21
Longitudinal Impedance Budget from LINAC to SASE2 Igor Zagorodnov Beam Dynamics Group Meeting 13.11.06

Longitudinal Impedance Budget from LINAC to SASE2 Igor Zagorodnov Beam Dynamics Group Meeting 13.11.06

Embed Size (px)

Citation preview

Longitudinal Impedance Budget from LINAC to SASE2

Igor Zagorodnov

Beam Dynamics Group Meeting

13.11.06

SASE2

SASE1

(W.Decking)

Wakefield sources

- Resistance of the pipe (r=25mm, L=456m, Aluminium)

- Collimators (r=2mm, L=50cm, 4 items, TIMETAL 6-4 )

- Kickers (r=10mm, L=10m, 3 items, R/Lm )

500d mm

2 2b mm1 25b mm

Collimator (geometrical wake)

||( ) ( )QW s Z I s

|| 2 (0)eZ Z

0 1

2

(0) ln2

e Z bZ

b

|| 303Z

Diffractive regime: the geometrical wake repeats the bunch shape

TIMETAL 6-4 alloy (Titanium)(E.Schutz MVA)

6 1 10.6 10 m

500d mm

2 2b mm1 25b mm

http://www.timet.com/timetal6-4frame.html

Collimator (resistive wake)

1

0

( ) ( )( ) 1

2 2s sZ ZR

Z iR c Z

0 sec

0 mrough

0 nmoxid

( ) ( ) ( )Ls s sZ Z Z

( )( )si

Z

( )LsZ i L

0( )1 i

0.5 ( 0.02 )oxid roughL

M.Dohlus. TESLA 2001-26, 2001K.L.F.Bane, G.V.Stupakov, SLAC-PUB-10707, 2004

0 1 2

x 10-4

-3000

-2000

-1000

0

1000

TIMETAL 6-4 alloy (Titanium)

6 1 10.6 10 m

500d mm

2 2b mm1 25b mm

Geom. Res. Total

Loss 827 329 1156

Spread 501 359 829

Peak -1665 -823 -2411

/kV nC

|| /W kV nC

s m

Collimator

total

resistive

bunch

0 1 2

x 10-4

-20

-10

0

10

20

Aluminium

7 1 13.66 10 m

456d m

1 25b mm

resistive total

Loss 6.6 7.4

Spread 5.9 6.5

Peak -14.5 -15.9

/ /kV nC m

|| / /W kV nC m

s m

Pipe (resistive+oxid layer+roughness)

resistive

bunch

-157.1 10 sec

600 mrough 5 nmoxid

(T.Wohlenberg)

10d m

2 10b mm1 25b mm

Kicker (geometrical wake)

||( ) ( )QW s Z I s

|| 110Z

|| 2 (0)eZ Z

0 1

2

(0) ln2

e Z bZ

b

(T.Wohlenberg)

6 1 10.76 10 m

Kicker (resistive wake)

1

7 2 612 1.1 10 1.3 10m mm

10d m

2 10b mm1 25b mm

0 sec 0 mrough

0 nmoxid

(T.Wohlenberg)

0 1 2

x 10-4

-2000

-1000

0

1000

2000

Geom. Res. Total

Loss 300 894 1195

Spread 182 469 592

Peak -604 -1526 -1905

/kV nC

|| /W kV nC

s m

Kicker

totalresistive

bunch

10d m

2 10b mm1 25b mm6 1 10.76 10 m

0 1 2

x 10-4

-1

-0.5

0

0.5

1x 10

4

Pipe (456m)

Collimators (4 items)

Kickers (3*10m)

Total

Loss 3359 4623 3584 11565

Spread 2963 3315 1777 7617

Peak -7248 -9645 -5714 -21636

|| /W kV nC

s m

TOTAL (LINAC to SASE2)

collimators

pipe bunch

kickers

/kV nC

0

51015

202530

354045

pipe collimators kickers

Loss

Spread

Peak

%

Energy spread due to wakefields between LINAC and SASE 2

0 1 2

x 10-4

-0.1

-0.05

0

0.05

0.1

0.15

s m

0

%E

E

0 17.5 GeVE

bunch

0 0.5 1 1.5

x 10-4

3.416

3.418

3.42

3.422

3.424

3.426

x 104

s m

bunch

before SASE2

after LINAC

Energy losses between LINAC and SASE2 vs. pipe radius R

5 10 15 20 25 300

0.05

0.1

0.15

0.2

5 10 15 20 25 300.06

0.08

0.1

0.12

0.14

0.16

5 10 15 20 25 300.1

0.2

0.3

0.4

0.5

0

%rmsE

E

0

%E

E

0

max%

E

E

Spread

[mm]R

Loss Peak

[mm]R [mm]R

With oxid layer and roughness

Geometrical+resistive

0 1 2

x 10-4

-4

-2

0

2

4x 10

4

undulator pipe (42*5.1m)

intersection pipe (41*0.7m)

absorbers(41*0.3m items)

Total Total

(old geometry)*

Loss 9395 869 1689 1.19e4 1.11e4

Spread 16560 1723 1470 1.95e4 1.89e4

Peak -33789 -3435 -4200 -4.1e4 -4.0e4

|| /W kV nC

s m

TOTAL (SASE2)

undulator pipe

bunch

absorbers

/kV nC

pipe in intersection

(T.Wohlenberg)

* M. Dohlus et al, TESLA-FEL 2005-10

Energy spread between LINAC and SASE2 vs. pipe radius R(normalized to the spread in SASE2)

10 20 30 40 500

50

100

150

2 2

2%

Linac SASErms

SASErms

E

E

Spread

[mm]R

total

collimators

Conclusion

0

51015

202530

354045

pipe collimators kickers

Loss

Spread

Peak

Impact on FEL performance?(spectrum from SASE simulations?)

10 20 30 40 500

50

100

150

2 2

2%

Linac SASErms

SASErms

E

E

Spread

[mm]R

total

collimators

Appendix A. Kick factors of flat and round collimators are equal

2b2b x

yround flat

Appendix A. Kick factors of flat and round collimators are equal

0 0 0 0( , , , ) cos( )d dk r r k r

0 0 0( , , , )x dk x y x y k x

0 0 0( , , , )y dk x y x y k y

0 0 0( , , , )x xd xqk x y x y k x k x

0 0 0( , , , )y yd yqk x y x y k y k y

2b2b x

yround flat

xd xqk k xq yqk k

z

y

0yy=

0 0 0( , , , )y yd xdk x y x y k y k y

Appendix A. Kick factors of flat and round collimators are equal

0 0 0( , , , )y dk x y x y k y0 0 0( , , , )y yd yqk x y x y k y k y

2b2b x

yround flat

0.5yd dk k 0.5xq xd dk k k

y yd yq dk k k k

Kick of the flat collimator is equal to the kick of the round one

z

y

0yy

=

=

=0.5

Appendix B. XFEL collimator vs. cryomodule

1 25mmb

50d cm

2b

02 2

2 1

1 1

2long Z c

kb b

Appendix B. XFEL collimator vs. cryomodule

b2,

mm

Kick,

V/pC/m

1 18*103

2 4.5*103

3 2.0*103

4 1.1*103

5 0.7*103

[V/pC/m/module]Kick

25 ~6.5

For the bunch with sigma=25mkm the kick from the collimator with apperture b2=2mm is equal to the kick of ~700 cryomoduoles

Emmitance growth?