33
Jonathan Edelen LLRF 2017 Workshop (Barcelona) 16 Oct 2017 Low Level RF for PIP-II

Low Level RF for PIP-II - public.cells.es · Up Conver t er Down Conver t er Down Conver t er RF Prot ec on Int er lock FPGA Cavi t y 2 Amp RF S/ W Cir DC RF Prot ec on Int erl ock

Embed Size (px)

Citation preview

Page 1: Low Level RF for PIP-II - public.cells.es · Up Conver t er Down Conver t er Down Conver t er RF Prot ec on Int er lock FPGA Cavi t y 2 Amp RF S/ W Cir DC RF Prot ec on Int erl ock

Jonathan Edelen

LLRF 2017 Workshop (Barcelona)

16 Oct 2017

Low Level RF for PIP-II

Page 2: Low Level RF for PIP-II - public.cells.es · Up Conver t er Down Conver t er Down Conver t er RF Prot ec on Int er lock FPGA Cavi t y 2 Amp RF S/ W Cir DC RF Prot ec on Int erl ock

• Fermilab

– Brian Chase, Edward Cullerton, Joshua Einstein, Jeremiah

Holzbauer, Dan Klepec, Yuriy Pischalnikov, Warren Schapper,

Philip Varghese

• India Department of Atomic Energy (DAE)

– Gopal Joshi, Shailesh Khole, Dheeraj Sharma

PIP-II LLRF Team

11/9/2017 Jonathan Edelen | Low Level RF for PIP-II 2

Page 3: Low Level RF for PIP-II - public.cells.es · Up Conver t er Down Conver t er Down Conver t er RF Prot ec on Int er lock FPGA Cavi t y 2 Amp RF S/ W Cir DC RF Prot ec on Int erl ock

• PIP – II is a 20Hz, 800 MeV, superconducting H- LINAC that will replace the existing 400 MeV copper LINAC

• The primary goal of this upgrade is to increase the beam power available to neutrino experiments to 1.2 MW

• As part of the PIP-II R&D plan we are also building a test stand – Warm front end, HWR, and

SSR1

– Goal to test the chopper and the transition from NC to SC as well as prove out accelerator technology

What is PIP-II

11/9/2017 3 Jonathan Edelen | Low Level RF for PIP-II

Page 4: Low Level RF for PIP-II - public.cells.es · Up Conver t er Down Conver t er Down Conver t er RF Prot ec on Int er lock FPGA Cavi t y 2 Amp RF S/ W Cir DC RF Prot ec on Int erl ock

• RF field control of all LINAC Cavities capable of pulsed and CW operation

• Multi-frequency Master Oscillator and Phase Reference lines

• Beam Chopper Waveform Generator – RF locking source for Booster during beam fill

– Timing source

• Resonance control (microphonics and LFD)

Overview of the PIP-II LINAC

11/9/2017 4 Jonathan Edelen | Low Level RF for PIP-II

Page 5: Low Level RF for PIP-II - public.cells.es · Up Conver t er Down Conver t er Down Conver t er RF Prot ec on Int er lock FPGA Cavi t y 2 Amp RF S/ W Cir DC RF Prot ec on Int erl ock

Overview of the PIP-II LINAC

11/9/2017 5

Frequency [MHz]

Number of RF cavities

Amplifiers per Cavity

Pulsed / CW

Solid State Amplifier

Power [kW]

Number of 4-cavity stations

RFQ 162.5 1 2 CW 75 1 (special)

Bunching Cavities 162.5 4 1 CW 3 1

HWRs 162.5 8 1 CW 3,7 2

SSR1s 325 16 1 Pulsed 7 4

SSR2s 325 35 1 Pulsed 20 9

LB650s 650 33 1 Pulsed 40 9

HB650s 650 24 1 Pulsed 70 6

Jonathan Edelen | Low Level RF for PIP-II

Page 6: Low Level RF for PIP-II - public.cells.es · Up Conver t er Down Conver t er Down Conver t er RF Prot ec on Int er lock FPGA Cavi t y 2 Amp RF S/ W Cir DC RF Prot ec on Int erl ock

• Individual cavities regulated to 0.01%, 0.01 deg. RMS

Energy regulated to 10-4

Challenges for PIP-II

11/9/2017 6 Jonathan Edelen | Low Level RF for PIP-II

Page 7: Low Level RF for PIP-II - public.cells.es · Up Conver t er Down Conver t er Down Conver t er RF Prot ec on Int er lock FPGA Cavi t y 2 Amp RF S/ W Cir DC RF Prot ec on Int erl ock

• Individual cavities regulated to 0.01%, 0.01 deg. RMS

Energy regulated to 10-4

• LFD for four different cavity types

– Superconducting cavities are narrow band

– Operated in pulsed mode at 20 Hz

– Power overhead is limited

Challenges for PIP-II

11/9/2017 7 Jonathan Edelen | Low Level RF for PIP-II

Page 8: Low Level RF for PIP-II - public.cells.es · Up Conver t er Down Conver t er Down Conver t er RF Prot ec on Int er lock FPGA Cavi t y 2 Amp RF S/ W Cir DC RF Prot ec on Int erl ock

• Individual cavities regulated to 0.01%, 0.01 deg. RMS

Energy regulated to 10-4

• LFD for four different cavity types

– Superconducting cavities are narrow band

– Operated in pulsed mode at 20 Hz

– Power overhead is limited

• Microphonics is unknown

Challenges for PIP-II

11/9/2017 8 Jonathan Edelen | Low Level RF for PIP-II

Page 9: Low Level RF for PIP-II - public.cells.es · Up Conver t er Down Conver t er Down Conver t er RF Prot ec on Int er lock FPGA Cavi t y 2 Amp RF S/ W Cir DC RF Prot ec on Int erl ock

• Individual cavities regulated to 0.01%, 0.01 deg. RMS

Energy regulated to 10-4

• LFD for four different cavity types

– Superconducting cavities are narrow band

– Operated in pulsed mode at 20 Hz

– Power overhead is limited

• Microphonics is unknown

• International collaboration

Challenges for PIP-II

11/9/2017 9 Jonathan Edelen | Low Level RF for PIP-II

Page 10: Low Level RF for PIP-II - public.cells.es · Up Conver t er Down Conver t er Down Conver t er RF Prot ec on Int er lock FPGA Cavi t y 2 Amp RF S/ W Cir DC RF Prot ec on Int erl ock

LINAC Energy Stability Simulations

10 5/9/17 Jonathan Edelen | Low Level RF for PIP-II

• Individual cavities regulated to 0.01%, 0.01 deg. RMS

Energy regulated to 10-4

Page 11: Low Level RF for PIP-II - public.cells.es · Up Conver t er Down Conver t er Down Conver t er RF Prot ec on Int er lock FPGA Cavi t y 2 Amp RF S/ W Cir DC RF Prot ec on Int erl ock

LINAC Energy Stability Simulations

11 5/9/17 Jonathan Edelen | Low Level RF for PIP-II

• Individual cavities regulated to 0.01%, 0.01 deg. RMS

Energy regulated to 10-4

• Static errors: Caused by calibration errors and drifts

• Dynamics errors: Beam-loading disturbances and cavity detuning

Page 12: Low Level RF for PIP-II - public.cells.es · Up Conver t er Down Conver t er Down Conver t er RF Prot ec on Int er lock FPGA Cavi t y 2 Amp RF S/ W Cir DC RF Prot ec on Int erl ock

LINAC Energy Stability Simulations

12 5/9/17 Jonathan Edelen | Low Level RF for PIP-II

• Individual cavities regulated to 0.01%, 0.01 deg. RMS

Energy regulated to 10-4

• Static errors: Caused by calibration errors and drifts

• Dynamics errors: Beam-loading disturbances and cavity detuning

Energy and phase sensitivity at the end of the LINAC caused by perturbations to the phase of individual cavities.

Page 13: Low Level RF for PIP-II - public.cells.es · Up Conver t er Down Conver t er Down Conver t er RF Prot ec on Int er lock FPGA Cavi t y 2 Amp RF S/ W Cir DC RF Prot ec on Int erl ock

LINAC Energy Stability Simulations

13 5/9/17 Jonathan Edelen | Low Level RF for PIP-II

• Individual cavities regulated to 0.01%, 0.01 deg. RMS

Energy regulated to 10-4

• Static errors: Caused by calibration errors and drifts

• Dynamics errors: Beam-loading disturbances and cavity detuning

Energy sensitivity along the LINAC for phase errors introduced at frequency transitions: Here the phase errors are applied uniformly for each frequency type

Page 14: Low Level RF for PIP-II - public.cells.es · Up Conver t er Down Conver t er Down Conver t er RF Prot ec on Int er lock FPGA Cavi t y 2 Amp RF S/ W Cir DC RF Prot ec on Int erl ock

LINAC Energy Stability Simulations

14 5/9/17 Jonathan Edelen | Low Level RF for PIP-II

• Individual cavities regulated to 0.01%, 0.01 deg. RMS

Energy regulated to 10-4

• Static errors: Caused by calibration errors and drifts

• Dynamics errors: Beam-loading disturbances and cavity detuning

Assuming we can calibrate phase and amplitude to ±0.5° and ±1% respectively, we can stabilize the energy to 10-4 through pulse-to-pulse beam-based feedback using the last cryomodule.

Page 15: Low Level RF for PIP-II - public.cells.es · Up Conver t er Down Conver t er Down Conver t er RF Prot ec on Int er lock FPGA Cavi t y 2 Amp RF S/ W Cir DC RF Prot ec on Int erl ock

LINAC Energy Stability Simulations

15 5/9/17 Jonathan Edelen | Low Level RF for PIP-II

• Individual cavities regulated to 0.01%, 0.01 deg. RMS

Energy regulated to 10-4

• Static errors: Caused by calibration errors and drifts

• Dynamics errors: Beam-loading disturbances and cavity detuning

Page 16: Low Level RF for PIP-II - public.cells.es · Up Conver t er Down Conver t er Down Conver t er RF Prot ec on Int er lock FPGA Cavi t y 2 Amp RF S/ W Cir DC RF Prot ec on Int erl ock

LINAC Energy Stability Simulations

16 5/9/17 Jonathan Edelen | Low Level RF for PIP-II

• Individual cavities regulated to 0.01%, 0.01 deg. RMS

Energy regulated to 10-4

• Static errors: Caused by calibration errors and drifts

• Dynamics errors: Beam-loading disturbances and cavity detuning

Page 17: Low Level RF for PIP-II - public.cells.es · Up Conver t er Down Conver t er Down Conver t er RF Prot ec on Int er lock FPGA Cavi t y 2 Amp RF S/ W Cir DC RF Prot ec on Int erl ock

• Resonance control specifications for each cavity type

• Meeting these specifications will be challenging

– Passive measures to reduce df/dp looks promising

– Active compensation currently being tested on SSR1 type cavities

Resonance Control

11/9/2017 17 Jonathan Edelen | Low Level RF for PIP-II

Page 18: Low Level RF for PIP-II - public.cells.es · Up Conver t er Down Conver t er Down Conver t er RF Prot ec on Int er lock FPGA Cavi t y 2 Amp RF S/ W Cir DC RF Prot ec on Int erl ock

• PIP-II nominal operating conditions

– 12.5 MV/m

– 20 Hz repetition rate

– 15% duty cycle, 0.5ms flattop

• STC operating condition

– Greater than 12.5 MV/m

– 25 Hz repetition rate

– 7.5 ms fill, 7.5 ms flattop

• 7.4 Hz RMS detuning on the flattop

– Specification is a peak detuning

of 20 Hz: Further improvement

is needed

Active Resonance Control Testing

11/9/2017 18 Jonathan Edelen | Low Level RF for PIP-II

Page 19: Low Level RF for PIP-II - public.cells.es · Up Conver t er Down Conver t er Down Conver t er RF Prot ec on Int er lock FPGA Cavi t y 2 Amp RF S/ W Cir DC RF Prot ec on Int erl ock

• Significant progress has been

made toward PIP-II specification of

detuning.

• Plan for incoming test at STC:

– Improvements in feed back

(automation of filter bank

coefficients) should improve

performance

– May be possible to automatically

extract optimal coefficients from

delay scan data

– Further firmware improvements

should allow more detailed studies

of pulse structure

Active Resonance Control Testing

11/9/2017 19 Jonathan Edelen | Low Level RF for PIP-II

Page 20: Low Level RF for PIP-II - public.cells.es · Up Conver t er Down Conver t er Down Conver t er RF Prot ec on Int er lock FPGA Cavi t y 2 Amp RF S/ W Cir DC RF Prot ec on Int erl ock

System conceptual design

Rack layout and module descriptions

11/9/2017 20 Jonathan Edelen | Low Level RF for PIP-II

Page 21: Low Level RF for PIP-II - public.cells.es · Up Conver t er Down Conver t er Down Conver t er RF Prot ec on Int er lock FPGA Cavi t y 2 Amp RF S/ W Cir DC RF Prot ec on Int erl ock

LLRF System for PIP-II

11/9/2017 21 Jonathan Edelen | Low Level RF for PIP-II

Page 22: Low Level RF for PIP-II - public.cells.es · Up Conver t er Down Conver t er Down Conver t er RF Prot ec on Int er lock FPGA Cavi t y 2 Amp RF S/ W Cir DC RF Prot ec on Int erl ock

LLRF Signal Chain for 4 cavities

11/9/2017 22 7/13/16Presenter | Presentation Title1

UpConverter

DownConverter

DownConverter

RFProtec onInterlock

FPGA

Cavity2

Amp

CirRFS/W

DC

RFProtec onInterlock

FPGA

Cavity1

Amp

CirRFS/W

DC

Controls LLRFController

SOCFPGABoard

CLK

ADC

DAC

LLRFController

SOCFPGABoard

CLK

ADC

DAC

Cavity4

Amp

CirRFS/W

DC

Cavity3

Amp

CirRFS/W

DC

ClockDistribu on

ResonanceController

StepperControl

PiezoControl

SOCFPGABoard

345MHz

1320MHz

RFRef

6

2

4 2

4

8

8

2

2

63

3

3

3

E-NET

325MHz

325MHz

325MHz

325MHz

325MHz

RFReady

20MHzIF

2

2

20MHzIF

RFRef

MPS

Timing/Events

Jonathan Edelen | Low Level RF for PIP-II

Page 23: Low Level RF for PIP-II - public.cells.es · Up Conver t er Down Conver t er Down Conver t er RF Prot ec on Int er lock FPGA Cavi t y 2 Amp RF S/ W Cir DC RF Prot ec on Int erl ock

Phase Reference Lines

(162.5, 325, 650 ,1300 MHz)

11/9/2017 23

Multi-frequency Phase References and Local Oscillators Being prototyped at BARC

Jonathan Edelen | Low Level RF for PIP-II

Page 24: Low Level RF for PIP-II - public.cells.es · Up Conver t er Down Conver t er Down Conver t er RF Prot ec on Int er lock FPGA Cavi t y 2 Amp RF S/ W Cir DC RF Prot ec on Int erl ock

Chopper program generator

11/9/2017 24 Jonathan Edelen | Low Level RF for PIP-II

AWG

PC GUI (LabVIEW)

Trig Sync

Analog Filter

Analog Filter

Kicker Driver

PS

Kicker Driver

PS

Oscilloscope

Upper Helix

Lower Helix

162.5 RF Ref

Controls Trigger

USB

Trig Ch1

Trig Ch2

Ch1

Ch2

+600 V

-600 V

Amp & Comparator

Amp & Comparator

1.3 GHz RF Ref

Page 25: Low Level RF for PIP-II - public.cells.es · Up Conver t er Down Conver t er Down Conver t er RF Prot ec on Int er lock FPGA Cavi t y 2 Amp RF S/ W Cir DC RF Prot ec on Int erl ock

Chopper program generator

11/9/2017 25 Jonathan Edelen | Low Level RF for PIP-II

Synchronized Trigger Pulse

Common Delay

Delay between Helix

Beam Bunch

Falling Edge Adjustment Rising Edge Adjustment

• Delay with respect to synchronized trigger – Compensate for cable lengths

– Compensate for kicker driver delay

– Internal delay of Arbitrary Waveform Generator (AWG)

• Differential delay – Different characteristics of kicker switches

Time Resolution <50 ps Trigger from control

162.5 MHz

Page 26: Low Level RF for PIP-II - public.cells.es · Up Conver t er Down Conver t er Down Conver t er RF Prot ec on Int er lock FPGA Cavi t y 2 Amp RF S/ W Cir DC RF Prot ec on Int erl ock

Hardware status to date

Prototype measurements

11/9/2017 26 Jonathan Edelen | Low Level RF for PIP-II

Page 27: Low Level RF for PIP-II - public.cells.es · Up Conver t er Down Conver t er Down Conver t er RF Prot ec on Int er lock FPGA Cavi t y 2 Amp RF S/ W Cir DC RF Prot ec on Int erl ock

• 20 MHz IF input -2 dBm max

• 162.5, 325, and 650 MHz Output, +11 dBm max

• 13 dB IF to RF Conversion Gain typ.

• Channel to Channel Isolation > 88 dB

• Spurious Signal Suppression > 80 dB

• High isolation (>68 dB) TTL RF switch

• Power Supply 6V, 1.8 Amp

4-Channel Up-converter

11/9/2017 27

-2

0

2

4

6

8

10

12

14

16

-15 -10 -5 0 5

RF

Ou

tpu

t (d

Bm

)

20 MHz IF Input (dBm)

RF Output vs IF Input

-10

-8

-6

-4

-2

0

2

-15 -10 -5 0 5

% E

rro

r (V

olt

s)

20 MHz IF Input (dBm)

RF Output Linearity

162.5 MHz

325 MHz

650 MHz

Jonathan Edelen | Low Level RF for PIP-II

Page 28: Low Level RF for PIP-II - public.cells.es · Up Conver t er Down Conver t er Down Conver t er RF Prot ec on Int er lock FPGA Cavi t y 2 Amp RF S/ W Cir DC RF Prot ec on Int erl ock

• RF input 162.5 MHz – 650 MHz

• Less than 1% non-linearity up to 10 dBm RF input

• 1.8, 2.1, 2 dB conversion loss @ 162.5, 325, 650 MHz

respectively

• Better than 82 dB Channel to Channel Isolation

• RF, LO, IF monitor ports

• Absorptive IF output low pass filter

• Noise output floor of -161 dBc/sqrt(Hz)

• Integrated output 1/f noise < 1.84 fsec, (0.02 to 20 Hz)

• LO Input power of 3.1, 3.8, and 5.7 dBm @ 162.5, 325,

650 MHz respectively

• Power Supply 6V, 2.25 Amps

PIP-II LLRF 8-Channel

Downconverter Prototype

28 11/9/2017 Jonathan Edelen | Low Level RF for PIP-II

-15

-10

-5

0

5

10

15

-10 0 10 20

IF O

utp

ut

@ 2

0 M

Hz

(dB

m)

RF Input (dBm)

IF Output vs RF Input

-10

-5

0

5

10

-10 0 10 20

% E

rro

r (V

olt

s)

RF Input (dBm)

Output Linearity vs RF Input

162.5 MHz

325 MHz

650 MHz

Page 29: Low Level RF for PIP-II - public.cells.es · Up Conver t er Down Conver t er Down Conver t er RF Prot ec on Int er lock FPGA Cavi t y 2 Amp RF S/ W Cir DC RF Prot ec on Int erl ock

• To date we have operational experience with the RFQ and three bunching cavities

• Left: Models of the RFQ LLRF system match well with measurements

• Right: Phase and amplitude ripple on the amplifiers complicate frequency tracking mode (modified frequency tracking loop for copper cavities)

Measurements from PIP-II injector test

11/9/2017 Presenter | Presentation Title or Meeting Title 29

Page 30: Low Level RF for PIP-II - public.cells.es · Up Conver t er Down Conver t er Down Conver t er RF Prot ec on Int er lock FPGA Cavi t y 2 Amp RF S/ W Cir DC RF Prot ec on Int erl ock

• Feed-forward is used to reduce the beam-loading transient in the RFQ

• Initial specification of 10-3 is met

• Amplifier phasing is necessary to ensure proper match into the RFQ

Measurements from PIP-II injector test

11/9/2017 Presenter | Presentation Title or Meeting Title 30

Page 31: Low Level RF for PIP-II - public.cells.es · Up Conver t er Down Conver t er Down Conver t er RF Prot ec on Int er lock FPGA Cavi t y 2 Amp RF S/ W Cir DC RF Prot ec on Int erl ock

• Seven joint FRSs Approved (two more near approval) – TRS in process

• 8-Channel Down-Converters – BARC version is in manufacturing

process

• 4-Channel Up-Converters – FNAL version tested

– BARC version is in manufacturing process

• FPGA Board – In schematic review process

• ADC-DAC FMC Module – Ready for manufacturing

• Resonance Control Chassis – Leverage from FNAL LCLS-II design

and is in progress

Progress of the IIFC collaboration

11/9/2017 PIP-II MAC 31

Up-converter module

Down-converter module

Page 32: Low Level RF for PIP-II - public.cells.es · Up Conver t er Down Conver t er Down Conver t er RF Prot ec on Int er lock FPGA Cavi t y 2 Amp RF S/ W Cir DC RF Prot ec on Int erl ock

• Individual cavities regulated to 0.01%, 0.01 deg. RMS

Energy regulated to 10-4

• LFD for four different cavity types

– Superconducting cavities are narrow band

– Operated in pulsed mode at 20 Hz

– Power overhead is limited

• Microphonics is unknown

• International collaboration

Challenges for PIP-II

11/9/2017 32 Jonathan Edelen | Low Level RF for PIP-II

Page 33: Low Level RF for PIP-II - public.cells.es · Up Conver t er Down Conver t er Down Conver t er RF Prot ec on Int er lock FPGA Cavi t y 2 Amp RF S/ W Cir DC RF Prot ec on Int erl ock

• PIP-II LLRF design conceptual design is mature and

leveraged off of existing designs and past experience

– Gaining experience from PIP2—IT as well

– While specifications are tight, simulations indicate we will be

able to meet these requirements

– Our biggest challenge is LFD compensation

Conclusions

11/9/2017 Presenter | Presentation Title or Meeting Title 33