35
1

LOGO - site.iugaza.edu.ps

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: LOGO - site.iugaza.edu.ps

1

Page 2: LOGO - site.iugaza.edu.ps

LOGO

iugaza2010.blogspot.com

Chapter 5

Electric Field in

Material Space

Part 4

Page 3: LOGO - site.iugaza.edu.ps

3

Boundary Conditions

Boundary conditions are helpful in determining

the field on one side if the field on the other side

is known.

Dielectric and dielectric

Conductor and dielectric

Conductor and free space

E=Et+En

D1n-D2n=ρs

Page 4: LOGO - site.iugaza.edu.ps

4

(1) Dielectric and dielectric

E1=E1t+E1n

E2=E2t+E2n

Page 5: LOGO - site.iugaza.edu.ps

5

Page 6: LOGO - site.iugaza.edu.ps

6

Page 7: LOGO - site.iugaza.edu.ps

7

Page 8: LOGO - site.iugaza.edu.ps

8

Page 9: LOGO - site.iugaza.edu.ps

9

Page 10: LOGO - site.iugaza.edu.ps

10

Page 11: LOGO - site.iugaza.edu.ps

11

Page 12: LOGO - site.iugaza.edu.ps

12

Substitute in boundary conditions:

Page 13: LOGO - site.iugaza.edu.ps
Page 14: LOGO - site.iugaza.edu.ps

14

Page 15: LOGO - site.iugaza.edu.ps

15

(2) Conductor and free space

ρs

Page 16: LOGO - site.iugaza.edu.ps

16

ρs

Page 17: LOGO - site.iugaza.edu.ps

17Note: σf=ρs , Qf = Qen

ρs

Qen

Page 18: LOGO - site.iugaza.edu.ps

18

ρs

Page 19: LOGO - site.iugaza.edu.ps

19

ε =εo

Page 20: LOGO - site.iugaza.edu.ps
Page 21: LOGO - site.iugaza.edu.ps

21

(3) Conductor and Dielectric

Page 22: LOGO - site.iugaza.edu.ps

22

(4) Dielectric and free space

As Dielectric- Dielectric but with ε1=εo

Dielectric

free space

Page 23: LOGO - site.iugaza.edu.ps

23

E1=10ax-6ay+12az V/m , find

(a) P1 (b) E2 and the angle E2 makes with y-axis

(c) The energy density in each region.

1 2

1 2

1 1 1 1

2

( )

( 1) (2)

0.177 0.10624 0.2125 nC/m

t t

n n

o r o

x y z

a

E E

D D

P E E

a a a

Di - Di

Page 24: LOGO - site.iugaza.edu.ps

24

1 2

1

1 1 1

1 2

2 2

2

2 2 2

( )

10 12

6

3 ( 6 ) 18

18

184

4.5

10 4 12 V/m

t x z t

n y

n n o y o y

n n

o y n

o y

n y

o

t n x y z

b

E a a E

E a

D E a a

D D

a E

aE a

E E E a a a

Page 25: LOGO - site.iugaza.edu.ps

25

22

2

1

2

2 2 3

1 1

2 2 3

2 2

| | 100 144tan 4

| | 16

tan (4) 75.6367

( )

1 1(3 )( 100 36 144) 3.718 nJ/m

2 2

1 1(4.5 )( 100 16 144) 5.18 nJ/m

2 2

t

n

o

E o

E o

E

E

c

W E

W E

Page 26: LOGO - site.iugaza.edu.ps

26

(a) D1=12ax-10ay+4az n C/m2 , find

D2 and the angle E2 makes with x-axis

1 2

1 2

1 2 2 2 2

1 1 1 1 2

2 2 2

2

2 2 2

2 2 2

1212

10 4 4 1.610 4

2.5

4 1.6( ) 4 1.6

12 4 1.6 nC/m

1(12 4

t t

n n

xn x n n n

o

y z y z

t y z t t t

o o

y z

t t o y z

o

n t x y z

n t x

o

E E

D D

aD a D E E

a a a aD a a E E E

a aD E a a

D D D a a a

E E E a a

Di - free

1.6 ) nV/my za

Page 27: LOGO - site.iugaza.edu.ps

27

2 2

22

22

1

2

| | 4 1.6tan 0.36

| | 12

tan (0.36) 19.7487

t

n

o

E

E

Page 28: LOGO - site.iugaza.edu.ps

28

1t 2t

1n 2n

E = E

D = D

2

22

2

2 1

2

1 1 2 2

21 2

1

11 1

1

11 1

1

| | 12

| |sin

| |

| (12)sin 60 10.4 | |

| | (12)cos 60 6

1(6) 2.4

2.5

| | 10.4tan 77

| | 2.4

| | 10.4sin | |

| | sin 77

t

t t

n

n n

n n

ot

n

t

o

E

E

E

E E

E

E E

E E

E

E

EE

E

1n 2nD = D

10.6735 V / m

(b) If E2 =12 V/m and θ2=60o , Find E1 and θ1

Page 29: LOGO - site.iugaza.edu.ps

29

(a) E=60ax+20ay-30az m V/m

find D and ρs

2 2 2 2

0.531 0.177 0.265

| | (0.531) (0.177) (0.265) 0.62 pc/m

n o

x y z

s n

D D E

a a a

D

Page 30: LOGO - site.iugaza.edu.ps

30

1 2 1 2

( )

,

=0= ,

=

(3) (8.5) =(1)

3( )(2000) 706 V/m8.5

3( )(2000) 6000 V/m1

t t n n

ot gt at

on gn an

on gn an

gn

an

a

E E D D

E E E

D D D

E E E

E

E

Di - Di

Page 31: LOGO - site.iugaza.edu.ps

31

_

_

_

( )

sin

(2000)sin(75) 1931.85

(2000)cos(75) 517.638

_______________________________

oil t

oil

oil

oil t

oil n

b

E

E

E

E

for oil(1)

Page 32: LOGO - site.iugaza.edu.ps

32

_ _

_ _

_ _

_

2 2

_ _

2 2

_

_

1931.85

(8.5) (3)

3(517.638) 182.7

8.5

( ) ( )

(182.7) (1931.85) 1940.47 V/m

| |tan

|

glass t oil t

glass n oil n

glass n oil n

glass n

glass glass n glass t

glass t

glass

glass n

E E

D D

E E

E

E E E

E

E

Di(oil) - Di(glass)

1931.85

| 182.7

84.6o

glass

Page 33: LOGO - site.iugaza.edu.ps

33

_ _

_ _

_ _

_

2 2

_ _

2 2

_

_

1931.85

(1) (8.5)

8.5(182.7) 1552.95

1

( ) ( )

(1552.95) (1931.85) 2478.6484 V/m

| | 1tan

| |

air t glass t

air n glass n

air n glass n

air n

air air n air t

air t

air

air n

E E

D D

E E

E

E E E

E

E

Di(glass) - freespace(air)

931.85

1552.95

51.2o

glass

Page 34: LOGO - site.iugaza.edu.ps

34

2

92

2 2

2

2

r2 2 2

2 2

2

.

(4 )

12 10381.97 nC/m

4 4 (0.05)

for r>a .

(4 )

12 3a nC/m

4 4

energy:

1 1 1. | | | |

2 2 2

1 3| |

2

E o

o

E

o

D ds Qen

D a Qen

QenD

a

D ds Qen

D r Qen

QenD

r r r

electrostatic

W D Edv E dv D dv

Wr

(a)

(b)

(c)

2

2 2 6

4

5 0 0

3 1sin 13 10

2 o r

dv r d d dz Jr

A silver-coated sphere of radius 5 cm carries a total charge of 12 nC uniformly

distributed on its surface in free space. Calculate:

(a) |D| on the surface of the sphere,

(b) D external to the sphere,

(c) the total energy stored in the field.

Page 35: LOGO - site.iugaza.edu.ps

LOGO

[email protected]