75
Treatment planning for Pencil Beam Scanning Tony Lomax, Alessandra Bolsi, Francesca Albertini, Damien Weber Paul Scherrer Institute, Switzerland

Lomax Treatment Planning - American Association of ... compound The relationship between chemical composition and proton stopping power [KN] coh coh ph µ= ρTissueNTissue ph 3.62Z

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Treatment planning for Pencil Beam Scanning

Tony Lomax, Alessandra Bolsi, Francesca Albertini,

Damien Weber

Paul Scherrer Institute, Switzerland

1.  Field  shaping  and  op0misa0on  2.  Plan  design  

3.  Lateral  penumbra  and  PBS  

4.  Range  and  posi0oning  uncertain0es  5. Mo0on  

Overview of presentation

1.  Field  shaping  and  op0misa0on  2.  Plan  design  

3.  Lateral  penumbra  and  PBS  

4.  Range  and  posi0oning  uncertain0es  5. Mo0on  

Overview of presentation

Single field, uniform dose (SFUD) planning

The combination of individually optimised fields, each of which

deliver a (more or less) homogenous dose across the target volume

SFUD is the spot scanning equivalent of treating with ‘open’ fields.

Field shaping and optimisation

SFUD planning

Spot definition

Incident field Incident field

Spot selection

Selected spots

Initial dose distribution

Dose calculation

Spot weight optimisation

Optimised dose

Dose Calculation

Field shaping and optimisation

An example SFUD plan.

Note, each individual field is homogenous across the target volume

F1 F2

F3 F4

Combined distribution

Field shaping and optimisation

1st series (0-40CGE)

3 field SFUD plan to PTV

2nd series (40-74CGE)

3 field SFUD plan to

‘TechPTV’

Full treatment + =

An example SFUD plan

Field shaping and optimisation

The TechPTV or ‘Virtual 3d block’

In order to carve-out dose to neighbouring critical

structures, need to be able to ‘block’ out dose

Modified target volume used to define ‘Virtual 3d blocks’

Alternatively, dose can be spared to critical structure by

Single Field Optimisation (SFO)

Field shaping and optimisation

Intensity Modulated Proton Therapy (IMPT)

The simultaneous optimisation of all Bragg peaks from all fields (with or

without additional dose constraints to neighbouring critical structures)

IMPT is the spot scanning equivalent of IMRT (and field patching for passive

scattering proton therapy).

Field shaping and optimisation

An example IMPT plan

F1 F2

F3 F4

Combined distribution

Note, each individual field is highly in-homogenous (in dose) across the target volume (c.f. SFUD plans)

Field shaping and optimisation

Example clinical IMPT plans delivered at PSI

Skull-base chordoma

4 fields

3 field IMPT plan to an 8 year old boy

3 fields

Field shaping and optimisation

Two, 5 field IMPT dose distributions

A B

Corresponding spot weight distributions from field 2

3D IMPT DET

There’s more than one way to optimise an IMPT plan…

Field shaping and optimisation

In-fi

eld

inte

nsity

mod

ulat

ion

Technique

DET

Degeneracy: A continuum of modulation*

* Inspired by Stephen Dowdell, MGH, Boston

SFUD IMPT

Field shaping and optimisation

2500 spots per field 150 spots per field 120 spots per field

SFUD/IMPT DET Beyond DET…

Degeneracy: Beyond DET... Field shaping and optimisation

Multiple Criteria Optimisation (MCO)

Pareto surface (David Craft,

MGH)

Modulation

Chen et al 2010, Med. Phys. 37:4938-4945

Field shaping and optimisation

1.  Field  shaping  and  op0misa0on  2.  Plan  design  

3.  Lateral  penumbra  and  PBS  

4.  Range  and  posi0oning  uncertain0es  5. Mo0on  

Overview of presentation

Geometric avoidance of organs at risk.

The selection of beam incidences which avoid critical structures leads…

…‘automatically’ to reduced doses to the critical structures

Plan design

…and 19%

For same mean dose to target, 15MV photons deliver an integral dose of….

16%…

The corresponding values for two proton fields are..

7%… …and 13%

Field selection and integral dose – protons vs photons

Plan design

Avoidance of coarse density heterogeneities.

•  Accuracy of dose calculations

•  Effects on dose homogeneity and conformity

•  Sensitivity of a plan to spatial delivery uncertainties.

Plan design

Vol = 86%

Vol = 99%

A ‘homogenous’ field direction

Analytical Dose difference (MC-RC %)

0 5 10 -10 -5 10 20 30 40 50

Volu

me

(%)

Difference histogram

MC

Dose difference (MC-RC %) 0 5 10 -10 -5

10 20 30 40 50

Volu

me

(%)

Analytical

Difference histogram Vol = 64%

Vol = 89%

MC

An ‘inhomogenous’ field direction

Plan design

Effects on (single field) dose conformity

Example field through relatively homogenous

anatomy

Example field through very inhomogenous

anatomy

Plan design

Plan design

The importance of multiple fields

•  Improve dose homogeneity

•  Reduce dose to normal tissues (but increase irradiated volume)

•  Improve plan robustness

Plan design The importance of multiple fields

Improved plan homogeneity and reduced dose to normal tissues

Plan design

Albertini et al 2011 PMB 56:4399-4413, Lowe et al 2015 manuscript in preparation

The importance of multiple fields

Improved plan robustness

Dose  error  bars  for  frac0onated  posi0oning  errors    

σ85%  =  3.3mm  

Frac0ons  =  23  

1.  Field  shaping  and  op0misa0on  2.  Plan  design  

3.  Lateral  penumbra  and  PBS  

4.  Range  and  posi0oning  uncertain0es  5. Mo0on  

Overview of presentation

~6MV photons

The problem of lateral fall-off for PBS

Safai et al 2008 PMB 21;1729-1750

Passive  scaHering  (collimated)  

PBS  (uncollimated)  

Lateral penumbra

The problem of superficial spots… •  Superficial spots (ranges < ~5 cm) require low energies (< ~80MeV) ~5cm

Typical solution is to use a preabsorber. E.g…

5cm (wer)

Nozzle Patient

•  Low energy protons are difficult to transport through the beamline/gantry

•  Low energy Bragg peaks are very sharp

Lateral penumbra

The problem of superficial spots… •  However, scattering in the absorber broadens the beam…

+

Air gap

Air gap

•  …and the beam broadens as a function of the gap between absorber and patient

When using a preabsorber then, the nozzle-patient

distance must be minimised to reduce beam size.

This is not always possible…

Lateral penumbra

Beam widths (σ in air) for PSI Gantry 2 at iso-centre

The problem of the preabsorber…

Without preabsorber 80 MeV, without

preabsorber ~ 4.7mm

80 MeV, with preabsorber ~ 10.5mm

Lateral penumbra

Lateral profiles

-20

0

20

40

60

80

100

120

-10 -8 -6 -4 -2 0 2 4 6 8 10

X coordinate (cm)

Dos

(%)

80-20% Fall offs: No absorber: 8mm

Absorber (9cm gap): 12mm

Absorber (27cm gap): 16mm

No absorber

Absorber (9cm) Absorber (27cm)

The problem of the preabsorber… Effect on lateral fall-off

No absorber

Absorber (9cm gap)

Absorber (27cm gap)

Geometric box calculations

Lateral penumbra

Are superficial spots important?

An orbital rhabdomyosarcoma (pediatric case)

•  Critical structure - lacrimal gland

•  Maximum range per field: ~5cm

Lateral penumbra

Spot-range histogram

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250

Range (mm)

Per

cent

age

of B

ragg

pea

ks

Spot-range histogram

Cumulative BP-range frequency plot

calculated from 3829 fields applied

at PSI

Are superficial spots important?

More than 30% of delivered spots have ranges of <=5cm

Lateral penumbra

Lateral penumbra

Collimation and PBS

Hyer  et  al  2014  Med  Phys  41:091701  

Time for a break...

1.  Field  shaping  and  op0misa0on  2.  Plan  design  

3.  Lateral  penumbra  and  PBS  

4.  Range  and  posi0oning  uncertain0es  5. Mo0on  

Overview of presentation

The advantage of protons is that they stop.

The disadvantage of protons is that we don’t always know where…

10% range error

The influence of range uncertainties

Range and positioning uncertainties

Potential magnitude

Beam energy [σ]

Patient positioning [σ]

Inherent CT uncertainties (beam hardening, calibration etc) [Σ]

Distal end RBE enhancements [Σ]

CT artifacts [Σ]

Variations in patient anatomy [Σ,σ]

The ‘Bermuda Triangle’ of range uncertainties

Range and positioning uncertainties

Potential magnitude

Beam energy [σ]

Patient positioning [σ]

Inherent CT uncertainties (beam hardening, calibration etc) [Σ]

Distal end RBE enhancements [Σ]

CT artifacts [Σ]

Variations in patient anatomy [Σ,σ]

The ‘Bermuda Triangle’ of range uncertainties

Range and positioning uncertainties

WaterWater

TissueTissueTissuee

Tissue

NNSP

ρρ

ρ =≈

∑=i

iiA

Tissue

AZNN ω

where

NA is Avagadro’s number Zi, Ai and ωi are the atomic number, atomic weight and the proportion by weight of the ith element of

the compound

The relationship between chemical composition and

proton stopping power

[ ]KNcoh

cohph

phTissueTissue KZKZKN ++= 86.162.3ρµ

where

and again Zi and ωi are the atomic number and the proportion by weight of the ith

element of the compound

The relationship between chemical composition and

Hounsfield units

[ ] 62.31

62.3∑= iiph ZZ ω

[ ] 86.11

86.1∑= iicoh ZZ ω

Calibrating CT to stopping power (1)

Using these relationships, we can calculate a calibration curve between SP and HU for biological samples

Range and positioning uncertainties

Stoichiometric calibration

1. ‘Parametrize’ CT scanner using tissue substitutes (Kph, Kcoh, KKN)

Parametrization (measured

versus theoretical)

Fitted calibration curve (SP

versus HU)

Accuracy c.f. experiments 1-2% (Schaffner et al, PMB, 1998)

2. From parametrization, calculate HU and SP of biological tissues using their chemical composition

3. Fit multi-linear calibration curve through calculated points (Schneider et al, PMB 1996)

Calibrating CT to stopping power (2)

Range and positioning uncertainties

SFUD

Lomax AJ (2007) in ‘Proton and charged particle Radiotherapy’, Lippincott, Williams and Wilkins

IMPT

Degeneracy and range uncertainty

Range and positioning uncertainties

SFUD

IMPT

Lomax AJ (2007) in ‘Proton and charged particle Radiotherapy’, Lippincott, Williams and Wilkins

Degeneracy and range uncertainty

Range and positioning uncertainties

CTV (IMPT)

0

20

40

60

80

100

120

80 85 90 95 100 105 110 115

Dose (%)

Vol

ume

(%)

NominalCT +5%CT -5%

CTV (SFUD)

0

20

40

60

80

100

120

80 85 90 95 100 105 110 115

Dose (%)

Vol

ume

(%)

NominalCT +5%CT - 5%

+5% CT -5% CT

Lomax AJ (2007) in ‘Proton and charged particle Radiotherapy’, Lippincott, Williams and Wilkins

Degeneracy and range uncertainty

Range and positioning uncertainties

Modeling the effect of delivery uncertainties

SFUD IMPT

Dose distributions

Dose error-bar distributions (+/-3% range)

Albertini et al 2011 PMB 56;4399-4413

Range and positioning uncertainties

Error bars (% of prescription dose)

Volu

me

(%)

5 10 15 20 25 0 0

20

40

60

80

100

Modeling the effect of delivery uncertainties – Error-bar distributions

Error-bar volume histograms (EVH’s)

SFUD (PTV)

IMPT (PTV)

SFUD (CTV)

IMPT (CTV)

Range and positioning uncertainties

Albertini et al 2011 PMB 56;4399-4413

Potential magnitude

Beam energy [σ]

Patient positioning [σ]

Inherent CT uncertainties (beam hardening, calibration etc) [Σ]

Distal end RBE enhancements [Σ]

CT artifacts [Σ]

Variations in patient anatomy [Σ,σ]

The ‘Bermuda Triangle’ of range uncertainties

Range and positioning uncertainties

CT artifacts [Σ]

Range and positioning uncertainties

The problem of metal artefacts

Spinal stabilisation Hip prosthesis

Range and positioning uncertainties

The problem of metal artefacts kV-CT

MV-CT

0

0.5

1

1.5

2

2.5

3

3.5

0 20 40 60 80 100 120 140 160 180 200 220 240

X (voxels)

Sto

pp

ing

po

wer

KV SPMV SP

Prosthesis kV-CT artifacts

Stopping power profiles

PTV

Albertini et al, PTCOG 2006

Range and positioning uncertainties

Correcting metal artefacts

The manual approach

Uncorrected  CT   Artefact  corrected  CT  

Range and positioning uncertainties

Dietlicher  et  al    2014  PMB  59:7181-­‐7194  

Correcting metal artefacts

Experimental validation

Plans  calculated  to  uncorrected  and  manually  corrected  versions  of  the  CT      Each  plan  delivered  to  phantom  and  dose  measured  with  film  in  three  planes  (as  indicated)  

Range and positioning uncertainties

Gamma  agreement                                                            Manually  corrected  CT  

97%  with  γ<1  (3mm/3%)  

0.0  

0.2  

0.4  

0.6  

0.8  

1.0  

1.2  

1.4  

Dietlicher  et  al    2014  PMB  59:7181-­‐7194  

Correcting metal artefacts

Experimental validation

89%  with  γ<1  (3mm/3%)  

0.0  

0.2  

0.4  

0.6  

0.8  

1.0  

1.2  

1.4  

Gamma  agreement                                                            Uncorrected  CT  

Potential magnitude

Beam energy [σ]

Patient positioning [σ]

Inherent CT uncertainties (beam hardening, calibration etc) [Σ]

Distal end RBE enhancements [Σ]

CT artifacts [Σ]

Variations in patient anatomy [Σ,σ]

The ‘Bermuda Triangle’ of range uncertainties

Range and positioning uncertainties

Variations in patient anatomy [Σ,σ]

Planning CT Planning CT

Repeat CT

Repeat CT, 1st fraction

E.g. Variations in bowel filling

Francesca Albertini and Alessandra Bolsi (PSI)

Range and positioning uncertainties

Recalculated  dose    Francesca Albertini and Alessandra Bolsi (PSI)

Range and positioning uncertainties

Robust planning in the bowel

Planning  (modified)  CT  

Original  CT   Planned  dose  

IMPT for robust planning

Lomax et al 2001, Med. Phys. 28:317-324

Range and positioning uncertainties

IMPT for robust planning

Range and positioning uncertainties

Liu et al 2012, Med Phys 39:1079-1091

Unkelbach et al 2009, Med Phys 36:149-163

1.  Field  shaping  and  op0misa0on  2.  Plan  design  

3.  Lateral  penumbra  and  PBS  

4.  Range  and  posi0oning  uncertain0es  5. Mo0on  

Overview of presentation

Motion

The three challenges to PBS proton therapy

Dose  blurring   Interplay   Range  varia0ons  

1.8σ 1.3σ

Assume σ = 0.5cm

For this example, dose errors of ~20% can result from motion

(positioning) errors of 2.5mm

Phillips et al., PMB, 37:223-234,1992

Interplay

Motion

Max dose 111.2%

Max dose 112.8%

Static Max dose 120.2%

With motion (~6mm S-I)

Single field

Max dose 104.5%

Three fields

Interplay and multiple fields Motion

Knopf et al, Phys. Med. Biol. 56 (2011) 7257-7271

Max dose 111.2%

Static 4x rescanning

Single field

Max dose 104.5%

Three fields

Interplay and rescanning Motion

Max dose 108.6%

Max dose 104.9%

Knopf et al, Phys. Med. Biol. 56 (2011) 7257-7271

Range variations

Motion

Knopf et al, Phys. Med. Biol. 56 (2011) 7257-7271

Zhang et al 2015, PTCOG 54, San Diego.

Motion Range adapted PTV’s

3  field  plan  to  gITV  

3  field  plan  to  raITV  

4D-­‐CT  

Motion

Zhang et al 2015, PTCOG 54, San Diego.

Range adapted PTV’s and rescanning

gITV  

raITV  

no  rescanning  

HI:  32%  

Rescanning  

HI:  20%  

HI:  25%   HI:  12%  

•  Treatment  planning  for  PBS  is  a  flexible  and  automated  process  

•  Lateral  penumbra  is  a  limi0ng  factor  for  PBS.  Collimated  PBS  therapies  will  help  to  improve  this  in  the  future.  

•  The  planning  process  is  highly  degenerate.  This  can  be  good  and  bad…  

•  Uncertainty  in  range  is  unavoidable,  but  is  manageable  if  understood.    

•  Organ  mo0on  can  severely  degrade  the  delivered  dose  distribu0on,  but  re-­‐scanning  and  ‘smart’  target  design  can  help  mi0gate  the  

problem  

•  The  easiest  form  of  robust  planning  is  to  use  mul0ple  beams.  They  can  mi0gate  (and  hide)  a  mul0tude  of  evils…    

Take home messages

The  lateral  dose  fall-­‐off  of  PBS  proton  therapy  is…  

20%

20%

20%

20%

20% 1.  Below  5cm  range  is  worse  than  photons  but  beHer  than  passive  scaHering  

2.  Above  15cm  range  is  beHer  than  for  passive  scaHering  but  worse  than  photon  therapy  

3.  Is  always  beHer  than  photons  or  passive  scaHered  protons  

4.  Is  always  worse  than  passive  scaHered  protons    5.      Is  only  dependent  on  the  beam  width  in  air      

10

ANSWER  

2.  Above  15cm  range  is  beHer  than  for  passive  scaHering  but  worse  than  photon  therapy    

The  air  gap  in  PBS  therapies  …  

20%

20%

20%

20%

20% 1.  Is  important  due  to  large  amount  of  scaHer  in  air  that  substan0ally  broadens  the  beam  

2.  Can  be  neglected    

3.  Should  be  minimized  only  for  the  treatment  of  deep  seated  tumours  

4.  Should  be  minimized,  in  par0cular  for  the  treatment  of  superficial  tumors  

5.  Is  only  determined  by  the  shape  of  the  pa0ent.        

10

ANSWER  

4.  Should  be  minimized,  in  par0cular  for  superficial  tumors      

20%

20%

20%

20%

20% 1.  Is  mainly  due  to  uncontrollable  varia0ons  in  proton  beam  energy  

2.  Is  independent  on  the  quality  of  CT  data  used  for  planning  

3.  Is  typically  in  the  sub-­‐millimeter  range  

4.  Can  easily  be  reduced  to  sub-­‐millimeter  levels  with  careful  calibra0on  of  the  CT  scanner  

5.  Will  typically  be  of  a  few  percent  of  proton  range  in  the  best  case  

   

     

10

Range  uncertainty    for  proton  therapy…    

ANSWER  

5.  Will  typically  be  of  a  few  percent  of  proton  range  in  the  best  case        

20%

20%

20%

20%

20% 1.  Is  not  a  problem  

2.  Is  less  problema0c  than  for  passive  scaHering  

3.  Is  less  of  an  issue  than  for  IMRT  

4.  Is  subject  to  interplay  effects  that  effect  target  dose  homogeneity  

5.  Is  only  a  problem  if  mo0on  is  more  than  1cm      

     

10

 The  treatment  of  moving  targets  with  

PBS…    

ANSWER  

4.  Are  subject  to  interplay  effects  that  effect  target  dose  homogeneity            

20%

20%

20%

20%

20% 1.  Use  as  few  beam  orienta0ons  as  possible  

2.  Use  the  distal  fall-­‐off  to  spare  cri0cal  organs  such  as  the  spinal  cord  and  brain  stem  

3.  Maximise  the  path  length  to  the  target  to  minimize  pencil  beam  size  

4.  Use  mul0ple  beam  orienta0ons  to  improve  plan  robustness  

5.  Use  mul0ple  fields  to  minimize  integral  dose  

   

     

10

When  designing  plans  and  selecSng  beam  orientaSons  for  PBS  proton  therapy,  it  is  good  

pracSce  to…  

ANSWER  

4.  Use  mul0ple  field  direc0ons  to  improve  plan  robustness