................................................................................................ 12

Table 4 Bill-of-Materials .......................................................................................................................................................... 14

1) The graphs are generated with the simulation program AWR Microwave Office®.

Page 5: Low Noise Amplifier for LTE band-5

Low Noise Amplifier for LTE Band 5

Introduction of LTE Application

Application Note AN457 5 Revision 1.0, 2015-10-13

1 Introduction of LTE Application Mobile phones represent the largest worldwide market in terms of both volume and number of

applications on a single platform today. More than 1.5 billion phones are shipped per year worldwide.

The major wireless functions in a typical mobile phone include a 2G/3G/4G

(GSM/EDGE/CDMA/UMTS/WCDMA/LTE/LTE-A/TD-SCDMA/TD-LTE) cellular modem, and wireless

connectivity systems such as Wireless Local Area Network (WLAN), Global Navigation Satellite System

(GNSS), broadcasting receivers, and Near-Field Communication (NFC).

ANT Switch

FilterLNA

PA

Power Detector

Duplexer

3G/4G

Transceiver

Antenna

Antenna

Tuning

Switch

Figure 1 Block diagram of a 4G LTE RF Frontend

Moving towards 4G Long-Term Evolution-Advanced (LTE-A), the number of LTE bands has exploded in

the last few years. Currently, there are more than 50 bands in use worldwide. The ability of 4G LTE-A to

support single-carrier bandwidth up to 20 MHz and to have more spectral efficiency by using high-order

modulation schemes such as Quadrature Amplitude Modulation (QAM-64) is of particular importance as

the demand for higher wireless data speeds continues to grow rapidly. LTE-A can aggregate up to 5

carriers (up to 100 MHz) to increase user data rates and capacity for high-speed applications. These new

techniques for mobile high-data-rate communication and advanced wireless connectivity include:

- Inter-operation Frequency-Division Duplexing (FDD) and Time-Division Duplexing (TDD) systems

- Down-/uplink Carrier Aggregation (CA)

- LTE-U and LAA at 5 to 6 GHz using link aggregation or carrier aggregation

- Adaptive antenna systems

- Multiple-Input Multiple-Output (MIMO) for RF Front-Ends

- Device-to-Device (D2D) communication with LTE (LTE-D)

Page 6: Low Noise Amplifier for LTE band-5

Low Noise Amplifier for LTE Band 5

Introduction of LTE Application

Application Note AN457 6 Revision 1.0, 2015-10-13

- High-speed wireline connection with USB 3.0, Bluetooth 4.0 etc.

The above mentioned techniques drive the industry to develop new concepts for RF Front-Ends and the

antenna system and digital interface protection. These require microwave semiconductor vendors to

offer highly integrated and compact devices with lower loss rates, and more powerful linear performance.

The key trends in RF components for mobile phone are:

- Microwave Monolithic Integrated Circuits (MMICs) with smaller form factors

- Higher levels of integration with control buses

- Higher RF power capability

- Ability to handle increased number of bands and operating modes

- Better immunity to interfering signals

- Frequency tuning ability

- Higher integration of various functions in single packages (modulization)

Band No. Band

Definition

Uplink Frequency

Range

Downlink Frequency

Range

FDD/TDD

System

Comment

1 Mid-Band 1920-1980 MHz 2110-2170 MHz FDD

2 Mid-Band 1850-1910 MHz 1930-1990 MHz FDD

3 Mid-Band 1710-1785 MHz 1805-1880 MHz FDD

4 Mid-Band 1710-1755 MHz 2110-2155 MHz FDD

5 Low-Band 824-849 MHz 869-894 MHz FDD

6 Low-Band 830-840 MHz 875-885 MHz FDD

7 High-Band 2500-2570 MHz 2620-2690 MHz FDD

8 Low-Band 880-915 MHz 925-960 MHz FDD

9 Mid-Band 1749.9-1784.9 MHz 1844.9-1879.9 MHz FDD

10 Mid-Band 1710-1770 MHz 2110-2170 MHz FDD

11 Mid-Band 1427.9-1452.9 MHz 1475.9-1500.9 MHz FDD

12 Low-Band 698-716 MHz 728-746 MHz FDD

13 Low-Band 777-787 MHz 746-756 MHz FDD

14 Low-Band 788-798 MHz 758-768 MHz FDD

15 reserved reserved FDD

16 reserved Reserved FDD

17 Low-Band 704-716 MHz 734-746 MHz FDD

18 Low-Band 815-830 MHz 860-875 MHz FDD

19 Low-Band 830-845 MHz 875-890 MHz FDD

20 Low-Band 832-862 MHz 791-821 MHz FDD

21 Mid-Band 1447.9-1462.9 MHz 1495.9-1510.9 MHz FDD

22 High-Band 3410-3500 MHz 3510-3600 MHz FDD

23 Mid-Band 2000-2020 MHz 2180-2200 MHz FDD

24 Mid-Band 1626.5-1660.5 MHz 1525-1559 MHz FDD

Page 7: Low Noise Amplifier for LTE band-5

Low Noise Amplifier for LTE Band 5

Introduction of LTE Application

Application Note AN457 7 Revision 1.0, 2015-10-13

Band No. Band

Definition

Uplink Frequency

Range

Downlink Frequency

Range

FDD/TDD

System

Comment

25 Mid-Band 1850-1915 MHz 1930-1995 MHz FDD

26 Low-Band 814-849 MHz 859-894 MHz FDD

27 Low-Band 807-824 MHz 852-869 MHz FDD

28 Low-Band 703-748 MHz 758-803 MHz FDD

29 Low-Band N/A 716-728 MHz FDD

30 High-Band 2305-2315 MHz 2350-2360 MHz FDD

31 Low-Band 452.5-457.5 MHz 462.5-467.5MHz FDD

32 Mid-Band N/A 1452-1496 MHz FDD

33 Mid-Band 1900-1920 MHz TDD

34 Mid-Band 2010-2025 MHz TDD

35 Mid-Band 1850-1910 MHz TDD

36 Mid-Band 1930-1990 MHz TDD

37 Mid-Band 1910-1930 MHz TDD

38 High-Band 2570-2620 MHz TDD

39 Mid-Band 1880-1920 MHz TDD

40 High-Band 2300-2400 MHz TDD

41 High-Band 2496-2690 MHz TDD

42 High-Band 3400-3600 MHz TDD

43 High-Band 3600-3800 MHz TDD

44 Low-Band 703-803 MHz TDD

45 Mid-Band 1447-1467 MHz TDD

46 Ultra High-Band 5150-5925 MHz TDD

64 Reserved

65 Mid-Band 1920-2010 MHz 2110-2200 MHz FDD

66 Mid-Band 1710-1780 MHz 2110-2200 MHz FDD

67 Low-Band N/A 738-758 MHz FDD

68 Low-Band 698-728 MHz 753-783 MHz FDD Note: FDD - Frequency Division Duplexing; TDD - Time Division Duplexing.

1.1 Key Requirements on LNAs in LTE Applications

The LTE-Advanced supports data rates of up to 1 Gbps with advanced techniques such as Multiple Input

Multiple Output and Carrier Aggregation. LTE-Advanced can support up to 5 bands of carrier aggregation

by three component carrier aggregation scenarios: Intra-band contiguous, intra-band non-contiguous and

inter-band non-contiguous aggregation. They present new challenges to RF FE designers, such as

interference from co-existing bands and harmonic generation. Smart LTE LNAs with the following

features can address these requirements to achieve outstanding performance.

Page 8: Low Noise Amplifier for LTE band-5

Low Noise Amplifier for LTE Band 5

Introduction of LTE Application

Application Note AN457 8 Revision 1.0, 2015-10-13

Low Noise Figure (NF): An external LNA or LNA module boosts the sensitivity of the system by reducing

the overall NF. In addition due to the size constraint, the modem antenna and the receiver FE cannot

always be placed close to the transceiver Integrated Circuit (IC). The path loss in front of the integrated

LNA on the transceiver IC increases the system NF significantly. An external LNA physically close to the

antenna can help to eliminate the path loss and reduce the system NF. The sensitivity can be improved by

several dB, which means a significant increase in the connectivity range.

High Linearity (1-dB compression point P1dB and 3rd-order intercept point IP3): An increased number of

bands at the receiver input create strong interference, leading to high requirements in linearity

characteristics such as high input 1-dB compression point, 2nd intermodulation (IMD2) products and

input IP3 performance.

Low Power Consumption: Power consumption is even more important in today’s smartphones. The latest

LTE-Advanced uses enhanced MIMO techniques with up to 8 streams for downlink and 4 streams for

uplink. Infineon’s LNAs and LNA modules have low supply current and an integrated on/off feature that

reduces power consumption and increases standby time for cellular handsets or other portable battery-

operated wireless applications.

High Integration and Simple Control Interface: The demand for size and cost reduction and performance

enhancement with ease of use and low parts count has become very important in existing and future

generation smartphones. Our MMIC LNAs are highly integrated with input and output either matched or

pre-matched, built-in temperature and supply voltage stabilization, and a fully ESD-protected circuit

design to ensure stable operation and a simple control interface.

More information on the LTE LNAs is available at: www.infineon.com/ltelna

More information on the Mobile Phone RF Frontend and related Infineon product portfolio are available

in the Application Guide Mobile Communication: www.infineon.com/appguide_rf_mobile

Page 9: Low Noise Amplifier for LTE band-5

Low Noise Amplifier for LTE Band 5

BGA7L1BN6 Overview

Application Note AN457 9 Revision 1.0, 2015-10-13

2 BGA7L1BN6 Overview

2.1 Features

High insertion power gain: 13.6 dB

Low noise figure: 0.75 dB

Low current consumption: 4.9 mA

Operating frequencies: 716 –960 MHz

Two-state control: Bypass- and High gain-Mode

Supply voltage: 1.5 V to 3.6 V

Digital on/off switch (1 V logic high level)

Ultra small TSNP-6-2 leadless package (footprint: 0.7 x 1.1 mm2)

B7HF Silicon Germanium technology

RF output internally matched to 50 Ω

Only 1 external SMD component necessary

2 kV HBM ESD protection (including AI-pin)

Pb-free (RoHS compliant) package

Figure 2 BGA7L1BN6 in TSNP-6-2

2.2 Description

The BGA7L1BN6 is a front-end low noise amplifier for LTE which covers a wide frequency range

from 716 MHz to 960 MHz. The LNA provides 13.4 dB gain and 0.89 dB noise figure at a current

consumption of 5.1 mA in the application configuration described in Chapter 3. In bypass mode

the LNA provides an insertion loss of -2.4 dB. The BGA7L1BN6 is based upon Infineon

Technologies‘B7HF Silicon Germanium technology. It operates from 1.5 V to 3.3 V supply voltage.

The device features a single-line two-state control (Bypass- and High gain-Mode) and can be

controlled via several Infineon devices, e.g. BGAC600. OFF-state can be enabled by powering

down Vcc. Please contact Infineon Technologies to get the latest list of available devices which

can control this LNA.

Page 10: Low Noise Amplifier for LTE band-5

Low Noise Amplifier for LTE Band 5

BGA7L1BN6 Overview

Application Note AN457 10 Revision 1.0, 2015-10-13

Figure 3 Equivalent Circuit Block diagram of BGA7L1BN6

3 4

2 5

1 6

Bottom View Top View

Figure 4 Package and pin connections of BGA7L1BN6

Table 1 Pin Assignment of BGA7L1BN6

Pin No. Symbol Function

1 GND Ground

2 VCC DC supply

3 AO LNA output

4 GND Ground

5 AI LNA input

6 C Control

Page 11: Low Noise Amplifier for LTE band-5

Low Noise Amplifier for LTE Band 5

Application Circuit and Performance Overview

Application Note AN457 11 Revision 1.0, 2015-10-13

3 Application Circuit and Performance Overview In this chapter the performance of the application circuit, the schematic and bill-of-materials are presented.

Device: BGA7L1BN6

Application: Low Noise Amplifier for LTE Band 5 Applications using 0201 LQP inductor

PCB Marking: M150429

EVB Order No.: AN457

3.1 Summary of Measurement Results

The performance of BGA7L1BN6 for LTE LNA Band 5 (869 – 894 MHz) is summarized in the following tables.

Table 2 Electrical Characteristics of the BGA7L1BN6 (at room temperature) for LTE Band 5 in High Gain Mode

Parameter Symbol Value Unit Comment/Test Condition

DC Voltage Vcc 1.8 2.8 V

DC Current Icc 4.5 5.1 mA

Frequency Range Freq 869 882 894 869 882 894 MHz

Gain G 13.1 13.0 12.8 13.5 13.4 13.3 dB

Noise Figure NF 0.94 0.91 0.90 0.93 0.89 0.89 dB Loss of input line

0.05 dB deembedded

Input Return Loss RLin 12.1 12.0 11.9 13.1 13.1 12.4 dB

Output Return Loss RLout 13.3 13.0 12.7 13.9 13.5 13.2 dB

Reverse Isolation IRev 20.5 20.4 20.3 20.9 20.8 20.7 dB

Input P1dB IP1dB -4.6 -4.5 -4.2 -1.7 -1.5 -1.5 dBm

Output P1dB OP1dB 8.5 8.5 8.6 11.8 11.9 11.8 dBm

Input IP3 IIP3 5.0 5.0 dBm f1 = 882 MHz f2 = 883 MHz Pin = -30 dBm Output IP3 OIP3 18.0 18.4 dBm

Stability k >1 -- Unconditionally stable from 0 to 10 GHz

Page 12: Low Noise Amplifier for LTE band-5

Low Noise Amplifier for LTE Band 5

Application Circuit and Performance Overview

Application Note AN457 12 Revision 1.0, 2015-10-13

Table 3 Electrical Characteristics of the BGA7L1BN6 (at room temperature) for LTE Band 5 in Bypass Mode

Parameter Symbol Value Unit Comment/Test Condition

DC Voltage Vcc 1.8 2.8 V

DC Current Icc 64 87 uA

Frequency Range Freq 869 882 894 869 882 894 MHz

Gain G -2.4 -2.4 -2.5 -2.3 -2.4 -2.4 dB

Noise Figure NF 2.88 1.46 0.63 2.78 1.41 0.60 dB Loss of input line

0.05 dB deembedded

Input Return Loss RLin 9.8 9.5 9.2 9.6 9.3 9.1 dB

Output Return Loss RLout 8.2 7.9 8.0 8.3 8.1 8.0 dB

Reverse Isolation IRev 2.4 2.4 2.5 2.3 2.4 2.4 dB

Input P1dB IP1dB 6.3 6.6 6.4 7.0 7.4 7.3 dBm

Output P1dB OP1dB 3.9 4.2 3.9 4.7 5.0 4.9 dBm

Input IP3 IIP3 16.2 18.3 dBm f1 = 882 MHz

f2 = 883 MHz Pin = -20 dBm Output IP3 OIP3 13.8 15.9 dBm

Stability k >1 -- Unconditionally stable from 0 to 10 GHz

Page 13: Low Noise Amplifier for LTE band-5

Low Noise Amplifier for LTE Band 5

Application Circuit and Performance Overview

Application Note AN457 13 Revision 1.0, 2015-10-13

3.2 Summary BGA7L1BN6 as 869 – 894 MHz LNA for LTE Band 5

The BGA7L1BN6 is a Silicon Germanium Low Noise Amplifier for LTE RF frontend in the range

from 869 – 894 MHz. In this application note, the performance of BGA6L1BN6 for LTE Band 5 is

investigated at 1.8 V and 2.8 V supply voltages. The circuit targets to use as few components as

possible, and uses a high quality factor inductor for matching.

At 1.8 V, high gain mode, the BGA7L1BN6 achieves a noise figure of about 0.91 dB and a gain of

13.0 dB. The input return loss is 12.0 dB and output return loss is 13.0 dB at 882 MHz. It obtains

an input 1dB Compression Point (IP1dB) of -4.5 dBm at 882 MHz. Using two tones of – 30 dBm

spacing 1 MHz; the circuit achieves an input Third-order Intercept Point (IIP3) of 5.0 dBm at 882

MHz.

At 1.8 V, bypass mode, the BGA7L1BN6 achieves an insertion loss of 2.4 dB. The input return loss

is 9.5 dB and output return loss is 7.9 dB at 882 MHz. It obtains an input 1dB Compression Point

(IP1dB) of 6.6 dBm at 882 MHz. Using two tones of – 20 dBm spacing 1 MHz; the circuit achieves

an input Third-order Intercept Point (IIP3) of 16.2 dBm at 882 MHz.

At 2.8 V, high gain mode, the BGA7L1BN6 achieves a noise figure of 0.89 dB and a gain of 13.4 dB.

The input return loss is 13.1 dB and output return loss is 13.5 dB at 882 MHz. It obtains an input

1dB Compression Point (IP1dB) of -1.5 dBm at 882 MHz. Using two tones of – 30 dBm spacing 1

MHz; the circuit achieves an input Third-order Intercept Point (IIP3) of 5.0 dBm at 882 MHz.

At 2.8 V, bypass mode, the BGA7L1BN6 achieves an insertion loss of 2.4 dB. The input return loss

is 9.3 dB and output return loss is 8.1 dB at 882 MHz. It obtains an input 1dB Compression Point

(IP1dB) of 7.4 dBm at 882 MHz. Using two tones of – 20 dBm spacing 1 MHz; the circuit achieves

an input Third-order Intercept Point (IIP3) of 18.3 dBm at 882 MHz. The circuit is

unconditionally stable up to 10 GHz.

Page 14: Low Noise Amplifier for LTE band-5

Low Noise Amplifier for LTE Band 5

Application Circuit and Performance Overview

Application Note AN457 14 Revision 1.0, 2015-10-13

3.3 Schematics and Bill-of-Materials

The schematic of BGA7L1BN6 for LTE Band 5 is presented in Figure 5 and its bill-of-materials is shown in Table 4.

C1

C2(optional)

L1

N1 BGA7L1BN6

GND,4 AO,3

AI,5 VCC,2

C,6 GND,1Ctrl

RFin Vcc

RFout

(optional)

Figure 5 Schematics of the BGA7L1BN6 Application Circuit

Table 4 Bill-of-Materials

Symbol Value Unit Size Manufacturer Comment

C1(optional) 1 nF 0201 Various DC block

C2(optional) 1 nF 0201 Various RF bypass

L1 9.1 nH 0201 Murata LQP Type Input matching

N1 BGA7L1BN6

TSNP-6-2 Infineon SiGe LNA

PCB Rogers4003

Note: DC block function is NOT integrated at input of BGA7L1BN6. The DC block capacitor C1 is not necessary if the DC block function on the RF input line can be ensured by the previous stage.

Note: The RF bypass capacitor C2 at the DC power supply pin filters out the power supply noise and stabilizes the DC supply. The RF bypass capacitor C2 is not necessary if a clean and stable DC supply can be ensured.

Page 15: Low Noise Amplifier for LTE band-5

Low Noise Amplifier for LTE Band 5

Measurement Graphs

Application Note AN457 15 Revision 1.0, 2015-10-13

4 Measurement Graphs

4.1 High Gain Mode

Figure 6 Wideband Insertion Power Gain of the BGA7L1BN6 for LTE Band 5 in High Gain Mode

Figure 7 Narrowband Insertion Power Gain of the BGA7L1BN6 for LTE Band 5 in High Gain Mode

0 2000 4000 6000 8000 10000

Frequency (MHz)

Insertion Power Gain in High Gain Mode

-50

-40

-30

-20

-10

0

10

20

S2

1 (

dB

)

894 MHz12.8 dB

869 MHz13.1 dB

882 MHz13.0 dB

894 MHz13.3 dB

882 MHz13.4 dB

869 MHz13.5 dB

Vcc=1.8 V

Vcc=2.8 V

600 700 800 900 1000 1100

Frequency (MHz)

Insertion Power Gain in High Gain Mode

5

10

15

20

S21 (

dB

)

894 MHz12.8 dB

869 MHz13.1 dB

882 MHz13.0 dB

894 MHz13.3 dB

882 MHz13.4 dB869 MHz

13.5 dB

Vcc=1.8 V

Vcc=2.8 V

Page 16: Low Noise Amplifier for LTE band-5

Low Noise Amplifier for LTE Band 5

Measurement Graphs

Application Note AN457 16 Revision 1.0, 2015-10-13

Figure 8 Input Matching of the BGA7L1BN6 for LTE Band 5 in High Gain Mode

Figure 9 Input Matching (Smith Chart) of the BGA7L1BN6 for LTE Band 5 in High Gain Mode

600 700 800 900 1000 1100

Frequency (MHz)

Input Return Loss in High Gain Mode

-20

-15

-10

-5

0

S11 (

dB

)

894 MHz-12.9 dB

882 MHz-13.1 dB

869 MHz-13.1 dB

894 MHz-11.9 dB

882 MHz-12.0 dB

869 MHz-12.1 dB

Vcc=1.8 V

Vcc=2.8 V

0 1.0

1.0

-1.0

10.0

10.0

-10.0

5.0

5.0

-5.0

2.0

2.0

-2.0

3.0

3.0

-3.0

4.0

4.0

-4.0

0.2

0.2

-0.2

0.4

0.4

-0.4

0.6

0.6

-0.6

0.8

0.8

-0.8

Input Return Loss in High Gain Mode(Smith Chart)Swp Max

1100MHz

Swp Min

600MHz

894 MHzr 0.918732x 0.43591

882 MHzr 0.881748x 0.411044

869 MHzr 0.843532x 0.383753

869 MHzr 0.816916x 0.426106

882 MHzr 0.85528x 0.455339

894 MHzr 0.893061x 0.482587

Vcc=1.8 V

Vcc=2.8 V

Page 17: Low Noise Amplifier for LTE band-5

Low Noise Amplifier for LTE Band 5

Measurement Graphs

Application Note AN457 17 Revision 1.0, 2015-10-13

Figure 10 Output Matching of the BGA7L1BN6 for LTE Band 5 in High Gain Mode

Figure 11 Output Matching (Smith Chart) of the BGA7L1BN6 for LTE Band 5 in High Gain Mode

600 700 800 900 1000 1100

Frequency (MHz)

Output Return Loss in High Gain Mode

-25

-20

-15

-10

-5

S2

2 (

dB

)

869 MHz-13.9 dB

882 MHz-13.5 dB

894 MHz-13.2 dB

869 MHz-13.3 dB

882 MHz-13.0 dB

894 MHz-12.7 dB

Vcc=1.8 V

Vcc=2.8 V

0 1.0

1.0

-1.0

10.0

10.0

-10.0

5.0

5.0

-5.0

2.0

2.0

-2.0

3.0

3.0

-3.0

4.0

4.0

-4.0

0.2

0.2

-0.2

0.4

0.4

-0.4

0.6

0.6

-0.6

0.8

0.8

-0.8

Output Return Loss in High Gain Mode(SmithChart)Swp Max

1100MHz

Swp Min

600MHz

869 MHzr 0.794967x -0.33739

882 MHzr 0.780723x -0.341835

894 MHzr 0.766843x -0.344791

894 MHzr 0.783069x -0.331025

869 MHzr 0.810693x -0.320463

882 MHzr 0.796754x -0.326779

Vcc=1.8 V

Vcc=2.8 V

Page 18: Low Noise Amplifier for LTE band-5

Low Noise Amplifier for LTE Band 5

Measurement Graphs

Application Note AN457 18 Revision 1.0, 2015-10-13

Figure 12 Reverse Isolation of the BGA7L1BN6 for LTE Band 5 in High Gain Mode

Figure 13 Noise Figure of the BGA7L1BN6 for Band 5 in High Gain Mode

600 700 800 900 1000 1100

Frequency (MHz)

Reverse Isolation in High Gain Mode

-50

-40

-30

-20

-10

0

S1

2 (

dB

)

894 MHz-20.7 dB882 MHz

-20.8 dB

869 MHz-20.9 dB

894 MHz-20.3 dB

882 MHz-20.4 dB

869 MHz-20.5 dB

Vcc=1.8 V

Vcc=2.8 V

840 890 940 970

Frequency (MHz)

Noise Figure in High Gain Mode

0.5

0.7

0.9

1.1

1.3

1.5

NF

(d

B)

894 MHz0.89 dB

882 MHz0.89 dB

869 MHz0.93 dB

894 MHz0.90 dB

882 MHz0.91 dB

869 MHz0.94 dB

Vcc=1.8 V

Vcc=2.8 V

Page 19: Low Noise Amplifier for LTE band-5

Low Noise Amplifier for LTE Band 5

Measurement Graphs

Application Note AN457 19 Revision 1.0, 2015-10-13

Figure 14 Stability K Factor and Delta Factor of the BGA7L1BN6 for LTE Band 5 in High Gain Mode

Figure 15 Stability μ1 Factor of the BGA7L1BN6 for LTE Band 5 in High Gain Mode

0 2000 4000 6000 8000 10000

Frequency (MHz)

Stability k Factor in High Gain Mode

0

1

2

3

4

5

K F

acto

r

Vcc=1.8 V

Vcc=2.8 V

0 2000 4000 6000 8000 10000

Frequency (MHz)

Stability Mu1 Factor in High Gain Mode

0

1

2

3

4

5

MU

1

Vcc=1.8 V

Vcc=2.8 V

Page 20: Low Noise Amplifier for LTE band-5

Low Noise Amplifier for LTE Band 5

Measurement Graphs

Application Note AN457 20 Revision 1.0, 2015-10-13

Figure 16 Stability μ2 Factor of the of the BGA7L1BN6 for LTE Band 5 in High Gain Mode

Figure 17 IP1dB of the BGA7L1BN6 for LTE Band 5 in High Gain Mode with 1.8 V power supply

0 2000 4000 6000 8000 10000

Frequency (MHz)

Stability Mu2 Factor in High Gain Mode

0

1

2

3

4

5

MU

2

Vcc=1.8 V

Vcc=2.8 V

-30 -20 -10 0

Power (dBm)

P1dB in High Gain Mode with Vcc=1.8 V

7

9

11

13

15

17

Gain

(dB

)

-30 dBm13.1

-4.232 dBm11.9 dB

-30 dBm12.9 dB

-4.468 dBm12.0 dB

-30 dBm13.0 dB

-4.551 dBm12.1

869MHz

882MHz

894MHz

Page 21: Low Noise Amplifier for LTE band-5

Low Noise Amplifier for LTE Band 5

Measurement Graphs

Application Note AN457 21 Revision 1.0, 2015-10-13

Figure 18 IP1dB of the BGA7L1BN6 for LTE Band 5 in High Gain Mode with 2.8 V power supply

Figure 19 IIP3 of the BGA7L1BN6 for LTE Band 5 in High Gain Mode with 1.8 V power supply

-30 -20 -10 0

Power (dBm)

P1dB in High Gain Mode with Vcc=2.8 V

7

9

11

13

15

17

Ga

in (

dB

)

-1.462 dBm12.3

-1.538 dBm12.4

-1.706 dBm12.5

-30 dBm13.3

-30 dBm13.4

-30 dBm13.5

869MHz

882MHz

894MHz

880.93 881.98 883.02 884.07

Frequency (MHz)

IIP3 in High Gain Mode for 882 MHz

-120

-100

-80

-60

-40

-20

0

Pow

er

(dB

m)

884 MHz-97.45

881.003 MHz-86.16

882 MHz-16.28

883.003 MHz-16.76

Vcc=1.8 V

Page 22: Low Noise Amplifier for LTE band-5

Low Noise Amplifier for LTE Band 5

Measurement Graphs

Application Note AN457 22 Revision 1.0, 2015-10-13

Figure 20 IIP3 of the BGA7L1BN6 for LTE Band 5 in High Gain Mode with 2.8 V power supply

880.93 882 883.07 884.07

Frequency (MHz)

IIP3 in High Gain Mode for 882 MHz

-120

-100

-80

-60

-40

-20

0

Po

we

r (d

Bm

)

884 MHz-95.91

881.003 MHz-86.19

883.003 MHz-16.81

882 MHz-16.29

Vcc=2.8 V

Page 23: Low Noise Amplifier for LTE band-5

Low Noise Amplifier for LTE Band 5

Measurement Graphs

Application Note AN457 23 Revision 1.0, 2015-10-13

4.2 Bypass Mode

Figure 21 Wideband Insertion Power Gain of the BGA7L1BN6 for LTE Band 5 in Bypass Mode

Figure 22 Narrowband Insertion Power Gain of the BGA7L1BN6 for LTE Band 5 in Bypass Mode

0 2000 4000 6000 8000 10000

Frequency (MHz)

Insertion Power Gain in Bypass Mode

-50

-40

-30

-20

-10

0

S2

1 (

dB

)

894 MHz-2.5 dB

882 MHz-2.4 dB

869 MHz-2.4 dB

894 MHz-2.4 dB

882 MHz-2.4 dB

869 MHz-2.3 dB

Vcc=1.8 V

Vcc=2.8 v

600 700 800 900 1000 1100

Frequency (MHz)

Insertion Power Gain in Bypass Mode

-5

-4

-3

-2

-1

0

S2

1 (

dB

)

894 MHz-2.5 dB

882 MHz-2.4 dB

869 MHz-2.4 dB

894 MHz-2.4 dB

882 MHz-2.4 dB

869 MHz-2.3 dB

Vcc=1.8 V

Vcc=2.8 v

Page 24: Low Noise Amplifier for LTE band-5

Low Noise Amplifier for LTE Band 5

Measurement Graphs

Application Note AN457 24 Revision 1.0, 2015-10-13

Figure 23 Input Matching of the BGA7L1BN6 for LTE Band 5 in Bypass Mode

Figure 24 Input Matching (Smith Chart) of the BGA7L1BN6 for LTE Band 5 in Bypass Mode

600 700 800 900 1000 1100

Frequency (MHz)

Input Return Loss in Bypass Mode

-25

-20

-15

-10

-5

S11 (

dB

)

869 MHz-9.8 dB

882 MHz-9.5 dB

894 MHz-9.2 dB

894 MHz-9.1 dB

882 MHz-9.3 dB

869 MHz-9.6 dB

Vcc=1.8 V

Vcc=2.8 V

0 1.0

1.0

-1.0

10.0

10.0

-10.0

5.0

5.0

-5.0

2.0

2.0

-2.0

3.0

3.0

-3.0

4.0

4.0

-4.0

0.2

0.2

-0.2

0.4

0.4

-0.4

0.6

0.6

-0.6

0.8

0.8

-0.8

Input Return Loss in Bypass Mode(Smith Chart)Swp Max

1100MHz

Swp Min

600MHz

894 MHzr 1.26256x 0.800564

882 MHzr 1.23974x 0.770924869 MHz

r 1.2155x 0.739311

869 MHzr 1.19923x 0.720865

882 MHzr 1.2225x 0.752708

894 MHzr 1.24481x 0.782642

Vcc=1.8 V

Vcc=2.8 V

Page 25: Low Noise Amplifier for LTE band-5

Low Noise Amplifier for LTE Band 5

Measurement Graphs

Application Note AN457 25 Revision 1.0, 2015-10-13

Figure 25 Output Matching of the BGA7L1BN6 for LTE Band 5 in Bypass Mode

Figure 26 Output Matching (Smith Chart) of the BGA7L1BN6 for LTE Band 5 in Bypass Mode

600 700 800 900 1000 1100

Frequency (MHz)

Output Return Loss in Bypass Mode

-20

-15

-10

-5

0

S22 (

dB

)

894 MHz-8.0 dB

882 MHz-8.1 dB869 MHz

-8.3 dB

894 MHz-7.9 dB

882 MHz-8.0 dB

869 MHz-8.2 dB

Vcc=1.8 V

Vcc=2.8 V0 1.0

1.0

-1.0

10.0

10.0

-10.0

5.0

5.0

-5.0

2.0

2.0

-2.0

3.0

3.0

-3.0

4.0

4.0

-4.0

0.2

0.2

-0.2

0.4

0.4

-0.4

0.6

0.6

-0.6

0.8

0.8

-0.8

Output Return Loss in Bypass Mode(Smith Chart)Swp Max

1100MHz

Swp Min

600MHz

882 MHzr 0.578663x -0.496625

869 MHzr 0.597437x -0.507865

894 MHzr 0.561723x -0.485837

894 MHzr 0.559625x -0.490466

882 MHzr 0.576298x -0.501503

869 MHzr 0.59505x -0.513272

Vcc=1.8 V

Vcc=2.8 V

Page 26: Low Noise Amplifier for LTE band-5

Low Noise Amplifier for LTE Band 5

Measurement Graphs

Application Note AN457 26 Revision 1.0, 2015-10-13

Figure 27 Reverse Isolation of the BGA7L1BN6 for LTE Band 5 in Bypass Mode

Figure 28 Noise Figure of the BGA7L1BN6 for Band 5 in Bypass Mode

600 700 800 900 1000 1100

Frequency (MHz)

Reverse Isolation in Bypass Mode

-5

-4

-3

-2

-1

0

S12 (

dB

)

894 MHz-2.5 dB

882 MHz-2.4 dB

869 MHz-2.4 dB

894 MHz-2.4 dB

882 MHz-2.4 dB

869 MHz-2.3 dB

Vcc=1.8 V

Vcc=2.8 V

840 890 940 970

Frequency (MHz)

Noise Figure in Bypass Mode

0

1

2

3

4

5

NF

(dB

)

882 MHz1.46

894 MHz0.63

869 MHz2.88

894 MHz0.60

882 MHz1.41

869 MHz2.78

Vcc=1.8 V

Vcc=2.8 V

Page 27: Low Noise Amplifier for LTE band-5

Low Noise Amplifier for LTE Band 5

Measurement Graphs

Application Note AN457 27 Revision 1.0, 2015-10-13

Figure 29 Stability K Factor and Delta Factor of the BGA7L1BN6 for LTE Band 5 in Bypass Mode

Figure 30 Stability μ1 Factor of the BGA7L1BN6 for LTE Band 5 in Bypass Mode

0 2000 4000 6000 8000 10000

Frequency (MHz)

Stability k Factor in Bypass Mode

0

1

2

3

4

5

K F

acto

r

Vcc=1.8 V

Vcc=2.8 V

0 2000 4000 6000 8000 10000

Frequency (MHz)

Stability Mu1 Factor in Bypass Mode

0

1

2

3

4

5

MU

1

Vcc=1.8 V

Vcc=2.8 V

Page 28: Low Noise Amplifier for LTE band-5

Low Noise Amplifier for LTE Band 5

Measurement Graphs

Application Note AN457 28 Revision 1.0, 2015-10-13

Figure 31 Stability μ2 Factor of the of the BGA7L1BN6 for LTE Band 5 in Bypass Mode

Figure 32 IP1dB of the BGA7L1BN6 for LTE Band 5 in Bypass Mode with 1.8 V power supply

0 2000 4000 6000 8000 10000

Frequency (MHz)

Stability Mu2 Factor in Bypass Mode

0

1

2

3

4

5

MU

2

Vcc=1.8 V

Vcc=2.8 V

-20 -10 0 7

Power (dBm)

P1dB in Bypass Mode with Vcc=1.8 V

-5

-4

-3

-2

-1

0

Ga

in (

dB

)

6.402 dBm-3.5

6.568 dBm-3.5

6.266 dBm-3.4

-20 dBm-2.5

-20 dBm-2.5

-20 dBm-2.4

869MHz

882MHz

894MHz

Page 29: Low Noise Amplifier for LTE band-5

Low Noise Amplifier for LTE Band 5

Measurement Graphs

Application Note AN457 29 Revision 1.0, 2015-10-13

Figure 33 IP1dB of the BGA7L1BN6 for LTE Band 5 in Bypass Mode with 2.8 V power supply

Figure 34 IIP3 of the BGA7L1BN6 for LTE Band 5 in Bypass Mode with 1.8 V power supply

-20 -10 0 7.5

Power (dBm)

P1dB in Bypass Mode with Vcc=2.8 V

-5

-4

-3

-2

-1

0

Ga

in (

dB

)

7.259 dBm-3.4

7.405 dBm-3.4

7.044 dBm-3.3

-20 dBm-2.4

-20 dBm-2.4

-20 dBm-2.3

869MHz

882MHz

894MHz

880.9 881.97 883.04 884.11

Frequency (MHz)

IIP3 in Bypass Mode for 882 MHz

-130

-110

-90

-70

-50

-30

-10

0

Po

we

r (d

Bm

)

880.999 MHz-94.38

884.004 MHz-94.54

882.001 MHz-21.96 883.002 MHz

-21.81

Vcc= 1.8 V

Page 30: Low Noise Amplifier for LTE band-5

Low Noise Amplifier for LTE Band 5

Measurement Graphs

Application Note AN457 30 Revision 1.0, 2015-10-13

Figure 35 IIP3 of the BGA7L1BN6 for LTE Band 5 in Bypass Mode with 2.8 V power supply

880.91 881.98 883.05 884.11

Frequency (MHz)

IIP3 in Bypass Mode for 882 MHz

-130

-110

-90

-70

-50

-30

-10

0

Po

we

r (d

Bm

)

880.999 MHz-98.44

884.004 MHz-97.08

882.001 MHz-21.87

883.002 MHz-21.71

Vcc= 2.8 V

Page 31: Low Noise Amplifier for LTE band-5

Low Noise Amplifier for LTE Band 5

Evaluation Board and Layout Information

Application Note AN457 31 Revision 1.0, 2015-10-13

5 Evaluation Board and Layout Information In this application note, the following PCB is used:

PCB Marking: M150429

PCB material: FR4

r of PCB material: 4.7

Figure 37 Photo Picture of the Evaluation Board (overview)

Figure 38 Photo Picture of the Evaluation Board (detailed view)

Page 32: Low Noise Amplifier for LTE band-5

Low Noise Amplifier for LTE Band 5

Evaluation Board and Layout Information

Application Note AN457 32 Revision 1.0, 2015-10-13

Figure 39 PCB Layer Information

Copper 35µm

FR4, 0.2mm

FR4, 0.8mm

Vias Vias

Page 33: Low Noise Amplifier for LTE band-5

Low Noise Amplifier for LTE Band 5

Author

Application Note AN457 33 Revision 1.0, 2015-10-13

6 Author

Moakhkhrul Islam, RF Application Engineer of Business Unit “Radio Frequency and Sensors”

Puming Fang, Working Student of Business Unit “Radio Frequency and Sensors”

Page 34: Low Noise Amplifier for LTE band-5

Published by

Infineon Technologies AG

81726 Munich, Germany

© 2017 Infineon Technologies AG. All Rights Reserved.

Do you have a question about any aspect of this document?

Email: [email protected]

Document reference

Legal Disclaimer THE INFORMATION GIVEN IN THIS APPLICATION NOTE (INCLUDING BUT NOT LIMITED TO CONTENTS OF REFERENCED WEBSITES) IS GIVEN AS A HINT FOR THE IMPLEMENTATION OF THE INFINEON TECHNOLOGIES COMPONENT ONLY AND SHALL NOT BE REGARDED AS ANY DESCRIPTION OR WARRANTY OF A CERTAIN FUNCTIONALITY, CONDITION OR QUALITY OF THE INFINEON TECHNOLOGIES COMPONENT. THE RECIPIENT OF THIS APPLICATION NOTE MUST VERIFY ANY FUNCTION DESCRIBED HEREIN IN THE REAL APPLICATION. INFINEON TECHNOLOGIES HEREBY DISCLAIMS ANY AND ALL WARRANTIES AND LIABILITIES OF ANY KIND (INCLUDING WITHOUT LIMITATION WARRANTIES OF NON-INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OF ANY THIRD PARTY) WITH RESPECT TO ANY AND ALL INFORMATION GIVEN IN THIS APPLICATION NOTE.

Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

www.infineon.com

Trademarks of Infineon Technologies AG AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolGaN™, CoolMOS™, CoolSET™, CoolSiC™, CORECONTROL™, CROSSAVE™, DAVE™, DI-POL™, DrBLADE™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, ISOFACE™, IsoPACK™, i-Wafer™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OmniTune™, OPTIGA™, OptiMOS™, ORIGA™, POWERCODE™, PRIMARION™, PrimePACK™, PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, ReverSave™, SatRIC™, SIEGET™, SIPMOS™, SmartLEWIS™, SOLID FLASH™, SPOC™, TEMPFET™, thinQ!™, TRENCHSTOP™, TriCore™.

Other Trademarks Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™, PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited, UK. ANSI™ of American National Standards Institute. AUTOSAR™ of AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™, FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG. FLEXGO™ of Microsoft Corporation. HYPERTERMINAL™ of Hilgraeve Incorporated. MCS™ of Intel Corp. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared Data Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics Corporation. MIPI™ of MIPI A lliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™ of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of OmniVision Technologies, Inc. Openwave™ of Openwave Systems Inc. RED HAT™ of Red Hat, Inc. RFMD™ of RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun Microsystems, Inc. SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™ of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex Limited. Last Trademarks Update 2014-07-17

Edition 2015-10-13

AN_201510_PL32_005