13
General Description The MAX4385E/MAX4386E op amps are unity-gain sta- ble devices that combine high-speed performance, rail-to-rail outputs, and ±15kV ESD protection. Targeted for applications where an input or an output is exposed to the outside world, such as video and communica- tions, these devices are compliant with International ESD Standards: ±15kV IEC 1000-4-2 Air-Gap Discharge, ±8kV IEC 1000-4-2 Contact Discharge, and the ±15kV Human Body Model. The MAX4385E/MAX4386E operate from a single 5V supply with a common-mode input voltage range that extends beyond V EE . The MAX4385E/MAX4386E con- sume only 5.5mA of quiescent supply current per amplifier while achieving a 230MHz -3dB bandwidth, 30MHz 0.1dB gain flatness and a 450V/μs slew rate. Applications Features ESD-Protected Inputs and Outputs ±15kV—Human Body Model ±8kV—IEC 1000-4-2 Contact Discharge ±15kV—IEC 1000-4-2 Air-Gap Discharge Low Cost and High Speed 230MHz -3dB Bandwidth 30MHz 0.1dB Gain Flatness 450V/μs Slew Rate Rail-to-Rail Outputs Input Common-Mode Range Extends Beyond V EE Low Differential Gain/Phase: 0.02%/0.01° Low Distortion at 5MHz -60dBc SFDR -58dB Total Harmonic Distortion Ultra-Small 5-Pin SOT23 and 14-Pin TSSOP Packages MAX4385E/MAX4386E Low-Cost, 230MHz, Single/Quad Op Amps with Rail-to-Rail Outputs and ±15kV ESD Protection 2202207575OUT VIDEO LINE DRIVER Z o = 75MAX4385E 5V 2.2µF 75IN Typical Operating Circuit 19-2422; Rev 1; 9/05 Ordering Information ________________________________________________________________ Maxim Integrated Products 1 V EE IN- IN+ 1 5 V CC OUT MAX4385E SOT23 TOP VIEW 2 3 4 Pin Configurations Pin Configurations continued at end of data sheet. PART TEMP RANGE PIN- PACKAGE TOP MARK MAX4385EEUK-T -40°C to +85°C 5 SOT23-5 ADZL MAX4386EESD -40°C to +85°C 14 SO MAX4386EEUD -40°C to +85°C 14 TSSOP For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com. Set-Top Boxes Surveillance Video Systems Battery-Powered Instruments Analog-to-Digital Converter Interface CCD Imaging Systems Video Routing and Switching Systems Digital Cameras Video-on-Demand Video Line Driver

Low-Cost, 230MHz, Single/Quad Op Amps with Rail-to-Rail Outputs and ±15kV ESD Protection · 2005. 9. 23. · 0.2 VCC -2.25 TA = +25°C 0.2 20 Input Offset Voltage VOS TA = -40°C

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Low-Cost, 230MHz, Single/Quad Op Amps with Rail-to-Rail Outputs and ±15kV ESD Protection · 2005. 9. 23. · 0.2 VCC -2.25 TA = +25°C 0.2 20 Input Offset Voltage VOS TA = -40°C

General DescriptionThe MAX4385E/MAX4386E op amps are unity-gain sta-ble devices that combine high-speed performance, rail-to-rail outputs, and ±15kV ESD protection. Targetedfor applications where an input or an output is exposedto the outside world, such as video and communica-tions, these devices are compliant with InternationalESD Standards: ±15kV IEC 1000-4-2 Air-GapDischarge, ±8kV IEC 1000-4-2 Contact Discharge, andthe ±15kV Human Body Model.

The MAX4385E/MAX4386E operate from a single 5Vsupply with a common-mode input voltage range thatextends beyond VEE. The MAX4385E/MAX4386E con-sume only 5.5mA of quiescent supply current peramplifier while achieving a 230MHz -3dB bandwidth,30MHz 0.1dB gain flatness and a 450V/µs slew rate.

Applications

Features♦ ESD-Protected Inputs and Outputs

±15kV—Human Body Model±8kV—IEC 1000-4-2 Contact Discharge±15kV—IEC 1000-4-2 Air-Gap Discharge

♦ Low Cost and High Speed230MHz -3dB Bandwidth 30MHz 0.1dB Gain Flatness450V/µs Slew Rate

♦ Rail-to-Rail Outputs

♦ Input Common-Mode Range Extends Beyond VEE

♦ Low Differential Gain/Phase: 0.02%/0.01°

♦ Low Distortion at 5MHz-60dBc SFDR-58dB Total Harmonic Distortion

♦ Ultra-Small 5-Pin SOT23 and 14-Pin TSSOPPackages

MA

X4

38

5E

/MA

X4

38

6E

Low-Cost, 230MHz, Single/Quad Op Amps with Rail-to-Rail Outputs and ±15kV ESD Protection

220Ω220Ω

75Ω

75Ω

OUT

VIDEO LINE DRIVER

Zo = 75ΩMAX4385E

5V

2.2µF

75Ω

IN

Typical Operating Circuit

19-2422; Rev 1; 9/05

Ordering Information

________________________________________________________________ Maxim Integrated Products 1

VEE

IN-IN+

1 5 VCCOUT

MAX4385E

SOT23

TOP VIEW

2

3 4

Pin Configurations

Pin Configurations continued at end of data sheet.

PART TEMP RANGE PIN-PACKAGE

TOPMARK

MAX4385EEUK-T -40°C to +85°C 5 SOT23-5 ADZL

MAX4386EESD -40°C to +85°C 14 SO —

MAX4386EEUD -40°C to +85°C 14 TSSOP —

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.

Set-Top BoxesSurveillance VideoSystemsBattery-PoweredInstrumentsAnalog-to-DigitalConverter Interface

CCD ImagingSystemsVideo Routing andSwitching SystemsDigital CamerasVideo-on-DemandVideo Line Driver

Page 2: Low-Cost, 230MHz, Single/Quad Op Amps with Rail-to-Rail Outputs and ±15kV ESD Protection · 2005. 9. 23. · 0.2 VCC -2.25 TA = +25°C 0.2 20 Input Offset Voltage VOS TA = -40°C

MA

X4

38

5E

/MA

X4

38

6E

Low-Cost, 230MHz, Single/Quad Op Amps with Rail-to-Rail Outputs and ±15kV ESD Protection

2 _______________________________________________________________________________________

ABSOLUTE MAXIMUM RATINGSPower-Supply Voltage (VCC to VEE) .........................-0.3V to +6V IN_+, IN_-, OUT_,.............................(VEE - 0.3V) to (VCC + 0.3V)Output Short-Circuit Duration to

VCC or VEE.............................................................ContinuousContinuous Power Dissipation (TA = +70°C)

5-Pin SOT23 (derate 8.7mW/°C above +70°C)...........696mW

14-Pin SO (derate 8.33mW/°C above +70°C).............667mW14-Pin TSSOP (derate 10mW/°C above +70°C) .........727mW

Operating Temperature Range ...........................-40°C to +85°CJunction Temperature ......................................................+150°CStorage Temperature Range .............................-65°C to +150°CLead Temperature (soldering, 10s) .................................+300°C

Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and function-al operation of the device at these or at any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposureto absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS (VCC = 5V, VEE = 0, VCM = VCC/2, VOUT = VCC/2, RL = ∞ to VCC/2, CBYPASS = 2.2µF, TA = TMIN to TMAX, unless otherwise noted.Typical values are at TA = +25°C.) (Note 1)

PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS

Input Common-Mode VoltageRange

VCM Guaranteed by CMRRVEE -0.2

VCC -2.25

V

TA = +25°C 0.2 20Input Offset Voltage VOS

TA = -40°C to +85°C 28mV

Input Offset Voltage Matching MAX4386E 1 mV

Input Offset Voltage Tempco TCVOS 8 µV/°C

Input Bias Current IB 6.5 20 µA

Input Offset Current IOS 0.5 7 µA

Differential mode (-1V ≤ VIN ≤ +1V) 70 kΩInput Resistance RIN

Common mode (-0.2V ≤ VCM ≤ +2.75V) 3 MΩ

Common-Mode Rejection Ratio CMRR VEE - 0.2V ≤ VCM ≤ VCC - 2.25V 70 95 dB

0.25V ≤ VOUT ≤ 4.75V, RL = 2kΩ 50 61

0.8V ≤ VOUT ≤ 4.5V, RL = 150Ω 48 63Open-Loop Gain AVOL

1V ≤ VOUT ≤ 4V, RL = 50Ω 58

dB

VCC - VOH 0.05 0.270RL = 2kΩ

VOL - VEE 0.05 0.150

VCC - VOH 0.3 0.5RL = 150Ω

VOL - VEE 0.25 0.8

VCC - VOH 0.5 0.8RL = 75Ω

VOL - VEE 0.5 1.75

VCC - VOH 1 1.7

Output Voltage Swing VOUT

RL = 75Ω toground VOL - VEE 0.025 0.125

V

Sinking from RL = 50Ω to VCC 40 55Output Current IOUT

Sourcing into RL = 50Ω to VEE 25 50mA

Output Short-Circuit Current ISC Sinking or sourcing ±100 mA

Open-Loop Output Resistance ROUT 8 Ω

Power-Supply Rejection Ratio PSRR VS = 4.5V to 5.5V 50 62 dB

Page 3: Low-Cost, 230MHz, Single/Quad Op Amps with Rail-to-Rail Outputs and ±15kV ESD Protection · 2005. 9. 23. · 0.2 VCC -2.25 TA = +25°C 0.2 20 Input Offset Voltage VOS TA = -40°C

MA

X4

38

5E

/MA

X4

38

6E

Low-Cost, 230MHz, Single/Quad Op Amps with Rail-to-Rail Outputs and ±15kV ESD Protection

_______________________________________________________________________________________ 3

Note 1: All devices are 100% production tested at TA = +25°C. Specifications over temperature limits are guaranteed by design.Note 2: ESD protection is specified for test point A and test point B only (Figure 6).

DC ELECTRICAL CHARACTERISTICS (continued)(VCC = 5V, VEE = 0, VCM = VCC/2, VOUT = VCC/2, RL = ∞ to VCC/2, CBYPASS = 2.2µF, TA = TMIN to TMAX, unless otherwise noted.Typical values are at TA = +25°C.) (Note 1)

PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS

Operating Supply VoltageRange

VS Guaranteed by PSRR 4.5 5.5 V

Quiescent Supply Current(per Amplifier)

IS 5.5 9 mA

Human Body Model ±15

IEC 1000-4-2 Contact Discharge ±8ESD Protection Voltage(Note 2)

IEC 1000-4-2 Air-Gap Discharge ±15

kV

AC ELECTRICAL CHARACTERISTICS(VCC = 5V, VEE = 0, VCM = 1.5V, RL = 100Ω to VCC/2, VOUT = VCC/2, AVCL = 1V/V, TA = +25°C, unless otherwise noted.)

PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS

Small-Signal -3dB Bandwidth BWSS VOUT = 100mVP-P 230 MHz

Large-Signal -3dB Bandwidth BWLS VOUT = 2VP-P 180 MHz

Small-Signal 0.1dB GainFlatness

BW0.1dBSS VOUT = 100mVP-P 33 MHz

Large-Signal 0.1dB GainFlatness

BW0.1dBLS VOUT = 2VP-P 30 MHz

Slew Rate SR VOUT = 2V step 450 V/µs

Settling Time to 0.1% tS VOUT = 2V step 14 ns

Rise/Fall Time tR , tF VOUT = 100mVP-P 4 ns

Spurious-Free Dynamic Range SFDR fC = 5MHz, VOUT = 2VP-P -60 dBc

2nd harmonic -70

3rd harmonic -60Harmonic Distortion HDfC = 5MHz,VOUT = 2VP-P

total harmonic -58

dBc

Two-Tone, Third-OrderIntermodulation Distortion

IP3f1 = 4.7MHz, f2 = 4.8MHz,VOUT = 1VP-P

-60 dBc

Channel-to-Channel Isolation CHISO Specified at DC -95 dB

Input 1dB Compression Point fC = 10MHz, AVCL = 2V/V 13 dBm

Differential Phase Error DP NTSC, RL = 150Ω 0.01 Degrees

Differential Gain Error DG NTSC, RL = 150Ω 0.02 %

Input Noise-Voltage Density en f = 10kHz 11.5 nV/√Hz

Input Noise-Current Density in f = 10kHz 2 pA/√Hz

Input Capacitance CIN 8 pF

Output Impedance ZOUT f = 10MHz 2.2 Ω

Page 4: Low-Cost, 230MHz, Single/Quad Op Amps with Rail-to-Rail Outputs and ±15kV ESD Protection · 2005. 9. 23. · 0.2 VCC -2.25 TA = +25°C 0.2 20 Input Offset Voltage VOS TA = -40°C

MA

X4

38

5E

/MA

X4

38

6E

Low-Cost, 230MHz, Single/Quad Op Amps with Rail-to-Rail Outputs and ±15kV ESD Protection

4 _______________________________________________________________________________________

0.4

-0.6100k 1M 10M 100M 1G

LARGE-SIGNAL GAIN FLATNESSvs. FREQUENCY

-0.4

MAX

4385

E/86

E to

c04

FREQUENCY (Hz)

GAIN

(dB)

-0.2

0

0.2

0.1

-0.1

-0.3

-0.5

0.3VOUT = 2VP-P

100k 10M1M 100M 1G

OUTPUT IMPEDANCE vs. FREQUENCY

MAX

4385

E/86

E to

c05

FREQUENCY (Hz)

OUTP

UT IM

PEDA

NCE

(Ω)

1000

0.01

0.1

1

10

100

2ND HARMONIC

3RD HARMONIC

-10

-100100k 100M10M1M

DISTORTION vs. FREQUENCY

-70

-90

-30

-50

0

-60

-80

-20

-40

MAX

4385

E/86

E to

c06

FREQUENCY (Hz)

DIST

ORTI

ON (d

Bc)

VOUT = 2VP-PAVCL = 1V/V

2ND HARMONIC

3RD HARMONIC

-10

100k 100M10M1M

DISTORTION vs. FREQUENCY

-70

-90

-30

-50

0

-60

-80

-20

-40

MAX

4385

E/86

E to

c07

FREQUENCY (Hz)

DIST

ORTI

ON (d

Bc)

VOUT = 2VP-PAVCL = 2V/V

2ND HARMONIC

3RD HARMONIC

-10

100k 100M10M1M

DISTORTION vs. FREQUENCY

-70

-90

-30

-50

0

-60

-80

-20

-40

MAX

4385

E/86

E to

c08

FREQUENCY (Hz)

DIST

ORTI

ON (d

Bc)

VOUT = 2VP-PAVCL = 5V/V

-100

-70

-80

-90

-60

-50

-40

-30

-20

-10

0

0 400200 600 800 1000 1200

DISTORTION vs. RESISTIVE LOAD

MAX

4385

E/86

E to

c09

RLOAD (Ω)

DIST

ORTI

ON (d

Bc)

2ND HARMONIC

3RD HARMONIC

fO = 5MHzVOUT = 2VP-PAVCL = 1V/V

4

-6100k 10M 100M1M 1G

SMALL-SIGNAL GAIN vs. FREQUENCY

MAX

4385

E/86

E to

c01

FREQUENCY (Hz)

GAIN

(dB)

-5

-4

-3

-2

-1

0

1

2

3VOUT = 100mVP-P

4

-6100k 10M 100M1M 1G

LARGE-SIGNAL GAIN

vs. FREQUENCY

MAX

4385

E/86

E to

c02

FREQUENCY (Hz)

GAIN

(dB)

-5

-4

-3

-2

-1

0

1

2

3VOUT = 2VP-P

0.4

-0.6100k 10M 100M1M 1G

SMALL-SIGNAL GAIN FLATNESS

vs. FREQUENCY

MAX

4385

E/86

E to

c03

FREQUENCY (Hz)

GAIN

(dB)

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3VOUT = 100mVP-P

Typical Operating Characteristics(VCC = 5V, VEE = 0, VCM = 1.5V, AVCL = 1V/V, RL = 100Ω to VCC/2, TA = +25°C, unless otherwise noted.)

Page 5: Low-Cost, 230MHz, Single/Quad Op Amps with Rail-to-Rail Outputs and ±15kV ESD Protection · 2005. 9. 23. · 0.2 VCC -2.25 TA = +25°C 0.2 20 Input Offset Voltage VOS TA = -40°C

MA

X4

38

5E

/MA

X4

38

6E

Low-Cost, 230MHz, Single/Quad Op Amps with Rail-to-Rail Outputs and ±15kV ESD Protection

_______________________________________________________________________________________ 5

Typical Operating Characteristics (continued)(VCC = 5V, VEE = 0, VCM = 1.5V, AVCL = 1V/V, RL = 100Ω to VCC/2, TA = +25°C, unless otherwise noted.)

-70

-80

-90

-60

-50

-40

-30

-20

-10

0

0.5 1.0 1.5 2.0

DISTORTION vs. VOLTAGE SWING

M

AX43

85E/

86E

toc1

0

VOLTAGE SWING (VP-P)

DIST

ORTI

ON (d

Bc)

fO = 5MHzAVCL = 1V/V

3RD HARMONIC

2ND HARMONIC

0 10 20 30 40 50 60 70 80 90 100

DIFFERENTIAL GAIN AND PHASE

-0.010

00.005

0.015

0.0250.030

IRE

DIFF

PHA

SE (D

EGRE

ES)

DIFF

GAI

N (P

ERCE

NT)

MAX

4385

E/86

E to

c11

IRE

-0.005

0.020

0.010

-0.010

0.0050.010

0.020

0.030

0

0.025

0.015

-0.005

0 10 20 30 40 50 60 70 80 90 100

0

-100100k 10M 100M1M 1G

COMMON-MODE REJECTION vs. FREQUENCY

MAX

4385

E/86

E to

c12

FREQUENCY (Hz)

CMR

(dB)

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

-10

-20

-30

-40

-50

-60

-70100k 10M 100M1M 1G

POWER-SUPPLY REJECTIONvs. FREQUENCY

MAX

4385

E/86

E to

c13

FREQUENCY (Hz)

PSR

(dB)

0

0.2

0.1

0.3

0.6

0.7

0.5

0.4

0.8

0 200 300 400 500100

OUTPUT VOLTAGE SWING vs. RESISTIVE LOAD

MAX

4385

E/86

E to

c14

RLOAD (Ω)

OUTP

UT V

OLTA

GE S

WIN

G (V

)

VCC - VOH

VOL - VEE

MAX

4385

E/86

E to

c15

INPUT50mV/div

OUTPUT50mV/div

SMALL-SIGNAL PULSE RESPONSE

20ns/div

AVCL = 1V/V

MAX

4385

E/86

E to

c16

INPUT25mV/div

OUTPUT50mV/div

SMALL-SIGNAL PULSE RESPONSE

20ns/div

AVCL = 2V/VRF = 200Ω

MAX

4385

E/86

E to

c17

INPUT10mV/div

OUTPUT50mV/div

SMALL-SIGNAL PULSE RESPONSE

20ns/div

AVCL = 5V/V

RF = 250Ω

MAX

4385

E/86

E to

c18

INPUT1V/div

OUTPUT1V/div

LARGE-SIGNAL PULSE RESPONSE

20ns/div

AVCL = 1V/V

Page 6: Low-Cost, 230MHz, Single/Quad Op Amps with Rail-to-Rail Outputs and ±15kV ESD Protection · 2005. 9. 23. · 0.2 VCC -2.25 TA = +25°C 0.2 20 Input Offset Voltage VOS TA = -40°C

MA

X4

38

5E

/MA

X4

38

6E

Low-Cost, 230MHz, Single/Quad Op Amps with Rail-to-Rail Outputs and ±15kV ESD Protection

6 _______________________________________________________________________________________

Typical Operating Characteristics (continued)(VCC = 5V, VEE = 0, VCM = 1.5V, AVCL = 1V/V, RL = 100Ω to VCC/2, TA = +25°C, unless otherwise noted.)

CURRENT NOISE vs. FREQUENCY

MAX

4385

E/86

E to

c22

FREQUENCY (Hz)

CURR

ENT

NOIS

E (p

A/√H

z)

10 100 1k 10k

10

100

11 100k

RL = 100Ω

2

6

4

10

8

14

12

16

0 200100 300 400 500

ISOLATION RESISTANCE vs. CAPACITIVE LOAD

MAX

4385

E/86

E to

c23

CLOAD (pF)

R ISO

(Ω)

0 0

50

100

150

200

250

300

0 200100 300 400 500 600 700 800

SMALL-SIGNAL BANDWIDTH vs. LOAD RESISTANCE

MAX

4385

E/86

E to

c24

RLOAD (Ω)

BAND

WID

TH (M

Hz)

80

0100 1k 10k

OPEN-LOOP GAIN vs. RESISTIVE LOAD

20

10

MAX

4385

E/86

E to

c25

RLOAD (Ω)

OPEN

-LOO

P GA

IN (d

B)

40

30

50

60

70VCC = 5V

CROSSTALK vs. FREQUENCY

MAX

4385

E/86

E to

c26

FREQUENCY (Hz)

CROS

STAL

K (d

B)

-100

-70

-80

-90

-60

-50

-40

-30

-20

-10

0

100k 1M 10M 100M 1G

MAX

4385

E/86

E to

c19

INPUT500mV/div

OUTPUT1V/div

LARGE-SIGNAL PULSE RESPONSE

20ns/div

AVCL = 2V/VRF = 200Ω

MAX

4385

E/86

E to

c20

INPUT200mV/div

OUTPUT1V/div

LARGE-SIGNAL PULSE RESPONSE

20ns/div

AVCL = 5V/VRF = 250Ω

VOLTAGE NOISE vs. FREQUENCY

MAX

4385

E/86

E to

c21

FREQUENCY (Hz)

VOLT

AGE

NOIS

E (n

V/√H

z)

10k1k10010

10

100

1000

11 100k

RL = 100Ω

Page 7: Low-Cost, 230MHz, Single/Quad Op Amps with Rail-to-Rail Outputs and ±15kV ESD Protection · 2005. 9. 23. · 0.2 VCC -2.25 TA = +25°C 0.2 20 Input Offset Voltage VOS TA = -40°C

MA

X4

38

5E

/MA

X4

38

6E

Low-Cost, 230MHz, Single/Quad Op Amps with Rail-to-Rail Outputs and ±15kV ESD Protection

_______________________________________________________________________________________ 7

Typical Operating Characteristics (continued)(VCC = 5V, VEE = 0, VCM = 1.5V, AVCL = 1V/V, RL = 100Ω to VCC/2, TA = +25°C, unless otherwise noted.)

Pin DescriptionPIN

MAX4385E MAX4386E

SOT23 SO/TSSOP

NAME FUNCTION

1 — OUT Amplifier Output

2 11 VEE Negative Power Supply

3 — IN+ Noninverting Input

4 — IN- Inverting Input

5 4 VCC Positive Power Supply. Connect a 2.2µF and 0.1µF capacitor to GND.

— 1 OUTA Amplifier A Output

— 2 INA- Amplifier A Inverting Input

— 3 INA+ Amplifier A Noninverting Input

— 5 INB+ Amplifier B Noninverting Input

— 6 INB- Amplifier B Inverting Input

— 7 OUTB Amplifier B Output

— 8 OUTC Amplifier C Output

— 9 INC- Amplifier C Inverting Input

— 10 INC+ Amplifier C Noninverting Input

— 12 IND+ Amplifier D Noninverting Input

— 13 IND- Amplifier D Inverting Input

— 14 OUTD Amplifier D Output

-10.0

-8.0

-8.5

-9.0

-9.5

-7.0

-6.5

-7.5

-6.0

-5.5

-5.0

-50 0 25-25 50 75 100

INPUT BIAS CURRENTvs. TEMPERATURE

MAX

4385

E/86

E to

c28

TEMPERATURE (°C)

INPU

T BI

AS C

URRE

NT (µ

A)VCC = 5V

4.0

5.5

5.0

4.5

6.0

6.5

7.0

7.5

8.0

-50 0-25 25 50 75 100

SUPPLY CURRENTvs. TEMPERATURE

MAX

4385

E/86

E to

c29

TEMPERATURE (°C)

SUPP

LY C

URRE

NT (m

A)

VCC = 5V

-0.5

1.0

0.5

0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

-50 0-25 25 50 75 100

INPUT OFFSET VOLTAGE vs. TEMPERATURE

MAX

4385

E/86

E to

c27

TEMPERATURE (°C)

INPU

T OF

FSET

VOL

TAGE

(mV)

VCC = 5V

Page 8: Low-Cost, 230MHz, Single/Quad Op Amps with Rail-to-Rail Outputs and ±15kV ESD Protection · 2005. 9. 23. · 0.2 VCC -2.25 TA = +25°C 0.2 20 Input Offset Voltage VOS TA = -40°C

MA

X4

38

5E

/MA

X4

38

6E

Low-Cost, 230MHz, Single/Quad Op Amps with Rail-to-Rail Outputs and ±15kV ESD Protection

8 _______________________________________________________________________________________

Detailed DescriptionThe MAX4385E/MAX4386E are single/quad, 5V, rail-to-rail, voltage-feedback amplifiers that employ current-feedback techniques to achieve 450V/µs slew ratesand 230MHz bandwidths. High ±15kV ESD protectionguards against unexpected discharge. Excellent har-monic distortion and differential gain/phase perfor-mance make these amplifiers an ideal choice for a widevariety of video and RF signal-processing applications.

Applications InformationThe output voltage swings to within 50mV of each sup-ply rail. Local feedback around the output stageensures low open-loop output impedance to reducegain sensitivity to load variations. The input stage per-mits common-mode voltages beyond VEE and to within2.25V of the positive supply rail.

Choosing Resistor ValuesUnity-Gain Configuration

The MAX4385E/MAX4386E are internally compensatedfor unity gain. When configured for unity gain, a 24Ωresistor (RF) in series with the feedback path optimizesAC performance. This resistor improves AC responseby reducing the Q of the parallel LC circuit formed bythe parasitic feedback capacitance and inductance.

Video Line DriverThe MAX4385E/MAX4386E are low-power, voltage-feedback amplif iers featuring bandwidths up to230MHz, 0.1dB gain flatness to 30MHz. They aredesigned to minimize differential-gain error and differ-ential-phase error to 0.02% and 0.01°, respectively.They have a 14ns settling time to 0.1%, 450V/µs slewrates, and output-current-drive capability of up to50mA, making them ideal for driving video loads.

Inverting and Noninverting ConfigurationsSelect the gain-setting feedback (RF) and input (RG)resistor values to fit your application. Large resistor val-ues increase voltage noise and interact with the amplifi-er’s input and PC board capacitance. This cangenerate undesirable poles and zeros and decreasebandwidth or cause oscillations. For example, a nonin-verting gain-of-two configuration (RF = RG) using 1kΩresistors, combined with 8pF of amplifier input capaci-tance and 1pF of PC board capacitance, causes a poleat 35.4MHz. Since this pole is within the amplifier band-width, it jeopardizes stability. Reducing the 1kΩ resis-tors to 100Ω extends the pole frequency to 353.8MHz,but could limit output swing by adding 200Ω in parallelwith the amplif ier’s load resistor (Figures 1a and 1b).

Layout and Power-Supply BypassingThese amplifiers operate from a single 5V power supply.Bypass VCC to ground with 0.1µF and 2.2µF capacitors asclose to the pin as possible.

Maxim recommends using microstrip and stripline tech-niques to obtain full bandwidth. To ensure that the PCboard does not degrade the amplifier’s performance,design it for a frequency greater than 1GHz. Pay care-ful attention to inputs and outputs to avoid large para-sitic capacitance. Regardless of whether you use aconstant-impedance board, observe the followingdesign guidelines:

• Do not use wire-wrap boards; they are too inductive.

• Do not use IC sockets; they increase parasiticcapacitance and inductance.

• Use surface mount instead of through-hole compo-nents for better high-frequency performance.

• Use a PC board with at least two layers; it should beas free from voids as possible.

• Keep signal lines as short and as straight as possi-ble. Do not make 90° turns; round all corners.

INRG

VOUT = -(RF / RG) VIN

RF

VOUTMAX438_E

Figure 1b. Inverting Gain Configuration

IN

RG

VOUT = [1+ (RF / RG)] VIN

RF

VOUTMAX438_E

Figure 1a. Noninverting Gain Configuration

Page 9: Low-Cost, 230MHz, Single/Quad Op Amps with Rail-to-Rail Outputs and ±15kV ESD Protection · 2005. 9. 23. · 0.2 VCC -2.25 TA = +25°C 0.2 20 Input Offset Voltage VOS TA = -40°C

MA

X4

38

5E

/MA

X4

38

6E

Low-Cost, 230MHz, Single/Quad Op Amps with Rail-to-Rail Outputs and ±15kV ESD Protection

_______________________________________________________________________________________ 9

Rail-to-Rail Outputs, Ground-Sensing Inputs

The input common-mode range extends from (VEE -200mV) to (VCC - 2.25V) with excellent common-moderejection. Beyond this range, the amplifier output is anonlinear function of the input, but does not undergophase reversal or latchup.

The output swings to within 50mV of either power-sup-ply rail with a 2kΩ load. The input ground sensing andthe rail-to-rail output substantially increase the dynamicrange. The input can swing 2.95VP-P and the outputcan swing 4.9VP-P with minimal distortion.

Output Capacitive Loading and StabilityThe MAX4385E/MAX4386E are optimized for AC perfor-mance and do not drive highly reactive loads, whichdecreases phase margin and may produce excessiveringing and oscillation. Figure 2 shows a circuit thateliminates this problem. Figure 3 is a graph of theOptimal Isolation Resistor (RS) vs. Capacitive Load.Figure 4 shows how a capacitive load causes exces-sive peaking of the amplifier’s frequency response ifthe capacitor is not isolated from the amplifier by aresistor. A small isolation resistor (usually 10Ω to 15Ω)placed before the reactive load prevents ringing andoscillation. At higher capacitive loads, the interaction ofthe load capacitance and the isolation resistor controlsthe AC performance. Figure 5 shows the effect of a15Ω isolation resistor on closed-loop response.

6

-4100k 10M 100M1M 1G

-2

FREQUENCY (Hz)

GAIN

(dB)

0

2

4

5

-3

-1

1

3

CL = 10pF

CL = 15pF

CL = 5pF

Figure 4. Small-Signal Gain vs. Frequency with LoadCapacitance and No Isolation Resistor

Figure 2. Driving a Capacitive Load Through an Isolation Resistor

9

11

10

13

12

15

14

16

0 200100 300 40050 250150 350 450 500

ISOLATION RESISTANCE vs. CAPACITIVE LOAD

CLOAD (pF)

R ISO

(Ω)

Figure 3. Isolation Resistance vs. Capacitive Load

RG RF

RISO

CL

VOUT

VIN

MAX438_E

3

-7100k 10M 100M1M 1G

-5

FREQUENCY (Hz)

GAIN

(dB)

-3

-1

1

2

-6

-4

-2

0

CL = 68pF

RISO = 15Ω

CL = 120pF

CL = 47pF

Figure 5. Small-Signal Gain vs. Frequency with LoadCapacitance and 27Ω Isolation Resistor

Page 10: Low-Cost, 230MHz, Single/Quad Op Amps with Rail-to-Rail Outputs and ±15kV ESD Protection · 2005. 9. 23. · 0.2 VCC -2.25 TA = +25°C 0.2 20 Input Offset Voltage VOS TA = -40°C

MA

X4

38

5E

/MA

X4

38

6E

Low-Cost, 230MHz, Single/Quad Op Amps with Rail-to-Rail Outputs and ±15kV ESD Protection

10 ______________________________________________________________________________________

ESD Protection As with all Maxim devices, ESD protection structuresare incorporated on all pins to protect against ESDencountered during handling and assembly. Input andoutput pins of the MAX4385E/MAX4386E have extraprotection against static electricity. Maxim’s engineershave developed state-of-the-art structures enablingthese pins to withstand ESD up to ±15kV without dam-age when placed in the test circuit (Figure 6). TheMAX4385E/MAX4386E are characterized for protectionto the following limits:

• ±15kV using the Human Body Model

• ±8kV using the Contact Discharge method specifiedin IEC 1000-4-2

• ±15kV using the Air-Gap Discharge method speci-fied in IEC 1000-4-2

Human Body ModelFigure 7 shows the Human Body Model, and Figure 8shows the current waveform it generates when dis-charged into a low impedance. This model consists of a150pF capacitor charged to the ESD voltage of interest,and then discharged into the test device through a1.5kΩ resistor.

IEC 1000-4-2The IEC 1000-4-2 standard covers ESD testing andperformance of finished equipment; it does not specifi-cally refer to ICs. The MAX4385E/MAX4386E enable thedesign of equipment that meets the highest level (Level4) of IEC 1000-4-2 without the need for additional ESDprotection components. The major difference betweentests done using the Human Body Model and IEC 1000-4-2 is higher peak current in IEC 1000-4-2. Becauseseries resistance is lower in the IEC 1000-4-2 model,the ESD-withstand voltage measured to this standard isgenerally lower than that measured using the HumanBody. Figure 10 shows the IEC 1000-4-2 model andFigure 9 shows the current waveform for the ±8kV IEC1000-4-2 Level 4 ESD Contact Discharge test. The Air-Gap test involves approaching the device with acharged probe. The Contact Discharge method con-nects the probe to the device before the probe is ener-gized.

HIGH-VOLTAGE

DCSOURCE

CHARGE CURRENTLIMIT RESISTOR

DISCHARGERESISTANCE

STORAGECAPACITOR

RD = 1.5kΩRC = 1MΩ

CS = 150pF

DEVICEUNDERTEST

Figure 7. Human Body ESD Model

IP 100%90%

36.8%

tRLTIME

tDLCURRENT WAVEFORM

PEAK-TO-PEAK RINGING(NOT DRAWN TO SCALE)

Ir

10%0

0

AMPERES

Figure 8. Human Body Current Waveform

220Ω220Ω

75Ω

MAX438_E

5V

CBYPASS2.2µF

75ΩTEST

POINT B

TEST POINT A

VEE

Figure 6. ESD Test Circuit

Page 11: Low-Cost, 230MHz, Single/Quad Op Amps with Rail-to-Rail Outputs and ±15kV ESD Protection · 2005. 9. 23. · 0.2 VCC -2.25 TA = +25°C 0.2 20 Input Offset Voltage VOS TA = -40°C

MA

X4

38

5E

/MA

X4

38

6E

Low-Cost, 230MHz, Single/Quad Op Amps with Rail-to-Rail Outputs and ±15kV ESD Protection

______________________________________________________________________________________ 11

Chip InformationMAX4385E TRANSISTOR COUNT: 124

MAX4386E TRANSISTOR COUNT: 264

tr = 0.7ns TO 1ns30ns

60ns

t

100%

90%

10%

I PEA

K

I

Figure 10. IEC 1000-4-2 ESD Generator Current Waveform

CHARGE CURRENTLIMIT RESISTOR

DISCHARGERESISTANCE

STORAGECAPACITOR

CS150pF

RC50MΩ TO100MΩ

RD330Ω

HIGH-VOLTAGE

DCSOURCE

DEVICEUNDERTEST

Figure 9. IEC 1000-4-2 ESD Test Model

14

13

12

11

10

9

8

1

2

3

4

5

6

7

OUTD

IND-

IND+

VEEVCC

INA+

INA-

OUTA

TOP VIEW

MAX4386E

INC+

INC-

OUTCOUTB

INB-

INB+

TSSOP/SO

Pin Configurations (continued)

Page 12: Low-Cost, 230MHz, Single/Quad Op Amps with Rail-to-Rail Outputs and ±15kV ESD Protection · 2005. 9. 23. · 0.2 VCC -2.25 TA = +25°C 0.2 20 Input Offset Voltage VOS TA = -40°C

MA

X4

38

5E

/MA

X4

38

6E

Low-Cost, 230MHz, Single/Quad Op Amps with Rail-to-Rail Outputs and ±15kV ESD Protection

12 ______________________________________________________________________________________

SO

T-23

5L

.EP

S

E1121-0057

PACKAGE OUTLINE, SOT-23, 5L

Package Information(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,go to www.maxim-ic.com/packages.)

TSS

OP

4.40

mm

.EP

S

PACKAGE OUTLINE, TSSOP 4.40mm BODY

21-0066 11

G

Page 13: Low-Cost, 230MHz, Single/Quad Op Amps with Rail-to-Rail Outputs and ±15kV ESD Protection · 2005. 9. 23. · 0.2 VCC -2.25 TA = +25°C 0.2 20 Input Offset Voltage VOS TA = -40°C

Low-Cost, 230MHz, Single/Quad Op Amps with Rail-to-Rail Outputs and ±15kV ESD Protection

MA

X4

38

5E

/MA

X4

38

6E

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses areimplied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 13

© 2005 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products, Inc.

Package Information (continued)(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,go to www.maxim-ic.com/packages.)

SO

ICN

.EP

S

PACKAGE OUTLINE, .150" SOIC

11

21-0041 BREV.DOCUMENT CONTROL NO.APPROVAL

PROPRIETARY INFORMATION

TITLE:

TOP VIEW

FRONT VIEW

MAX

0.010

0.069

0.019

0.157

0.010

INCHES

0.150

0.007

E

C

DIM

0.014

0.004

B

A1

MIN

0.053A

0.19

3.80 4.00

0.25

MILLIMETERS

0.10

0.35

1.35

MIN

0.49

0.25

MAX

1.75

0.0500.016L 0.40 1.27

0.3940.386D

D

MINDIM

D

INCHES

MAX

9.80 10.00

MILLIMETERS

MIN MAX

16 AC

0.337 0.344 AB8.758.55 14

0.189 0.197 AA5.004.80 8

N MS012

N

SIDE VIEW

H 0.2440.228 5.80 6.20

e 0.050 BSC 1.27 BSC

C

HE

e B A1

A

D

0∞-8∞L

1

VARIATIONS: